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Reanalyses and a High-Resolution Model Fail to Capture the “High Tail” of CAPE Distributions?
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ABSTRACT: Convective available potential energy (CAPE) is of strong interest in climate modeling because of its role in
both severe weather and in model construction. Extreme levels of CAPE (>20001J kg™ ') are associated with high-impact
weather events, and CAPE is widely used in convective parameterizations to help determine the strength and timing of
convection. However, to date few studies have systematically evaluated CAPE biases in models in a climatological context,
and none have addressed bias in the high tail of CAPE distributions. This work compares CAPE distributions in ~200 000
summertime proximity soundings from four sources: the observational radiosonde network [Integrated Global Radiosonde
Archive (IGRA)], 0.125° reanalyses (ERA-Interim and ERAS), and a 4-km convection-permitting regional WRF simu-
lation driven by ERA-Interim. Both reanalyses and the WRF Model consistently show too-narrow distributions of CAPE,
with the high tail (>90th percentile) systematically biased low by up to 10% in surface-based CAPE and even more in
alternate CAPE definitions. This “missing tail”” corresponds to the most impacts-relevant conditions. CAPE bias in all
datasets is driven by surface temperature and humidity: reanalyses and the WRF Model underpredict observed cases of
extreme heat and moisture. These results suggest that reducing inaccuracies in land surface and boundary layer models is
critical for accurately reproducing CAPE.

KEYWORDS: CAPE; Radiosonde/rawinsonde observations; Cloud resolving models; Model evaluation/performance;
Reanalysis data

1. Introduction rely on CAPE to trigger convection and to determine the total
vertical mass flux, so that the magnitude of vertical mass flux is
directly affected by an inaccurate representation of CAPE
(Lee et al. 2008; Cortés-Hernédndez et al. 2016). In some re-
cently developed new schemes intended to more realistically
reproduce the diurnal cycle, convective triggering is directly
dependent on CAPE generation rate (dCAPE) (Xie and
Zhang 2000; Wang et al. 2015). These schemes have been
shown to improve model performance for precipitation diurnal
peak time compared to schemes using classic CR closure (Song
and Zhang 2017; Xie et al. 2019). However, it should be noted
that these dynamical-based trigger functions introduce addi-
tional sensitivity to CAPE biases, and Song and Zhang (2018)
find that dCAPE trigger function are highly sensitive to model
resolution.

CAPE is derived from vertical profiles of temperature,
pressure, and humidity, which are measured in situ only from a
sparse network of specialized weather stations. Radiosondes
measure atmospheric profiles from weather balloons released
twice a day from ~1000 stations globally. Because radiosonde
measurements are both spatially and temporally sparse, re-
searchers linking measured CAPE to severe weather events
have used “‘proximity soundings,” estimating the severity of
extreme weather events based on soundings taken within a
range of ~200km (e.g., Brooks et al. 1994; Rasmussen and
Blanchard 1998; Brooks and Craven 2002). More recent studies
of CAPE and severe weather use not soundings but reanalyses
that assimilate in situ and remote observations in global models

Convective available potential energy (CAPE) is an integral
quantity of buoyancy in the convective layer (Moncrieff and
Miller 1976) and is considered as a key parameter in convec-
tion initiation and development. Closely linked to updraft
strength and storm intensity, CAPE provides a way to under-
stand the potential threat of some high-impact weather events
such as thunderstorms, hail, and tornadoes. Brooks et al. (2003)
propose a combination of CAPE and bulk wind shear as a
metric for severe weather in reanalyses, with a 2000 J kg~ ' as a
threshold value for extreme events, and multiple subsequent
studies confirm this relationship in models and observations.
Studies relating high CAPE values to extreme precipitation or
intense storms in observations include Groenemeijer and van
Delden (2007), Lepore et al. (2015), Dong et al. (2019), and
many others. In models, Paquin et al. (2014), for example, show
that the number of extreme precipitation events in general
circulation models (GCMs) grows with the covariate between
CAPE and wind shear.

CAPE is also used as a key parameter in convective schemes
in GCMs to determine convective mass flux (Zhang and
McFarlane 1995; Yano et al. 2013; Baba 2019). In CAPE-
relaxing closure (CR closure) schemes, modelers commonly
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0278.51. to provide information at higher resolution (Brooks et al. 2003;
Lepore et al. 2015; Dong et al. 2019). Global gridded reanalyses
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Riemann-Campe et al. (2009) use the ERA40 reanalysis to
construct a 40-yr climatology of CAPE, showing that largest
values and variability are found over tropical land (mean
~20007J kg™ 1), with a stronger dependence on specific humidity
than temperature.

To diagnose potential changes in CAPE under future higher
CO, conditions, studies must rely on numerical simulations.
With the growth of computational resources, the horizontal
resolution of models used for this purpose has increased. For
example, Trapp et al. (2009) and Diffenbaugh et al. (2013) ex-
amine changes in CAPE and wind shear in GCM projections
(~100km) and infer a likely future increase in the number of
days with severe weather events. Singh et al. (2017) use both
GCMs and superparameterized GCMs (20 km) to study changes
in the 95th percentile of CAPE in the tropics and subtropics
during heavy precipitation and find a 6%-14% increase per
kelvin regional temperature increase. [Note that CAPE values
during heavy precipitation are low, e.g., Adams and Souza
(2009); the 95th percentile in observations in Singh et al. (2017)
is under 2000J kg~ '.] Rasmussen et al. (2017) examine changes
in CAPE and convective inhibition (CIN) in a 4-km dynamically
downscaled simulation of North America in a pseudo—global
warming scenario (driven by reanalysis or by reanalysis with an
applied offset in climate variables). They find that both CAPE
and CIN generally increase under warmer conditions and infer a
future intensification of convective strength. Such convection-
permitting models, with their improvement in convective dy-
namics, have been assumed to help improve the representation
of CAPE.

