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Abstract

Optimal shape control is important in fuselage assembly processes.«To achieve high
precision assembly, shape adjustment is necessary for fuselages with initial shape
deviations. The state-of-the-art methods accomplish this goal by using actuators whose
forces are derived from a model based on the designed fuiselage*mechanical property.
This has a significant limitation: they do not consider the model mismatch due to
mechanical property changes induced by the shape déviation of an individual incoming
fuselage. The model mismatch will result in ‘control performance deterioration. To
improve the performance, the shape contrelumodel needs to be updated based on the
online feedback information from the fuselage shape adjustment. However, due to the
large size of the fuselage surface, highly accurate, inline measurements are expensive or
even infeasible to obtain in practice. Toresolve those issues, this paper proposes a Sparse
sensor Placement based Adaptive Control/ (SPAC) methodology. In this method, the
model is updated based on the sparse sensor measurement of the response signal. The
reconstruction performance under a minor model mismatch is quantified theoretically. Its
performance has been evaluated based on real data of a half-to-half fuselage assembly
process, and the proposed method improves the control performance with acceptable
sensing effort.

Keywords: adaptive control; ¢omposite fuselage assembly; sparse sensor placement; quality

improvement.

1. Introduction

Composite materials are widely used in the aerospace industry due to their superior chemical and
mechanical properties (Clyne and Hull 2019). In the assembly process, multiple composite fuselages
need to be assembled with high precision. However, shape deviations during the fabrication and

transportation lead to inevitable dimensional variability of composite fuselages (Yue et al. 2018). This
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dimensional variability can cause large gaps between subassemblies. Without appropriate
compensation, it will cause a significant increase in the flowtime, manpower cost and even halt the
delivery of the airplane (Duncan 2021). For a detailed discussion on the assembly process, we refer
interested readers to Manohar et al. (2018b). To overcome this issue, aircraft assemblers use actuators
to adjust the edges of the fuselage to their target shape for reducing the gap. An illustrative figure of a
half fuselage is shown in Figure 1. In practice, the force applied by each actuator is determined by a

trial-and-error approach, which is inefficient, sub-optimal, and requires highly experienced engineers.

Figure 1. Illustration of a'half fuselage

To achieve better dimensional control ofsthe fuselage, an automatic optimal shape control
(AOSC) of fuselages was proposed to determine the actuators’ forces and locations (Yue et al. 2018).
Since then, multiple methods for modeling and optimal shape control of fuselages have been proposed
(Wen et al. 2018, Yue et al. 2018, Dwetal. 2019, Zhong et al. 2021). These control strategies can be
separated into two categories 4n terms of different modeling approaches: (i) first-principle-based
methods (Zhang and Shi 2016a, Zhang and Shi 2016b, Wen et al. 2018, Zhong et al. 2021), and (ii)
data-driven methods«(Yue et al. 2018, Yue and Shi 2018, Du et al. 2019, Lee et al. 2022). For first-
principle-based,methods, Wen et al. (2018) built a finite element analysis (FEA) model to mimic the
physical propetties of a fuselage. Zhang and Shi (2016a,b) proposed a stream of variation model for
compliant parts. Furthermore, Zhong et al. (2021) proposed an FEA model-based control strategy and
incorporated the cautious control concept to consider part-to-part uncertainties. For data-driven
methods, Yue et al. (2018) proposed a surrogate model-based control framework that considers

uncertainties for the fuselage assembly. Du et al. (2019) proposed a sparse-learning framework to



select the actuator locations and forces automatically. Lee et al. (2022) developed the neural network
Gaussian process considering input uncertainty, and achieved accurate predictions. Wang et al.
investigated the theoretical performance of Gaussian processes with input uncertainties. The main
drawbacks of those existing methods are twofold:

(i) For the first-principle-based methods, it is time-consuming and challenging to build an
accurate model for each incoming fuselage due to the inherent production variation. Usually,
the model is built according to the designed shape and materials. Therefore, it does not
represent an individual incoming fuselage accurately.

(ii)) Data-driven methods are built upon the experimental data of real fuselagés ‘or FEA
simulations. This can be considered as a population model for fuselages. However, accurately
measuring the thickness, material property, or fastening conditions for each incoming
fuselage is complicated. Therefore, these models may fail to predict the outputs accurately
when the response surface goes beyond the scope of experimental data.

