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ABSTRACT: Convective available potential energy (CAPE) is of strong interest in climate modeling because of its role in

both severe weather and in model construction. Extreme levels of CAPE (.2000 J kg21) are associated with high-impact

weather events, and CAPE is widely used in convective parameterizations to help determine the strength and timing of

convection. However, to date few studies have systematically evaluated CAPE biases in models in a climatological context,

and none have addressed bias in the high tail of CAPE distributions. This work compares CAPE distributions in;200 000

summertime proximity soundings from four sources: the observational radiosonde network [Integrated Global Radiosonde

Archive (IGRA)], 0.1258 reanalyses (ERA-Interim and ERA5), and a 4-km convection-permitting regional WRF simu-

lation driven by ERA-Interim. Both reanalyses and the WRFModel consistently show too-narrow distributions of CAPE,

with the high tail (.90th percentile) systematically biased low by up to 10% in surface-based CAPE and even more in

alternate CAPE definitions. This ‘‘missing tail’’ corresponds to the most impacts-relevant conditions. CAPE bias in all

datasets is driven by surface temperature and humidity: reanalyses and the WRF Model underpredict observed cases of

extreme heat and moisture. These results suggest that reducing inaccuracies in land surface and boundary layer models is

critical for accurately reproducing CAPE.

KEYWORDS: CAPE; Radiosonde/rawinsonde observations; Cloud resolving models; Model evaluation/performance;

Reanalysis data

1. Introduction

Convective available potential energy (CAPE) is an integral

quantity of buoyancy in the convective layer (Moncrieff and

Miller 1976) and is considered as a key parameter in convec-

tion initiation and development. Closely linked to updraft

strength and storm intensity, CAPE provides a way to under-

stand the potential threat of some high-impact weather events

such as thunderstorms, hail, and tornadoes. Brooks et al. (2003)

propose a combination of CAPE and bulk wind shear as a

metric for severe weather in reanalyses, with a 2000 J kg21 as a

threshold value for extreme events, and multiple subsequent

studies confirm this relationship in models and observations.

Studies relating high CAPE values to extreme precipitation or

intense storms in observations include Groenemeijer and van

Delden (2007), Lepore et al. (2015), Dong et al. (2019), and

many others. Inmodels, Paquin et al. (2014), for example, show

that the number of extreme precipitation events in general

circulation models (GCMs) grows with the covariate between

CAPE and wind shear.

CAPE is also used as a key parameter in convective schemes

in GCMs to determine convective mass flux (Zhang and

McFarlane 1995; Yano et al. 2013; Baba 2019). In CAPE-

relaxing closure (CR closure) schemes, modelers commonly

rely on CAPE to trigger convection and to determine the total

vertical mass flux, so that the magnitude of vertical mass flux is

directly affected by an inaccurate representation of CAPE

(Lee et al. 2008; Cortés-Hernández et al. 2016). In some re-

cently developed new schemes intended to more realistically

reproduce the diurnal cycle, convective triggering is directly

dependent on CAPE generation rate (dCAPE) (Xie and

Zhang 2000; Wang et al. 2015). These schemes have been

shown to improvemodel performance for precipitation diurnal

peak time compared to schemes using classic CR closure (Song

and Zhang 2017; Xie et al. 2019). However, it should be noted

that these dynamical-based trigger functions introduce addi-

tional sensitivity to CAPE biases, and Song and Zhang (2018)

find that dCAPE trigger function are highly sensitive to model

resolution.

CAPE is derived from vertical profiles of temperature,

pressure, and humidity, which are measured in situ only from a

sparse network of specialized weather stations. Radiosondes

measure atmospheric profiles from weather balloons released

twice a day from ;1000 stations globally. Because radiosonde

measurements are both spatially and temporally sparse, re-

searchers linking measured CAPE to severe weather events

have used ‘‘proximity soundings,’’ estimating the severity of

extreme weather events based on soundings taken within a

range of ;200 km (e.g., Brooks et al. 1994; Rasmussen and

Blanchard 1998; Brooks and Craven 2002). More recent studies

of CAPE and severe weather use not soundings but reanalyses

that assimilate in situ and remote observations in global models

to provide information at higher resolution (Brooks et al. 2003;

Lepore et al. 2015; Dong et al. 2019). Global gridded reanalyses

also allow ready construction of climatologies: for example,
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Riemann-Campe et al. (2009) use the ERA40 reanalysis to

construct a 40-yr climatology of CAPE, showing that largest

values and variability are found over tropical land (mean

;2000 J kg21), with a stronger dependence on specific humidity

than temperature.