Given the extent of the scientific use of reanalyses and model
simulations, it is valuable to ask how well these products repro-
duce realistic CAPE values. Coarse-resolution general circulation
models reproduce large-scale spatial patterns in CAPE but can
produce large biases in individual locations (Chen et al. 2020).
While reanalyses and high-resolution forecast models are
generally assumed to be more accurate, assessments of their
biases versus radiosonde observations have been limited.
Studies using restricted samples of soundings near severe
weather events have produced inconsistent results. For ex-
ample, Thompson et al. (2003) evaluate surface-based CAPE
(SBCAPE) from the Rapid Update Cycle (RUC-2) weather
prediction system 0-h analysis against radiosondes sampled
near supercells (149 soundings from 1999 to 2001, in the U.S.
central and southern plains) and find a low bias of ~16%
(mean bias of about —400Jkg ! in mean conditions of
~2500J kg™ "). Coniglio (2012) compare SBCAPE in the RUC
0-h analysis with a different sample of soundings near supercell
thunderstorms (582 soundings during the VORTEX2 cam-
paign in 2009-10, also in the central and southern plains) and
find a small high bias (~150J kg™ ") with a large spread. Allen
and Karoly (2014) compare mixed-layer CAPE (MLCAPE)
in the reanalysis product ERA-Interim (ERAI) and in the
Australian Mesoscale Limited Area Prediction System
(MesoLAPS) weather model with radiosonde soundings
near thunderstorm events (3697 and 4988 soundings, re-
spectively, from 2003 to 2010, from 16 stations in Australia)
and find slight high biases of 6 and 74 J kg ! in conditions of
234 and 255 T kg~ ! mean nonzero MLCAPE.
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To date, very few validation studies have systematically
evaluated CAPE bias and errors in a climatological context,
with a large enough scale to allow evaluation of the high tail of
the CAPE distribution. For convection-permitting models, it is
widely assumed that improved resolution also improves the
representation of CAPE, but this assumption has not been
explicitly tested. For reanalyses, only a few studies have com-
pared output to large collections of soundings, and none assess
distributional changes. Gensini et al. (2014) compare the North
American Regional Reanalysis (NARR) to all radiosondes
over 11 years from 21 stations in the eastern United States
(>100000 soundings with nonzero SBCAPE from 2000 to
2011), but do not assess either mean bias or distributional
differences. (They do find considerable spread in SBCAPE
errors, with RMSE ~1400J kg~ '.) Taszarek et al. (2018) and
Taszarek et al. (2020) use even larger sample sizes (>1 million
profiles from 1979 to 2016, and >5 million profiles from 1980 to
2018, respectively, predominantly over Europe and spanning
all seasons) and compare CAPE under various definitions
between soundings and ERAI and ERAS reanalyses. They
examine mean biases (in soundings with nonzero CAPE) and
find them large relative to median CAPE, but median values in
both studies are small (~68 and 100J kg~ for MLCAPE).

Even fewer studies have attempted to attribute bias in
CAPE to specific model issues. While one possible cause is
error in free tropospheric profiles, multiple authors have
noted the potential role of incorrect temperature and hu-
midity at the surface or boundary layer. Several studies have
explicitly tested this attribution by replacing surface values in
models and data products with observed ones and noting the
improved match to radiosonde SBCAPE. Coniglio (2012)
replaces surface values in RUC with those from the opera-
tional surface objective analysis system (SFCOA) and finds a
reduction in bias in 1-h forecasts. Gartzke et al. (2017) com-
pare 10 years of SBCAPE from a single station, the Southern
Great Plains Atmospheric Radiation Measurement (ARM)
site, and show that replacing surface values largely corrects
CAPE values in ER Al reanalysis and values derived from the
AIRS satellite. Similarly, in a very small sample (two indi-
vidual case studies), Bloch et al. (2019) find that replacing
surface values of humidity and temperature corrects a low
bias in SBCAPE in a satellite-derived product.

This work seeks to address both needs, for large-scale sys-
tematic assessment of CAPE distributions in reanalyses and
high-resolution simulations against those in radiosondes, and
for attribution of the source of any bias. To allow focusing on
conditions that promote strong convection, we examine sum-
mertime data over the contiguous United States, using a total
of nearly 200 000 soundings over 12 years of observations.

2. Data description

This study compares four datasets that allow calculation
of CAPE over the contiguous United States from January
2001 to December 2012: radiosonde observations from the
Integrated Global Radiosonde Archive (IGRA), version 2
(Durre et al. 2006, 2008); the reanalysis products ERAI and
ERAS5 (Dee et al. 2011; Hersbach et al. 2020); and simulation
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output from the Weather Research and Forecasting (WRF)
Model at the convection-permitting resolution, forced by
ERAI (Rasmussen and Liu 2017). Because our interest is in
the high tail of the CAPE distribution, we focus on the
summer months when convection is most active and CAPE is
largest. We define summer as May-August (MJJA), fol-
lowing the convention of many studies (e.g., Sun et al. 2016;
Rasmussen et al. 2017), though some work on extreme
weather uses an earlier definition of April-July to include
the late spring peak of convection (e.g., Trapp et al. 2009).
With this definition, IGRA provides a total of 199 787 sum-
mertime radiosonde profiles from U.S. stations with con-
tinuous records during 2001-12. For consistency, analyses
shown here involve data matched to radiosonde stations and
synchronized in time, though when evaluating diurnal cy-
cles, we also show reanalysis and model output at additional
times of the day.

a. Radiosonde observations

IGRA is an archive of quality-controlled atmospheric
sounding profiles from weather balloons around the world
collected by a standard protocol. The archive is operated by
the U.S. National Oceanic and Atmospheric Administration
(NOAA) and profiles in the United States are collected by
NOAA’s National Weather Service. In this work we use
profiles from all stations in the contiguous United States that
report continuous operation through the years 2001-12, a
total of 80 out of the 248 stations historically used. All stations
have routine balloon launches at 0000 and 1200 UTC each
day, though some soundings are missing (17.4% of all routine
launches during this period). Many stations also include spo-
radic launches at 0600 and 1800 UTC; we include these profiles
in the dataset considered here, though we generally disaggre-
gate analyses by the time of day. Of the complete dataset of
199 787 soundings, 83 668 are from 0000 UTC, 106 455 are from
1200 UTC, and 9664 are from additional times. All four hours
are used in our analysis unless otherwise stated. Of these
profiles, 1496 (0.75%) are excluded by our quality control
criteria (see the methods section below).

Variables acquired from IGRA include pressure, tempera-
ture, altitude, and vapor pressure, all of which are standard re-
ported values. We convert vapor pressure to specific humidity
and dewpoint temperature for consistency across all datasets.
Vertical resolution varies by station, but most stations report
around 80 levels from the surface to 10-hPa pressure. (The data
are available from https://www.ncdc.noaa.gov/data-access/
weather-balloon/integrated-global-radiosonde-archive).

b. Reanalysis products

ERAI and ERAS are both reanalysis products maintained by
the European Centre for Medium-Range Weather Forecasts
(ECMWF). Both products assimilate observations into global
models and are available from 1979 to the present. ERAI has a
native horizontal resolution of T255 (=~80km); it has been su-
perseded by ERAS, which has significant improvements in
spatial and temporal resolution with a native horizontal resolu-
tion of TL639 (0.28 125°, ~31 km) (Copernicus Climate Change
Service 2017). Because our analysis involves matching individual
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radiosonde stations, we acquire both reanalyses at a finer spatial
resolution (0.125°) produced by ECMWF with bilinear inter-
polation for continuous fields. We use output at native model
vertical levels, preserving the highest possible vertical resolution
for our CAPE calculation: 60 levels for ERAI (L60), and 137 for
ERAS (L137). We download profiles of temperature and spe-
cific humidity, and surface pressure; the pressure profile is then
derived using surface pressure and coefficients a and b that de-
fine the hybrid-sigma coordinates of L60 and L137. Two-meter
temperature and dewpoint temperature along with surface
pressure are appended to the bottom level of profiles. Although
ERAS provides hourly output, we use data at 0000, 0600, 1200,
and 1800 UTC to match with ERAI (Both products are avail-
able at https://www.ecmwf.int/en/).

