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Abstract

We describe our implementation of the multivariate Matérn model for multivariate spatial
datasets, using Vecchia’s approximation and a Fisher scoring optimization algorithm. We con-
sider various pararameterizations for the multivariate Matérn that have been proposed in the
literature for ensuring model validity, as well as an unconstrained model. A strength of our
study is that the code is tested on many real-world multivariate spatial datasets. We use it
to study the effect of ordering and conditioning in Vecchia’s approximation and the restrictions
imposed by the various parameterizations. We also consider a model in which co-located nuggets
are correlated across components and find that forcing this cross-component nugget correlation
to be zero can have a serious impact on the other model parameters, so we suggest allowing
cross-component correlation in co-located nugget terms.

Keywords Gaussian process; Fisher scoring; software

1 Introduction

We attempt to understand the complexities of the Earth system by measuring and modeling
many variables that interact on a continuum of spatial-temporal scales. For example, modern
climate models include dozens of variables evolving in concert over space and time. In this
paper, we analyze elemental data from a soil monitoring network in France (Saby et al., 2009),
elemental data from a well-water monitoring program in Bangladesh (Kinniburgh and Smedley,
2001), multispectral data from the GOES-16 satellite (maintained by NASA and NOAA), and
the difference between forecasted and actual pressures and temperatures in the Pacific Northwest
(Eckel and Mass, 2005).

Gaussian processes have become a workhorse for statistical analysis of spatial and spatial-
temporal data. A multivariate Gaussian process with p-components is a random vector func-
tion Z(x) = (Z1(x), . . . , Zp(x))⊤ ∈ R

p indexed by a set D ⊂ R
d , d � 1, such that for any

x1, . . . , xn ∈ D, the random vector (Z(x1)
⊤, . . . , Z(xn)

⊤)⊤ ∈ R
np has a multivariate normal distri-

bution. The process is completely specified by its mean function E[Z(x)] and covariance function
{Cov(Zi(x), Zj (x

′))}pi,j=1. When the covariances depend only on the separation lag h–that is, the
process is covariance-stationary–we write Cij (h) for Cov(Zi(x + h), Zj (x)), which is referred to
as a cross covariance function. Genton and Kleiber (2015) provide a thorough review of cross
covariance functions.

Following the popularity and success of the Matérn model for univariate spatial data, a
multivariate version has been proposed and studied (Gneiting et al., 2010; Apanasovich et al.,

∗Corresponding author. Email: guinness@cornell.edu.

© 2022 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received August 1, 2022; Accepted October 11, 2022



476 Fahmy, Y. and Guinness, J.

2012; Emery et al., 2022). The general form of the multivariate Matérn model is given by

Cij (h) = σijM(h|νij , αij ) h ∈ R
d, i, j = 1, . . . , p

where

M(h|ν, α) =
1

2ν−1Ŵ(ν)
(‖h‖/α)νKν(‖h‖/α)

with Kν being the modified Bessel function of the second kind of order ν. The parameter σij is
the covariance between co-located observations from components i and j . We refer to the pa-
rameters using the following terminology: σij is a cross covariance parameter, αij is a cross range
parameter, and νij is a cross smoothness parameter. To be consistent with how the Matérn is
parameterized in our existing software, our αij parameters are ranges, whereas they are inverse
ranges in Gneiting et al. (2010), Apanasovich et al. (2012), and Emery et al. (2022). When
i = j , we refer to them as marginal parameters. Note that this model implies the symmetry
Cij (h) = Cji(h) which need not hold in general. Li and Zhang (2011) and Qadir et al. (2021) pro-
posed methods for modeling asymmetries. The univariate Matérn model Cii(h) = σiiM(h|νii, αii)

provides a valid (i.e nonnegative definite) second-order structure for the marginal process Zi(x)

as long as the marginal parameters σii, αii, νii are positive. Additional conditions are needed on
the cross parameters σij , αij and νij to ensure that the multivariate Matérn model is valid for
the multivariate process Z(x). We discuss these in the next section.

Kleiber (2017) studied the properties of various multivariate spatial models, including sep-
arable models, kernel convolution models, the linear model of coregionalization, and the multi-
variate Matérn. He found that the multivariate Matérn is sufficiently flexible in that it allows the
high frequency coherence to exhibit a range of behaviors, depending on the parameter settings.
Loosely speaking, the coherence between two components is the correlation between the linear
combination of each component and a sinusoidal function; it measures correlation between com-
ponents at a particular frequency of variation. Qadir and Sun (2021) demonstrated that further
improvements in flexibility can be achieved with semiparametric models.

Over the past decades, spatial statisticians have produced a mountain of literature on the
topic of estimating covariance parameters, especially on the problem of computing estimates
when the dataset is very large. This work has led to various software packages, including INLA

(Rue et al., 2009; Lindgren et al., 2011), fields (Nychka et al., 2021), RandomFields (Schlather
et al., 2022), spBayes (Finley et al., 2015), spNNGP (Finley et al., 2022), LatticeKrig (Nychka
et al., 2016), FRK (Zammit-Mangion and Cressie, 2021), exageostat (Abdulah et al., 2018),
GpGp (Guinness et al., 2021), GPvecchia (Katzfuss et al., 2020), and GeoModels (Bevilacqua
et al., 2018), to name a few. Most of the research and software development is focused on
the univariate case, with the exception of RandomFields, exageostat, and spBayes, which are
capable of fitting bivariate Matérn models, and GeoModels, which has a number of bivariate
spatial models.

