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Abstract: Periods of cessation, resumption and enhanced arc activity are recorded in the Cretaceous igneous rocks of the
Antarctic Peninsula. We present new geochronological (laser ablation inductively coupled plasma mass spectrometry (LA-ICP-
MS) zircon U-Pb) analyses of 36 intrusive and volcanic Cretaceous rocks, along with LA-ICP-MS apatite U-Pb analyses (a
medium-temperature thermochronometer) of 28 Triassic—Cretaceous igneous rocks of the Antarctic Peninsula. These are
complemented by new zircon Hf isotope data along with whole-rock geochemistry and isotope (Nd, Srand Pb) data. Our results
indicate that the Cretaceous igneous rocks of the Antarctic Peninsula have geochemical signatures consistent with a continental
arc setting and were formed during the interval c. 140-79 Ma, whereas the main peak of magmatism occurred during ¢. 118—
110 Ma. Trends in Hf; (zircon) combined with elevated heat flow that remagnetized rocks and reset apatite U-Pb ages suggest
that Cretaceous magmatism formed within a prevailing extensional setting that was punctuated by periods of compression. A
noteworthy compressive period probably occurred during c¢. 147-128 Ma, triggered by the westward migration of South
America during opening of the South Atlantic Ocean. Cretaceous arc rocks that crystallized during c. 140-100 Ma define a belt
that extends from southeastern Palmer Land to the west coast of Graham Land. This geographical distribution could be
explained by (1) a flat slab with east-dipping subduction of the Phoenix Plate, or (2) west-dipping subduction of the lithosphere
of the Weddell Sea, or (3) an allochthonous origin for the rocks of Alexander Island. A better understanding of the geological
history of the pre-Cretaceous rocks of Alexander Island and the inaccessible area of the southern Weddell Sea is required.

Supplementary material: A description of the methods used in this study and the complete dataset are available at https:/doi.
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The Antarctic Peninsula hosts one of the major Mesozoic—Cenozoic
continental magmatic arcs of the circum-Pacific, which extends
almost continuously for c¢. 1350 km along the length of the
peninsula (Pankhurst 1982; Leat et al. 1995; Millar et al. 2002). Arc
rocks were emplaced from the Late Triassic (Leat et al. 1995;
Bastias et al. 2020) to the Miocene (e.g. Leat ef al. 1995; Jordan
etal. 2014), with a surge in magmatic volume during the Cretaceous
(Leat et al. 1995; Riley et al. 2018; Jordan et al. 2020). These arc-
related rocks intrude late Paleozoic—Triassic sedimentary sequences
in Graham Land (e.g. Pankhurst 1983; Castillo ef al. 2016) and
Triassic metamorphic orthogneisses (Millar ez al. 2002; Flowerdew
et al. 2006) associated with an active margin in Palmer Land
(Bastias et al. 2020; Riley et al. 20205b).

Globally, Cretaceous arc magmatism is considered to represent a
significant Phanerozoic phase of growth of the continental crust
(e.g. Kemp ef al. 2009; Ducea et al. 2015). Regionally, the
Cretaceous is also characterized by significant deformation along
much of the western margin of Gondwana (e.g. Vaughan and
Livermore 2005; Bryan and Ferrari 2013), which was accompanied
by a global plate reorganization event (Matthews et al. 2012). Arc
magmatism along the Antarctic Peninsula formed during east-
dipping subduction of Pacific oceanic lithosphere beneath the
Antarctic plate in southwestern Gondwana (Fig. 1a; e.g. Pankhurst
1990; Burton-Johnson and Riley 2015; Bastias et al. 2021a).

Evidence of arc magmatism includes individual plutons, composite
intrusions and extensive batholith-like units (e.g. Leat e al. 1995).
Previous studies of the Cretaceous peak of arc magmatism in the
Antarctic Peninsula have focused on their episodicity (Riley et al.
2018) and magmatic—tectonic relationships (Burton-Johnson et al.
in press), although the regional processes that controlled and
triggered a higher rate of magma addition to the crust remain
unclear.

The aim of this study is to further constrain the magmatic and
tectonic evolution of the Cretaceous arc of the Antarctic Peninsula
by providing new geochronological, geochemical and isotopic data,
and integrating our data with the timing of magmatism, subduction
architecture and tectonic history presented in previous studies. We
present 36 new zircon U-Pb (crystallization) dates (obtained using
laser ablation inductively coupled plasma mass spectrometry; LA-
ICP-MS), and geochemical (whole-rock) and isotopic (whole-rock
Nd, Sr, Pb; zircon Hf) data acquired from Cretaceous igneous units
exposed in the Antarctic Peninsula (Graham and Palmer Land;
Fig. 1b). These are complemented by mid-temperature (>350°C)
apatite U-Pb thermochronology data obtained by LA-ICP-MS. The
igneous rocks crop out in remote locations that were sampled during
two field seasons as part of this study, or samples were provided by
the British Antarctic Survey archive and the Byrd Polar and Climate
Research Center, USA. We combine our data with previous results

© 2022 The Author(s). Published by The Geological Society of London. All rights reserved. For permissions: http://www.geolsoc.org.uk/permissions.

Publishing disclaimer: www.geolsoc.org.uk/pub_ethics


http://orcid.org/0000-0001-6678-3173
mailto:joaquin.bastias@unige.ch
https://doi.org/10.6084/m9.figshare.c.6089274
https://doi.org/10.6084/m9.figshare.c.6089274
https://doi.org/10.6084/m9.figshare.c.6089274
http://www.geolsoc.org.uk/permissions
http://www.geolsoc.org.uk/pub_ethics
http://crossmark.crossref.org/dialog/?doi=10.1144/jgs2022-067&domain=pdf
https://doi.org/10.1144/jgs2022-067?ref=pdf&rel=cite-as&jav=VoR

Downloaded from https://www.lyellcollection.org by Ohio State University Library on Dec 08, 2022

2 J. Bastias et al.

South
America

MAD

Africa

paleo-Pacific Plate

Jurassic - Cretaceous 500 km

East
Antarctica

India

© U-Pb zircon
® y-Pb apatite [

@ U-Pb zircon
and apatite

®
e
©
>
©
3
-
©
S
o

pue Jewj|egd

Lassiter
Coast
Intrusive
Suite

Fig. 1. (a) Palacogeographical reconstruction of the Pacific active margin of Gondwana during the Jurassic—Cretaceous (e.g. Ghidella e al. 2002; Jokat

et al. 2003; Martin 2007), showing the Antarctic Peninsula crustal block in green. BB, Byers Basin (Bastias ef al. 2019); EWT, Ellsworth Whitmore
Mountains, Larsen Basin (LB) (Hathway 2000); MAD, Madagascar; MBL, Marie Byrd Land; M10, ¢. 134 Ma (e.g. Martin 2007); NZ, New Zealand; RVB,
Rocas Verdes Basin (e.g. Calderén et al. 2007); TIL, Thurston Island. (b) Present-day map of the Antarctic Peninsula showing the location of the studied
rocks. These samples were either collected in the field during the 2015 and 2016 Antarctic campaign of the Instituto Antartico Chileno (INACH) or
provided by the British Antarctic Survey and the Polar Rock Repository at Ohio State University. Sample locations are presented along with the dating
method: green, U-Pb LA-ICP-MS zircon; blue, U-Pb LA-ICP-MS apatite; red, combined U-Pb LA-ICP-MS zircon and apatite.

from the Antarctic Peninsula (Riley ez al. 2001, 2016, 2018, 2020a;
Ryan 2007; Leat et al. 2009; Haase et al. 2012; Bastias 2014, 2020;
Bastias e al. 2019, 2020, 2021a, b; Burton-Johnson et al. in press).

Geological framework and previous work

The continental crust of the Antarctic Peninsula was interpreted by
Sudrez (1976) to represent an autochthonous segment of an
extensive continental arc that spanned Mesozoic western
Gondwana. Alternatively, other researchers have suggested that
the Antarctic Peninsula crust formed by collision and accretion of an
allochthonous arc with a block of Gondwanan affinity either during
the middle of the Cretaceous (Vaughan and Storey 2000) or earlier,
close to the Jurassic—Triassic boundary (Vaughan ez al. 2012). More
recently, Burton-Johnson and Riley (2015) and Bastias ez al. (2020)
provided substantial geochronological and isotopic evidence for an
autochthonous to parautochthonous Mesozoic evolution, with
subduction initiation during the Late Paleozoic, supporting the
initial interpretation of Sudrez (1976).