To diagnose potential changes in CAPE under future higher

CO2 conditions, studies must rely on numerical simulations.

With the growth of computational resources, the horizontal

resolution of models used for this purpose has increased. For

example, Trapp et al. (2009) and Diffenbaugh et al. (2013) ex-

amine changes in CAPE and wind shear in GCM projections

(;100 km) and infer a likely future increase in the number of

days with severe weather events. Singh et al. (2017) use both

GCMs and superparameterizedGCMs (20 km) to study changes

in the 95th percentile of CAPE in the tropics and subtropics

during heavy precipitation and find a 6%–14% increase per

kelvin regional temperature increase. [Note that CAPE values

during heavy precipitation are low, e.g., Adams and Souza

(2009); the 95th percentile in observations in Singh et al. (2017)

is under 2000 J kg21.] Rasmussen et al. (2017) examine changes

in CAPE and convective inhibition (CIN) in a 4-km dynamically

downscaled simulation of North America in a pseudo–global

warming scenario (driven by reanalysis or by reanalysis with an

applied offset in climate variables). They find that both CAPE

and CIN generally increase under warmer conditions and infer a

future intensification of convective strength. Such convection-

permitting models, with their improvement in convective dy-

namics, have been assumed to help improve the representation

of CAPE.

Given the extent of the scientific use of reanalyses and model

simulations, it is valuable to ask how well these products repro-

duce realistic CAPE values. Coarse-resolution general circulation

models reproduce large-scale spatial patterns in CAPE but can

produce large biases in individual locations (Chen et al. 2020).

While reanalyses and high-resolution forecast models are

generally assumed to be more accurate, assessments of their

biases versus radiosonde observations have been limited.

Studies using restricted samples of soundings near severe

weather events have produced inconsistent results. For ex-

ample, Thompson et al. (2003) evaluate surface-based CAPE

(SBCAPE) from the Rapid Update Cycle (RUC-2) weather

prediction system 0-h analysis against radiosondes sampled

near supercells (149 soundings from 1999 to 2001, in the U.S.

central and southern plains) and find a low bias of ;16%

(mean bias of about 2400 J kg21 in mean conditions of

;2500 J kg21). Coniglio (2012) compare SBCAPE in the RUC

0-h analysis with a different sample of soundings near supercell

thunderstorms (582 soundings during the VORTEX2 cam-

paign in 2009–10, also in the central and southern plains) and

find a small high bias (;150 J kg21) with a large spread. Allen

and Karoly (2014) compare mixed-layer CAPE (MLCAPE)

in the reanalysis product ERA-Interim (ERAI) and in the

Australian Mesoscale Limited Area Prediction System

(MesoLAPS) weather model with radiosonde soundings

near thunderstorm events (3697 and 4988 soundings, re-

spectively, from 2003 to 2010, from 16 stations in Australia)

and find slight high biases of 6 and 74 J kg21 in conditions of

234 and 255 J kg21 mean nonzero MLCAPE.

To date, very few validation studies have systematically

evaluated CAPE bias and errors in a climatological context,

with a large enough scale to allow evaluation of the high tail of

the CAPE distribution. For convection-permitting models, it is

widely assumed that improved resolution also improves the

representation of CAPE, but this assumption has not been

explicitly tested. For reanalyses, only a few studies have com-

pared output to large collections of soundings, and none assess

distributional changes. Gensini et al. (2014) compare the North

American Regional Reanalysis (NARR) to all radiosondes

over 11 years from 21 stations in the eastern United States

(.100 000 soundings with nonzero SBCAPE from 2000 to

2011), but do not assess either mean bias or distributional

differences. (They do find considerable spread in SBCAPE

errors, with RMSE ;1400 J kg21.) Taszarek et al. (2018) and

Taszarek et al. (2020) use even larger sample sizes (.1 million

profiles from 1979 to 2016, and.5million profiles from 1980 to

2018, respectively, predominantly over Europe and spanning

all seasons) and compare CAPE under various definitions

between soundings and ERAI and ERA5 reanalyses. They

examine mean biases (in soundings with nonzero CAPE) and

find them large relative to median CAPE, but median values in

both studies are small (;68 and 100 J kg21 for MLCAPE).