Clearly, there is a need for reliable software capable of fitting multivariate spatial mod-
els with two or more components to large datasets. In this work, we report on extending the
GpGp R package (Guinness et al., 2021) to handle the multivariate Matérn model, demonstrate
its capabilities on several datasets, and explore the implications of various proposed sufficient
conditions on multivariate Matérn parameters. GpGp implements Vecchia’s Gaussian process ap-
proximation (Vecchia, 1988), along with improvements to the approximation (Guinness, 2018),
and likelihood optimization procedures that efficiently compute and make use of the gradient
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and Fisher information (Guinness, 2021). The application of Vecchia’s approximation is agnostic
to the covariance function, which has allowed for the implementation of more than 25 covariance
models in GpGp at the time of writing (package version 0.4.0), including isotropic, geometrically
anisotropic, nonstationary, and spatial-temporal models on Euclidean spaces and spheres. GpGp

has enjoyed success in spatial data competitions, including being used by the winning team in
the first KAUST spatial data analysis competition (Huang et al., 2021), and by the winners of
the multivariate spatial data analysis section of the second competition (Abdulah et al., 2022).

Adding the multivariate Matérn model to GpGp presents difficulties that go far beyond
the normal challenges of implementing a typical univariate covariance function. As opposed
to the univariate Matérn, whose parameters must simply be positive in order for the model
to be valid, known sufficient conditions are more complicated, so some care must be taken
when enforcing them. The parameter space is also large; our formulation of the model, which
allows for correlated nuggets, has 2p(p + 1) parameters. Depending on the dataset, many of the
parameters–or combinations thereof–are not well identified. In short, it is a nasty optimization
problem. In order to quickly maximize the likelihood, one has to take large steps through a
high dimensional space fraught with Errors, Infs, and NaNs. R’s optim function does not cut
it. In addition, as with all Vecchia approximations, decisions must be made about how to order
the observations and select neighbors, which is complicated by the fact that the multivariate
component of the data is usually categorical rather than numeric.

Our major contribution is the software we provide for fitting multivariate Matérn models
using Vecchia’s approximation and a Fisher scoring algorithm. However, the software allows
us to explore the behavior of the multivariate Matérn model on various datasets. Our findings
are generally consistent with those of other authors; more flexible conditions on the parameters
tend to give better fits, but there are diminishing returns on added flexibility. Perhaps our most
interesting modeling finding is that allowing the nugget term to be correlated across components
can have a large impact on the estimates of the other covariance parameters.

Section 2 reviews the multivariate Matérn model and its various parameterizations. Section 3
outlines Vecchia’s approximation for multivariate spatial data. Section 4 includes some notes on
the optimization procedures. Section 5 describes the datasets. Section 6 presents the results. We
conclude with a discussion.

2 Multivariate Matérn Parameterizations

We model the responses as

Yi(x) = μi + Zi(x) + εi(x),

where μi is component-specific mean, Zi is a multivariate Matérn process, and εi(x) is a nugget
term with covariances

Cov(εi(x + h), εj (x)) = τij1(h = 0).

In other words, we assume constant mean within each component, and we add a nugget term
but allow the nugget to be correlated across components. The p × p matrix formed by the
τij parameters must be positive definite. We parameterize the cross nugget variances as τij =
(τiiτjj )

1/2Sij , where S is a correlation matrix.
Gneiting et al. (2010) provided necessary and sufficient validity conditions for the bivariate

Matérn model parameters. These conditions define the full bivariate model. For three or more



478 Fahmy, Y. and Guinness, J.

components, necessary and sufficient conditions on the parameters are not known, though various
authors have proposed sufficient conditions, some of which we explore here.

2.1 Parsimonious Model

Gneiting et al. (2010) proved that the multivariate Matérn model is valid for p � 2 if the
following conditions hold for every i and j :
1. αij = α (common marginal and cross ranges)
2. νij = (νii + νjj )/2

3. σij = (σiiσjj )
1/2Vij

Ŵ(νii+d/2)1/2

Ŵ(νii)
1/2

Ŵ(νjj +d/2)1/2

Ŵ(νjj )1/2

Ŵ{(νii+νjj )/2}
Ŵ{(νii+νjj )/2+d/2} where V is a correlation matrix.

These conditions define their parsimonious model. If we define ρij := σij/(σiiσjj )
1/2, then condi-

tion 3 implies

|ρij | �
Ŵ(νii + d/2)1/2

Ŵ(νii)1/2

Ŵ(νjj + d/2)1/2

Ŵ(νjj )1/2

Ŵ{(νii + νjj )/2}
Ŵ{(νii + νjj )/2 + d/2}

which reduces to |ρij | �
(νiiνjj )1/2

(νii+νjj )/2
when d = 2. In the bivariate case, condition 3 provides a

complete characterization of ρij when 1 and 2 hold. In our software, all correlation matrices, such
as V here, use a Cholesky-based parameterization (Pinheiro and Bates, 1996). All parameters
that must be positive use an exponential/log link.