Arc magmatism along the Antarctic Peninsula occurred from at
least the Late Triassic (Pankhurst 1982; Bastias et al. 2020; Riley
et al. 2020b), when it formed a segment of the Terra Australis
margin of western Gondwana (e.g. Cawood 2005). Subsequently, a
Late Triassic active margin was associated with the Rymill Granite
Complex (Bastias et al. 2020), which is mostly composed of
orthogneisses and is widely exposed in the central Antarctic
Peninsula and formed during an extensional tectonic regime that
modified the entire Pacific margin of west Gondwana (Spikings
et al. 2016). Early Jurassic arc magmatism was concentrated in
Palmer Land (Riley et al. 2017; Bastias et al. 2021a) and shifted to
Graham Land during the Middle—Late Jurassic (e.g. Bastias ef al.
2021a). Most of the Jurassic magmatic rocks in the Antarctic
Peninsula have been linked to the influence of an active margin and

perhaps the migration of the Karoo mantle plume from southern
Africa as well (Pankhurst e al. 2000; Riley ef al. 2001). However,
Bastias et al. (2021a) recently suggested that most Jurassic
magmatism probably formed within an active margin that was
characterized by a flat-slab setting.

Cretaceous magmatic rocks are exposed along the west coast of
Graham Land and in eastern Palmer Land (Fig. 2a). Magma
addition rates to the Antarctic Peninsula peaked during the Early
Cretaceous (e.g. Leat ef al. 1995, 2009; Riley et al. 2018), which is
considered to be the most voluminous episode of Phanerozoic
plutonism in the Antarctic Peninsula (e.g. Leat et al. 1995, 2009;
Vaughan et al. 2012; Riley et al. 2018; Burton-Johnson et al. in
press). These rocks range from mafic to felsic compositions, but are
predominantly intermediate, and the published radiometric dates
(K—Ar, Rb-Sr, “°Ar/*° Ar and U-Pb methods) range between c. 141
and c. 67 Ma (Leat et al. 1995).

Early Cretaceous volcanic rocks are abundant along the west
coast of the Antarctic Peninsula and the South Shetland Islands
(Fig. 2a; e.g. Leat et al. 1995). Most of these are basalts and
andesites with a calc-alkaline affinity (e.g. Haase e al. 2012). The
Early Cretaceous plutonic record includes a few exposures on the
South Shetland Islands (c. 137-109 Ma; Hervé et al. 2006; Bastias
et al. 2019) and in SE Palmer Land, where the Lassiter Coast
Intrusive Suite is exposed (Fig. 2a; Rowley ef al. 1983; Riley et al.
2018; Burton-Johnson ef al. in press). These rocks are mainly
tonalite, quartz diorite and granodiorite and crop out over an area
of c. 80 000 km? (Fig. 2a; Burton-Johnson et al. in press). Zircon
U-Pb concordia dates suggest that the Lassiter Coast Intrusive
Suite was emplaced in three pulses at 130—126, 118—113 and 108—
102 Ma (Riley et al. 2018). Burton-Johnson et al. (in press) further
resolved the central episode of magmatism with secondary pulses
at ¢. 118-116, c¢. 114-112 and c¢. 110-109 Ma, which are
consistent with the model of Paterson and Ducea (2015).



Downloaded from https://www.lyellcollection.org by Ohio State University Library on Dec 08, 2022

Zircon U-Pb LA-ICP-MS K3
70°W 60°W — This study (36 zircon U-Pb LA-ICP-MS) ) o g
Ty T == This and previous studies including U-Pb, g 3 = <
CrEtaceous Ar/Ar and Rb-Sr geochronology (N=86) S Z S g ;
e =l © <
N 116+1 Ma i b D - = 7
A © < g = ¢ ~
(0] = = - 4 o
= 12 ) 2 N 1
o b T <
12t1Ma, <9 > = % 9
104+1 Ma 2?, g i I
4
™ o e
Q T T
+1 Ma Target Hill 3 % g0
M T ﬁef\rg?acie:r .
1121 Ma < i @ PRR-24285 145 135.8:6.8 Ma
ST 104+1 Ma Syenogranite
| L1105+1 Ma
118+1 Ma ) 106+1 Ma 70024 2140
101+1 Ma 11241 Ma 5 -y 139.5+5.6 Ma
112+1 Ma 1 1121 Ma & om &1
10621 Ma |~ Adolaide & 0 ] I I
an
il g ) 1261 Ma 137+1 Ma
exandel il % =1
Island % |/ fisEiNva 0020 : : : 130 NEVD=S0), [o0im
T 013 015 0.17
+ 112+ Ma
2 / - PRR-2d4226 130, 116.3£4.5 Ma
116+1 Ma o . Granodiorite 1184
1171 Ma 3 o z
114+1 Ma o 8 Ly
79x1 Ma @ ~126-100Ma|| |- £ 2"
: g
92:+1 14£1Ma | |50 -0 via 5 2 . 8
. 121 116x1 Ma
g MSWD=2.8
0.10 0.12 0.14
= R.5793.2 2,
1 - = Syenogranite
Triassic-Miocene S 0014 - 90, 811
Bl Granitoid plutons o ssiter Coast 2 2
Triassic ntrusive Suit a_ Ry
& Metamorphic Basement ~130-102 Ma** é\-:OOB Lol &
. - 1l o013 [
) 500 km ) ] s
0012 | = 77 79+1 Ma — 79.5+1.9 Ma
75 MSWD=2.8{ [100 um

007 008

207 Pb /235U

Fig. 2. (a) Geological map of the Antarctic Peninsula, showing the distribution of intrusive rocks (red) and the Rymill Granite Complex (purple), modified from Burton-Johnson and Riley (2015). Zircon 2**Pb/***U concordia (LA-ICP-
MS) and “°Ar/*?Ar plateau ages collected in this study are shown along with published, pre-Jurassic U/Pb ages and correspond to: 'Bastias ef al. (2019); *Hervé et al. (2006); *Riley et al. (2018); *Burton-Johnson et al. (in press); *Ryan
(2007). All uncertainties are quoted at +2c. Three periods are outlined, ¢. 140—132 Ma (dark green), c¢. 126-100 Ma (light green) and ¢. 92-79 Ma (turquoise). EPLSZ, Eastern Palmer Land Shear Zone, from Vaughan and Storey (2000)
and Vaughan et al. (2012). (b) Kernel density estimates of the distribution of crystallization ages during the Cretaceous (black line, this study; dot-dash line, this and previous work). An age peak occurs at ¢. 118-110 Ma (main peak at
¢. 115-114 Ma) with minor peaks at ¢. 137-136, c¢. 103-102, ¢. 94-93, ¢. 81-80 and ¢. 71-70 Ma (all in red). Magmatic quiescence is recorded at ¢. 148—140 Ma (in blue). (¢) Representative Wetherill concordia plots of zircon U-Pb
data obtained from the Cretaceous igneous rocks of the Antarctic Peninsula. Bars represent single ablation spots and represent an uncertainty of 2c. Representative cathodoluminescence (SEM) images of the dated zircons are presented.
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Pankhurst e al. (1991) and Leat ez al. (2009) obtained whole-rock
879r/86Sr; and eNd; values from the Early Cretaceous volcanic
rocks of the Antarctic Peninsula, which span 0.7080-0.7056 and
—0.4 to —1.8, respectively, from rocks that yielded Rb—Sr ages of
c. 132-116 Ma.

Late Cretaceous igneous rocks are less widely exposed (Fig. 2a;
e.g. Leat et al. 1995), with isolated calc-alkaline granodioritic
plutons associated with Late Cretaceous mafic dykes in the central
Antarctic Peninsula (Wever et al. 1994; Leat ef al. 1995). Most of
the mafic dykes yield calc-alkaline compositions, although some
ocean island basalt-like mafic dykes occur locally (Leat and Riley
2021), which Leat et al. (1995) utilized to infer an extensional
setting. Ryan (2007) obtained zircon LA-ICP-MS U-Pb con-
cordia dates that range between c. 92 and 89 Ma, and 87Sr/%6Sr;
and eNd; values that span 0.7047-0.7045 and 2.5-2.2, respect-
ively, for plutons exposed in west—central Graham Land (Fig. 2a).
Leat et al. (2009) reported Rb—Sr isochron ages between c. 96 and
c. 71 Ma for volcanic rocks located within the central-western
Antarctic Peninsula, which yield whole-rock 37Sr/%¢Sr; and eNd;
values 0f 0.7112-0.7056, and 0.0 to —1.8, respectively. Recently,
Riley et al. (2020a) published U-Pb zircon dates ranging between
c. 94 and 64 Ma from felsic volcanic rocks located in
northwestern and central Palmer Land and suggested that arc
magmatism migrated trenchward during the Late Cretaceous
along the southern Antarctic Peninsula, which is consistent with
previous work (e.g. Thomson and Pankhurst 1983; Leat et al.
1995). In contrast, the locus of magmatism in Graham Land does
not appear to change with respect to the trench throughout the
Cretaceous.