Furthermore, all the aforementioned methods are®™one-shot methods, i.e., no feedback
information is used to update the model so that the uniqueicharacteristics of an incoming part can be
considered. This will lead to a mismatch between the physical model of the incoming fuselage and the
model used to derive the control strategy. Even though the model mismatch may be small, the derived
control strategy will lead to suboptimal control performance, which is undesirable due to the ultra-
high precision requirement for theé composite fuselage assembly.

Adaptive control methods can update the model accurately with the help of online estimation
using feedback information and derive a control strategy fitting the specific incoming fuselage
(Landau et al. 2011). It is widely used in the control of dynamic systems with unknown or time-
varying paramieters (Astrdm 1983, Landau et al. 2011, Astrém and Wittenmark 2013). Adaptive
control methods can be summarized into three categories: open-loop adaptive control, direct adaptive
control, and indirect adaptive control methods (Landau et al. 2011). Among these methods, the
indirect adaptive control is closely related to the fuselage assembly process, where the model of the

fuselage can be estimated online from the input-output measurements, and the control action can be



determined accordingly. The indirect adaptive control method includes two stages: (i) online model
parameter estimation and (ii) online computation of the controller parameters. Traditionally, existing
parameter adaptation algorithms, such as Gradient Descent or Least-Squares Minimization, can
achieve satisfactory parameter estimation based on the feedback information when the response signal
has a low dimension. However, the fuselage has a large surface area (e.g., Section 41 fuselage of
Boeing 787 is 6.2 meters in diameter and 12.8 meters long (Sloan 2018)). High precision
measurement of the deformation of the fuselage usually generates high-dimensional signals (e.g., as
shown in Figure 1, the 186 measurements correspond to the 62 grid points on two edges, each grid
point requiring 3-dimensional measurement leading to a 186-dimensional signal in our £ase,study).
Acquiring such accurate high dimensional feedback information in a fuselage assembly requires many
repetitive measurements, resulting in significant cost increase and production delay. Therefore, the
trade-off between control performance and measurement cost needs to be.considered.

To reduce the sensing cost, sparse sensor placement hassbeen widely used in the field of
signal processing (Donoho 2006, Candés and Wakin 20083,Joshi and Boyd 2008) and control
(Manohar et al. 2018a). The main idea of the sparse sensor placement is to reconstruct the response
signal with a small subset of samples. Current approaches for sparse sensor placement commonly
utilize a brute-force, combinatorial search, which is computationally intractable even for moderately
large systems (Brunton et al. 2016) By exploiting structural properties such as low rank (Manohar et
al. 2018a, Manohar et al. 2018b) or sparsity (Candés and Wakin 2008), the sparse sensor placement
problem can be solved efficiently.(Brunton et al. 2016). Sparse sensor placement has been applied in a
large number of real-world applications involving signal compression (Candes and Wakin 2008),
environmental monitoring of ocean temperatures (Yang et al. 2010), structural health monitoring
(Meo and Zumpano 2005), and dynamical systems (Kramer et al. 2017). The sensing cost can be
significantly reduced by adopting the sparse sensor placement strategy while maintaining comparable
measurement accuracy requirements.

There are generally two types of sparse sensor placement methods (Manohar et al. 2018a): (i)

One is based on the sparse representation of the sensing signal, also called compressive sensing



(Candés and Wakin 2008). Compressive sensing aims to reconstruct the entire signal based on a small
number of measurements. The sensors are usually randomly placed, and the reconstruction leads to an
[, norm minimization problem. (ii) The other is based on the low-rank representation of the sensing
signal in a low-dimensional subspace. The basis spanning this subspace is also called tailored basis.
To optimize the sensor location in this case, a regression problem has to be solved, and usually
experimental design concepts are utilized. In terms of using sparsity to reduce the sensing cost,
Bhattacharya and Basar (2011) proposed using compressive sensing techniques to provide feedback
information in controlling the system. However, the second category is more suitable for fuselage
assembly problems because
(1)  itis infeasible or time-consuming to place sensors randomly (Manohar et al.2018a).
(i1)) under the small deformation assumption (Reddy 2019, Zhong et al. 2021), the deformation of
the fuselage lives in a low dimensional space driven by a small number of actuators, which is

low rank rather than sparse (more details refer to Section 2:2).

Therefore, we need to estimate the low-rank space for sparse'sensor placement and incorporate the
impacts of the physical model of the incoming fuselage.