2.2 Flexible-A Model

Apanasovich et al. (2012) provide a different set of sufficient conditions in the p � 2 case which
do not require a common range parameter or the restriction that νij = (νii + νjj )/2:
1. νij = νii+νjj

2
+ 	A(1 − Aij ) where 	A � 0 and A is a positive correlation matrix,

2. (α−2
ij )

p

i,j=1 is conditionally negative semidefinite,

3. σij = (σiiσjj )
1/2Vij (uiiujj )

−1/2uij , where

uij = α
2	A+νii+νjj

ij Ŵ(νij )Ŵ{(νii + νjj )/2 + d/2}/Ŵ(νij + d/2),

and V is a correlation matrix.
We will refer to the model defined by these conditions as the Flexible-A model. As suggested by
Apanasovich et al. (2012), we ensure condition 2 holds by parameterizing

α−2
ij =

α−2
ii + α−2

jj

2
+ 	B(1 − Bij )

where 	B � 0 and B is a positive correlation matrix. In the bivariate case, A and B become
redundant.

The conditions of the Flexible-A model are not necessary, so in the bivariate case the full
model of Gneiting et al. (2010) is less restrictive. However, the conditions of the full model are
more complicated to enforce, so it is still worthwhile to evaluate the performance of the Flexible-
A model on bivariate datasets. Apanasovich et al. (2012) illustrate on the same bivariate weather
dataset considered by Gneiting et al. (2010) that both models obtain similar fits.
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2.3 Flexible-E Model

Recently Emery et al. (2022) (Theorem 3B) gave another set of sufficient conditions with the
goal of alleviating the restriction imposed on |σij/(σiiσjj )

1/2| by the Flexible-A model:
1. (νij )

p

i,j=1 is conditionally negative semidefinite,

2. For β > 0, (α−2
ij − βνij )

p

i,j=1 is conditionally negative semidefinite,

3. σij = (σiiσjj )
1/2Vij (uiiujj )

−1/2uij where

uij = α
2νij

ij βνij exp(νij )Ŵ(νij )

and V is a correlation matrix.
Emery et al. (2022) discuss in some detail how the conditions of the two models are related.
A practical way to ensure that condition 1 of the Flexible-E model holds is to parameterize νij

exactly as in condition 1 of the Flexible-A model. We use this parameterization in our software.
Similarly, we ensure 2 holds by defining

α−2
ij =

α−2
ii + α−2

jj

2
+ 	B(1 − Bij ) + β

(

νij −
νii + νjj

2

)

,

where 	B � 0, B is a positive correlation matrix, and β > 0. We will refer to the model defined
by these conditions as the Flexible-E model.

2.4 Unconstrained Model

Lastly, we also consider an unconstrained model. “Unconstrained” is a bit of a misnomer here
because we do enforce positivity on parameters that must be positive, and we force any pa-
rameter that can be interpreted as a correlation to be between −1 and 1. In particular, we
use a log/exponential link for all range parameters, all smoothness parameters, marginal covari-
ance parameters, and marginal nugget parameters. For the cross covariance and cross nugget
parameters, we use

σij = √
σiiσjj

2

π
arctan(sij )

τij = √
τiiτjj

2

π
arctan(tij )

where sij and tij are unconstrained. This model is unconstrained in the sense that it does not
limit the flexibility of the multivariate Matérn in any way. However, it may return parameters
that are invalid. Aside from checking various necessary conditions, such as positivity of αij and
νij , it is not generally possible to check necessary and sufficient conditions for validity, since
these conditions have not been fully characterized.

3 Vecchia’s Approximation for Multivariate Data

Let y = (y1, . . . , yn)
⊤ be a vector of all of the responses in a multivariate spatial dataset, and

let π : {1, . . . , n} → {1, . . . , n} be a permutation (reordering), so that yπ(k) is the kth observation
in a reordering of (y1, . . . , yn). Additionally, let g(k) be a subset of {ℓ : ℓ < k} and yg(k) be the
vector (yℓ : ℓ ∈ g(k)). For density p, Vecchia’s approximation of the likelihood is

L(θ; y, π, g) =
n

∏

k=1

p
(

yπ(k) | yπ(g(k)); θ
)

.
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Constructing a Vecchia approximation boils down to selecting the permutation and the sequence
of functions g(1), . . . , g(n), commonly referred to as the ordering and the conditioning sets.
Usually the information about the locations is used to make these selections. For the ordering,
observations can be sorted by one of the coordinates, or a space-filling ordering can be used. For
the conditioning sets, typically the m nearest neighbors are used.

These choices are complicated in the multivariate case, since one of the pieces of information
in the data–the multivariate component–is usually categorical, and thus has no natural distance
metrics upon which to base an ordering or conditioning set. We must not allow that conundrum
lull us into paralysis. Our strategy here is simply to propose a few options for choosing the
ordering and conditioning sets, and test them out on real datasets.
Ordering: We consider three ordering schemes:

1. Completely random: π is a random permutation of 1, . . . , n.
2. Order by component: observations are sorted by component, alphabetically, then ordered

randomly within component.
3. Cycle through components: The components are ordered alphabetically, then the ordering

repeatedly cycles through the components; in each cycle an observation is selected at
random from each component.