An extensional regime dominated the Antarctic Peninsula during
the Cretaceous, as evidenced by the emplacement of large volumes
of magmatic rocks as plutons and dykes, accompanied by normal
faults (Meneilly et al. 1987; Wever et al. 1994; Leat et al. 1995).
However, the Cretaceous period was also associated with brief
compressional events at ¢. 138, ¢. 113 and ¢. 107-100 Ma in the
Antarctic Peninsula (e.g. Meneilly 1988; Leat et al. 1995; Vaughan
and Storey 2000; Riley et al. 2020a). These compressional events
have been linked either to increases in the subduction convergence
rate (at c. 138 and c¢. 113 Ma; e.g. Riley ef al. 2020a) or to the
collision of an allochthonous terrane (¢. 107-100 Ma Vaughan and
Storey 2000). The latter collisional event has been disputed in more
recent studies (Burton-Johnson and Riley 2015; Bastias ez al. 2020).
A more extensive compressional episode along western Gondwana
has been proposed (e.g. Vaughan 1995; Mpodozis et al. 2005;
Vaughan and Livermore 2005; Burton-Johnson and Riley 2015;
Spikings et al. 2015; Boyce et al. 2020).

Methods

We present new zircon U-Pb geochronological, geochemical and
isotopic data from 36 igneous rocks of the Antarctic Peninsula
(Fig. 1). The rocks were taken from the Lassiter Coast Intrusive
Suite in eastern Palmer Land, and from intrusions that are scattered
along the west coast of central Palmer Land at the latitude of the
Black Coast. Additional plutonic rocks were collected from the west
coast of Graham Land and the South Shetland Islands. The methods
used in this work are described in detail in the Supplementary
material.

Results
Zircon LA-ICP-MS U-Pb geochronology

We present U-Pb zircon concordia ages from 36 igneous rocks that
vary in age between 139+ 1 and 79 = 1 Ma (Table 1; Fig. 2a). Early
Cretaceous ages were obtained from 33 samples, and range from

139+1 to 101+£1 Ma, with no particular geographical trend
(Fig. 2a). Three samples yield Late Cretaceous ages from 92 + 1
to 79+ 1 Ma and are located along the west coast of the Antarctic
Peninsula. The kernel density estimate (KDE) of the 2°°Pb/?*8U
concordia ages yields several peaks during the Cretaceous, and
these have been separated into three groups to facilitate the
presentation of the data. These groups are (1) a cluster of older
ages at ¢. 140—132 Ma (Berriasian—Valanginian—Hauterivian), (2) a
younger group that includes several KDE peaks from 126 to 100 Ma
(Barremian—Albian) and (3) the youngest group with Late
Cretaceous ages spanning c¢. 92-79 Ma (Turonian—Campanian;
using the International Chronostratigraphic Chart time scale of
Cohen et al. 2013; Fig. 2b). Cathodoluminescence images (see
examples in Fig. 2c) show that most zircons have patchy or
oscillatory zonation, mostly with no clear rim—core relationships; all
are typical of igneous zircon (e.g. Chelle-Michou et al. 2014).

Six granodiorites and monzogranites of the Lassiter Coast
Intrusive Suite yield 2°°Pb/?*8U concordia dates of c. 126-
112 Ma (Fig. 2a), consistent with previous studies (c. 130-
102 Ma; Pankhurst et al. 1991; Riley ef al. 2018; Burton-Johnson
et al. in press). Further north, seven samples from the west coast of
Palmer Land yield zircon 2°Pb/**%U concordia dates of c. 140-
79 Ma (Fig. 2a), whereas five monzogranites, syenogranites,
tonalites and quartz-monzonites are Early Cretaceous in age
(c. 139-114 Ma) and two syenogranites have Late Cretaceous
ages (92+1 and 79+ 1 Ma). At the latitude of Adelaide Island
(c. 67°S), eight alkali granites, granodiorites and quartz-monzonites
yield Early Cretaceous dates that span ¢. 118-101 Ma (Fig. 2a).
Further north, seven alkali granites, syenogranites, monzogranites
and monzodiorites from the west coast of southern Graham Land
also yield Early Cretaceous ages that span c¢. 135-101 Ma, whereas
a gabbro yields a Late Cretaceous date of 81 + 1 Ma (Fig. 2a). The
northernmost Cretaceous 2°°Pb/?*8U concordia dates were obtained
from three monzogranites and a granodiorite from the South
Shetland Islands, which span ¢. 138-101 Ma, and are consistent
with previous age estimates of volcanic and intrusive rocks from that
region (Hervé et al. 2006; Bastias 2014; Israel 2015; Bastias et al.
2019). These data show that Early Cretaceous rocks occur
extensively along the Antarctic Peninsula from the SE in Palmer
Land to the NW in Graham Land, whereas Late Cretaceous plutons
are less abundant, and crop out along the west coast of the central
and northern Antarctic Peninsula (Fig. 2a). The complete dataset is
presented in Supplementary material Table 1.

Apatite LA-ICP-MS U-Pb thermochronology

Apatite U-Pb LA-ICP-MS dates have been obtained from the
Cretaceous rocks that were used for U-Pb zircon LA-ICP-MS
geochronology in this study, and also from Late Triassic (Bastias
et al. 2020) and Jurassic igneous rocks (Bastias er al. 2021a;
Table 2; Fig. 3) previously dated by the U-Pb zircon LA-ICP-MS
method. For each sample, single spot analyses are plotted in Tera—
Wasserburg space where they represent a mixture of radiogenic
(2°°Pb) and initial (common) lead (*°’Pb/?%*Pb). In the case of rapid
cooling and no subsequent perturbation of the U-Pb system, a
sample containing a suite of cogenetic crystals with a large spread in
radiogenic Pb/common Pb ratios (Fig. 4) can be used to define a
well-constrained linear array in Tera—Wasserburg space (e.g.
Kirkland ef al. 2018). However, this assumes U-Pb concordance
in the sample (e.g. Petrus and Kamber 2012) and requires a
significant spread in the radiogenic Pb/common Pb ratios to ensure a
well-constrained linear array (Kirkland er al 2018). Linear
regressions through the data from each sample yield
28 238U/296Pb (Tera—Wasserburg concordia lower intercept) dates
that range between 147+15 and 76+25Ma, whereas the
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Table 1. Summary of the geochronological and isotopic tracing data collected from the Cretaceous igneous rocks in the Antarctic Peninsula presented in this work

Whole-rock isotopic tracing

Sample South West Age (Ma) Error MSWD 87Sr/%08r; eNd, 206pp,204pp, 207pp/2%4pp, 208pp,204pp,
R5297.1 ~70.63 -67.15 139 1 6.3 0.7062 0.4 18.67 15.66 38.57
R6057.3 ~70.39 -67.92 139 1 1.6 0.7046 4.1 18.57 15.63 38.38
PRR-24285 —63.22 6225 137 1 3.9 0.7053 23 18.82 15.65 38.68
PRR-24201 —63.22 —-62.25 137 1 45

R6317.1 -71.51 -67.12 136 1 33 0.7080 -4.9 18.76 15.66 38.59
PRR-5985 —64.90 —63.05 135 1 4.7

151B45 —64.77 —64.09 132 1 0.6 0.7040 18.51 15.61 38.36
N11.142.1 ~71.42 —63.58 126 1 2.0 0.7056 -0.8 19.00 15.67 38.57
PRR-5991 —64.57 —61.55 120 1 4.4

PRR-5990 —64.57 —61.55 119 1 4.8 0.7090 0.3 18.83 15.66 38.66
16.386.1 —-67.27 —68.19 118 1 10.9

R5939.2 -70.22 —66.68 117 1 0.9 0.7060 2.1 18.62 15.65 38.46
NI11.15.1 -71.72 —62.57 117 1 2.2 0.7053 -0.8 18.62 15.64 38.06
PRR-24226 —62.73 —-61.20 116 1 2.8 0.7049 1.9 18.63 15.64 38.48
Ni11.12.1 -71.73 —62.52 116 1 1.9