Data assimilation is a key component of reanalysis products.
Both ERAI and ERAS assimilate a homogenized version of
IGRA radiosonde observations, the Radiosonde Observation
Correction using Reanalyses (RAOBCORE) (Haimberger 2007;
Haimberger et al. 2008). Reanalyses and IGRA observations are
therefore not fully independent. ERAI uses a bias correction for
radiosonde temperature based on RAOBCORE_T 1.3, which is
further adjusted and implemented to the Continuous Observation
Processing Environment (COPE) framework in ERAS (ECMWF
2016). The assimilation process of ERAI uses the following ex-
clusion criteria for radiosonde data: 1) any radiosonde observation
below the model surface, and radiosonde-observed specific hu-
midity in either 2) extreme cold conditions (7' < 193 K for RS-90
sondes, T < 213K for RS-80 sondes, 7' < 233 K otherwise), or 3)
high altitude (p < 100hPa for RS-80 and RS-90 sondes, p <
300 hPa for all other sonde types) (Dee et al. 2011).

c. High-resolution model simulation

The high-resolution model output we use is a 4-km resolution
dynamically downscaled “retrospective” simulation over North
America first described by Liu et al. (2017). The simulation is
created as the control run of a pseudo—global warming experi-
ment and involves forcing the WRF 3.4.1 Model with ERAI re-
analysis. The WRF simulation is run with 4-km grid spacing and
50 vertical levels up to 50hPa, with parameterization schemes
including: Thompson aerosol-aware microphysics (Thompson
and Eidhammer 2014), the Yonsei University (YSU) planetary
boundary layer (Hong et al. 2006), the Rapid Radiative Transfer
Model (RRTMG) (Tacono et al. 2008), and the improved Noah-
MP land surface model (Niu et al. 2011).

The model uses ERAI as initial and boundary conditions,
with large-scale spectral nudging applied to geopotential, tem-
perature, and horizontal wind. Nudging is applied throughout
the model domain, at all altitudes above the planetary boundary
layer, and is intended to remove known large-scale issues (such
as summertime high-temperature bias over the central United
States; Morcrette et al. 2018) while still allowing smaller-scale
processes to modify local profiles. Values are nudged at a
strength corresponding to an “‘e-folding” time of 6h, using a
wavenumber truncation of 3 and 2 in the zonal and meridional
directions, respectively. Because the experiment is intended to
reproduce observed snow cover over North America, some modi-
fications are made to the land surface model, including representing
the heat transport from rainfall caused by the temperature
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FIG. 1. Comparison of SBCAPE and MUCAPE for all datasets, using all soundings considered. Data are binned
by SBCAPE value, and we exclude values under 200J kg 1. (a) Mean ratio of MUCAPE over SBCAPE and
(b) mean of ratio of the most unstable pressure level over surface pressure. Note that y axes are log scale. For both
CAPE and pressure level, the ratio approaches 1.0 as CAPE increases: in higher CAPE conditions, the most
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unstable level is closer to the surface.

difference between raindrops and land surface, and modifying the
snow cover/melt curve to produce more realistic surface snow
coverage and reduce wintertime low bias in temperature.

The WRF Model output is acquired from the NCAR
Research Data Archive ds612.0 (Rasmussen and Liu 2017). We
take the pressure, temperature, mixing ratio, height from the
CTRL 3D subset, and surface topography, surface pressure, 2-m
temperature, and mixing ratio from the CTRL 2D subset.

3. Methods
a. CAPE calculation

All CAPE values shown in this work are calculated with the
Sounding and Hodograph Analysis and Research Program in
Python (SHARPpy), version 1.4.0a4, a widely used collection of
sounding and hodograph analysis routines designed to provide
free and consistent analysis tools for the atmospheric sciences
community (https:/github.com/sharppy/SHARPpy; Blumberg
et al. 2017). SHARPpy is an extension of SHARP, which was
first released in 1991 (Hart and Korotky 1991). CAPE in the
SHARPpy package is calculated following the definition of
Moncrieff and Miller (1976) in which temperature is automati-
cally corrected to virtual temperature (Doswell and Rasmussen
1994). The required variables are vertical profiles of pressure,
temperature, height, and dewpoint temperature. Wind speed
and direction are optional, and we do not include them. The
package can produce the CAPE of parcels either at surface level
(SBCAPE), at the “most unstable” level (MUCAPE), or using the
averaged properties of “mixed layer” (MLCAPE). SHARPpy is
the most commonly used package in the CAPE literature (e.g.,
Gartzke et al. 2017; King and Kennedy 2019), which provides a
comprehensive list of convective indices as output.

We evaluate CAPE for all summertime profiles corre-
sponding to radiosonde soundings other than those with the

following exclusion criteria: 1) no surface-level measure-
ments (7 soundings or 0.004% of the total); 2) fewer than 20
vertical levels of observations (0.74% of soundings); or 3)
excessive discrepancy of relative humidity between the sur-
face and one level above, that is, RHge — RHjey1 > 65% (16
soundings or 0.008%). An excessive RH gradient implies
unphysical mixing; the exact threshold is somewhat arbi-
trary but is chosen to exclude outliers where CAPE >
20000J kg '. In some cases, radiosonde profiles involve
missing values in the height variable, even though tem-
perature, pressure, and humidity are reported. In these
cases, we interpolate height based on pressure using the
SHARPpy “INTERP” function.

b. Testing sensitivity to vertical interpolation

In the analysis here we interpolate only where data are
missing in radiosonde profiles, using the SHARPpy “INTERP”
function. The number of vertical levels used is therefore

TABLE 1. Fraction of observations of SBCAPE in each dataset
that exceed threshold values or have zero value. Data used are the
full 2001-12 MJJA dataset, inclusive of zeroes, with time/location
matched to radiosonde observations. Parentheses show the ratio of
incidences observed for each model or reanalysis relative to IGRA
radiosondes; a number smaller than 1 means underestimation.
Note the large deficits in the most extreme SBCAPE category
(>40001J kg~ '), with the number of incidences underestimated by
~40%-50%.