In this paper, we propose a SPAC strategy that utilizes the feedback information for model
updating to improve the control performance while keeping the measurement cost at a reasonable
level by integrating a sparse sensor, placement framework. The main challenge is the unknown
physical model during the reconstruction’of the response signal from sparse sensor measurement. We
propose to use the system equations,derived from the design information or learned from historical
data as an alternative. The slight mismatch between the physical model of the incoming fuselage and
the designed, oneis called the perturbation to the model. A theoretical quantification of the
reconstruction error is derived in this scenario. The corresponding engineering interpretation is given,
which may serve as a guideline for determining the number of sensors needed according to the
perturbation level. Furthermore, we use a case study in the high precision fuselage assembly process
to show that the SPAC framework can achieve comparable control performance as the adaptive

control method with much less sensing cost.



The remainder of this paper is organized as follows. Section 2 presents the sparse sensor
placement methodology and analyzes its reconstruction performance under small perturbations. In
Section 3, the proposed SPAC framework is applied in a high precision fuselage assembly process.

Finally, Section 4 concludes the paper.

2. Sparse Sensor Placement based Adaptive Control Methodology
This section proposes the SPAC methodology to address the research gap of integrating the
sparse sensor placement in the presence of model perturbation into the adaptive control:*Figure 2

provides an overview of the proposed SPAC methodology.

Design stage Adaptive control stage

Evaluation stage
Low dimensional space Sparse measurement and Control performance
(Historical data, system signal reconstruction prediction
design information) ]
T
Sparse sensor placement :
strategy (number of sensors, || | 1 :
sensor locations) ¥
Perturbation level or 1 P el estimation and L
sensor budget - control Validation
(Engineering knowledge)

Figure 2. An overview of the proposed SPAC method
The proposed SPAC method has three stages:

(i)  In the design stage, @ low-dimensional intrinsic space, to which a high-dimensional response
signal can’be projected without loss of critical information, is derived either based on
historicalrdata or the system equation. The sparse sensor placement strategy determines the
number of sensors and their corresponding locations by incorporating the perturbation level or
sensor budget from engineering knowledge.

(i1)) In the adaptive control stage, the entire response signal (e.g., fuselage’s high-dimensional
shape deviation) is first reconstructed from the sparse measurement signals. Afterward,

appropriate algorithms can be applied for parameter estimation and control.



(ii1)) In the evaluation stage, the control performance will be predicted from the sparse
measurement signal, and the performance can be validated using the measured dimensional
deviation data.

In Section 2.1, a sparse sensor placement strategy is introduced. Then, the reconstruction
performance of the proposed method under small perturbations is presented in Section 2.2. Finally,

the downstream parameter estimation and adaptive control strategy are proposed.

2.1 Sparse sensor placement methodology

The goal of the sparse sensor placement methodology is to select a subset of sensors from all potential
sensor locations to reconstruct the entire measurement field. There are two types“of sparse sensor
placement strategies:

(i) The first strategy is based on the sparse representation of the sensing.signal to sample
randomly on a universal encoding basis. This strategy is related 40 compressive sensing
(Candés and Wakin 2008).

(i1)) The second strategy is based on the low-rank representation of the sensing signal with a set of
known bases that lead to a designed measurement strategy. This type of strategy is closely
related to experimental design (Chaloner and Verdinelli 1995).

In the control context, the high-dimensional raw response signal is usually driven by a low-
dimensional critical control signal. <This indicates that the response usually lives in known, lower-
dimensional space. Low-dimensienal representation can retain the most meaningful features of the
original data. Since the_second approach exploits this low-rank structure, it is commonly satisfied in
high-dimensional ¢ontrolsystems. By adopting this approach, the sensing cost can be significantly
reduced.

Let y, € R™ denote the response at time step t of a control signal x; € R™, i.e., y; = Ax;,
where A is assumed to be of full column rank, A € R™™ and m < n. y,,Vt € {1,2,3 ...}, can be
projected into a low-dimensional space spanned by column space of A. We can reconstruct y; with
only m measurement points when there is no measurement noise. For robustness, we propose to use p

measurement points out of n potential locations where p € {m, m + 1, ..., n}. For ease of exposition,



we will suppress the subscript t in the following discussion. Let sensor locations be I' = {yl, e yp} c