Neighbor Selection: We consider three neighbor-selection rules:
1. m nearest neighbors, regardless of component
2. Ensure we select roughly m/p nearest neighbors from each component.
3. If observation k has component i, ensure we select roughly 2m/(p + 1) nearest neighbors

from component i, and roughly m/(p + 1) nearest neighbors from the other components.
We view the first option for both ordering and neighbor selection as the baseline choice

because they ignore the component information. The other options make use of the component
information. The two other ordering options are intended to explore whether there is any benefit
to treating the components (roughly) exchangeably. The two other neighbor selection schemes
are intended to explore whether there is a benefit to ensuring that every component is represented
in the conditioning set, and whether, further, there is a benefit to privileging the component
whose conditional distribution is being approximated.

4 Optimization

We performed many numerical studies with different datasets and parameterizations in the
process of developing our software, much of which cannot be included in the paper. This section
serves the purpose of leaving some notes to assist anyone trying to improve upon our methods.

Without a reparameterization, the two-, three-, and four-component multivariate Matérn
models have 12, 24, and 40 parameters, respectively. Optimization with respect to these param-
eters is difficult due simply to the high-dimensionality of the parameter space, and more subtly,
due to the fact that some parameters play similar roles in the model; for example, σ12, α12,
ν12, and τ12 all control dependence between the first and second components, albeit in different
ways. Guinness (2022) conducted a simulation study on two-, three-, and four-component mod-
els, and found that parameter estimation required thousands of Nelder-Mead iterations when
using the optim function in R. In that study, optimization with respect to an unconstrained
four-component model often failed to converge, even after 6000 iterations.

Optimization performance can be improved if first and second derivative information is
computed and used. Guinness (2021) provided formulas for the gradient and Fisher information
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of Vecchia’s loglikelihood approximation, showing that the use of a Fisher scoring algorithm can
provide vast improvements in optimization performance, especially when the model contains
many parameters. Our Fisher scoring algorithm attempts to update the parameters with the
following step:

θ k+1 = θ k − I(θ k)−1∇ℓ(θ k)

where I(θ) is the Fisher information matrix, and ∇ℓ(θ) is the gradient of the loglikelihood. We
then check whether the loglikelihood has been improved. If not, we take a smaller step in the
same direction. If the loglikelihood still has not improved we take progressively smaller steps in
the direction of the gradient, and stop the optimization if we cannot increase along the gradient.
These modifications to the step are important in the unconstrained case because it is easy to
step into a place that produces a covariance matrix that is not positive definite. Otherwise, the
optimization is stopped when the dot product between the step and the gradient is less than
10−4, which is the default stopping criterion in GpGp. To generate starting values, we use the
result of an optimization over the marginal parameters. We cap the number of iterations at 40.

We found that that link function can have a large impact on the reliability of the opti-
mization procedure. Emery et al. (2022) used an exponential/log link for the diagonals of the
nugget covariance matrix, and an identity link for the off-diagonals. By fitting the model to
various datasets, we found that, in the context of Fisher scoring, that link is unreliable because
when the nugget is very close to zero, there is little information about the log of the marginal
nugget, and a lot of information about the raw cross nuggets. In other words, we are not sure
whether the log marginal nugget is −6 or −10, but we are certain that the cross nuggets are
within exp(−6) of zero. This makes the Fisher information matrix poorly conditioned, and thus
the optimization steps unreliable. This is a problem that one would not encounter unless work-
ing with second-derivative information. The link functions in Subsection 2.4 produced Fisher
information matrices that are better-behaved. At every step, we compute the ratio between the
smallest and largest eigenvalues of the Fisher information matrix (i.e. reciprocal of its condition
number); if the ratio is too small, we set the smallest ratios to 10−5.

One of the lessons learned from the development of the GpGp optimization procedures is
that Fisher scoring struggles to converge when one or more of the maximum likelihood param-
eters sits near–or even outside of–the boundary of the parameter space. For example, it is not
difficult to simulate a univariate dataset that has a maximum likelihood nugget (in the Matérn
model) that is negative. When the nugget is parameterized on the log scale, the Fisher scoring
algorithm tries to make the log nugget more and more negative, without ever reaching the max-
imum. To deal with this problem, GpGp uses minor penalties on some parameters, including
the nugget, the marginal variance, and the smoothness. We use these same penalties on the
marginal parameters in the multivariate Matérn. We experimented with similar penalties on the
other multivariate Matérn parameters but did not achieve consistent success in improving the
optimization by adding penalties, so we did not include them.

5 Datasets

Weather Data

Both Gneiting et al. (2010) and Apanasovich et al. (2012) analyzed a bivariate meteorological
dataset. The data consist of forecast errors of pressure and temperature at 157 locations in the
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Figure 1: Pressure and temperature data from RandomFields package at 157 locations in the
Pacific Northwest.

Figure 2: Nitrogen (left) and zinc (right) in the French soil monitoring network at 1379 locations
collected in 2006–2008.