IGRA  ERAI ERAS WRF
Zeroes 361%  38.1% 35.0% 39.1%
>2000Tkg ™' 13.0% 12.8% (0.98) 13.8% (1.06) 13.2% (1.02)
>3000Tkg ' 54%  4.0% (0.74) 4.9% (0.91) 4.6% (0.85)
>4000Tkg ' 1.6%  0.8% (0.50) 1.0% (0.63) 1.0% (0.63)
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TABLE 2. As in Table 1, but for MUCAPE. Deficits in the high
tail are larger for MUCAPE than SBCAPE, as expected based on
Fig. 1. Parentheses show the ratio of incidences observed for each
model or reanalysis relative to IGRA radiosondes. The number of
incidences of MUCAPE above the conventional severe-weather
threshold (2000 J kg~ ') is underestimated by ~25%-35% and that
of extreme MUCAPE (>4000J kg™ ') by ~65%-75%.

IGRA

Zeroes 22.7%
>2000 kg~' 22.3%
>3000Jkg™' 10.9%
>4000Jkg™'  3.9%

ERAI ERAS WRF

30.3% 28.2% 32.8%
16.3% (0.73) 17.5% (0.78) 14.8% (0.66)
52% (0.48)  6.5% (0.60) 5.0% (0.46)
1.0% (0.26) 1.3% (0.33) 1.0% (0.26)

inconsistent across datasets. Other authors of CAPE compari-
son studies have chosen to interpolate to produce consistent
vertical sampling, for example, Gartzke et al. (2017), who use
202 fixed levels (2 and 30 m, followed by 75-m spacing from 75 m
to 15km). We test the robustness of derived CAPE to this
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interpolation by considering mean errors in profiles binned by
number of levels, using observations from the year 2012. We find
that mean absolute errors introduced by interpolation are over
25T kg~ ! for profiles with <10 levels but fall to ~5J kg™ ! once
the number of levels exceeds 60. However, since profiles with
more missing levels are more likely to have low CAPE, the mean
fractional error drops even more steeply (Fig. S1): 14% for <10
levels; 7% for 10-20 levels; and 0.8% for >20 levels, justifying
our choice of 20 as a cutoff. (Note that the bias introduced by
interpolation across these profiles is smaller, only —0.3%. See
Coniglio 2012 for similar conclusions.)

c¢. CAPE definitions

CAPE is the potential buoyancy of a parcel lifted to its
level of free convection, but the parcel considered may be
located at the surface (SBCAPE), at the most unstable ver-
tical level (MUCAPE), or may be a hypothetical parcel ini-
tiated using the mean state of the mixed layer (MLCAPE).
All are standard outputs of SHARPpy, with the lowest

5 All Above 90%
a)l0 b)
IGRA
90th Percentile |1.5€-04 - ERAI
1073 — ERAS
WRF
0 10741
oo
10—5_
106 ; :
0 2000 4000 6000
CAPE (J/kg)
c) 5 d)
. 1.0
44+
o y
3 1.0
41.
f
5 0.9
o
0.81
0 50 100 90 95 100
Percentile

FI1G. 2. (a),(b) Probability density functions and (c),(d) quantile ratio plots of CAPE from
reanalyses (ERAI and ERAS), high-resolution model output (WRF), and radiosonde obser-
vations (IGRA) for MJJA 2001-12, with times and locations matched to IGRA observations.
Points with zero CAPE are excluded (36 %-40% of datasets, see Table 1. (left) Full distribution
and (right) the high tail (90th percentile and above). For IGRA, the 90th percentile is
~2800J kg ™!, the 95th ~3200J kg™, the 97.5th ~4000J kg~ '. In PDFs [in (a) and (b)], plots
are cut off at 6000J kg~ ! on the x axis, omitting less than 0.1% of all points. In quantile ratio
plots [in (c) and (d)], a slope downward to the right indicates a narrower distribution. The WRF
Model and reanalyses consistently underpredict CAPE values in this high tail.
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F1G. 3. As in Fig. 2, but for MUCAPE instead of SBCAPE. Points with zero CAPE are
excluded from the analysis (23%-35% of the datasets, see Table 2). We match the time and
locations of model output to IGRA observations. PDF x axes are cut off at 6000J kg ', as less
than 0.4% of all points lie above the limit. For IGRA, the 90th percentile is about 3370 J kg 1,
the 95th percentile ~4010J kg !, and the 97.5th percentile ~4550J kg~ ".

100hPa used to calculate MLCAPE. [See Bunkers et al.
(2002) for discussion of alternate choices.] The appropriate
CAPE definition differs according to the scientific question
addressed. Some authors argue that MLCAPE is most appro-
priate for characterizing the average properties of the parcel
being initiated by convection, and MUCAPE may best capture
convective extremes (Craven et al. 2002; Bunkers et al. 2002;
Brooks et al. 2003), but we focus on SBCAPE in this work for
several reasons. First, most prior CAPE comparison studies have
used either only SBCABE (e.g., Gensini et al. 2014; Gartzke et al.
2017), or all three definitions (Coniglio 2012; Taszarek et al.
2018). SBCAPE is the most widely used in the climate commu-
nity (Riemann-Campe et al. 2009; Singh et al. 2017), and several
common CR-closure convective parameterizations use SBCAPE
(e.g., Zhang and McFarlane 1995; Xie and Zhang 2000; Wang
et al. 2015). Finally, using SBCAPE allows the most straight-
forward bias attribution, since it allows us to test the effect of
errors in surface properties alone.

To understand the implications of the different definitions,
we compare surface-based CAPE with that of the most un-
stable layer, MUCAPE, the maximum possible value for each
profile (Fig. 1). Because our focus is on incidences of very
high CAPE, we are especially interested in whether different
CAPE definitions lead to different understanding of the high

tail (defined as incidents above 90th percentile CAPE). In all
datasets, the higher the CAPE value, the more similar
SBCAPE and MUCAPE become (Fig. 1a). In conditions
conducive to extreme weather (>4000J kg™ '), SBCAPE and
MUCAPE are essentially identical in reanalyses and the
WRF Model output. Radiosondes show a slightly larger dis-
tinction between SBCAPE and MUCAPE in all conditions.
Mathematically, this means that model/radiosonde bias in
MUCAPE must be more negative than those in SBCAPE.
The pressure difference of the most unstable layer from the
surface follows a similar pattern (Fig. 1b). The higher the
CAPE value, the more the most unstable layer approaches
the surface, though observations again show more distinction.
In conditions with SBCAPE ~1000J kg™, the average most
unstable parcel in radiosonde soundings lies ~30 hPa above
the surface, but only ~10hPa in reanalyses and the WRF
Model. Above >4000J kg™', the most unstable layer in re-
analyses and model lies at the surface.

In the last decade, some authors have argued that CAPE in
any definition is not the best metric for diagnosing conditions
conducive to severe weather. Griinwald and Brooks (2011)
propose using instead the maximum updraft velocity calcu-
lated with parcel theory (WMAX), which arguably better
represents the intensity of updrafts. Several recent papers have
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followed that convention (Brooks 2013; Pucik et al. 2015;
Taszarek et al. 2018). Results here can translated to differences
in WMAX distributions by using the approximation WMAX ~
v2CAPE, since the calculation of WMAX assumes no initial
parcel vertical velocity.

