www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Noble gas isotopes reveal
degassing-derived eruptions

at Deception Island (Antarctica):
implications for the current high
levels of volcanic activity
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Deception Island is one of the most active volcanoes in Antarctica with more than twenty explosive
eruptions in the past two centuries. Any future volcanic eruption(s) is a serious concern for scientists
and tourists, will be detrimental to marine ecosystems and could have an impact to global
oceanographic processes. Currently, it is not possible to carry-out low and high frequency volcanic gas
monitoring at Deception Island because of the arduous climatic conditions and its remote location.
Helium, neon and argon isotopes measured in olivine samples of the main eruptive events (pre-, syn-
and post caldera) offer insights into the processes governing its volcanic history. Our results show
that: (i) ascending primitive magmas outgassed volatiles with a MORB-like helium isotopic signature
(3He/“He ratio); and (ii) variations in the He isotope ratio, as well as intensive degassing evidenced by
fractionated “He/“°Ar”* values, occurred before the beginning of the main eruptive episodes. Our results
show how the pre-eruptive noble gas signals of volcanic activity is an important step toward a better
understanding of the magmatic dynamics and has the potential to improve eruption forecasting.

Understanding magmatic processes at depth is critical for the challenge of being able to confidently predict
volcanic eruptions. A key component is the ability to monitor and interpret degassing processes within the
magmatic plumbing system, as degassing often acts a prelude to major eruptions (e.g."?).

Noble gas isotopes represent versatile tools, potentially providing a means to decipher the origin and evolu-
tion of Earth’s materials due to their chemical properties (e.g., inert gases) and distinctive isotopic compositions
for different geochemical reservoirs. In addition, they are particularly useful for tracing subvolcanic processes as
their elemental ratios (e.g., “He/*’Ar) are often fractionated by the magmatic processes transporting them from
depth to surface, such as melting, crystallization and degassing (e.g.>™).

The geochemical information contained in subvolcanic volatiles is one of the cornerstones (together with
seismicity and deformation) in monitoring active volcanoes and allows a modern understanding of the processes
controlling the magmatic evolution at depth and related degassing mechanisms (e.g.,>%~%). The information
obtained from noble gas studies can be implemented into volcanic hazards assessment because magma dynamics
in the volcanic plumbing systems and injection of fresh and undegassed magmas into subvolcanic reservoirs are
key mechanisms triggering an eruptive event (e.g.,'’). Geochemical studies have demonstrated that the arrival
of the deep magma into shallower crustal levels can be recognized by increases in He isotope ratios (*He/*He)
prior to the start of an eruptive event (e.g.,*”!"1?). Recently, the monitoring of He isotopic ratios in active vol-
canic systems has provided quantitative information on the rate of magma input and volume change in the deep
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Figure 1. (a) Simplified regional tectonic map and location of the South Shetland Islands (modified from Marti
et al,,'”). AP: Antarctic Peninsula, BP: Bransfield Platform, BS: Bransfield Strait, HFZ (Hero Fracture Zone), SFZ
(Shackleton Fracture Zone), SST: South Shetland Trench. (b) Deception Island orthophotomap (data obtained
from Spatial Data Infrastructure for Deception Island SIMAC, Torrecillas et al. ¢') and location of the studied
samples. Existing and abandoned scientific stations are: BAD Base Antdrtica Decepcion (Argentinean Scientific
base), BEGC Base Espaiola Gabriel de Castilla (Spanish scientific base), BS remains of the British scientific base,
CS remains of the Chilean scientific base. (c) Example of a recent abandoned scientific base after a post-caldera
eruption. This figure was generated with QGIS software version 2.18 Las Palmas (available at: https://www.qgis.
org). Final layout was obtained with Adobe Illustrator CC 2015.3.1 (Copyright © 1987-2016 Adobe Systems
Incorporated and its licensors).

chamber preceding eruptions: on a timescale of months at Etna, Italy>*; and over a longer period of ca. 10 years
at Mt. Ontake, Japan’.