Pacific Northwest. Gneiting et al. (2010) noted that pressure and temperature errors tend to
be negatively correlated, which was confirmed by fitting various bivariate spatial models to the
data. The data were obtained from the RandomFields R package.

French Soil Data

The French National Soil Monitoring network is a program designed to monitor the presence of
trace elements in French soils. The network consists of a 16 km × 16 km grid of locations covering
French territory. Soil samples are taken as close as possible to the grid centers, and samples are
measured for trace elements. We downloaded the data from https://doi.org/10.15454/QSXKGA.
This dataset contains measurements of over 50 quantities with sample dates reported between
June 2000 and June 2009. We subset the data to samples taken from the top soil layer in
2006, 2007, and 2008, which includes 1379 individual sample locations. A multivariate spatial
principal components analysis of 8 of the elements is reported in Saby et al. (2009). We use
components n_tot_31_1 and zn_tot_hf, which are measurements of nitrogen and zinc. We
omitted duplicated locations. These components are plotted in Figure 2.

KAUST Competition Data

The Spatio-Temporal Statistics and Data Science group at KAUST has run two spatial data anal-
ysis competitions in which teams are scored on prediction metrics on various spatial datasets.
The second competition, run in 2022, included spatial-temporal and bivariate spatial multi-
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Figure 3: Bivariate dataset used in the 2022 KAUST competition.

Figure 4: Bangladesh Water quality data samples from 1998, including arsenic, iron, manganese,
and phosphorous.

variate datasets. Here, we analyze the bivariate spatial data from Competition 3a, specifically
the file 3a_1_train.csv which can be obtained from https://www.kaggle.com/competitions/
2022-kaust-ss-competition-3a/data. A preliminary version of the methods in this paper were
used in the competition, and that version finished in first place in the scoring metrics, though
several teams finished in close proximity. The data are plotted in Figure 3.

Bangladesh Water Quality Data

In response to the detection of arsenic in Western Bangladesh, the British Geological Survey
(BGS) conducted a large-scale well-water sampling program throughout Bangladesh in 1998 and
1999 (Kinniburgh and Smedley, 2001). The BGS sampled water from over 3500 wells, and tested
them for arsenic and various other elements. All of the data can be downloaded from https:
//www2.bgs.ac.uk/groundwater/health/arsenic/Bangladesh/data.html; we specifically analyze
the arsenic, iron, manganese, and phosphorous data collected in 1998, from the DPHE/BGS
National Hydrochemical Survey. We omitted duplicated locations. The data are plotted in Fig-
ure 4.

GOES 16 Radiance Data

Guinness (2022) analyzed data from the advanced baseline imager on the GOES-16 satellite,
which operates in geostationary orbit. The imager records reflected radiances in 16 wavelength
bands at a spatial resolution of up to 1km and a temporal resolution up to 1 minute. We analyze
the Hurricane Florence data introduced in Guinness (2022), which includes bands 1, 6, 7, and
9. Specifically, we analyze data from the 30th minute of the Florence data used in that paper.
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Figure 5: Log radiances from bands 1, 6, 7, 9 from the Hurricane Florence data collected by the
GOES-16 Advanced Baseline Imager.

Data were extracted from an outer edge of the hurricane cloud, selected visually for stationarity.
The data are plotted in Figure 5.

6 Numerical Results

All computations are done on an 8-core (16-thread) Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz.
Reported loglikelihoods are Vecchia approximations, and aside from the first study, all use the
completely random ordering scheme, and nearest neighbors that ignore the component. We did
not have room in most of the tables to include timing. For the French soil, the Bangladesh water,
and the GOES-16 data, one iteration takes roughly 1 second, so nearly all of them complete
within 1 minute. The weather dataset is smaller, so runs much faster. The fits to the competition
data–which has 90,000 observations–take roughly 5 minutes each.

6.1 Effect of Vecchia’s Approximation

Our first numerical study explores the effect of ordering, conditioning, and the number of neigh-
bors in Vecchia’s approximation. We fit the independent, parsimonious, Flexible-A, Flexible-E,
and unconstrained models to the French Soil Data under all combinations of the proposed order-
ings, conditioning rules, and 20 and 40 neighbors. The results are in Table 1. In short, our results
are somewhat inconclusive in terms of selecting a clear winner, though it seems that there is
not much to be lost by ignoring the components when computing the ordering and conditioning
sets (setting rand-any). Our experience is that Vecchia’s approximation is reasonably accurate
on spatial datasets, so we interpret these results to mean that the ordering and conditioning
choices do not have a large impact on this bivariate spatial dataset. Certainly more study is
needed to identify scenarios where the ordering and conditioning has a larger impact, especially
with different datasets and more components. For the rest of the numerical results, we use the
rand-any setting with 20 neighbors. We view the rand-any setting as a “hands-off” setting that
is unlikely to introduce a systematic issue.

In terms of model comparison, the dependent models give significantly higher likelihoods
than the independent model, and there are relatively small differences among the dependent
models. This is consistent with findings in the literature on other datasets. In numerical studies
to follow, we further explore differences between the various models.
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Table 1: Results of effect of choices in Vecchia’s approximation for the various models fit to the French soil data. The reported
loglikelihoods are differences from the maximum in the table. Bolded entry is the highest within each combination of model and m

setting. rand = completely random ordering, comp = order by component, cyc = order cycling through components, any = nearest
neighbors regardless of component, bal = attempt to select an equal number of neighbors from each component, pref = select more
neighbors from the current component.