Even fewer studies have attempted to attribute bias in

CAPE to specific model issues. While one possible cause is

error in free tropospheric profiles, multiple authors have

noted the potential role of incorrect temperature and hu-

midity at the surface or boundary layer. Several studies have

explicitly tested this attribution by replacing surface values in

models and data products with observed ones and noting the

improved match to radiosonde SBCAPE. Coniglio (2012)

replaces surface values in RUC with those from the opera-

tional surface objective analysis system (SFCOA) and finds a

reduction in bias in 1-h forecasts. Gartzke et al. (2017) com-

pare 10 years of SBCAPE from a single station, the Southern

Great Plains Atmospheric Radiation Measurement (ARM)

site, and show that replacing surface values largely corrects

CAPE values in ERAI reanalysis and values derived from the

AIRS satellite. Similarly, in a very small sample (two indi-

vidual case studies), Bloch et al. (2019) find that replacing

surface values of humidity and temperature corrects a low

bias in SBCAPE in a satellite-derived product.

This work seeks to address both needs, for large-scale sys-

tematic assessment of CAPE distributions in reanalyses and

high-resolution simulations against those in radiosondes, and

for attribution of the source of any bias. To allow focusing on

conditions that promote strong convection, we examine sum-

mertime data over the contiguous United States, using a total

of nearly 200 000 soundings over 12 years of observations.

2. Data description

This study compares four datasets that allow calculation

of CAPE over the contiguous United States from January

2001 to December 2012: radiosonde observations from the

Integrated Global Radiosonde Archive (IGRA), version 2

(Durre et al. 2006, 2008); the reanalysis products ERAI and

ERA5 (Dee et al. 2011; Hersbach et al. 2020); and simulation
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output from the Weather Research and Forecasting (WRF)

Model at the convection-permitting resolution, forced by

ERAI (Rasmussen and Liu 2017). Because our interest is in

the high tail of the CAPE distribution, we focus on the

summer months when convection is most active and CAPE is

largest. We define summer as May–August (MJJA), fol-

lowing the convention of many studies (e.g., Sun et al. 2016;

Rasmussen et al. 2017), though some work on extreme

weather uses an earlier definition of April–July to include

the late spring peak of convection (e.g., Trapp et al. 2009).

With this definition, IGRA provides a total of 199 787 sum-

mertime radiosonde profiles from U.S. stations with con-

tinuous records during 2001–12. For consistency, analyses

shown here involve data matched to radiosonde stations and

synchronized in time, though when evaluating diurnal cy-

cles, we also show reanalysis and model output at additional

times of the day.

a. Radiosonde observations

IGRA is an archive of quality-controlled atmospheric

sounding profiles from weather balloons around the world

collected by a standard protocol. The archive is operated by

the U.S. National Oceanic and Atmospheric Administration

(NOAA) and profiles in the United States are collected by

NOAA’s National Weather Service. In this work we use

profiles from all stations in the contiguous United States that

report continuous operation through the years 2001–12, a

total of 80 out of the 248 stations historically used. All stations

have routine balloon launches at 0000 and 1200 UTC each

day, though some soundings are missing (17.4% of all routine

launches during this period). Many stations also include spo-

radic launches at 0600 and 1800 UTC; we include these profiles

in the dataset considered here, though we generally disaggre-

gate analyses by the time of day. Of the complete dataset of

199 787 soundings, 83 668 are from 0000UTC, 106 455 are from

1200 UTC, and 9664 are from additional times. All four hours

are used in our analysis unless otherwise stated. Of these

profiles, 1496 (0.75%) are excluded by our quality control

criteria (see the methods section below).

Variables acquired from IGRA include pressure, tempera-

ture, altitude, and vapor pressure, all of which are standard re-

ported values. We convert vapor pressure to specific humidity

and dewpoint temperature for consistency across all datasets.