One of the prime aims in the study of volcanic processes is to upcoming eruptions over short- and long time-
scales. To achieve this, it is critically important to understand the timing, duration and extent of magma recharge
and its degassing in a volcanic plumbing system. Deception Island (South Shetland Islands, Antarctica) (Fig. 1)
represents an excellent natural laboratory for studying the degassing processes occurring at depth because recent
eruptive activity (e.g.,">"1°) at this volcano can be assessed in relation to its record of past eruptions (e.g.,'*"'%).

We present the first He isotopic measurements for basaltic samples from the major volcanic events that led
to the formation of Deception Island. These data are combined with the extensive published petrologic studies
(e.g.,'"), to explore and correlate the observed variations of the He isotopic ratios at depth with the main erup-
tive episodes during the volcanic evolution of the island; i.e. the relationship between the released gases at surface
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with the gases in inclusions trapped in the olivines at calculated depths. In contrast to the most abundant volatiles
in volcanic systems (H,O, CO,, S, Cl, F), noble gases present at trace concentrations do not thermodynamically
affect any physical processes that may occur as the magma ascends from the mantle to surface. The results of this
study support the potential for understanding the relationships between the main volcanic eruptions and their
related magma sources. The overall approach is potentially valuable as part of a future multidisciplinary study
of volcanic monitoring at Deception Island aimed at forecasting future eruptions on the island and their style.

In addition to the largest eruption documented in Antarctica during the Holocene that formed the
caldera'®!”**, Deception Island has produced numerous eruptions over the past two centuries (e.g.,2**'), as well
as unrest episodes in 1992 (e.g.,*%), 199924, 2014-2015'*1>2*, and the alert level (yellow) of eruption during
the Spanish Antarctic campaign 2020-2021%. The most recent activity has been interpreted to indicate that an
upcoming eruption is highly probable (e.g.,'®2"%). The logistics for high frequency monitoring of volcanic gases
(e.g., noble gases) at Deception Island is not viable given its remote and inhospitable location off the coast of the
Antarctic Peninsula. Here, we use noble gas isotopic data from melt/fluid inclusions in phenocryst minerals from
the different volcanic deposits and combine these with data obtained from intermittent sampling campaigns.
We show that the isotopic information obtained from the phenocrysts is an excellent complement to the usual
activities that may be applied during high frequency monitoring of remote volcanoes.

Deception Island: geological setting and volcanic history

Deception Island is an emerged composite volcano, forming a horseshoe-shaped island 15 km in diameter. It is
located next to the intersection between the Hero Fracture Zone and the southwestern end of the Bransfield Strait.
The latter is an extensional basin that separates the South Shetland continental microplate from the Bransfield
Platform®? (Fig. 1). The complex geodynamics of subduction and back-arc spreading has directly influenced
the timing and composition of magmatism in the region*->!. This geodynamical scenario has resulted in volcanic
activity being mainly concentrated in Deception, Penguin and Bridgeman Islands during the Quaternary>*2.

The volcanic evolution of Deception Island is characterized by caldera collapse at ca. 8.300-3.980 years before
the present (BP) based on palaecomagnetic measurements* and caldera-related tephra across Antarctica®. The
island’s history comprises three main volcanic episodes: pre-, syn- and post-caldera with the syn-caldera col-
lapse representing the main volcano-stratigraphic marker'®. The pre-caldera stage (< 750 kyr *°) corresponds
to seamounts that coalesced to form a subaerial volcanic shield'. The caldera formation episode (i.e., syn-
caldera stage) is characterized by 10’ m thick pyroclastic density current deposits (Outer Coast Tuff Formation;
e.g.,'®"). The post-caldera phase consists of volcanic deposits erupted from > 70 scattered small-volume (<0.1
km?), monogenetic eruptive centers, including several in recent years between 1829 and 1970 AD (e.g.,'®17%).
The post-caldera eruptions are documented as explosive, hydrovolcanic in some cases, and VEI 2-3'¢2137, form-
ing fissure-sourced scoria, lavas, as well as tuff cone and tuff ring volcanoes?®.