Independent Parsimonious Flexible-A Flexible-E Unconstrained

Setting m loglik iter loglik iter loglik iter loglik iter loglik iter

rand-any 20 −218.00 27 −14.20 26 −11.13 40 −8.79 40 −3.56 40
comp-any 20 −243.12 12 −19.02 31 −15.87 40 −14.99 40 −14.61 40
cyc-any 20 −229.09 19 −18.75 24 −12.88 40 −12.76 40 −11.28 40
rand-bal 20 −218.95 24 −13.35 27 −9.29 40 −7.49 40 −3.62 40
comp-bal 20 −222.49 8 −11.38 8 −17.81 40 −8.00 40 −7.13 40
cyc-bal 20 −227.41 38 −18.55 27 −13.09 40 −13.10 40 −11.45 12
rand-pref 20 −214.42 22 −11.48 24 −11.67 40 −7.43 40 −5.60 25
comp-pref 20 −219.38 8 −10.55 7 −29.23 40 −9.42 40 −8.64 40
cyc-pref 20 −221.64 23 −19.23 13 −15.26 40 −13.68 40 −11.66 37

rand-any 40 −214.80 17 −12.11 16 −9.74 40 −5.71 40 −3.84 40
comp-any 40 −221.67 12 −15.43 16 −10.14 40 −8.30 40 −6.63 40
cyc-any 40 −214.39 8 −11.76 23 −9.03 40 −5.79 40 −4.68 11
rand-bal 40 −213.79 12 −11.60 15 −12.01 40 −5.61 40 −3.47 40
comp-bal 40 −215.50 8 −11.26 8 −5.62 40 −4.99 40 −3.05 40
cyc-bal 40 −215.17 8 −12.62 21 −7.39 40 −6.31 40 −3.56 12
rand-pref 40 −213.92 8 −13.26 16 −6.60 40 −6.81 40 −1.87 9
comp-pref 40 −214.80 7 −5.52 8 −2.10 40 −1.84 36 0.00 40
cyc-pref 40 −214.62 8 −12.38 8 −5.70 40 −5.85 40 −2.15 10
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6.2 Comparison of Models

We fit the bivariate Matérn model to the weather data, the French soil data, and the com-
petition data under the independent, parsimonious, Flexible-A, Flexible-E, and unconstrained
models. The estimated parameters and loglikelihoods are in Table 2. There is a roughly 10 point
loglikelihood increase between the independent and various dependent models fit to the weather
data, which has 157 locations. The dependent models provide significantly better fits to the
French soil data, which is a larger dataset of 1379 locations. There are some minor differences in
loglikelihoods among the dependent models; the ordering from best to worst is unconstrained,
Flexible-E, Flexible-A, then parsimonious. An inspection of the parameters for the Flexible-E
model versus the unconstrained model reveals that the sizes of the marginal nuggets change.
Interestingly, the smoothness parameters are small and change as well. Similarly, in the weather
data, though our loglikelihoods are close to those reported in Apanasovich et al. (2012), the
parameter estimates are somewhat different. We believe this is due to the inclusion of the cross
nugget, since we get similar estimates to those reported in Apanasovich et al. (2012) when we set
the cross nugget correlation to zero. The relationship between nuggets and the other parameters
is explored further in the next subsection.

6.3 Effect of Correlated Nuggets

One of our most interesting findings is that forcing zero dependence across components in the
nugget can seriously distort the estimates of the range and smoothness parameters. This is
demonstrated in Table 3, where we show parameter estimates for various combinations of ele-
mental components in the Bangladesh data, under the Flexible-E model. When the cross nuggets
are forced to be zero, the estimated smoothness parameters can become close to zero. This has
an appreciable effect on the maximum likelihood, on the order of 10–50 points, and usually has
an impact on the smoothness and range parameters.

Figure 6 shows a plausible explanation for the behavior seen in Table 3. The middle panel
shows the estimated cross covariance functions with and without the restriction that the cross
nugget must be zero. When the cross nugget is restricted to be zero (black), the model can squeeze
itself into pretending it has a correlated nugget by making the smoothness small, creating a spike
at zero. This comes at the cost of limiting the shape of the Matérn function. By contrast, when
the cross nugget is allowed to be non-zero (magenta), the Matérn function retains its flexibility.

Figure 6: Estimated marginal and cross covariance functions for the As and Fe components in
the Bangladesh dataset with the restriction that τ12 = 0 (black) and without (magenta).
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Table 2: Parameter estimates and loglikelihoods for the weather, French soil, and competition
datasets.