Vertical resolution varies by station, but most stations report

around 80 levels from the surface to 10-hPa pressure. (The data

are available from https://www.ncdc.noaa.gov/data-access/

weather-balloon/integrated-global-radiosonde-archive).

b. Reanalysis products

ERAI and ERA5 are both reanalysis products maintained by

the European Centre for Medium-Range Weather Forecasts

(ECMWF). Both products assimilate observations into global

models and are available from 1979 to the present.ERAI has a

native horizontal resolution of T255 (’80 km); it has been su-

perseded by ERA5, which has significant improvements in

spatial and temporal resolution with a native horizontal resolu-

tion of TL639 (0.28 1258,’31km) (Copernicus Climate Change

Service 2017). Because our analysis involvesmatching individual

radiosonde stations, we acquire both reanalyses at a finer spatial

resolution (0.1258) produced by ECMWF with bilinear inter-

polation for continuous fields. We use output at native model

vertical levels, preserving the highest possible vertical resolution

for our CAPE calculation: 60 levels for ERAI (L60), and 137 for

ERA5 (L137). We download profiles of temperature and spe-

cific humidity, and surface pressure; the pressure profile is then

derived using surface pressure and coefficients a and b that de-

fine the hybrid-sigma coordinates of L60 and L137. Two-meter

temperature and dewpoint temperature along with surface

pressure are appended to the bottom level of profiles. Although

ERA5 provides hourly output, we use data at 0000, 0600, 1200,

and 1800 UTC to match with ERAI. (Both products are avail-

able at https://www.ecmwf.int/en/).

Data assimilation is a key component of reanalysis products.

Both ERAI and ERA5 assimilate a homogenized version of

IGRA radiosonde observations, the Radiosonde Observation

Correction using Reanalyses (RAOBCORE) (Haimberger 2007;

Haimberger et al. 2008). Reanalyses and IGRA observations are

therefore not fully independent. ERAI uses a bias correction for

radiosonde temperature based on RAOBCORE_T_1.3, which is

further adjusted and implemented to theContinuousObservation

ProcessingEnvironment (COPE) framework inERA5 (ECMWF

2016). The assimilation process of ERAI uses the following ex-

clusion criteria for radiosondedata: 1) any radiosondeobservation

below the model surface, and radiosonde-observed specific hu-

midity in either 2) extreme cold conditions (T, 193K for RS-90

sondes, T, 213K for RS-80 sondes, T, 233K otherwise), or 3)

high altitude (p , 100hPa for RS-80 and RS-90 sondes, p ,
300hPa for all other sonde types) (Dee et al. 2011).

c. High-resolution model simulation

The high-resolution model output we use is a 4-km resolution

dynamically downscaled ‘‘retrospective’’ simulation over North

America first described by Liu et al. (2017). The simulation is

created as the control run of a pseudo–global warming experi-

ment and involves forcing the WRF 3.4.1 Model with ERAI re-

analysis. The WRF simulation is run with 4-km grid spacing and

50 vertical levels up to 50hPa, with parameterization schemes

including: Thompson aerosol-aware microphysics (Thompson

and Eidhammer 2014), the Yonsei University (YSU) planetary

boundary layer (Hong et al. 2006), the Rapid Radiative Transfer

Model (RRTMG) (Iacono et al. 2008), and the improved Noah-

MP land surface model (Niu et al. 2011).

The model uses ERAI as initial and boundary conditions,

with large-scale spectral nudging applied to geopotential, tem-

perature, and horizontal wind. Nudging is applied throughout

the model domain, at all altitudes above the planetary boundary

layer, and is intended to remove known large-scale issues (such

as summertime high-temperature bias over the central United

States; Morcrette et al. 2018) while still allowing smaller-scale

processes to modify local profiles. Values are nudged at a

strength corresponding to an ‘‘e-folding’’ time of 6 h, using a

wavenumber truncation of 3 and 2 in the zonal and meridional

directions, respectively. Because the experiment is intended to

reproduce observed snow cover over North America, some modi-

fications aremade to the land surfacemodel, including representing

the heat transport from rainfall caused by the temperature
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difference between raindrops and land surface, and modifying the

snow cover/melt curve to produce more realistic surface snow

coverage and reduce wintertime low bias in temperature.