T T
{1,..,n}andy’' = [yyl, ...,yyp] be the sparse measurement. Let C = [eyl, ...,eyp] be the selection

matrix, where e, (i=1, 2, ..., p) is a unit vector with all zeros except for a unit element on location y;,
1.e.,
y =Cy+e¢#(1)
where € is the measurement error that follows a multivariate Gaussian distribution, 1i.e.,
e~N(0,02I,).
The high-dimensional response y can be written as a linear combination of the column vectorsyof A,
ie, y=X"A(G,i)x;, where A(:,i) is the ith column vector of matrix A. Substituting this
relationship in Eq. (1), we obtain
y' = CAx + €. #(2)
Once y' is measured, and CA is known, x can be estimated as ®= (CA)Ty’, where (CA)t =
[(CA)TCA]~1(CA)T. The estimation error ¥ — x has zero mean.and covariance £ = ¢>[(CA)TCA]~1.
There are several commonly used optimization criteria for,sensor placement or optimal experimental
design (Chaloner and Verdinelli 1995), which are summarized as follows:
(i)  Spectral radius criterion (E-optimality):
r= argmin|1~|=p||[(CA)TCA]‘l||2 = argmax|r|=pOmin, #(3)
where 0y, is the minimum singular value of CA.
(il))  Trace criterion (A-optimality):
I' = argmax|r-,tr([(CA)TCA] ™), #(4)
whéretr(M)uis'the trace of matrix M.
(iii) Determinant criterion (D-optimality):
I'= argmax|r|=pdet((CA)TCA), #(5)
where det(M) is the determinant of matrix M.
These three criteria have different statistical interpretations: the E-optimality criterion

maximizes the minimum eigenvalue of the information matrix; the A-optimality can minimize the



summation of marginal variances for x; while the D-optimality maximizes the confidence region
volume for parameters x. The choice of those criteria is usually based on specific problem
requirements. In the following discussion, we will focus on the determinant criterion, which is widely

used in sparse sensor placement (Joshi and Boyd 2008, Manohar et al. 2018a, Manohar et al. 2018b).

2.2 Reconstruction performance under small perturbations
In this section, we will derive the reconstruction performance under small perturbations. As
mentioned in Section 2.1, A is necessary for deriving a sparse sensor placement strategy, which can
be derived from the system model. However, the real system model may deviate from the system
equations obtained from the engineering design (or from historical data). Forfexample, in the
automatic control for fuselage assembly, the system model is given by finite element analysis (Wen et
al. 2018) or experimental design (Yue et al. 2018, Du et al. 2019), which is not the same as the system
equation of incoming fuselages due to initial shape deviations¢ Meanwhile, it is not feasible to model
every incoming fuselage individually. Therefore, we,propose to use A, from the designed system
model to derive the sparse sensor placement strategy. In this case, the reconstruction performance of
the sparse sensor placement under smallyperturbations needs to be quantified. Furthermore, the
influence of the parameter estimation and ‘¢ontrol of this perturbed high-dimensional system needs to
be studied.

In the followingsdiscussions, we will use an [, norm perturbation. The induced [, norm of any

matrix M € R™"fs defined as |[M||; = max|y|,<1,xerm||Mx]||,. The induced [, norm of a matrix A

is also its spectral'morm, which equals the largest singular value of A. We use A, as the matrix
derived from engineering design which is also the one we observed (designed matrix), and A as the
normalized true matrix derived from the system model of an incoming fuselage with initial shape
deviation, which is the perturbed matrix from the designed one. We are interested in the
reconstruction performance under a small [, perturbation, i.c., ||A|l, = ||A — Agll, < 6 is small. § is

defined as the perturbation level.



Let y, be the reconstructed signal which is estimated by using A, and the measured signal y’,

ie.,
Yo = AoX = Ao(CAy)Ty'#(6)
The distribution of the reconstruction error ¥, — y is presented in the following proposition.
Proposition 1. Let A € R™™ be the perturbed matrix and ®, € R™™ be the designed matrix. Let
A = A — A, be the perturbation bounded by §, i.e., ||A]l, < 6. Let C; € RP*™ and C € RP*™ be the
selection matrix that solves one of the Equations (3-5) using A, and A, respectively. Assume that the
perturbation A is small such that the selection matrix Cy = C, and CjA, € RP*™ is of full column
rank. Let J, = Ag(CA,)Ty’, where y’ is the measured signal subjecting to measurement error
e~N (0, azlp ), i.e., y' = CAx + €, where x is the input control signal. Then the réconstruction error
Yo —y also follows a multivariate Gaussian distribution with mean p,.and\covariance X, i.e.,
Yo — ¥ ~N(uq,Z,), such that
= Ay(CoAy)TCAX — Ax, #(7)