Deception Island is comprised of volcanic deposits showing tholeiitic affinity with a similar compositional
range for pre-, syn-, and post-caldera products (bulk-rock and glass) ranging from basalts to trachydacites and
rhyolites (e.g.,'*'®*). The island is associated with the Bransfield Rift and shows a similar subalkaline magma
source with the additional minor influence of a subduction component. The latter indicates a distinctive source
from other South Shetland Islands magmas'®*, and is likely related to the high degree of partial melting at
Deception Island'.

The main volcanic hazards expected in the island henceforth are considered to be related to explosive hydro-
volcanic eruptions due to a rapidly ascending magma interacting with meteoric and glacial surface water, the
aquifer or seawater (e.g.,'>'®). The last historic eruptions have ejected ash, lapilli and bombs, subordinate dilute
pyroclastic density currents and destabilization driven mass wasting (e.g.'®??**7). Olivine phenocrysts are com-
monly subhedral- to euhedral for all three eruptive episodes. For a full petrological description of the Deception
Island materials see Geyer et al. (2019) and a summary in the Supplementary Material.

Results

New deep magma input in shallower layers of a volcanic plumbing system generally results in increasing He
isotope ratios in the volatiles that are emitted at the surface (e.g.,>*’). Regular collection of volcanic gases is often
part of a broader regime used to monitor volcanic systems, and He isotope ratios in the gas samples have proven
to be an effective indicator of progressive changes in these systems (e.g.,*”'?). In contrast, He isotope ratios in
the volatiles trapped in inclusions hosted in olivine crystals of the primitive magma (Table 1) define the highest
He/*He ratio achieved by the magma at depth, which in turn is the feeder of each subsequent eruptive event.
Hence, we compared the He isotope values from well-constrained past eruptions in Deception Island, with the
recent values from fumaroles (ca. 100°C) and hot springs (ca. 60 °C) in 2006 and 2009'**, to provide a means
to evaluate the present-day magmatic activity deeper in the plumbing system.

Pre-caldera samples display *He/*He ratios (R) in the range of 6.6-8.7 Ra (R, =*He/*He=1.39%x 107°) (n=4),
5.1-7.0 R, for the syn-caldera samples (n=3), and 8.6 R, for a post-caldera sample (n=1) (Fig. 2a; Table 1). In
comparison, the He isotope ratios of fumarole and hot spring samples are between 6.3 and 7.0 R, (sampled in
2006;'%), and 7.1-7.5 R, (sampled in 2009*°). Despite the slightly overlapping range of these data, they indicate
that: (i) R/R, values tended to increase between 2006 and 2009; (ii) pre- and post-caldera eruptions record the
highest R/R,, values in the volcanic history of the island (Fig. 2a; Table 1); and (iii) the largest eruption (i.e. syn-
caldera) was characterised by having lower He isotope ratios than pre-, post-caldera and in gases from fumaroles
between 2006 and 2009.