The WRF Model output is acquired from the NCAR

Research Data Archive ds612.0 (Rasmussen and Liu 2017). We

take the pressure, temperature, mixing ratio, height from the

CTRL 3D subset, and surface topography, surface pressure, 2-m

temperature, and mixing ratio from the CTRL 2D subset.

3. Methods

a. CAPE calculation

All CAPE values shown in this work are calculated with the

Sounding and Hodograph Analysis and Research Program in

Python (SHARPpy), version 1.4.0a4, a widely used collection of

sounding and hodograph analysis routines designed to provide

free and consistent analysis tools for the atmospheric sciences

community (https://github.com/sharppy/SHARPpy; Blumberg

et al. 2017). SHARPpy is an extension of SHARP, which was

first released in 1991 (Hart and Korotky 1991). CAPE in the

SHARPpy package is calculated following the definition of

Moncrieff and Miller (1976) in which temperature is automati-

cally corrected to virtual temperature (Doswell and Rasmussen

1994). The required variables are vertical profiles of pressure,

temperature, height, and dewpoint temperature. Wind speed

and direction are optional, and we do not include them. The

package can produce the CAPE of parcels either at surface level

(SBCAPE), at the ‘‘most unstable’’ level (MUCAPE), or using the

averaged properties of ‘‘mixed layer’’ (MLCAPE). SHARPpy is

the most commonly used package in the CAPE literature (e.g.,

Gartzke et al. 2017; King and Kennedy 2019), which provides a

comprehensive list of convective indices as output.

We evaluate CAPE for all summertime profiles corre-

sponding to radiosonde soundings other than those with the

following exclusion criteria: 1) no surface-level measure-

ments (7 soundings or 0.004% of the total); 2) fewer than 20

vertical levels of observations (0.74% of soundings); or 3)

excessive discrepancy of relative humidity between the sur-

face and one level above, that is, RHsfc 2 RHlev1 . 65% (16

soundings or 0.008%). An excessive RH gradient implies

unphysical mixing; the exact threshold is somewhat arbi-

trary but is chosen to exclude outliers where CAPE .
20 000 J kg21. In some cases, radiosonde profiles involve

missing values in the height variable, even though tem-

perature, pressure, and humidity are reported. In these

cases, we interpolate height based on pressure using the

SHARPpy ‘‘INTERP’’ function.

b. Testing sensitivity to vertical interpolation

In the analysis here we interpolate only where data are

missing in radiosonde profiles, using the SHARPpy ‘‘INTERP’’

function. The number of vertical levels used is therefore

FIG. 1. Comparison of SBCAPE andMUCAPE for all datasets, using all soundings considered. Data are binned

by SBCAPE value, and we exclude values under 200 J kg21. (a) Mean ratio of MUCAPE over SBCAPE and

(b) mean of ratio of the most unstable pressure level over surface pressure. Note that y axes are log scale. For both

CAPE and pressure level, the ratio approaches 1.0 as CAPE increases: in higher CAPE conditions, the most

unstable level is closer to the surface.

TABLE 1. Fraction of observations of SBCAPE in each dataset

that exceed threshold values or have zero value. Data used are the

full 2001–12 MJJA dataset, inclusive of zeroes, with time/location

matched to radiosonde observations. Parentheses show the ratio of

incidences observed for each model or reanalysis relative to IGRA

radiosondes; a number smaller than 1 means underestimation.

Note the large deficits in the most extreme SBCAPE category

(.4000 J kg21), with the number of incidences underestimated by

;40%–50%.