2, = 0%A0[(CoAp)TCoApl 1 (AG)T:#(8)

Moreover,
leqllz < ”AO(COAO)TCO - I||2||x||25'#(9)
d with a probability at least (1 '
and with a probability at east( —W),

1Yo —yllz < ||AO(C0AO)+CO - I||2||x||28 + ||A0(C0A0)+||2||CAx||2.#(10)
The proof for Proposition 1{isprovided in Appendix A.
Discussion of Proposition 1
Proposition{Iushowssthat y, is no longer an unbiased estimator of y if there is a perturbation to the
basis. However, the bias can be bounded tightly if the induced perturbation is small in terms of the [,-

norm. The following discussions give the engineering interpretation of this proposition.

. . . . . |ica
) is dominated by the signal-to-noise ratio %. The

(i)  The probability (1  (IcAxll/p)?

higher the signal-to-noise ratio is, the more the estimation error ¥, — y will concentrate to an
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l, ball with center u;. Therefore, the reconstruction error will be bounded with a higher
probability when the signal-to-noise ratio is high.

(ii) Notice that there are two terms in ||y, — y||,: the first term is the bias pu; due to the
perturbation and dominated by the perturbation magnitude §. Therefore, intuitively a smaller
perturbation will also lead to a better reconstruction performance. The second term is
necessary due to measurement errors, which will have a significant influence on the

reconstruction performance, especially when the signal-to-noise ratio is low.

2.3 Adaptive control of the perturbed system with sparse sensor measurements

In this section, we will discuss the proposed control strategy. The goal is to €stimate A and solve for
the optimal control action that can achieve the control goal. Assume, that'the matrix A, € R™™ are
derived from engineering design and the perturbation level § are’known.

Suppose a set of control signals X = [&y, .., Xy] € R™¥" and the corresponding
reconstructed response signals Y = [yy, ..., yy] € R™.are collected by sparse measurements, where
N > m is the sample size. The sparse sampling,and reconstruction are based on the known system
matrix Ag.

A common approach in adaptive control is to update the model using the least square method
(Landau et al. 2011):

A = argmin, ||Y — AX|| #(11)
where ||| is the Frobenius norm.

Assume the control goal is to keep the response close to a target response signal yr, then the
control action x can be obtained as follows

X = argmin,Lz(yr, x)#(12)

where Lz (+,) is the loss function.
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z, then the control result of using SPAC

Proposition 2. If the loss function is Lz (yr, x) = ||yr — Ax

by solving (12) with selection matrix C is
Yetr = A(K)T}’T;
where A is the solution of (11), i.e., A = AO(CAO)TY’XT(XXT)_l.
The proof for Proposition 2 is provided in Appendix B.
Note that there are two sources of control performance loss:
(i)  The reconstruction error of the response signal using the designed system matrix Ay. This
can be reduced by increasing the number of sensors.
(i1)) The measurement error, which can be reduced by using sensors with a higher,signal-to-
noise ratio.
The number of sensors and sensor accuracy should be determined by the engineers considering the
trade-off between control performance requirement and the sensing bidget.
The SPAC method for the perturbed system is summarized in Algorithm 1.

Algorithm 1. SPAC method for the perturbed system

Input:
Sample size N, sensor budget p, known A, optimality criterion.
Sparse sensor placement:
Get the sensor selection matrix C by,solving problems (3)-(5) with corresponding criteria.
Adaptive control:
Sampling and reconstruction:
collect a_set’ of control signal X = [xy,...,xy] € R™V and the corresponding
measurement Y’ = [y, ..., yy] € RP*N . calculate the reconstructed response signal
using: Yo = Ao(CA)TY’
Parameter‘estimation and control:
Estimate the system equation by solving (11) and derive the control strategy by
solving (12).

3. Case Study
This section will validate the proposed SPAC method using the shape control of a high precision

composite fuselage assembly process (Yue et al. 2018, Du et al. 2019). In the assembly process of
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composite fuselages, there are inherent dimensional variabilities due to the fabrication and
transportation of composite parts. Those dimensional variabilities not only cause large gaps in the
subassemblies but also lead to perturbations of fuselages’ mechanical properties from the designed
ones. The perturbation makes the control strategy derived from the designed shape suboptimal.