“He/**Ne ratio is a sensitive tracer of atmospheric contamination and the results from the inclusions in the
olivine phenocrysts show a wide range of values over several orders of magnitude from ca. 1.8 to 1100 (Fig. 2a;
Table 1); all are significantly greater than atmospheric ratio (0.318). Hence, the correction for atmospheric He,
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Sample [*He] [2°Ne] [*°Ar]
(olivine Weight | *He/*He (10 (10! (10 Fractionated
g
crushed) | IGSN Extraction| (g) (R/R,) Error | R/R,. | “°Ar/*Ar | Error | “He/*Ne | “He/"Ar* | ccSTP/g) | Error | ccSTP/g) | Error | ccSTP/g) | Error| air *°Ar/**Ar | Error
PRR10298 hecr
(pre- PRR010298| 30MPaX3 0.0244 8.13 1.29 8.14 302.22 1.38 546.37 | 25.37 43.6 2.20 8.0 3.69 12.2 0.70 | 298.0 2.92
caldera)
DI-18 hecr
(pre- IED110018 30MPaX3 0.0771 7.21 0.64 7.23 298.47 0.53 90.10 6.20 9.3 0.49 10.3 1.10 53 0.50 | 290.0 3.49
caldera)
DI-67 h
(pre- 1IED110067 30(1:\1;1Pax3 0.0662 | 8.66 0.96 8.67 311.26 6.04 1140.00 | 39.09 11.4 0.58 b.b 0.8 0.13 | 300.4 18.35
caldera)
DI-68 hecr
(pre- 1IED110068 30MPaX3 0.0838 6.58 0.61 7.10 288.22 0.91 3.75 1.09 12.4 0.64 331.0 33.22 97.6 4.88 284.9 2.03
caldera)
DI-35 crush
(syn- 1IED110035 K 0.1219 5.11 0.59 6.02 300.02 1.03 1.75 0.15 2.2 0.11 125.7 20.06 12.8 0.90 333.8 5.01
!
caldera) (50hits)
DI-36 her
(syn- IED110036 30MPaX3 0.1117 6.98 0.59 7.12 296.95 0.44 13.79 | 21.00 6.7 0.34 48.5 4.90 42 0.29 | 2955 6.73
caldera)
DI-30 hecr
(syn- IED110030 30MPaX3 0.0645 6.68 0.55 6.69 322.09 0.86 277.66 3.70 26.1 1.30 9.4 0.96 9.3 0.60 | 297.3 4.00
caldera) a
DL-33 crush
(post- IED110033 (50hits) 0.0850 | 8.58 1.01 10.13 33333 1.32 1.87 0.003 0.7 0.04 36.1 3.95 12.2 0.80 | 302.50 5.04
caldera)

Table 1. Isotopic data of noble gases in the inclusions hosted in olivine phenocrysts (uncertainties are
10) (h-cr: hydraulic crushing; b.b: below blank). Fractionated air or initial “*Ar/**Ar=(**Ar/**Ar,
BAT/Ar,, )/ (CBAr/®Ar,,) x 2 x ©Ar/*Ar,, +Ar/*Ar

sample —

air

based on *He/*Ne, to the measured He isotope ratios (e.g.*!) is minor (Table 1), and all sample have *He/*He
values within the range of mid-ocean-ridge-basalt (MORB) (Graham 2002, 8+ 1 R,) or sub-continental-lith-
ospheric-mantle (SCLM; 6.1+0.9 Ry; e.g.,*?) (Fig. 2a). “°Ar/*Ar ratios (288-333) are within (or close to) the
atmospheric ratio (298.5;*%) displaying an air-mantle mixing trend when combined with the *He/*’Ne val-
ues (Fig. 2b). The *°Ar content of the samples can be corrected for an air contribution (*°Ar’) as °Ar' =" Ar
— (Ar/*°Ar) sjg X 3°Ar, where *Ar is assumed to be exclusively atmospheric-derived. The “He/*’Ar” ratios in
the olivine inclusions, range from c. 0.1 to 39 (Fig. 2¢, Table 1), which extend to values higher than the mantle
(about 1.2) and average crust production of about 5.

Discussion

Magma source beneath Deception Island. The magmas beneath Deception Island (e.g.,'*!*) are the
likely source of MORB-like *He/*He signatures circulating within the volcanic plumbing system up to the sur-
face (e.g., fluids in the magmatic chamber, fumaroles). In fact, the highest He isotopic ratios at Deception Island
belong to pre-caldera samples and one post-caldera sample (>8 R,) and are within the MORB range, whereas
the syn-caldera samples are below this value, which may relate to the compositional variations of the differ-
ent feeding magmas. The syn-caldera feeding magmas stalled at different depths within the crust during the
longest period of the island’s history (from the pre-caldera eruptions at>1 Ma). This allowed a higher crustal
(radiogenic) contribution in the magmas lowering the usual MORB-like He isotopic ratio'®. All the fumaroles’
samples have lower He isotope ratios than the highest pre-caldera value yet showing an increase with time from
6.3-7.0R, (£0.1) in 2006 to 7.1-7.5R, (+0.1-0.2) in 2009. This increase in the He isotopic values is coherent
with the recent volcanic activity (ground deformation) retrieved on those dates?; and reflects changes in the
magma dynamics such as the injection of deeper and less degassed pristine melts (e.g., for Deception Island?;
for Mt. Etna*; and for Mt. Ontake’) that could feed an eruption.