IGRA ERAI ERA5 WRF

Zeroes 36.1% 38.1% 35.0% 39.1%

.2000 J kg21 13.0% 12.8% (0.98) 13.8% (1.06) 13.2% (1.02)

.3000 J kg21 5.4% 4.0% (0.74) 4.9% (0.91) 4.6% (0.85)

.4000 J kg21 1.6% 0.8% (0.50) 1.0% (0.63) 1.0% (0.63)
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inconsistent across datasets. Other authors of CAPE compari-

son studies have chosen to interpolate to produce consistent

vertical sampling, for example, Gartzke et al. (2017), who use

202 fixed levels (2 and 30m, followed by 75-m spacing from 75m

to 15 km). We test the robustness of derived CAPE to this

interpolation by considering mean errors in profiles binned by

number of levels, using observations from the year 2012.We find

that mean absolute errors introduced by interpolation are over

25 J kg21 for profiles with ,10 levels but fall to ;5 J kg21 once

the number of levels exceeds 60. However, since profiles with

moremissing levels aremore likely to have lowCAPE, themean

fractional error drops even more steeply (Fig. S1): 14% for,10

levels; 7% for 10–20 levels; and 0.8% for .20 levels, justifying

our choice of 20 as a cutoff. (Note that the bias introduced by

interpolation across these profiles is smaller, only 20.3%. See

Coniglio 2012 for similar conclusions.)

c. CAPE definitions

CAPE is the potential buoyancy of a parcel lifted to its

level of free convection, but the parcel considered may be

located at the surface (SBCAPE), at the most unstable ver-

tical level (MUCAPE), or may be a hypothetical parcel ini-

tiated using the mean state of the mixed layer (MLCAPE).

All are standard outputs of SHARPpy, with the lowest

FIG. 2. (a),(b) Probability density functions and (c),(d) quantile ratio plots of CAPE from

reanalyses (ERAI and ERA5), high-resolution model output (WRF), and radiosonde obser-

vations (IGRA) for MJJA 2001–12, with times and locations matched to IGRA observations.

Points with zero CAPE are excluded (36%–40%of datasets, see Table 1. (left) Full distribution

and (right) the high tail (90th percentile and above). For IGRA, the 90th percentile is

;2800 J kg21, the 95th ;3200 J kg21, the 97.5th ;4000 J kg21. In PDFs [in (a) and (b)], plots

are cut off at 6000 J kg21 on the x axis, omitting less than 0.1% of all points. In quantile ratio

plots [in (c) and (d)], a slope downward to the right indicates a narrower distribution. TheWRF

Model and reanalyses consistently underpredict CAPE values in this high tail.

TABLE 2. As in Table 1, but for MUCAPE. Deficits in the high

tail are larger for MUCAPE than SBCAPE, as expected based on

Fig. 1. Parentheses show the ratio of incidences observed for each

model or reanalysis relative to IGRA radiosondes. The number of

incidences of MUCAPE above the conventional severe-weather

threshold (2000 J kg21) is underestimated by;25%–35% and that

of extreme MUCAPE (.4000 J kg21) by ;65%–75%.

IGRA ERAI ERA5 WRF

Zeroes 22.7% 30.3% 28.2% 32.8%

.2000 J kg21 22.3% 16.3% (0.73) 17.5% (0.78) 14.8% (0.66)

.3000 J kg21 10.9% 5.2% (0.48) 6.5% (0.60) 5.0% (0.46)

.4000 J kg21 3.9% 1.0% (0.26) 1.3% (0.33) 1.0% (0.26)
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100 hPa used to calculate MLCAPE. [See Bunkers et al.

(2002) for discussion of alternate choices.] The appropriate

CAPE definition differs according to the scientific question

addressed. Some authors argue that MLCAPE is most appro-

priate for characterizing the average properties of the parcel

being initiated by convection, and MUCAPE may best capture

convective extremes (Craven et al. 2002; Bunkers et al. 2002;

Brooks et al. 2003), but we focus on SBCAPE in this work for

several reasons. First, most prior CAPE comparison studies have

used either only SBCABE(e.g., Gensini et al. 2014;Gartzke et al.

2017), or all three definitions (Coniglio 2012; Taszarek et al.

2018). SBCAPE is the most widely used in the climate commu-

nity (Riemann-Campe et al. 2009; Singh et al. 2017), and several

commonCR-closure convective parameterizations use SBCAPE

(e.g., Zhang and McFarlane 1995; Xie and Zhang 2000; Wang

et al. 2015). Finally, using SBCAPE allows the most straight-

forward bias attribution, since it allows us to test the effect of

errors in surface properties alone.