4. Results—Biases in CAPE distributions
a. CAPE distributions across datasets

Comparison of the distribution of CAPE in the datasets
considered shows immediately that reanalyses and the WRF
Model output underpredict incidences of very high CAPE.
Table 1 shows the breakdown of SBCAPE above or below
threshold values, and Table 2 the same for MUCAPE. In all
datasets, CAPE distributions are zero peaked; that is, a large
fraction (~40%) of cases involve zero CAPE, even in the
highly convective summertime. The frequency of zero CAPE
is broadly similar across datasets, but in reanalyses and the
WRF Model, incidences of extreme CAPE drop off sharply,
with values above 4000 J kg ! substantially underpredicted in
both definitions. For SBCAPE, reanalyses and the WRF
Model produce 40%-50% fewer incidences of values >
4000J kg~'. For MUCAPE, the underprediction is even more
severe, with 65%-75% of all incidences missed. (Biases in
MLCAPE are intermediate between those in SBCAPE and
MUCAPE.)

These biases in the high tail are related to a too-narrow dis-
tribution of CAPE in the WRF Model and reanalyses. That is,
reanalyses and the WRF Model produce too few incidences of
both extremely low and extremely high CAPE and too many
incidences of intermediate CAPE. Figures 2 and 3 show distri-
butions of nonzero CAPE values for SBCAPE and MUCAPE,
respectively. Because valid zero values make up a large fraction
of soundings, the choice whether to include them can potentially
affect analysis, but in the datasets here, zero incidences are
similar (Tables 1 and 2). We use two methods to show distri-
butions: histograms (probability density functions, or PDFs) and
quantile ratio plots. PDFs provide a basic sense of the CAPE
distribution, and quantile ratio plots highlight distributional
differences. Quantile ratio plots are constructed by taking the
ratio of individual quantiles of two distributions being compared
(e.g., CAPE in reanalysis and radiosondes); a value above 1
means that given quantile is overestimated. A simple multipli-
cative transformation produces a horizontal line whose value is
the ratio of means, and a too-narrow distribution produces a
slope downward to the right.

Reanalyses and the WRF Model output considered here
show the downward and rightward slope characteristic of too-
narrow distributions: values are too large in low quantiles and
too small in high quantiles. SBCAPE in the 20th-60th per-
centiles (50-1000Jkg™!) is overestimated by 84%-94%, but
above the 95th percentile is underestimated by 6%-10%.
These distributional errors occur even though mean SBCAPE
values are similar in all datasets: within the range from +1%
to +6% with zeroes included, that is, slightly /arger in rean-
alyses and the WRF Model than in radiosondes. This distinc-
tion highlights the need for distributional analysis, since even
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FIG. 4. Snapshot of WRF simulation output at 0000 UTC 21 Jul
2012. Panel colors show SBCAPE, 2-m temperature, and specific
humidity. Ocean values are masked out. Circles show IGRA sta-
tions, with circle area showing the magnitude of bias in each vari-
able and color indicating its sign (red = high, green = low). Note
the low CAPE bias in the central United States associated with too
hot and too dry model conditions. Soundings marked ‘X’ may also
be affected by errors in the location of the warm front.

severe distributional biases may not be reflected in mean
values (shown in supplemental Table S1).

The too-narrow distributions in reanalyses and the WRF
Model are also seen when alternate definitions of CAPE are
used. (Figs. 3 and S2 show MUCAPE and MLCAPE, respec-
tively.) However, MUCAPE and MLCAPE also show signifi-
cant low mean bias, with mean values from —20% to —28% for
MUCAPE and from —16% to —22% for MLCAPE. These low
biases lead to even stronger deficits in the high tail, with
quantiles above the 95th underestimated by ~18%-20% in
MUCAPE and ~15%-17% in MLCAPE.

b. Spatiotemporal structure

Biases might be expected to show spatiotemporal structure,
since CAPE is strongly linked to spatially complex fields of
temperature and humidity. This relationship is illustrated in
Fig. 4, which shows a summertime snapshot of surface values
from the WRF simulation (SBCAPE, temperature, and spe-
cific humidity), coincident with the radiosonde launch time at
which CAPE values are typically highest (0000 UTC, late af-
ternoon or early evening in the contiguous United States). The
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FIG. 5. Comparison of SBCAPE in WRF and radiosonde observations, for all points during summer (MJJA)
2001-12 when observations are available, inclusive of zeroes. Color bar shows log density (midpoint color is 1% of
all observations), and both axes are also log scale. (a) Raw data, showing wide scatter. Recalculated WRF CAPE
using (b) observed surface temperature, (c) observed surface humidity, and (d) all surface values from observations.
All recalculated CAPE values also involve a pressure correction whose effects are small. For analogous figures for

ERALI and ERAS, see Figs. S4-S5.

time period shown is affected by a frontal system that brings
high humidity to the southeast and high temperatures to the
central United States (see Fig. S3 for a weather map). CAPE
reaches extreme values only where both temperature and
specific humidity are high, resulting in strong spatial gradients
and a narrow band of extreme CAPE extending from south-
eastern Texas to northern Mississippi.

Two processes appear to drive the spatially correlated
CAPE errors in Fig. 4: large-scale patterns of model bias, and
mismatches in the location of fronts or other weather features
associated with strong gradients. The former is clearly evident
in Fig. 4. The WRF Model is too warm and too dry in the
central United States, coincident with and likely causing a large
region of underestimated model CAPE. The warm-and-dry
bias in this WRF simulation is extensively documented (Liu
etal.2017; Morcrette et al. 2018). Error in front location, on the
other hand, likely produces overestimation of CAPE in sta-
tions in Tennessee and Alabama in Fig. 4. Large-scale and
weather-related errors have different consequences for com-
parisons of CAPE in models and observations. Large-scale
biases should be persistent and will affect the overall distribution

of CAPE. Fine-scale weather-related errors, on the other hand,
vary rapidly on time scales of hours. While they can produce se-
vere mismatch in individual soundings, and therefore introduce
scatter in a model-observation comparison, they should have
minimal effect on CAPE distributions.

c. Calibration with ground observations

Scatter in SBCAPE errors is in fact large in the WRF Model
and reanalysis products considered here, with correlation co-
efficients against radiosonde values of only R = 0.68-0.83.
Figure 5 shows the comparison of WRF and radiosondes
(Fig. 5a, R = 0.68; see Figs. S4 and S5 for ERAI and ERAS).
Similar behavior is found in other studies, for example, Gensini
et al. (2014) find correlation coefficients of 0.36-0.71; Taszarek
et al. (2018) find 0.71; and Gartzke et al. (2017) show that re-
analysis and satellite pseudosoundings cannot reproduce ra-
diosonde observed SBCAPE at individual time steps.