Combining the “He/*’Ne and “°Ar/**Ar ratios we observed that volatiles in fluid inclusions, active fumaroles,
hot-spring waters and bubbling gas at Deception Island show a mixing trend between a primitive MORB end-
member and atmosphere (Fig. 2b). This is consistent with the petrologic model by '® proposing a MORB mantle
slightly modified by subduction as a source of magmas in Deception Island, although being aware that dissolved
air in shallow-level groundwater could also have contaminated the magmatic gases during migration from the
magma chamber to the surface.

The 8D information in the phenocrysts, which is essential for understanding the origin of water from magma
source at depth to its eruption in active volcanic systems, reveals that most of the Deception Island magmas'’
match the range of the MORB mantle** and other magmatic sources such as Koolau and Baffin Island considered
to retain primitive D/H values®. In fact, the Deception Island magmas exhibit near invariant D/H values with
variable extents of partial melting'®*¢. In summary, the He isotopic signal measured on the island’s surface reflect
the pristine MORB origin of the magmas feeding the eruptions.

Magma degassing at depth prior to pre-, syn- and post-caldera eruptions.  Given that He is more
soluble than Ar within silicate melt (e.g.,*’), then magma degassing and water-gas interactions can modify the
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Figure 2. (a) *He/*He versus “He/*’Ne diagram for Deception Island samples, showing mixing curves between
low and high *He/*Ne values of atmospheric, MORB and SCLM components (e.g.,”’); (b) samples with the
lowest “He/?’Ne values also have lowest “*Ar/**Ar values indicative of air contamination (see text and Table 1 for
more details); (c) “He/**Ar” versus *He/*He highlighting the mantle source area and the two main fractionation
fields, i.e., magmatic degassing and bubbling in the waters (dashed arrows). Fumaroles and hot spring samples
shift from the mantle source value (2-5) to (i) higher values due to magma degassing (as the olivines), and (ii) to
lower values by fractionation during degassing from magma or dissolving in water followed by bubbling. Note
that the noble gas isotopic ratios from the olivine crystals are plotted together with those from fumaroles and
hot spring waters, which already represent fractionated noble gas elemental ratios.

relative abundances of the noble gases in the phenocryst inclusions and in fumaroles and bubbling gases, respec-
tively (Fig. 2c). Post magmatic solubility-controlled processes during aquifer interactions could also affect this
ratio in the fumaroles (e.g.,>>!!). Thus, noble gases in natural fluids emitted in active volcanic systems cannot be
used as tracers of magmas ascent as they are modified during transport to surface. However, when the He ratios
of the fluids are similar to the magmatic values they can indicate the main processes governing the chemistry of
the magmatic fluids at depth.

Assuming the state of magma degassing is reflected by fumarole gases, the “He/*°Ar” ratios for most of the
waters and fumaroles in Deception Island (0.02-1.3"%; 0.12-0.3%), are generally lower than the mantle and aver-
age crustal production ratios (i.e., 1-5; e.g.,*”*). If the *He/**Ar’ variation resulted from fractionation during
magma degassing, the residual volatiles trapped in olivine inclusions should have a higher *He/*’Ar” ratio than
the pristine volatiles in the magma (e.g.,*’). However, olivine inclusions, mainly in the pre- and syn-caldera
samples, show “He/**Ar” values up to 40 (yet with *He/*He R, of around 8, i.e., magmatic signal), which may
reflect magma degassing episodes that led to the large eruptive events responsible for part of the island forma-
tion and the caldera’s collapse, respectively. Even if the higher *He/*’Ar” values in the olivines are affected by the
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significant magmatic degassing, the hot-spring waters, fumarolic and bubbling gas samples could also have been
affected by the degassed magma with a little fractionation occurring near the surface (lower *He/*’Ar” values;
i.e,<1.3) (Fig. 2¢).