We propose to use the sensing feedback information to control the fuselage assembly with
initial shape deviation. The models from engineering design or learned from historical data are used to
derive the sparse sensor placement strategy for fuselages with initial shape deviation. On the one
hand, due to the tight engineering specifications in the manufacturing process, the perturbed true
model for each incoming fuselage should be close to the designed one, although not identical. This
enables us to utilize the designed model to reconstruct the response signal. On thé other hand, the
dimension of the input control signal (e.g., the number of actuators) in the shape control of fuselage
application is much smaller than the dimension of the response (e.g.,othe”“deformation of fuselage
edges). Therefore, utilizing the sparse sensor placement concept is suitable to reduce sensing costs.

The SPAC control framework for the high precisions«€omposite fuselage assembly process is
shown in Figure 3. For an incoming fuselage, the sparse, learning based automatic optimal shape
control (Du et al. 2019) is applied to the fuselage. If the actual control performance and expected
control performance are close to each other, no more control action is needed. Otherwise, the SPCA is
applied to improve the control performance. Finally, if the control result meets the assembly precision

requirement, the fuselage panels will'be assembled. Otherwise, shimming is needed.

Actual control
result close to
expected
control result?

Control result
meets assembly
precision
requirement?

Sparse Learning

Incoming fuselage —» bised AOSC

Assembly

Figure 3. SPAC control framework for high precision composite fuselage assembly process
In Section 3.1, the FEA-based process model is briefly introduced. Then, the control
performance of using the adaptive strategy is presented in Section 3.2. The accurate dynamic

measurement of the fuselage’s high-dimensional shape deviation is expensive, though essential for the
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high precision fuselage shape control. Therefore, a good balance between measurement budget and
control precision can improve the control performance without a significant cost increase.
Consequently, the SPAC approach is adopted in Section 3.3. A comparison study is also conducted to

demonstrate the effectiveness of the proposed method.

3.1 FEA-based process model
In this case study, we will adopt the FEA-based process model since it is directly derived from the
first principles and has a better engineering interpretation. The proposed method can be applied to
both types of modeling approaches. For the detailed description of the FEA-based process model,
readers are encouraged to refer to (Zhong et al. 2021).

Let y € R™ be the deviation vector of points on the two edges of the,fuselage and f, €
R™*1 be the actuator force vector, where n, is the total number of degrees"of freedom of nodes on
the fuselage surface, and n is the total number of degrees of freedom of nodes on the two edges of the
fuselage. The system equation can represent the relationship’ between the mechanical response
behavior of nodes on edges and actuator forces as

y = B fa, #(13)

where B; € R™™ s the full rank modified stiffness matrix loaded from the FEA platform (according
to design information). The number anddocations of actuators are determined by adopting the sparse
learning methodology (Du et al. 2019):and solving the following optimization problem:

fo= argfminllyo + ¥ —yrlleo + Al fally, #(14)

Subject to

Y =Bifa

Ifallo < f,
where yy is the target shape and f is the upper bound of the allowable force to ensure the safety
specifications of the fuselage structure. f can be determined by the maximum equivalent stress or
failure criteria such as Tsai-Wu, Tsai-Hill, and Hoffman criteria (Jones 1998). The solution to

Problem (14), f,, is a sparse actuator force whose nonzero elements are controlled by the tuning

14



parameter A. The nonzero elements can indicate the location of actuators. A is selected such that the
number of nonzero elements in f, is within the required limit of actuators. Let x € R™ be the force
vector consisting of nonzero elements in f, and B, € R™1*™ be the mapping such that f, = B,x.

In the following control process, we will fix the actuator locations (B,) and only update the
actuator forces (x). Therefore, the system equation to be updated has the following form:

y = B;B,x = Ax#(15)

where A = B;B, € R™™, Notice that the dimension of x is usually small due to the actuator budget
limit. While the response y itself can be high-dimensional, the change of y, due to controlhaction x,
lives in a low-dimensional space spanned by the left singular matrix of A. In the following discussion,
we will demonstrate the proposed method using an FEA model built upon a et of)parameters
validated by Wen et al. (2018). There are 62 points on those two edges, generating a /186-dimensional

response signal.