Following Gartzke et al. (2017), we test to see if these in-
accuracies can be corrected by simply replacing surface ther-
modynamics fields with those from radiosondes (Fig. 5). That
is, we test whether errors in the WRF Model and reanalysis
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SBCAPE are driven primarily by surface conditions rather
than by the structure of atmospheric profiles. Both factors can
be important because CAPE is a function of the integrated
buoyancy across the convective layer, which is determined by
both parcel and environmental temperature and moisture. In
Fig. 5, we successively replace surface values in WRF output,
first temperature and pressure (Fig. 5b), then specific humidity
and pressure (Fig. 5c), then all surface fields (Fig. 5d).

Surface values do seem to govern SBCAPE bias almost en-
tirely. For WREF, correcting the surface specific humidity raises
the correlation coefficient from 0.68 to 0.91, and replacing all
surface fields raises it to 0.99, removing scatter almost entirely.
While correcting temperature does not raise the correlation
coefficient in WRF, and instead lowers it to 0.65, for other
datasets the temperature correction also contributes positively
(see supplemental Table S2). We also consider an alternate
measure of correspondence, the percentage of points that fall
within +800J kg~ of the one-to-one line (the width of two cells
in Fig. 5). For raw WRF data, the percentage is 78.6% (RMSE =
846 Tkg™1); correcting surface temperature raises the percent-
age slightly to 79.3% (RMSE = 875Tkg™); correcting surface
humidity raises it to 90.2% (RMSE = 535JTkg '), and full cal-
ibration t0 99.5% (RMSE = 162 Jkg™!). Results for ERAI and
ERAS are similar. Adjustment of surface values also largely
corrects the distributional problems at high CAPE, so that for
quantiles above 0.9, corrected SBCAPE values in reanalyses and
the WRF Model match those from radiosondes to within the
range from —0.2% to +2.0%. Correcting upper-tropospheric
profiles has a minimal effect on CAPE values.

5. Results—CAPE in temperature and humidity space

The fact that reanalyses and modeled SBCAPE can be
brought into agreement with radiosondes by simply replacing
surface values implies that thermodynamic fields at upper
levels are not important factors in SBCAPE biases. It may then
be reasonable to consider SBCAPE as a function of surface
thermodynamic fields alone. We therefore examine SBCAPE
in the 2D parameter space of temperature (7) and specific
humidity (H) to ask the following questions: 1) Is the density
distribution of SBCAPE in 7-H parameter space similar in
reanalyses, model, and radiosondes? 2) What surface condi-
tions are related to the highest SBCAPE days? 3) What factors
drive model and reanalysis biases in SBCAPE?

a. Dependence on surface temperature and humidity

CAPE distributions in 7-H parameter space are in fact
highly robust across all datasets. Figure 6 shows the heat map
of mean CAPE for radiosonde measurements, with data bin-
ned in steps of 3K and 1.35gkg™!. CAPE values show a
smooth gradient from lowest values at bottom left (warm and
dry conditions) to highest at top right (hot and humid). This
dependence on surface T and H is similar for all datasets
(supplemental Fig. 7). Contour lines at 2000 and 4000 J kg
for radiosonde observations are therefore nearly identical to
those for other datasets (overlain). This similarity means that
surface 7"and H robustly determine SBCAPE in all datasets. Of
course, each 7-H bin in Fig. 6 involves an underlying CAPE
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FIG. 6. Mean radiosonde observed SBCAPE in surface tem-
perature and specific humidity parameter space, for the entire
dataset: summer (MJJA) 2001-12 over the contiguous United
States, inclusive of all launch times and of zero values. Only bins
with at least 10 samples are colored. Colors denote mean CAPE
values averaged in bins of 3K and 1.35gkg ’. Solid and dashed
lines mark contours of 100% and 50% RH at p = 1013 hPa.
Soundings with lower surface p will be displaced up and left from
these RH contours. Symbols “+” and “x” mark two cases
(“warm” and ‘hot”) used in Fig. 7. Contours show approximate
limits for 2000 and 4000J kg ™' SBCAPE for all datasets with no
surface corrections applied: IGRA (black), ERAI (blue), ERA5
(green), and WREF (red). Similarity of contours means that all da-
tasets show similar bivariate distributions. See Fig. S6 for the ab-
solute occurrence in each bin in IGRA and Fig. S7 for analogous
figures for all datasets.

distribution, but distributions are nearly identical for all da-
tasets; see Fig. 7 for two examples. These results support the
previous finding that bias in SBCAPE can be explained by
bias in surface measurements alone. (See supplemental
Fig. S8 for distributions of reanalyses and model errors in 7,
RH, and H for the profiles shown in Fig. 7 and Table S3 for
summary statistics.)

Only a restricted set of conditions tend to produce the “high
tail” of CAPE distributions associated with extreme, high-
impact weather. We show both 2000 and 4000 J kg~ contours
to bracket prior definitions of extreme weather thresholds. For
example, Brooks et al. (2003); Trapp et al. (2009), and
Diffenbaugh et al. (2013) all use 2000Jkg~! in MLCAPE,
which corresponds to SBCAPE ~3000J kg™ ' in our dataset.
The conditions producing mean SBCAPE above 2000J kg™
involve temperatures above 297 K for 100% relative humidity
(RH), or above 304 K for 50% RH. For mean SBCAPE above
4000 T kg™ !, the required temperatures are 2-3 K warmer, that
15,299 K at 100% RH or 307 K at 50% RH. Significantly higher
SBCAPE values are possible: in the most extreme conditions
regularly sampled by radiosondes, 308 K at 65% RH, the av-
erage observed SBCAPE is over 7400 J kg~ '. Reanalyses and
the WRF Model rarely produce SBCAPE values this high (8
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F1G. 7. Comparison of SBCAPE in all datasets for specified 7-H grid cell: the “‘warm” ex-
ample is centered at 298.5 K and 12.825 gkg ! (63.4% RH) and has mean SBCAPE 791 T kg™ ';
the “Hot” example is at 307.5K and 16.875gkg ' (48.7% RH) with mean SBCAPE
3308 J kg~ '. Each bin is 3K in width and 1.35 gkg ™" in height. (a),(b) Uncorrected SBCAPE
from reanalyses and the WRF Model, and (c),(d) corrected with IGRA surface values. Note
that since the correction involves adjusting surface 7 and H, the profiles sampled in top and
bottom rows are different. The ‘““‘warm” bin has 2438 profiles in the uncorrected data and 2063
in the corrected, while ““hot” has 378 and 508, respectively. Tick marks at the top of each panel
show the mean of each distribution. Distributions are very similar; correcting surface values
only slightly adjusts means (from a maximum bias of —5% in uncorrected data to —2% after
correction).

out of a million incidences, while observed incidences are
nearly 10 times more frequent at 60 out of a million), not be-
cause they differ in fundamental atmospheric physics but be-
cause they rarely sample the appropriate surface conditions.

b. Identifying sources of CAPE bias

other times. Reanalyses and the WRF Model all underpredict
the extreme 7—H values associated with extreme CAPE.