Being aware that the relatively small dataset available may not provide a complete picture, the degassing sug-
gested by the *He/*°Ar” ratios and the MORB-derived He isotopic values (in both samples olivine phenocrysts at
depth and hot-springs and fumaroles at surface), makes it possible to connect the three main degassing periods
of Deception Island to their respective eruption episodes.

Helium isotopic ratios as geochemical signal for the next eruption arrival. Eruptions at remote
volcanoes can have widespread societal and environmental impacts as suggested by post-caldera tephra from
Deception Island being present in distal marine sediments (>500 km in distance, e.g.,>*?) and in ice cores
(e.g.,>***). Variations in *He/*He values represent a key geochemical fingerprint for assessing the dynamics of
generating batches of magma in a volcanic plumbing system and may enhance predictive capacity for an upcom-
ing eruption (e.g.>>'"12%%). This geochemical signal complements the more commonly used geophysical signals
(seismicity and ground deformation) to detect new magma inputs (and rates) that overpressure the chamber
at depth. Since monitoring noble gases at high frequency is not routine at most active volcanoes, and not at all
in remote locations, the *He/*He variations measured within the olivine phenocrysts inclusions are critical for
interpreting the past volcanic activity at Deception Island.

Kusakabe et al. (2009) reported 8D and 8'®0 of the fumarolic fluids with values that ranged between seawa-
ter to local meteoric water (freshwater from crater lakes, ponds and glacier meltwater), which contrasts with
the magmatic signatures of magmatic waters in the phenocryst inclusions'®. However, *He/*He values in the
hot-spring and fumarolic fluids indicate MORB-like components. Therefore, in the fluids emitted on Decep-
tion Island", even if the hydrogen and oxygen isotopic signal is very sensitive to the contamination of meteoric
water, the He isotopes in the same emissions still maintain a magmatic signature, making them robust tracers
of magmatic process at depth. Furthermore, He is very sensitive to mantle inputs that may have occurred in the
absence of surface volcanic activity for years (e.g.,*’). This implies that a possible new hydrovolcanic eruption at
the island may follow a similar evolution to the last 1967-1970 eruptions '#2!, as well as fast magma ascent and
quenching during eruption preserved in the inclusions, not only the magmatic He isotopic ratios but also the
D/H magmatic isotopic composition (e.g.'8!>%).

The pre- and post-caldera eruptions were related to *He/*He values of ca. 8 R, whereas the syn-caldera event
showed lower values of ca. 7 R,. Current He isotope ratios in the fumaroles and hot-spring waters measured
over a period of three years show slight variations from 6.3-7 R, * to 7.1-7.5 R, *°, in line with complementary
geophysical signals (e.g., ground deformation;?*). Hence, by comparing noble gas signals in deep magmas and
shallow waters (Fig. 3) our study could be considered as a complementary tool to reconstruct the evolution of the
main volcanic phases during recent activity at Deception Island and to determine whether magmatic processes
such as degassing are still active in the plumbing system. In addition, it may provide a useful means for future
geochemical surveillance on the island, especially because of the lack of long-term data for noble gases, and the
difficulty in retrieving new data at such a remote location. High frequency monitoring of the He isotopic ratios
in the active hot spring sites on the island would be beneficial in detecting increases to 8-8.5 R, values (as base
line) and, therefore, provide a potential signal for an upcoming eruption.