R5979.1 -70.93 —66.26 115 1 2.7 0.7068 -26 18.78 15.66 38.60
P14.03.1 —74.32 —64.63 114 1 35 0.7053 -2.7 18.85 15.65 38.67
NI11.8.1 ~71.50 —63.01 113 1 3.2 0.7100 -9.7 18.73 15.66 38.47
N11.3.1 -71.56 -62.82 112 1 1.6 0.7057 -3.1 18.80 15.66 38.62
16.290.1 —67.60 —68.74 112 1 25 0.7050 -0.9 18.65 15.64 38.52
PRR-6061 —64.88 —62.55 112 1 1.7 0.7054 -0.2 18.93 15.66 38.60
PRR-6031 —65.25 —64.08 112 1 1.7 0.7041 0.9 18.84 15.65 38.71
PRR-5992 -68.13 -67.12 112 1 2.4 0.7061 -5.7 18.31 15.63 38.45
PRR-5994 -68.13 —67.12 112 1 2.9

151B53 —64.83 —62.86 104 1 1.3 0.7050 0.7 18.70 15.64 38.55
PRR-6000 —67.82 —67.18 106 1 33 0.7052 —0.4 18.80 15.65 38.60
16.297.1 —67.63 —68.75 106 1 1.7 0.7052 0.6 18.70 15.64 38.55
PRR-6023 —65.20 —64.10 105 1 2.1

PRR-5999 —67.82 —67.18 105 1 2.4

PRR-5998 —67.82 —67.18 105 1 1.3

PRR-32819 —-62.72 —-60.37 101 1 2.8

PRR-6025 —65.20 —64.10 101 1 2.4 0.7049 13 18.63 15.63 38.47
16.307.1 —67.47 —68.53 101 1 8.3

R5905.4 -71.28 -66.13 92 1 1.8 0.7060 -0.8 18.78 15.65 38.60
PRR-6034 -65.28 —64.10 81 1 1.0 0.7044 -13 18.38 15.60 38.36
R5793.2 —70.94 —66.80 79 1 2.8 0.7068 -19 18.82 15.66 38.65

All the ages were obtained by zircon LA-ICP-MS U-Pb analysis.
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Table 2. Summary of the U-Pb apatite and zircon data for the Triassic—Cretaceous rocks of the Antarctic Peninsula

Apatite Zircon—2"°Pb/?*8U

206pp 2381 206pp 2381

(lower intercept) (higher intercept) U-Pb zircon % MSWD
Sample Internal code South West Source Age 26 MSWD Intercept 20
18]B26 R5957.3 —70.70 —67.57 Bastias et al. (2021a, b) 139 11 9.3 0.8710 0.063 156 1 1.2
18]B34 K7.526.3 —68.20 —65.18 Bastias et al. (2020) 145 13 32 0.7350 0.051 215 2 1.1
18JB43 K7.562 —68.19 —65.30 Bastias ef al. (2020) 135 10 3.0 0.8270 0.014 218 1 1.1
18IB50 R.6307.1 —71.58 —66.89 Bastias et al. (2021a, b) 142 7 23 0.8190 0.017 153 1 1.3
151B76 PRR-5990 —64.57 —61.55 This study 113 10 1.8 0.8256 0.011 119 1 4.8
18JB32 R5257.5 —70.03 —67.65 Bastias et al. (2021a, b) 143 6 1.8 0.8259 0.008 183 1 1.1
181B27 R.5290.1 —70.53 —66.80 Bastias ef al. (2020) 131 6 1.7 0.8321 0.006 216 2 1.6
N14-35 —72.75 —61.33 Burton-Johnson et al. in press 119 7 1.7 0.8267 0.020 117 2 0.2
18JB31 R5297.1 —70.63 —67.15 This study 134 5 1.6 0.8220 0.030 139 1 6.3
18JB14 NI1.12.1 -71.73 —62.52 This study 120 4 1.5 0.8297 0.010 116 1 1.9
15JB79 PRR-6034 —65.28 —64.10 This study 76 25 1.4 0.8232 0.016 81 1 1.0
18JB02 R.6067.8 —-70.69 —66.58 Bastias et al. (2020) 128 26 1.4 0.8316 0.009 208 3 1.1
18JB08 N11.142.1 —71.42 —63.58 This study 135 4 1.4 0.8378 0.019 126 1 2.0
18JB18 R.6306.7 —71.61 —66.35 Bastias et al. (2020) 135 10 1.4 0.8335 0.013 212 2 1.3
18JB20 R.5786.3 -70.92 —66.92 Bastias et al. (2020) 147 15 1.4 0.8295 0.008 203 1 1.0
181B28 J6.297.1 —67.63 —68.75 This study 123 10 1.4 0.8515 0.008 106 1 1.7
18JB30 R6317.1 —71.51 —67.12 This study 145 4 1.4 0.8350 0.009 136 1 33
N14-57 —73.30 —62.40 Burton-Johnson e al. in press 115 5 1.4 0.8209 0.017 117 1 0.5
N15-139 —73.30 —62.40 Burton-Johnson et al. in press 117 8 1.4 0.8279 0.013 118 1 0.7
16JB63 PRR-6025 —65.20 —64.10 This study 93 51 1.3 0.8250 0.025 101 1 2.4
181B06 NI11.8.1 -71.50 —63.01 This study 118 5 1.3 0.8310 0.010 113 1 32
18JBI15 NI1.15.1 -71.72 —62.57 This study 118 4 1.2 0.8183 0.013 117 1 22
18IB36 R6057.3 —70.39 —67.92 This study 142 5 1.2 0.8000 0.026 139 1 1.6
16JB62 PRR-6023 —65.20 —64.10 This study 109 19 1.1 0.8370 0.033 105 1 2.1
18JB21 R5979.1 —70.93 —66.26 This study 102 15 1.1 0.8170 0.015 115 1 2.7
18IB67 P14.03.1 -74.32 —64.63 This study 126 11 1.0 0.8292 0.017 114 1 3.45
15IB77 PRR-5991 —64.57 —61.55 This study 92 24 0.9 0.7780 0.042 119 1 44
18JB55 N11.3.1 -71.56 —62.82 This study 112 5 0.9 0.8132 0.014 112 1 1.6

All the ages were obtained by LA-ICP-MS U-Pb analysis.
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207p/295PY initial ratio was constrained by the Tera—Wasserburg
concordia upper intercept. Several results have large uncertainties
(up to £26 Ma) owing to the high common to radiogenic Pb ratios in
the apatites and a resultant small spread in U/Pb ratio with some
analyses clustering close to the y-axis of the Tera—Wasserburg
concordia. Nevertheless, most apatites have relatively high U
concentrations (>20 U ppm) and yield useful uncertainties that are
lower than +7 Ma (Table 1).

A comparison of the zircon U-Pb crystallization age and the
apatite lower intercept 2°°Pb/2*®U age (Fig. 4) reveals an
approximately linear 1:1 correlation for rocks with zircon U-Pb
crystallization ages younger than c¢. 156 Ma, suggesting that these
apatite U-Pb ages record rapid cooling (thermal relaxation)
following magmatic crystallization. On the other hand, rocks that
crystallized before c. 156 Ma yield apatite 23%U/2°Pb lower
intercept ages of c¢. 147-128 Ma (Fig. 4). Significantly, four of
the five samples that yield apatite Tera—Wasserburg lower intercepts
with MSWD > 2 come from rocks that crystallized at ¢. 153 Ma and
older. The origin of this elevated dispersion is discussed in
the section ‘Thermal histories of Mesozoic arc crust through

Whole-rock geochemistry

Whole-rock major oxides, trace element and REE concentrations
have been determined in the same 36 rocks that were dated using the
zircon U-Pb method (Supplementary material Table 1). The
majority of the Cretaceous plutonic rocks are classified as alkali
granite to granodiorite in the cationic scheme of de La Roche et al.
(1980; Fig. 5a), although a few diorites, gabbros and olivine gabbros
were also sampled. The Early Cretaceous intrusions span the calcic
and alkali—calcic differentiation trends on the modified alkali-lime
index of Peacock (1931; Fig. 5b). The two Late Cretaceous rocks
have calc-alkaline to alkali—calcic compositions (Fig. 5b). The
Cretaceous rocks yield aluminium saturation indices (ASI) (Maniar
and Piccoli 1989) that straddle the metaluminous—peraluminous
fields, and range between 0.74 and 1.61 (Fig. 5c), with no
relationship to crystallization age. Normal mid-ocean ridge basalt
(N-MORB) normalized trace element abundances (Fig. 5d) reveal
no distinct changes through the Cretaceous, with an enrichment in
large ion lithophile elements (LILE), and negative Nb, Ta and Ti
anomalies, suggesting a subduction-derived component in the