Of the two times routinely sampled by radiosondes, the
cooler 1200 UTC launches—early morning in the United
States—do not generally involve conditions associated with
high CAPE (Fig. 8a). Conditions at this time are almost never

Because SBCABE is strongly determined by surface tem-
perature and humidity, biases in SBCAPE in reanalyses and
the WRF Model appear driven by biases in these surface
thermodynamic values. We can therefore use the 7-H diagram
to identify the factors that lead to underprediction of the high
tail of CAPE. Figures 8 and 9 use the same 7—H diagram as in
Fig. 6, only now we show not the heat map of CAPE but the
density of observations of each 7-H grid cell and the difference
in that number between datasets. Because the diurnal cycle
strongly affects surface values, we show separate figures for
0000 UTC (U.S. late afternoon/evening) and 1200 UTC (U.S.
early morning), omitting the limited number of samples at

warm enough to produce SBCAPE > 2000J kg ™!, even though
relative humidities are high, with a tight distribution centered
around ~80%. Both reanalyses and WREF are biased dry, un-
derpredicting incidences close to saturation, and WREF is also
biased warm (Figs. 8b—d).

Most of the observed extreme CAPE values occur during the
warmer late-afternoon 0000 UTC launches (Fig. 9a). Relative
humidities are lower then because specific humidity does not
change much during daytime warming: the modal (most prob-
able) 0000 UTC surface conditions are between 303 and 309 K
and ~50% RH, with mean SBCAPE of ~3000J kgfl, similar to
the “hot” example of Fig. 7. Because reanalyses and WRF are
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FIG. 8. (a) Density of observed surface conditions in temperature-specific humidity parameter space at

1200 UTC (early morning in the contiguous United States), again for 2001-12 MJJA radiosonde observations.
Contours are repeated from Fig. 6 to mark conditions associated with 2000 and 4000 J kg~ ! SBCAPE. Darkest blue
color shown is 5.6 %—-6.4% of distribution; lightest is 0%—0.8 %. Grids with no more than ten samples are defined as
outliers and removed (only 0.03% of all model or reanalysis samples). Nighttime and early morning conditions are
tightly distributed in relative humidity (RH ~80%) and tend to be relatively cool (7 < 300K), with almost no
conditions sampled that would tend to produce SBCAPE > 2000 J kg L. (b)~(d) Heat maps of density differences
between model/reanalysis and observations for ERAS, WRF, and ERAI Color scale shows fractional difference
after normalizing each bin by IGRA raw density. Orange = underpredicting and purple = overpredicting.
Reanalyses and the WRF Model all underestimate relative humidities (orange near the RH=100% contour), and
WREF shows a strong warm dry bias (dark purple in lower right).

dry biased, they underpredict high RH conditions in general and
especially the extreme hot and humid conditions associated with
the largest CAPE. On the other hand, reanalyses and WRF
overpredict hot and dry conditions, WRF especially so (Figs. 9b—
d). The combined warm and dry bias explains why correcting
WREF surface temperatures alone does not improve the match to
radiosonde CAPE measurements.

6. Results—Diurnal cycles of CAPE and biases

As shown in section 5, the largest CAPE biases in the WRF
Model and reanalyses occur when conditions are most favor-
able to high CAPE, that is, in daytime. This diurnal difference
could result from inherent nonlinearity but could also reflect a

bias in some aspect of the diurnal cycle of surface thermody-
namic fields. We therefore examine the diurnal cycle of surface
temperature and specific humidity in reanalyses, model, and
radiosondes. As an illustration, we show in Fig. 10 a 5-day episode
exhibiting large CAPE error, which is broadly representative
of problematic reanalyses and model pseudosoundings, and in
Fig. 11 we compare this episode to summertime climatological
mean diurnal cycles for all, low-CAPE, and high-CAPE con-
ditions (10th/90th SBCAPE percentiles). The sequence in
Fig. 10 runs from 24 to 28 July 2012 at a station in Wilmington,
North Carolina. On three occasions, radiosonde profiles show
extreme CAPE of nearly 5000 kg ™', but model and rean-
alyses grossly underpredict these excursions, producing CAPE
values ~2500T kg~ too low. Since the temporal pattern of
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FIG. 9. As in Fig. 8, but for 0000 UTC (late afternoon/early evening in the contiguous United States) (a) Density
of observed surface conditions in 7-H diagram. At this time period the density distribution peaks in conditions
associated with 2000-4000J kg "' CAPE. Darkest blue color shown is 2.1%-2.4% of distribution; lightest is 0%—
0.3%. (b)-(d) Density differences between reanalyses / model and radiosondes. ERAS and ERAI underpredict
both the highest relative humidities and the highest temperatures (orange near the RH = 100% contour and on the
right side), while WRF shows a warm dry bias (purple in lower right). Reanalyses and model all severely under-
predict the conditions associated with extreme CAPE (orange in upper right).

temperature evolution appears synchronous in all datasets,
these biases appear unrelated to any mismatch of frontal sys-
tems. (See Fig. S9 for the WRF Model output and bias struc-
ture and Fig. S10 for the 26 July weather map.)

In the example episode of Fig. 10, strong CAPE discrep-
ancies result when models and reanalyses fail to capture short-
term increases in specific humidity associated with extreme
CAPE. Biases are driven by humidity, since throughout the 5-
day period the WRF Model and reanalyses are slightly too
warm, with a fairly accurate diurnal temperature cycle (~5-
6K, with the WRF Model exhibiting the largest amplitude).
Comparison with climatological means on the 7-H diagram of
Fig. 11 suggests that the daytime humidity rise in the example
episode is extreme even for high-CAPE conditions, but the
climatological biases are otherwise broadly similar. Reanalyses
and WREF have overall dry biases that are exacerbated in WRF
during the day (in the climatological case, by an actual daytime

drop in specific humidity). Diurnal cycles of temperature cycles
are similar, though daytime warming is slightly too weak in
reanalyses, and WRF has an overall high temperature bias of
~1.3K. In all cases, too-low surface-level humidity appears to
be the driving factor that strongly suppresses incidences of
extreme CAPE.