Conclusions

A key factor in planning for volcanic hazards is to understand the magma source at depth and the degassing
processes in the plumbing system of the volcano. Our noble gas results indicate that the magmatic system beneath
Deception Island released He with an isotopic composition within or near the MORB range values. Since recent
He isotopic data at the fumaroles and hot spring waters also show a signal close to MORB "**°, by linking data
from the two sources provides insight into the magmatic dynamics in the Deception Island plumbing system
(Fig. 3). For this purpose, the information given by noble gases trapped within inclusions in phenocryst is
helpful for implementing the volcanic monitoring network as it offers information on the processes of magma
degassing at depth.

The results of this study reveal that the surveillance of He isotope ratios provides critical data for helping to
forecast future volcanic eruptions at Deception Island as has been found in other active volcanic areas elsewhere
(e.g.,”!"12%). This study also suggests that the relationship between noble gas isotopes and eruptive episodes may
provide an effective means of monitoring and predicting the behaviour of remote volcanoes that currently lack
a high frequency monitoring network.

Samples and analytical methods. Despite increased volcanic activity at Deception Island after caldera
formation covered most of the pre- and syn-caldera deposits, we collected a wide suite of representative samples
during several Spanish Antarctic Campaigns comprised between 2011 and 2018. We sampled different locations
distributed over the entire island (Fig. 1), covering pre-, syn- and post-caldera materials (Table 1). We comple-
mented our sampling with one additional rock sample from the Polar Rock Repository (PRR label in Table 1)
(http://research.bpcrc.osu.edu/rr/). Aiming to make the results and sample archives of this work accessible to
the broader community, all samples have been registered in the online System for Earth Sample Registration
database (http://www.geosamples.org). Registered users can search the database to retrieve sample metadata and
information about archived material.

Samples were crushed and sieved and hand-picked with tweezers to obtain mineral separates of crystals up
to 5 mm size. The separated crystals were also inspected under a binocular microscope to ensure that they were
free from any adhered matrix glass, and were ultrasonically cleaned using acetone, before loading into a crusher
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Figure 3. Summary-sketch evolution of the He isotopic ratios along the volcanic history of Deception Island
(3D blocks are modified from '7) (*: Kusakabe et al.’*; **: Padrén et al.*%). This figure was generated with QGIS
software version 2.18 Las Palmas (available at: https://www.qgis.org). Final layout was obtained with Adobe
Mlustrator CC 2015.3.1 (Copyright © 1987-2016 Adobe Systems Incorporated and its licensors).

assembly used for noble gas extraction. Adsorbed atmospheric gases were pumped away during baking over
night at 150 °C before crushing extraction.

Noble gas analyses were carried-out using crushing extraction techniques in two ultra-high-vacuum mass
spectrometers: (i) an MS-IV (modified VG-5400) in the Department of General Systems Studies, Graduate
School of Arts and Sciences (University of Tokyo) for most of the samples (Table 1) by single-step hydraulic
crushing which minimizes the release of matrix-sited components (e.g.,>*”). Details of the mass spectrometric
technique and extraction/purification procedure at the University of Tokyo is described in *%; (ii) a Thermo-
Helix-SFT in the Laboratorio de Isétopos Estables (University of Salamanca), with gas extraction by 50 strokes
in an electromagnetic crusher.

Crushing analysis was undertaken to preferentially extract noble gases from inclusions (fluid and/or melt) in
the olivine crystals. While it is possible that extreme crushing can release significant amounts of olivine matrix
hosted gases (e.g.”), crushing experiments undertaken at both laboratories (same samples duplicated) gave
similar results and are considered to be dominated by release from inclusions.

After each load of samples, we systematically ran crusher (empty) blanks before sample measurements and
an additional calibration to ensure noble gas blank levels were low and the spectrometer’s sensitivity and tune
settings were consistent. The HES] (Helium standard of Japan®) and a calibration bottle containing air, were the
standards used for He isotope analyses in Tokyo and Salamanca, respectively. Typical blank levels were generally
below 1% of sample releases for He.
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Data availability

All data analysed and generated during this study are included in this published article and its Supplementary
Information file and archived at Zenodo (https://zenodo.org) a general-purpose open-access repository devel-
oped under the European OpenAIRE program.
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