550-380°C’. magma source regions, and that they may have formed within a
Apatite LA-ICP-MS U-Pb
7(?°W 6(1)°W
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\(\e‘\a(\ S
113 + 10 Ma R =
(PRR-5990) oV 7 ¢ ®
i
109+ 19 Ma v &£o ®
(PRR-6023) =
Q
3
76 + 25 Ma 65° -
(PRR-6034) 35, D
>
123+ 10 Ma o
BEal 135 + 10 Ma 7.562)
143 + 6 Ma 145 £ 13 Ma (k7.526.3)
(R5257.5)
Igeds a 131+ 6 Ma R5290.1) T
=
139 + 11 Ma 128 £ 26 Ma (R6067.8) 2
(R5957.3) C,‘ [}
13445 M By -
+ a 0 \@
A R X W]
147+15Ma «“\f Ny 70%s| [
(R.5786.3) Q
102 + 15 M ." < =
e a " « (47 135 +4 Ma (N11.142.1) 3
’ = 118 +5Ma (N118.1) o
+ I \ -
14%631; s o S 112 £ 5 Ma (N11.3.1) —
%, |
142 £ 7 Ma A‘ *° g 118 £4 Ma y11.15.) g Fig. 3. Map of the Antarctic Peninsula,
(R6307.1) N 120 +£4 Ma (N11.12.1) =4 showing the distribution of Jurassic—
1 3%?,-6_'-3(]6(.)75\Aa 119 + 7 Ma (N14.35) Nepgepe il’ltI’l:ISiVe ro.cks (red) and the Late
Triassic Rymill Granite Complex (purple,
115 £ 5 Ma (N14-57) . .
117+8M dotted line), modified from Burton-
7505 - arige-=g) Johnson and Riley (2015) and Bastias
p| Triassic-Miocene et al. (2020). Apatite U-Pb Tera—
. Granitoid plutons b * kassiter Coast Late Cretaceous Wasserburg lower intercept concordia
Triassic ntrusive Suit Early Cretaceous dates acquired from Triassic—Cretaceous
B2 Metamorphic Basement ~130-102 Ma'? Late Jurassic igneous rockszare shown. 'Flowerdew
> - et al. (2005); “Riley et al. (2018).



https://doi.org/10.6084/m9.figshare.c.6089274

Downloaded from https://www.lyellcollection.org by Ohio State University Library on Dec 08, 2022

8 J. Bastias et al.

® R.6360.7 ® N11.3.1

081 g, 000 mswp=14 o.sﬁ.\ 0.8132+0.014 MSWD=0.9
o o @(}Q@%
& 0s- & 06 @)
N q
B B 4400 C%
g‘ g‘ O Lower intercept:
N Il 112+ 5Ma

04+ Lower intercept: 047

3600 135+ 10 Ma 3600
0 10 20 0 10 20 i , )
238 /206py 238|J /206phy Fig. 4. (a), (b) Representa?lve apatite

= 250 Tera—Wasserburg concordia plots of the
o= @ A \ine igneous Mesozoic rocks of the Antarctic
S o ; Peninsula. U-Pb Tera—Wasserburg lower
'g '_,\_1 200 intercept concordia dates are shown. (c)
a5 2 Comparison of the zircon U-Pb
(glv f 150 5 crystallization ages gf Mes.ozoic igneous.
o % Q % (h‘b \\\m\muumunlﬁnuu|||||||||*u I QL I '; rocks of the Antarctic Peninsula and their
= % \\\\\\\\\\\\\\\“ " °§° apatite U-Pb Tera—Wasserburg lower
2L 2 1004 ““\“\\\\\\\\\\““ o intercept concordia dates. Rocks yielding
T = apatite U-Pb Tera—Wasserburg lower
<c.):' g + intercept concordia dates that are

9 o T T T indistinguishable from their crystallization

100

%]
o

continental arc (Fig. 5d). Minor negative Ba, Eu and Sr anomalies,
combined with a strong negative Ti anomaly, suggest that
plagioclase and Fe-Ti oxides have fractionated, and the positive
Pb anomaly is probably derived from an upper crustal source. Trace
element concentrations of the Cretaceous rocks normalized to
average upper continental crust scatter close to unity (Fig. Se),
supporting a significant crustal origin for the Cretaceous rocks.
Tectonic discrimination using (Y +Nb) v. Nb/Y (Whalen and
Hildebrand 2019) supports an arc setting for the Cretaceous rocks
(Fig. 5¢f), which is consistent with direct comparisons of Y and Nb
(Fig. 5g; Pearce et al. 1984). A comparison of St/Y v. Y (Fig. 5h)
shows that the rocks that formed at ¢. 140—132 and c. 92-73 Maplot
in the fields of volcanic arc and adakite, respectively, whereas the
rocks that formed during c¢. 126-100 Ma straddle these two fields.

A lack of temporal trends in La,/Yb,, St/Y and Eu/Eu* (Fig. 6)
through the Cretaceous suggests that the crustal thickness of the arc
did not significantly change during this period (e.g. Hildreth and
Moorbath 1988; Mantle and Collins 2008; Chiaradia 2015; Profeta
et al. 2015). However, we acknowledge that estimates of the
thickness of continental arc crust using geochemical indices are
problematic owing to the multiple petrogenetic processes that occur
in such settings (Ducea ef al. 2015), and these should perhaps only
be used as qualitative indicators (e.g. Kay and Mpodozis 2001; Best
et al. 2009; Oliveros et al. 2019).

Sr—Nd-Pb bulk-rock isotopes

The 37Sr/%°Sr; and £Nd; values of the Cretaceous intrusions (139 + 1
to 79 = 1 Ma) range between 0.7100 and 0.7040 and +4.1 and —9.7,
respectively (Fig. 7). These values reveal no significant trends with
time, although eNd; and 3’Sr/%°Sr; values span a wider range
between c. 139 and 112 Ma, compared with the rocks that
crystallized between ¢. 112 and 79 Ma (Fig. 7a—c). These data are
consistent with the results of Leat e al. (2009), who reported from a
smaller dataset: (1) 8’Sr/30Sr, ratios of 0.70634-0.70563, and eNd;
values of —0.4 and —0.5 from a rock that yields a Rb—Sr isochron
date of 132 Ma £ 9 Ma, (2) ¥7St/2Sr; ratios of 0.7080-0.7061 and a
&Nd; value of —1.8 from a rock that yields a Rb—Sr isochron date of
116 £2 Ma, and (3) ¥’St/®Sr; ratios of 0.7112-0.7044 and eNd;

150
Zircon 2°Pb-28 Age +20 (Ma)

200 250

ages (zircon LA-ICP-MS) are presented in
red, otherwise in blue.

values ranging between 2.6 and 0.0, from rocks that yield K/Ar dates
spanning c¢. 96-71 Ma (Fig. 7a—c). These results yield similar age
and Sr isotopic data to previous work (Pankhurst 1982; Pankhurst
et al. 1991). In addition, Ryan (2007) reported 7Sr/®Sr; ratios
between 0.7047 and 0.7045 and eNd; values ranging between 2.5
and 2.3 from rocks that yield U-Pb zircon dates of 92 + 1 and 89 +
1 Ma (Fig. 7a—c).

Whole-rock Pb isotopic compositions of the granitoids that
intruded during 139+1 to 79+1Ma are 19.00-18.31
(2%Pb/2%Pb);, 15.67-15.60 (*°7Pb/°Pb);, and 38.71-38.05
(298Pb,;/2%4Pb;; Table 1; Fig. 7d and e), and plot between the upper
crust and orogenic curves of Zartman and Doe (1981). There are no
significant variations throughout the Cretaceous, although the
granitoids that formed during ¢. 126101 Ma are slightly depleted in
208py relative to 2°°Pb, compared with the older and younger
Cretaceous intrusions, and thus they plot slightly closer to upper
crustal compositions (Fig. 7e).

Zircon in situ Hf isotopes

In situ Hf isotopic compositions of zircon have been determined from
a suite of the same Cretaceous zircons that were dated using the U-Pb
method. Similar to the Nd, Sr and Pb isotopes, there is no systematic
variation of eHf; through the Cretaceous, which varies between +9.3
and —6.4 (Fig. 8). Two Early Cretaceous granitoids (c. 139-136 Ma)
from the northwestern coast of Palmer Land yield eHf; values that
range from 7.9 to 6.4 and —2.4 to —4.8, respectively. Eleven Aptian—
Albian intrusions (126 +1 to 101 =1 Ma), located in southeastern
Palmer Land to northwestern Graham Land and the South Shetland
Islands (Fig. 8), yield €Hf; values that range from 9.3 to —6.4. Finally,
three Late Cretaceous intrusions (92 + 1 to 79 + 1 Ma), yielded eHf;
values that range between 7.9 and —2.2.