CAPE biases in the example episode of Fig. 10 differ in
ERA reanalyses and the WRF Model, but both produce defi-
cits in specific humidity. In all datasets, temperatures match
reasonably well in early morning (1200 UTC), but daytime
temperature rise is slightly too small in ERA reanalyses and
considerably too large in WRF. ERA RH is reasonably accu-
rate throughout, so its too-low temperatures are associated
with a small specific humidity deficit. In WREF, specific hu-
midity actually falls during the day, something not seen in re-
analyses or radiosondes, contributing to erroneously low
relative humidities. During the two “‘missed-high-CAPE”
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FIG. 10. An example episode of high CAPE and substantial
CAPE error: 5 days from 24 to 28 Jul 2012 over Wilmington, North
Carolina, color coded as before. Reanalyses and the WRF Model
are shown every 6 hours; IGRA soundings are generally every 12
hours (although note the irregular timing for radiosonde launching
on the 26th, when daytime sampling occurred 6 hours earlier than
usual, at 1800 UTC). Vertical lines mark the two examples dis-
cussed in text. Over this entire period, reanalyses and WRF Model
show hot and dry bias; when the bias in absolute humidity is large,
the dry bias produces too-low CAPE even despite too-high
temperatures.

episodes, WRF RH is ~25 percentage points below that in
radiosondes.

To demonstrate that biases during this single-station episode
are typical for warm conditions conducive of extreme CAPE
formation, we compare its diurnal cycle to climatological
means across all stations. Figure 11 uses the temperature—
humidity (7-H) diagram to show mean diurnal cycles of the 5-
day episode at station Wilmington (Fig. 11a) and across the
whole dataset (Fig. 11b), showing both the overall summertime
average and also subsets of days involving the highest and
lowest radiosonde SBCAPE values (90th/10th percentiles).
The biases in the July 2012 example episode are similar to
those generally experienced in high-CAPE conditions. On
average, the ERA reanalyses experience slightly too-weak
daytime warming (i.e., a too-small diurnal cycle in tempera-
ture) and are slightly too dry. WRF has an overall high bias in
temperature of ~1.3 K and is substantially too dry. The warm
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dry bias in WREF is exacerbated at midday by the fact that spe-
cific humidity erroneously drops during the day. This daytime
humidity loss strongly suppresses incidences of extreme CAPE.

7. Conclusions and discussion

Despite the importance of CAPE to both model construction
and meteorology, few prior studies have evaluated CAPE biases
against radiosondes on a large enough scale to evaluate clima-
tological distributions. This study of nearly 200000 proximity
soundings in two reanalyses and a convection-permitting model
confirms consistent patterns of distributional bias. CAPE dis-
tributions are too narrow in all cases, with underprediction of the
most extreme values that are associated with severe weather
events. Values in the high tail (95th percentile and above) are
6%-10% too low in surface-based CAPE and even more se-
verely underestimated under alternative definitions, at 18%—
20% too low in MUCAPE and 15%-17% too low in MLCAPE.

In this study, both distributional biases and ‘‘mismatch error”
in CAPE appear driven by conditions at the surface and/or
boundary layer. SBCAPE shows a tight and similar dependence
on surface temperature and humidity in all datasets; the de-
pendence is so strong that CAPE distributions as a function of
surface T, H are almost identical, even though individual profiles
may have inaccurate surface values. The underprediction of the
high tail of CAPE occurs simply because reanalyses and WRF
runs underpredict the hot and humid conditions associated with
extreme CAPE values.

These results emphasize the importance of land and boundary
layer treatment in the performance of high-resolution models.
Discussion of improving models has tended to focus on increased
resolution and its effect on the atmospheric profile (e.g., Fosser
et al. 2015). However, the similarity of biases in model and re-
analysis output with resolved and parameterized convection
suggests that surface biases are unrelated to the treatment of
convection. Many authors have noted that SBCAPE is strongly
dependent on surface conditions (e.g., Maddox and Doswell 1982;
Zhang 2002; Donner and Phillips 2003; Guichard et al. 2004), but
land surface feedbacks may be crudely treated even in state-of-
the-art high-resolution models (Prein et al. 2015).

Dry biases such as those seen here could be produced by
misrepresentation of land surface evaporation, by excess vertical
mixing of the boundary layer, or, for the central United States,
by too-weak advection of moisture from the Gulf of Mexico
(Feng et al. 2021). In this study, the greater bias in MUCAPE
than SBCAPE across all datasets points to boundary layer
processes as the problematic elements. It is well established
that treatment of mixing in boundary layer (PBL) schemes
can modify the diurnal cycle of temperature and humidity
(Kalthoff et al. 2009; Garcia-Diez et al. 2013; Xu et al. 2019).
Several recent studies have evaluated the impacts of PBL
treatment on CAPE, and consistently find that ‘‘local”
schemes tend to undermix and moisten the boundary layer
while ‘““nonlocal’’ ones, like those used in the datasets shown
here, overmix and dry it (Coniglio et al. 2013; Cohen et al.
2017; Evans et al. 2018). The YSU scheme used in our WRF
runs is especially prone to producing a dry bias (Coniglio
et al. 2013; Liu et al. 2017).
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FIG. 11. The diurnal cycle in 7-H space in all datasets. Thick lines connect 0000 UTC (right end, marked by “x”")
and 1200 UTC (left end, marked by ““0”") values. Color code follows the convention throughout this work. (a) The
average over the 5-day episode in Fig. 10. (b) Mean summertime diurnal cycles over the entire domain, for all
profiles (dot-dashed), and for high-CAPE (solid) and low-CAPE (dashed) subsets, defined as 0000 UTC SBCAPE
values above 90th/below 10th percentile in each dataset, and values 12 hours later. In all cases, WRF and ERA are
biased dry, and WRF is biased warm. In the example in (a), daytime observed specific humidity increases more than
in WRF or ERA. In the climatological mean in (b), specific humidity is roughly constant in observations and ERA
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but erroneously decreases in daytime in the WRF Model, exacerbating midday bias.

While prior studies evaluating the effect of boundary layer
treatment on CAPE have generally evaluated only mean
values and have found only small biases, results here suggest
that the high tails can be much more strongly affected. This
finding is consistent with Evans et al. (2018), who note in a
small sample of soundings that dry biases produced by nonlocal
PBL schemes appear larger when observed CAPE is larger.
The dependence of biases on underlying conditions means that
even models and data products whose mean CAPE is well
validated may be inaccurate in capturing the strong convective
events that lead to large socioeconomic losses. This problem
cannot be assessed with studies that match soundings to severe
weather events, since model displacement of weather features
means that “mismatch’ error is large and proximity soundings
will not necessarily capture the same meteorological context.
On the flip side, the accuracy of relatively low CAPE is also
critical for convective parameterization schemes, since convec-
tive initiation thresholds are commonly set at only 65Jkg !,
Subtle distributional biases can therefore affect convective trig-
gering and total mass flux, and indirectly affect precipitation di-
urnal timing and amplitude. Given the importance of CAPE as a
key meteorological parameter linking the large-scale environ-
ment to weather-scale events, and its sensitivity to details of
boundary layer treatment, its evaluation warrants careful distri-
butional analysis.
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