3.2 Control performance of the adaptive strategy
In this section, we will compare the control performance ‘of the proposed SPAC method with the
sparse learning method (Du et al. 2019) (one-shot control method) and the regular adaptive control
method which measures the whole response.signal. We verify that the SPAC method can achieve
comparable control performance with the'regulariadaptive control method but with much less sensing
cost.

In practice, there are-multiple ways to measure the fuselage shape deviations. Laser Radar
(LR) (Muralikrishnan et al."2016) can achieve high measurement accuracy, but the measurement
speed is slow. iGPS can be used to perform dynamic measurements with high data acquisition rate.
However, its aceuracy is lower than that of LR. Due to the nature of adaptive control, the incoming
fuselage can be measured offline before assembly. Therefore, high precision measurement techniques
such as LR can be used. During the assembly process, in-situ measurement of the feedback signal is
preferred for the adaptive control. Therefore, dynamic measurement techniques such as iGPS need to
be adapted. To mimic this process, we generate 19 fuselages with initial shape deviation from FEA in

our simulation. During the adaptive control process, we increase the measurement error to reflect the
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fact of using the dynamic measurement technique, i.e., an i.i.d. Gaussian random noise with mean
zero and standard deviation 0.066 mm (Mei and Maropoulos 2014) will be added to each node on top
of the FEA simulation result as the measured deviation.

We will first apply the sparse learning method (Du et al. 2019) on 19 incoming fuselages with
initial shape deviations. Its control results are the baseline for the comparison study. For SPAC, we
adopt the ||-||, loss function in Equation (12).

For the sparse learning method, the actuator budget is 20. After the actuator locations are
fixed, we solve the control optimization problem to get its best one-shot control performance. As a
one-shot control method, the sparse learning control model is derived based on/they design
information. To evaluate its control performance, we calculate (i) the true control result,of applying
the derived control strategy on the fuselage with the same initial shape deyviation and the
corresponding perturbed model; and (ii) the expected control result ofapplying the derived control
strategy on an ideal fuselage with the same initial shape deviation.and the designed model. The initial
deviation (right-slanted bar), the true control result (crossed“bar); and the expected control result

(dotted bar) are shown in Figure 4.
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Figure 4. Comparison among the initial deviation, expected control result, and true control result
In Figure 4, the x-axis represents the fuselage serial number, and the y-axis is the maximum
deviation. We can see that even though the one-shot control strategy reduces the deviation
significantly, in most cases, the real control performance is far worse than the expected one. This is

due to the fact that the control law derived based on the FEA-based model for the designed shape is
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not optimal for the incoming fuselage with specific dimensional errors and material properties
characteristics. They may perform well on the ideal fuselage, but the control performance on a
specific incoming fuselage with initial deviation is not guaranteed. The large discrepancy between the
true control performance and the expected control performance indicates the necessity of adopting the
adaptive control method.

To evaluate the adaptive control performance, 100 simulations are conducted for each
fuselage. In each simulation, we first randomly generate actuator forces as the input to FEA software
and record the corresponding shape deviation. Then an i.i.d. Gaussian random noise with mean zeros
and standard deviation 0.066 mm will be added to each node on top of the shape deviation as‘the
measured response signal to mimic the measurement error. We repeat this process_ 100 times,and get
100 pairs of actuator's forces and response to estimate A. Finally, the control (strategy is derived by
solving Equation (12). The median and 3o limit of control performance is reported in Figure 5. In
Figure 5, the fuselage serial number is shown on the x-axis, and the y-axis represents the maximum
deviation. The right-slanted bar is the control performance using the,one-shot control method, and the
crossed bar with the 3-sigma error bound shows the'performance of using the adaptive control
method. We use the average percentage of performance improvement (APPI) as the evaluation

criterion, i.e.,
19
1 d, —d,
APPI'= —ZM x 100%,
194" dy,
1=

where dj,, and d,; are the maximumideviations of two control methods to be compared, i.e., d, is the
maximum shape deviation of the ith fuselage by applying the one-shot control method and dy; is the

maximum shape deviation of the ith fuselage after applying the proposed control method. The APPI
evaluates the performance improvement of the proposed control method over the benchmark one-shot
control method. The larger the APPI value indicates a better control performance. On average, the
performance improvement is 54.31%. Note that when the expected and true control results are close,
i.e., No.2, No.9, and No.13, the adaptive control does not improve the control result significantly.