The zircons that crystallized during ¢. 139-132 Ma yield a large
range of Lu—Hf model ages (TDMy), which range between 1.07
and 0.36 Ga. Similarly, younger intrusions that formed during 126
+1 to 101 + 1 Ma yield TDMy; ages that range between 1.14 and
0.27 Ga, whereas the model ages of the Late Cretaceous intrusions
lie between 0.89 and 0.32 Ga. The full dataset is presented in
Supplementary material Table 4.
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Fig. 5. Geochemical compositions of Cretaceous igneous rocks from the Antarctic Peninsula, divided into time slices at c¢. 140-132 Ma (dark green), ¢. 126—

100 Ma (light green), and Late Cretaceous (turquoise). (a) Multi-cation discriminati
classification diagram of Peacock (1931). (¢) Molar Al/(Na+K) and Al/(Ca+Na+

on plot from de La Roche et al. (1980). (b) Na,O +K,0—CaO v. SiO,
K) are defined as molecular ratios and take into account the presence of

apatite so that rocks with ASI> 1.0 are corundum normative and are termed peraluminous. (d) Rare earth element and trace element abundances normalized to
N-MORB (Sun and McDonough 1989). (e) Trace element abundances normalized to upper continental crust (Taylor and McLennan 1995). (f) Nb+Y v. Nb/

Y diagram of Hildebrand et al. (2018) to differentiate magmatic arc and slab failure
Pearce et al. (1984) based on a comparison of Y and Nb. ORG, ocean ridge granite:

(slab break-off) environments. (g) Tectonic discrimination diagram of
s; VAG, volcanic arc granites; WPG, within-plate granites. (h)

Discrimination of adakitic and normal volcanic arc rocks (andesites, dacites and rhyolites) based on Sr/Y v. Y of Defant and Drummond (1990).

Interpretation

The origin of Cretaceous magmatism in the Antarctic
Peninsula

Early Cretaceous igneous rocks crystallized between 139+ 1 and
101 + 1 Ma, and crop out in eastern Palmer Land, the west coast of
northern Palmer Land and along the west coast of Graham Land,
and within the South Shetland Islands (Fig. 2a). Late Cretaceous
intrusions are more spatially restricted and have been identified
along the west coast of the central and northern Antarctic Peninsula,
and crystallized between 92+1 and 79+ 1 Ma. Our compilation

(Supplementary material Table 3) of 85 well-constrained crystal-
lization ages (79 U-Pb concordant zircon and six “°Ar/*°Ar whole-
rock plateau dates) shows that Cretaceous arc magmatism peaked at
¢. 118-110 Ma, with minor peaks at ¢. 137-136, ¢. 103-102, ¢. 94—
93, c. 81-80 and ¢. 71-70 Ma (Fig. 2b), which are consistent with
the results of Riley e al. (2020a) and Jordan ez al. (2020). However,
peak magmatism at c¢. 118-110 Ma revises previous suggestions
that Cretaceous magmatism peaked at c. 142 Ma (Leat ez al. 1995)
or ¢. 141-129 Ma (Vaughan et al. 1998).

Our new geochemical data are consistent with a continental arc
setting for the Cretaceous igneous rocks of the Antarctic Peninsula.
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Crystallisation age

An arc interpretation is supported by (1) the geographical distribution
of intrusions that are generally parallel to the margin (Fig. 2a), (2)
enriched N-MORB normalized LILE and light REE (LREE), with
negative Nb, Ta and Ti anomalies (Fig. 5d), which are typically
associated with slab-dehydration reactions at active margins, and (3)
whole-rock Nd, Srand Pb (Fig. 7a, b, d and ¢), and zircon Hf isotopic
compositions (Fig. 8) of Cretaceous igneous rocks that show that the
magmas formed from mixed sources within the continental crust,
which is common in continental arc settings (e.g. Stern 2002). This is
consistent with previous interpretations (e.g. Leat ef al. 1995; Riley
et al. 2018, 2020a) of the Cretaceous intrusions in the Antarctic
Peninsula. Our results also reveal no temporal geochemical or
isotopic (Nd, Sr, Pb and Hf) trends through the Cretaceous.

Thermal histories of Mesozoic arc crust through 550—
380°C

Igneous rocks that yield zircon U-Pb concordia ages between
c. 156 £1 and c. 81 + 1 Ma yield lower intercept apatite concordia
dates (2°°Pb/?*®U) on Tera—Wasserburg plots that are indistinguish-
able from their zircon 28U-2%Pb concordia ages (Fig. 4),
suggesting that they cooled to below c¢. 380°C rapidly after
magmatic intrusion. In contrast, apatites from older intrusions that
yield zircon U-Pb concordia dates between c¢. 217 and c¢. 184 Ma
yield significantly younger apatite lower intercept concordia dates
(3°Pb/?38U), consistently c. 147 to c. 128 Ma. These apatite dates
are interpreted to record cooling through the Pb-in-apatite partial
retention zone (c. 550-380°C; e.g. Cochrane et al. 2014; following
the Pb-in-apatite diffusion parameters of Cherniak er al. 1991)
during ¢. 147-128 Ma. The older plutonic samples (zircon dates
between c¢. 217 and c. 184 Ma) yield apatite lower intercept ages
with slightly elevated MSWD values compared with the apatite
intercept ages from the younger igneous rocks (zircon dates between
¢. 156+ 1 and ¢. 81 = 1 Ma). This slight dispersion is considered to
be a consequence of (i) partial diffusive loss of Pb during cooling
through the Pb-in-apatite partial retention zone, and (2) laser

Late Cretaceous (yellow). (a) La,/Yb,,.
(b) Sr/Y. (¢) Ew/Eu* = Eu,/(Sm,*Gd,)"*.

sampling of intra-grain regions that were more retentive (e.g. cores
of large grains) or less retentive (e.g. small grains or rims of large
grains) of Pb.

The older rocks that yield U-Pb zircon ages of c. 217 to c. 184 Ma
and apatite U-Pb ages of ¢. 147-128 Ma form parts of intrusions
that are dispersed over a distance of ¢. 400 km (Fig. 3), and thus
reveal a regional magmatic emplacement event and subsequent
cooling that affected most of the Antarctic Peninsula. Poblete ez al.
(2011) reported significant remagnetization of pre-Jurassic igneous
and sedimentary rocks on the Antarctic Peninsula, which would
require temperatures of at least 500°C (Hunt ez al. 1995). This same
event was probably responsible for heating the intrusions that
formed during ¢. 217 and ¢. 184 Ma to temperatures higher than the
apatite Pb partial retention zone, which then subsequently cooled
through ¢. 550-380°C at c. 147-128 Ma. The cause(s) of the
heating event is unclear, although we hypothesize that it may be due
to burial and high heat flow. Jurassic turbidite-like deposits exposed
along the west coast of the Antarctic Peninsula in Adelaide and
Alexander Island (Riley et al. 2012) and South Shetland Islands
(Bastias et al. 2019) may be evidence for the formation of
depocentres and burial during this period.

The narrow spread in U-Pb apatite dates (147-128 Ma) from
plutons that crystallized during 217-185 Ma suggests that these
record a general phase of Early Cretaceous cooling through the
apatite Pb partial retention zone (e.g. Cochrane et al. 2014), which
may be a consequence of tectonic exhumation. However, the driving
mechanism for Early Cretaceous tectonic exhumation of the
Antarctic Peninsula is unclear and our interpretation is speculative.
The Early Cretaceous Andean margin experienced rock uplift and
erosion during the Early Cretaceous during westward migration of
South America, induced by the opening of the South Atlantic (e.g.
Mpodozis and Ramos 1989). Additionally, ridge formation is also
recorded in the Weddell Sea (e.g. Konig and Jokat 2006) and Rocas
Verdes (e.g. Calderon et al. 2007), located in the South Atlantic and
Patagonia, respectively. Tectonic exhumation related to the opening
of the Atlantic Ocean has been already suggested for the western
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and Leat ez al. (2009). (d, ) Pb isotopic compositions of the Cretaceous igneous whole-rocks showing the lead-isotope evolution curves of Zartman and
Doe (1981) for upper crust and orogen. Approximate composition of EM1 (enriched mantle with recycled lower continental crust), EM2 (enriched mantle
with upper continental crust and continental derived sediments) and DMM (depleted MORB-mantle) are from Hanan and Graham (1996) and Stracke et al.
(2003). HIMU, high U/Pb mantle composition. NHRL, Northern Hemisphere Reference Line (Dupre and Allegre 1980).

margin of Patagonia during the Mesozoic (Homovc and Constantini
2001). Furthermore, Gianni er al. (2018, 2020) reported Early
Cretaceous compression in Patagonia, and Sarmiento and Rangel
(2004), Martin-Gombojav and Winkler (2008), Villagémez and
Spikings (2013) and Spikings ez al. (2015) reported compression
and exhumation of the Colombian and Ecuadorian margin during c.
120-110 Ma, leading to the emplacement of HP-LT complexes
(e.g. Raspas Complex; Spikings et al. 2015). It is noteworthy that
HP-LT rocks are also exposed along the South Shetland Islands
(Smith Island; e.g. Grunow et al. 1992) within the Antarctic
Peninsula, and they reside in the same structural position to the west
of the Mesozoic intrusions as they do elsewhere in the Andes.
Therefore, it is feasible to suggest, pending future work, that these
HP-LT rocks were exhumed during Early Cretaceous compression.