Dataset Independent Parsimonious Flexible-A Flexible-E Unconstrained

Weather σ11 53393.48 47677.52 47696.49 47686.68 49394.45
σ12 0.00 −289.64 −268.12 −268.08 −291.84
σ22 6.76 6.91 6.70 6.70 6.70
α11 59.05 93.66 145.96 146.63 127.04
α12 65.38 93.66 95.02 94.36 130.08
α22 94.90 93.66 75.69 74.94 71.24
ν11 2.52 1.18 0.65 0.64 0.83
ν12 1.93 0.89 0.68 0.68 0.55
ν22 0.58 0.60 0.71 0.72 0.75
τ11 4807.41 4108.02 2399.04 2313.08 3262.89
τ12 0.00 6.34 12.78 12.97 17.02
τ22 0.00 0.01 0.07 0.07 0.09
loglik −1273.50 −1264.33 −1263.62 −1263.61 −1263.19

French Soil σ11 0.59 0.45 0.48 0.44 0.37
σ12 0.00 0.31 0.31 0.29 0.40
σ22 0.64 0.43 0.54 0.50 0.79
α11 3.50 1.10 1.49 1.23 0.80
α12 1.55 1.10 1.66 1.22 2.47
α22 3.33 1.10 1.92 1.59 7.72
ν11 0.14 0.15 0.16 0.17 0.46
ν12 0.51 0.22 0.29 0.38 0.34
ν22 0.14 0.29 0.22 0.25 0.14
τ11 0.01 0.01 0.02 0.04 0.17
τ12 0.00 0.00 0.05 0.07 0.07
τ22 0.02 0.16 0.13 0.14 0.03
loglik −2370.62 −2166.82 −2163.75 −2161.41 −2156.24

Competition σ11 0.96 0.95 0.96 0.96 0.96
σ12 0.00 0.82 0.84 0.84 0.84
σ22 0.95 1.03 1.07 1.06 1.06
α11 0.03 0.03 0.03 0.03 0.03
α12 0.03 0.03 0.03 0.03 0.03
α22 0.03 0.03 0.03 0.03 0.03
ν11 0.60 0.60 0.61 0.61 0.61
ν12 1.38 1.00 1.01 1.01 1.01
ν22 1.41 1.40 1.40 1.40 1.41
τ11 0.00 0.00 0.00 0.00 0.00
τ12 0.00 0.00 0.00 0.00 0.00
τ22 0.00 0.00 0.00 0.00 0.00
loglik 90809.25 118953.00 118956.37 118956.22 118956.59
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Table 3: Results for allowing correlated nuggets, vs forcing zero correlation, on the Bangladesh
water quality data, using the Flexible-E model. For each pair of components, the first row forces
τ12 = 0, whereas the second row allows it to be non-zero. As = arsenic, Fe = iron, Mn =
manganese, P = phosphorous.

Comp σ11 σ12 σ22 α11 α12 α22 ν11 ν12 ν22 τ11 τ12 τ22

As,Fe 5.90 3.19 3.75 8.20 10.25 16.93 0.08 0.06 0.04 0.99 0.00 0.01
3.73 1.50 1.62 0.16 0.20 0.88 1.42 1.12 0.28 3.19 1.52 2.03

As,Mn 3.75 −0.04 1.10 0.15 0.17 0.21 1.65 1.59 0.79 3.22 0.00 1.23
3.89 −0.25 1.14 0.18 0.20 0.23 1.29 1.00 0.70 3.18 0.28 1.21

As,P 6.23 2.28 1.90 13.24 15.67 20.45 0.07 0.07 0.06 0.88 0.00 0.01
4.16 1.54 1.24 0.16 0.17 0.47 1.66 1.51 0.49 3.23 0.92 0.77

Fe,Mn 3.98 0.61 2.51 122.70 0.00 209.57 0.03 0.03 0.04 0.03 0.00 0.07
1.64 0.12 1.10 0.49 0.13 0.29 0.45 7.72 0.64 2.14 0.59 1.23

Fe,P 3.86 1.43 1.70 45.82 42.06 39.16 0.03 0.05 0.06 0.01 0.00 0.22
1.59 0.70 1.09 0.50 0.34 0.28 0.49 0.95 0.82 2.19 0.68 0.82

Mn,P 0.99 −0.31 0.97 0.17 0.12 0.25 1.03 4.38 0.82 1.26 0.00 0.82
1.00 −0.34 0.99 0.21 0.23 0.27 0.79 0.77 0.76 1.24 0.15 0.81

6.4 Many Datasets

Lastly, we fit the various multivariate Matérn models to all combinations of components in the
Bangladesh and GOES data. The results are in Table 4. The reported times for each fit are in
minutes, and the reported loglikelihoods are differences between each model and the independent
model on the same dataset. For the Bangladesh Water data, manganese (Mn) appears to be the
least correlated with the other components, in that the improvement over the independent model
is small when a single element is paired with Mn. There is generally little difference between the
different dependent models on the Bangladesh Water data. On the GOES data, there is strong
dependence between components 1 and 6; whenever they are paired together, the likelihood
is more than 1000 units higher than the independent model. This is consistent with a visual
inspection of Figure 5. There are a few cases showing differences of more than 10 loglikelihood
units between the different dependent models, particularly in the four-component model. Many
of the fits ran into the upper limit of 40 iterations, which could explain the differences, but also
highlights the difficulty of optimizing the likelihood over high-dimensional parameter spaces.