This is because when the process variability is low, the incoming fuselages can be represented very
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accurately with the FEA-based model, and perturbations to the system equation have a slight and
neglectable influence. According to Proposition 2, we can calculate the predicted adaptive control
result (set C as the identity matrix), which is the dotted bar in Figure 5. We can see that the predicted

result matches the experiment result.
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Figure 5. Comparison of the control performance between onehot control and adaptive control

As we mentioned in Section 3.2, measuring,every point is an expensive and challenging task
when considering the sensing budget. Since the change, of response signal y, due to control actions,
lives in a much lower-dimensional space, sparse sensor placement is a viable alternative. However,
the lower-dimensional space is unknown due to the unknown matrix A. In the next section, we will
show that, under small perturbations, the proposed method can still achieve satisfactory performance
even using A, (the design information) to develop a sensing strategy and reconstruct the entire

response signal.

3.3 Control performance of SPAC strategy

In this section, the sparse learning method (Du et al. 2019) is applied to 19 fuselages with the same
tuning parameters. Then, the proposed SPAC strategy is adopted to further control the fuselage to its
target shape. For each fuselage, we assume that the sensor budget is restricted to 20, which means we
should use at most 20 sensor measurements to reconstruct the 186-dimensional response. The

determinant criterion is adopted, and the QR pivoting algorithm (Manohar et al. 2018a) is used to
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select sensor locations. The selected sensor locations are shown as solid points in Figure 6. Notice that
the sensor locations are selected according to the designed matrix Ay, which is the same for all 19

fuselages. Therefore, the selected sensor locations are the same among these 19 fuselages.

Ee B8 B 5685565669556 ewcE5c6ecebE8E°%
A
Edge 2

Figure 6. Selected sensor locations

The control result is shown in Figure 7. The right-slanted bar is the one-shot control result;
the crossed bar is the adaptive control result when all points are ' measuted (186 dimensional), and the
left-slanted bar is the SPAC result with only 20-dimensional measurement. According to Proposition
2, we can calculate the predicted SPAC control resultswhich is the dotted bar. We can see that the
predicted result matches the experiment result. By adopting the SPAC method, the one-shot control
performance is improved by 53.93%. If can achieve comparable control results with the adaptive
control method but only measures_less,than 11% of the full response signal. This can significantly

reduce the sensing cost.
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Figure 7. Comparison among the one-shot control, the adaptive control with 186<dimensional
measurement, and the SPAC with 20-dimensional measurement

We conduct a sensitivity analysis by varying the number of sensors,from 5 to 180 with the
interval 5 and recording the corresponding control performance. The result issshown in Figure 8. The
x-axis represents the number of sensors used for measurement @ndythe*y-axis represents the APPI
value. The solid curve demonstrates the APPI of adaptive/centrol result with 186-dimensional
measurement and the dashed curve demonstratessthe APPThof the SPAC method. We can see that
after the number of sensors reaches 20, the control perfermance of the SPAC method approaches the
adaptive control result with 186-dimensional'measurement. The control performance improvement of
further increasing the number of sensors is not significant. This demonstrates the effectiveness of the
proposed SPAC method. Notice that the APPI of the proposed SPAC method is unstable when the
number of sensors is less than20. This is because the number of sensors is less than the dimension of

the subspace wheresthe signal exists, which will lead to a suboptimal reconstruction performance and

deteriorate the'eentrolperformance.
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Figure 8. Sensitivity analysis of the SPAC method by varying the number of sensors

4. Conclusion
High-dimensional systems with variability are common in many. enginegering applications due to
inherent process variations. This paper proposes a SPAC imethod for perturbed high-dimensional
systems to reduce the sensing cost and optimize the control,performance. We formalize and analyze a
sparse optimization framework for the sparse placement of measurement sensors and incorporate it
into the adaptive control framework. We first establish the relationship between the reconstruction
performance and the corresponding)perturbation level. An analytical bound, as well as its engineering
interpretation, are derived. An adaptive control strategy based on the sparse measurement is proposed,
whose performance is validated using a case study from a high precision fuselage assembly process.
The proposed method provides a holistic approach to make use of the feedback information
for parameter estimation and control under sparse sensor placement strategies. By incorporating the
designed systém information, a significant reduction in sensing cost can be achieved while
maintaining comparable control performance. One possible future research direction is to consider the
trade-off between the number of sensors and the control performance to optimize the control and
sensing cost. Another possible research direction is to study the performance of the SPAC strategy

when the plant settings vary slowly over time.
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