Summarizing, we suggest that the small variation in apatite U-Pb
dates in plutons that crystallized during ¢. 217 to ¢. 184 Ma reflects
Late Jurassic—Early Cretaceous burial, followed by tectonic
exhumation caused by the early opening of the Atlantic Ocean.
This event is not recorded by the younger plutons (c. 156-81 +
1 Ma) because these were probably cooler than the apatite Pb partial
retention zone prior to the exhumation event.

Sources of magmatism, magma addition rates and
petrogenesis

The general uniformity in whole-rock geochemical compositions
(Figs 5 and 6) suggests that there were no significant changes in
tectonic setting during ¢. 140 and ¢. 79 Ma. The exhumation phase
identified by the apatite U-Pb data may have been slow, and did not
result in significant changes in crustal thickness. The intrusions are
mostly calcic and alkali—calcic alkali-granite and granodiorites that
formed in a continental subduction-zone setting (Fig. 5). Exceptions to
the general geochemical uniformity of the igneous rocks throughout
the Cretaceous consist of the identification of adakite-like magmas in
the interval ¢. 126100 Ma, which immediately followed a period of
elevated compression and higher exhumation rates (Fig. 5f), and
higher magma addition rates from c. 118 to 100 Ma (Fig. 2b).

A comparison of the Hf-isotopic compositions reveals significant
differences in the source regions of Cretaceous (this study; Zheng
et al. 2018; Riley et al. 2020a) and pre-Cretaceous zircons (Bastias
et al. 2020, 2021a). Zircons from Ordovician to Triassic plutons
show a steady trend towards less radiogenic eHf; values with time
(Fig. 9a; Bastias ef al. 2020). With the exception of a Late Jurassic
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granite (sample R.5957.3; Bastias ef al. 2021a, b) that yielded eHf;
values between 7.8 and 5.6, Triassic and Jurassic zircons yield
broadly similar eHf; values that range between 0.6 and —9.2 (Fig. 9a;
Bastias et al. 2020, 2021a, b). These trends contrast with the
Cretaceous zircons, which yield more radiogenic eHf; values that
range between 12.5 and —6.5, revealing the involvement of more
radiogenic source regions in the Early Cretaceous. With the exception
of granite R.5957.3, Ordovician to Jurassic intrusions yield a
consistent range of Lu—Hf model ages that span 1.37 Ga (at c.
212 Ma; Bastias et al. 2020) to 0.78 Ga (at ¢. 440 Ma; Bastias et al.
2020), with the majority ranging between 1.2 and 0.8 Ga (Fig. 9c).
This suggests that the Ordovician—Jurassic arc magmas mainly
incorporated juvenile Sunsas-aged crust (1.19-0.92 Ga; Cordani and
Sato 2000) that is exposed in South America and crust of similar age
that is exposed in East Antarctica (1.1-1.0 Ga; Goodge and Fanning
2016). Cretaceous zircons yield Lu—Hf model ages that range
between 1.14 Ga (at ¢. 112 Ma) and 0.28 Ga (at ¢. 106 Ma), whereas
the majority of Cretaceous zircons yield Lu—Hf model ages of
<0.8 Ga (Fig. 9b), suggesting that the structure of the crust may have
been modified after the Jurassic, reducing the volume proportion of
material derived from Precambrian basement (Fig. 9d).

Cretaceous tectonic history

Evidence for a prevailing extensional setting

The combination of U-Pb zircon dates, geochemical and isotopic
data, and mid-temperature thermochronological constraints is
consistent with an extensional regime during the Late Jurassic—
Early Cretaceous, which may have been interrupted by a mild
compressional phase that exhumed the pre-c. 184 Ma intrusions
during c¢. 147128 Ma. Evidence for compressive pulses at ¢. 107
and ¢. 103 Ma (Vaughan and Pankhurst 2008; Vaughan er al.
2012; Riley et al. 2020a) has been accounted for by an increase in
plate convergence rates. First, Hf-isotopic compositions of zircons
show that more isotopically juvenile crust was incorporated into
Cretaceous magmas compared with older intrusions, which is in
agreement with the interpretation of Pankhurst (1982) based on Sr

isotopes. Extension may have driven decompression of the
underlying mantle, promoting the incorporation of mantle melts
into the arc magmas (e.g. Cochrane er al. 2014). Second, re-
magnetization of pre-Jurassic igneous and sedimentary rocks
(Poblete et al. 2011), along with resetting of apatite U-Pb dates
(via diffusive Pb loss) was probably caused by increased heat
flow and burial during extension (e.g. Lachenbruch et al. 1994).
Finally, synchronous extension has been recorded in adjacent
regions of the Antarctic Peninsula throughout most of the
Cretaceous, which was related to the break-up of Gondwana.
Oceanic lithosphere formed in the Weddell Sea at c. 147 Ma,
outboard of the northeastern Antarctic Peninsula (Fig. 1a; Konig
and Jokat 2006), which led to the opening of the Southern
Atlantic. An extensional setting is also documented along the
western margin of Patagonia, where it formed the Rocas Verdes
Basin, a marginal back-arc basin that developed oceanic
lithosphere during the Late Jurassic to Cretaceous (e.g. Dalziel
et al. 1974; Dalziel 1981; Calderén et al. 2007). Moreover, most
of the South American western margin was dominated by an
extensional setting during the Late Jurassic—Early Cretaceous (e.g.
Atherton and Aguirre 1992; Mpodozis and Allmendinger 1993;
Morata and Aguirre 2003; Spikings et al. 2015).

c. 148—140 Ma: magmatic quiescence

The period between c. 148 and 140 Ma is characterized by
magmatic quiescence along the entire length of the Antarctic
Peninsula. Most Late Paleozoic—Jurassic plate reconstructions show
subduction of Pacific oceanic lithosphere beneath the western
margin of Gondwana at this time (e.g. Meert and Lieberman 2008;
Nelson and Cottle 2017, 2018) and thus the mechanism responsible
for this quiescence remains unclear, although it may indicate high
convergence obliquity or a lack of net convergence.

c. 140-100 Ma: oceanic subduction

Arc magmatism resumed along the Antarctic Peninsula in the
Berriasian—Valanginian transition (c. 140 Ma; Fig. 10) owing to
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the location of the analysed rocks presented in (a). (¢) Comparison of the 208pp_238(J zircon concordia ages and the Lu—Hf model ages (this study; Bastias
et al. 2020, 2021a). (d) Comparison of 206pp_238Y zircon concordia ages and crustal residence, which is defined as the difference between the zircon U-Pb
crystallization age and the TDMy; age. The Cretaceous dataset is divided into c¢. 140-132 Ma (dark green), c¢. 126100 Ma (light green) and approximately

Late Cretaceous (turquoise). Data from Riley et al. (2020a) are included.

subduction of the Phoenix Plate. Magmatic pulses occurred at c.
137-136, ¢. 118-110 and ¢. 103-102 Ma (Fig. 2b), although the
margin was continuously active throughout the Early Cretaceous,
corroborating previous studies (e.g. Leat et al. 1995; Riley et al.
2018). Early Cretaceous intrusions include the Lassiter Coast

Intrusive Suite in eastern Palmer Land, and the west coast of
southern Graham Land in the Black Coast sector. Further north, arc
magmatism from c. 140 to 100 Ma occurs along the west coast of
Graham Land up to its northernmost exposure in the South Shetland
Islands (Fig. 2a). This geographical distribution of Early Cretaceous
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igneous rocks from c. 140 to 100 Ma could be accounted for by
either flat-slab, east-dipping subduction of the Phoenix Plate, west-
dipping subduction of the lithosphere of the Weddell Sea, or an
allochthonous origin for the rocks of Alexander Island, each of
which is discussed below.