7 Discussion

Our main contribution is the implementation of the multivariate Matérn and some of the pro-
posed parameterizations in software that allows for fast fitting to large datasets via Vecchia’s
approximation and optimization with Fisher scoring. A major success of our work is the ability
to fit unconstrained 40-parameter models to the Bangladesh Water data and the GOES data.
The software allows for the exploration of the practical implications of using the various param-
eterizations on real datasets. Pending feedback from this article, these methods will be pushed
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Table 4: Results of fitting the various model parameterizations to all combinations of the Bangladesh water data (first 11 rows,
included components identified by elemental abbreviations, As, Fe, Mn, and P) and the GOES-16 radiance data (last 11 rows,
included components identified by GOES-16 band numbers, 1, 6, 7, and 9). Within each row, the loglikelihoods are the differences
above the independent model fit to the same dataset. In every case, the Unconstrained fit provides the highest loglikelihood. Times
are in minutes.

Parsimonious Flexible-A Flexible-E Unconstrained

Comp loglik iter time loglik iter time loglik iter time loglik iter time

As,Fe 387.84 35 0.4 388.29 40 0.9 392.14 40 0.6 392.22 16 0.3
As,Mn 15.84 16 0.2 15.85 24 0.3 15.85 24 0.3 18.21 40 1.3
As,P 364.70 40 0.5 365.90 40 0.8 369.89 40 0.5 370.09 40 0.5
Fe,Mn 106.83 11 0.1 108.35 22 0.3 108.48 20 0.4 108.50 40 1.1
Fe,P 262.57 13 0.2 263.20 16 0.2 263.19 17 0.3 263.45 33 0.4
Mn,P 14.70 17 0.2 14.72 31 0.5 14.72 31 0.5 17.19 15 0.2
As,Fe,Mn 493.02 26 0.5 496.08 27 0.5 496.16 27 0.6 498.69 40 2.0
As,Fe,P 805.69 10 0.3 811.74 40 0.8 812.00 40 1.0 812.63 8 0.2
As,Mn,P 393.24 34 0.7 398.38 40 0.9 398.76 40 1.2 400.89 40 2.0
Fe,Mn,P 393.17 22 0.4 395.78 40 1.0 395.95 40 0.8 398.75 21 0.9
As,Fe,Mn,P 941.96 21 0.6 948.09 37 1.0 948.35 40 1.4 951.60 40 2.7

1,6 1706.89 40 0.5 1722.90 40 0.5 1722.91 40 0.5 1723.10 40 0.5
1,7 534.26 15 0.2 531.96 40 0.9 539.45 15 0.2 539.45 1 0.0
1,9 6.92 11 0.1 8.65 40 0.5 8.60 40 0.5 8.70 12 0.2
6,7 653.04 17 0.2 656.60 40 0.9 659.23 22 0.4 659.23 1 0.0
6,9 15.32 14 0.2 28.81 40 0.7 28.82 36 0.4 28.89 10 0.1
7,9 −2.98 14 0.2 5.59 40 0.5 5.66 40 0.5 5.80 27 0.2
1,6,7 2358.91 40 0.7 2376.02 40 0.9 2379.74 40 0.9 2390.47 40 0.7
1,6,9 1758.79 40 0.8 1803.79 40 0.7 1803.80 40 0.7 1806.87 40 0.6
1,7,9 537.47 35 0.7 546.70 40 0.9 546.68 40 0.9 549.27 40 0.8
6,7,9 675.60 40 0.7 693.74 40 1.7 695.40 40 0.9 697.58 29 0.5
1,6,7,9 2462.00 40 0.9 2501.30 40 1.1 2504.86 40 1.2 2516.99 40 0.9
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into the GpGp R package and made publicly available on the Comprehensive R Archive Network
(CRAN).

Here are the main takeaways from our studies. Consistent with other authors, we found
that there is usually little difference between the Flexible-A, Flexible-E, and unconstrained fits.
Of course, we have only tried the models on the datasets presented here, and there may be
some datasets for which there is a larger difference. We hope that our software will provide the
means for such explorations by us and other researchers. Perhaps our most interesting finding
is the effect of forcing the nugget terms to be uncorrelated across components. If the data has
small-scale cross-component correlation, the multivariate Matérn is capable of squeezing such
correlation into the model by making the smoothness parameters small, creating a spike at
zero distance. We suggest allowing the nuggets to be correlated, which frees the smoothness
parameters to do their job of modeling the smoothness of the spatially correlated field.

More work is needed to fine-tune the various settings that control the Fisher scoring algo-
rithm. Some of the issues include: how much to limit the size of the steps, how to modify the
Fisher information matrix when it is poorly-conditioned, and how to modify the step when the
step decreases the loglikelihood. In addition, there are probably some advantages to be gained
by improving the link functions to make the Fisher information matrices better behaved. An-
other fruitful avenue is the development of penalties (or similarly, Bayesian priors) that push the
parameters away from treacherous parts of the parameter space without severely limiting the
flexibility of the model. It would also be interesting to explore the implementation of asymmetric
multivariate models, including the model in Li and Zhang (2011) and the more flexible model
in Qadir et al. (2021). Lastly, extensions to other multivariate models besides the Matérn would
enable model comparison studies.

Supplementary Material

The datasets and code used for this project can be found at https://github.com/yf297/GpGp_
multi_paper.
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