Flat slab. Most Early Cretaceous palacogeographical reconstruc-
tions show east-dipping subduction of oceanic lithosphere of the
Phoenix Plate beneath the Antarctic Peninsula (e.g. Barker 1982;
Larter and Barker 1991; Sutherland and Hollis 2001; Jordan et al.
2020). Assuming that the rocks of Alexander Island are autoch-
thonous to the Antarctic Peninsula and there was no significant
strike-slip displacement along the margin, this implies a distance of
¢. 700 km between the trench and arc rocks of the Lassiter Coast
Intrusive Suite (Fig. 10a), which have a trench-parallel extent of at
least ¢. 300 km. Consequently, in this scenario the rocks of the
Lassiter Coast Intrusive Suite (c. 130-102 Ma; Pankhurst et al.
1991; Riley et al. 2018) formed above a flattened slab (Fig. 10a). To
the north of the Black Coast, igneous rocks were emplaced along the
west coast of the Antarctic Peninsula, suggesting that the extent of
the flat slab was constrained to a segment of Palmer Land (Fig. 10a).

West-dipping subduction. Arc rocks of the Lassiter Coast Intrusive
Suite of eastern Palmer Land may have formed within an active
margin associated with west-dipping subduction of lithosphere of
the Weddell Sea beneath eastern Palmer Land (Fig. 10b). This
hypothesis was proposed by Grunow (1993), who suggested that
counterclockwise rotation of the Antarctic Peninsula during the
Jurassic in conjunction with the general southward motion of East
Antarctica may have driven west-dipping subduction. However,
this hypothesis is inconsistent with palacogeographical reconstruc-
tions based on seafloor magnetic anomalies in the Weddell Sea
region (e.g. Ghidella et al. 2002, 2007; Jokat et al. 2003; Konig
and Jokat 2006), and the accommodation of lithosphere that may
have been subducted during c. 140-100 Ma. Extension in the
South Atlantic leading to the development of seafloor spreading
and the formation of the Weddell Sea occurred during the Late
Jurassic (e.g. Ghidella et al. 2002); most of this seafloor is still
present to the east of the Scotia Plate (Fig. 2a; Ghidella et al. 2002,
2007; Konig and Jokat 2006), and thus poses a problem when
trying to account for subduction east of Palmer Land. However,
this argument is not conclusive, considering that the age of
significant portions (e.g. the southern sector) of the Weddell Sea
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remains unknown; therefore west-dipping subduction remains a
possibility.

An allochthonous origin for Alexander Island. The present sinuous
spatial trend of Early Cretaceous magmatism (c. 140—-100 Ma) may
be a consequence of post c. 100 Ma bending and rotation of the
peninsula, implying that the original Early Cretaceous arc was
parallel to the ocean—continent interface, with an approximately
similar, trench-parallel arc—trench gap. This hypothesis also
requires that Alexander Island is part of an allochthonous or
parautochthonous crustal block that was located elsewhere prior to
c. 100 Ma, and that the Early Cretaceous trench would have been
located close to the present position of George VI Sound (Fig. 10c).
In this model, Alexander Island arrived close to its present position
after c. 100 Ma. However, Alexander Island hosts Mesozoic forearc
sequences (Fossil Bluff Group; Butterworth ez al. 1988), which
have been chronologically and lithostratigraphically correlated with
Mesozoic forearc sequences further north in Adelaide Island (Riley
et al. 2012) and in the South Shetland Islands (Bastias et al. 2019).
Thus, an allochthonous origin for Alexander Island suggests that it
may have been accreted along the west Antarctic margin via
displacement along the Eastern Palmer Land Shear Zone (Fig. 2a),
which is a major ductile to brittle—ductile shear zone with a lateral
extent of at least 1500 km (Vaughan and Storey 2000; Vaughan
et al. 2012; Fig. 2). Translation of Alexander Island and
emplacement close to its current location would have occurred
after c. 100 Ma, although U-Pb zircon and “°Ar/>® Ar biotite dates of
syntectonic intrusions within this shear zone suggest that it was
active during ¢. 106102 Ma (Vaughan et al. 2002a, b), and there is
no evidence for displacement since ¢. 102 Ma.

c. 100-79 Ma

Exposures of Late Cretaceous igneous rocks are less voluminous
than the Early Cretaceous units (Fig. 2a) and occur along the west
coast of the central and northern Antarctic Peninsula (Fig. 11). Late
Cretaceous igneous rocks in Graham Land formed with similar
trench—arc distances at its west coast. However, arc magmas
migrated westward during the Late Cretaceous—Paleogene at the
latitude of northern Alexander Island in Palmer Land (Pankhurst

Late Cretaceous

(07 >
P A —
))7)))1))')
pueq] weyelo

>))>>’,>,’> Btad

/ iAlexander
/ i Island
A

pueq lewed

&
s
&
&

A

= o

> —

o
o
S
s

Fig. 11. Schematic palaco-reconstruction of the Antarctic Peninsula during
the Late Cretaceous. The margin was dominated by west-dipping
subduction of oceanic lithosphere of the Phoenix Plate. A lack of Late
Cretaceous arc magmatism in the southern Antarctic Peninsula suggests
that the margin was inactive. Active margin magmatism continued along
Graham Land during the Late Cretaceous.

1982; Storey et al. 1996; McCarron and Millar 1997; Riley et al.
2020a). The absence of Late Cretaceous or Paleogene intrusive
rocks at the latitudes of the Lassiter Coast Intrusive Suite suggests
that subduction had ceased at c¢. 112 Ma in more southerly latitudes,
which probably signals subduction of the last remaining oceanic
lithosphere of the Phoenix Plate under the margin of the Antarctic
Peninsula (e.g. Barker 1982; Larter and Barker 1991).

Conclusions

(1) Arc magmatism resumed in the Antarctic Peninsula at c.
140 Ma following a magmatic hiatus during the interval c. 148—
140 Ma, forming abundant intrusions that are exposed along
Graham and Palmer Land. Magmatism was continuous until c.
79 Ma, with the main peak of activity at ¢. 118-110 Ma, which
represents one of the main periods of Mesozoic magmatism in the
Antarctic Peninsula. This magmatism was formed within a
continental active margin setting, which is supported by (a) the
trench-parallel distribution of the igneous rocks, (b) chemical
compositions that reveal an enrichment in LILE and LREE, with
negative Nb, Ta and Ti anomalies, which are typical of slab-
dehydration reactions and thus active margins, and (c) whole-rock
Nd and Sr and zircon Hf isotopic compositions revealing mixed
sources that resided within the continental crust.

(2) Apatite U-Pb dates show that intrusions that crystallized
during ¢. 217 and c¢. 184 Ma within the Antarctic Peninsula cooled
through the Pb-in-apatite partial retention zone (c. 550-380°C)
during c. 147-128 Ma. First, these intrusions were probably heated
to temperatures hotter than ¢. 550°C via increased flow and burial
during Late Jurassic—Early Cretaceous extension, which also
remagnetized the pre-Jurassic igneous and sedimentary rocks of
the Antarctic Peninsula. Subsequent cooling may have been a
consequence of exhumation driven by compression and rock uplift,
caused by the westward migration of South America during the
early opening of the South Atlantic.

(3) An overall extensional setting during the Cretaceous is
supported by (a) progressively more radiogenic eHf compositions
of Cretaceous zircons revealing the incorporation of mantle melts
during attenuation of the crust and (b) evidence for high Late
Jurassic to Cretaceous heat flow that magnetized pre-Jurassic rocks
and reset apatite U-Pb ages of pre-Middle Jurassic rocks. However,
this extensional period was punctuated by compressive events, the
most pronounced of which may have been at the beginning of the
Early Cretaceous (see conclusion (2)).

(4) Early Cretaceous exposures of arc rocks crop out from the
east to the west coast at the latitude of the Black Coast in Palmer
Land. This spatial trend may be due to either (a) continuous
subduction beneath the western margin of the Antarctic Peninsula
with a flat-slab episode in Palmer Land, or (b) east-dipping
subduction of the Phoenix Plate in Graham Land and west-dipping
subduction in Palmer Land, or (c) an active western margin with
east-dipping subduction of the Phoenix Plate, along with an
allochthonous or parautochthonous origin for Alexander Island.
Our current dataset is unable to distinguish between these
possibilities, and testing these hypotheses would require a better
understanding of the geological history of the pre-Cretaceous rocks
of Alexander Island and the inaccessible areas of the Weddell Sea in
the Filchner—Ronne Ice Shelf sector.

(5) The geochemical and isotopic compositions of the Late
Cretaceous arc rocks are extremely similar to their Early Cretaceous
counterparts. Therefore, we suggest that active margin magmatism
was continuous throughout the Cretaceous in the Antarctic
Peninsula, which is consistent with previous studies (e.g. Leat
et al. 1995; Riley et al. 2020a). Late Cretaceous arc magmatism
occurred during the closing stages of subduction of the oceanic
lithosphere of the Phoenix Plate in Palmer Land, which gradually
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ceased moving northward throughout the Cenozoic (e.g. Barker
1982; Larter and Barker 1991).
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