To understand the implications of the different definitions,

we compare surface-based CAPE with that of the most un-

stable layer, MUCAPE, the maximum possible value for each

profile (Fig. 1). Because our focus is on incidences of very

high CAPE, we are especially interested in whether different

CAPE definitions lead to different understanding of the high

tail (defined as incidents above 90th percentile CAPE). In all

datasets, the higher the CAPE value, the more similar

SBCAPE and MUCAPE become (Fig. 1a). In conditions

conducive to extreme weather (.4000 J kg21), SBCAPE and

MUCAPE are essentially identical in reanalyses and the

WRF Model output. Radiosondes show a slightly larger dis-

tinction between SBCAPE and MUCAPE in all conditions.

Mathematically, this means that model/radiosonde bias in

MUCAPE must be more negative than those in SBCAPE.

The pressure difference of the most unstable layer from the

surface follows a similar pattern (Fig. 1b). The higher the

CAPE value, the more the most unstable layer approaches

the surface, though observations again showmore distinction.

In conditions with SBCAPE ;1000 J kg21, the average most

unstable parcel in radiosonde soundings lies ;30 hPa above

the surface, but only ;10 hPa in reanalyses and the WRF

Model. Above .4000 J kg21, the most unstable layer in re-

analyses and model lies at the surface.

In the last decade, some authors have argued that CAPE in

any definition is not the best metric for diagnosing conditions

conducive to severe weather. Grünwald and Brooks (2011)

propose using instead the maximum updraft velocity calcu-

lated with parcel theory (WMAX), which arguably better

represents the intensity of updrafts. Several recent papers have

FIG. 3. As in Fig. 2, but for MUCAPE instead of SBCAPE. Points with zero CAPE are

excluded from the analysis (23%–35% of the datasets, see Table 2). We match the time and

locations of model output to IGRA observations. PDF x axes are cut off at 6000 J kg21, as less

than 0.4% of all points lie above the limit. For IGRA, the 90th percentile is about 3370 J kg21,

the 95th percentile ;4010 J kg21, and the 97.5th percentile ;4550 J kg21.
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followed that convention (Brooks 2013; Pú�cik et al. 2015;

Taszarek et al. 2018). Results here can translated to differences

inWMAXdistributions by using the approximationWMAX;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2CAPE
p

, since the calculation of WMAX assumes no initial

parcel vertical velocity.

4. Results—Biases in CAPE distributions

a. CAPE distributions across datasets

Comparison of the distribution of CAPE in the datasets

considered shows immediately that reanalyses and the WRF

Model output underpredict incidences of very high CAPE.

Table 1 shows the breakdown of SBCAPE above or below

threshold values, and Table 2 the same for MUCAPE. In all

datasets, CAPE distributions are zero peaked; that is, a large

fraction (;40%) of cases involve zero CAPE, even in the

highly convective summertime. The frequency of zero CAPE

is broadly similar across datasets, but in reanalyses and the

WRF Model, incidences of extreme CAPE drop off sharply,

with values above 4000 J kg21 substantially underpredicted in

both definitions. For SBCAPE, reanalyses and the WRF

Model produce 40%–50% fewer incidences of values .
4000 J kg21. For MUCAPE, the underprediction is even more

severe, with 65%–75% of all incidences missed. (Biases in

MLCAPE are intermediate between those in SBCAPE and

MUCAPE.)

These biases in the high tail are related to a too-narrow dis-

tribution of CAPE in the WRF Model and reanalyses. That is,

reanalyses and the WRF Model produce too few incidences of

both extremely low and extremely high CAPE and too many

incidences of intermediate CAPE. Figures 2 and 3 show distri-

butions of nonzero CAPE values for SBCAPE and MUCAPE,

respectively. Because valid zero values make up a large fraction

of soundings, the choice whether to include them can potentially

affect analysis, but in the datasets here, zero incidences are

similar (Tables 1 and 2). We use two methods to show distri-

butions: histograms (probability density functions, or PDFs) and

quantile ratio plots. PDFs provide a basic sense of the CAPE

distribution, and quantile ratio plots highlight distributional

differences. Quantile ratio plots are constructed by taking the

ratio of individual quantiles of two distributions being compared

(e.g., CAPE in reanalysis and radiosondes); a value above 1

means that given quantile is overestimated. A simple multipli-

cative transformation produces a horizontal line whose value is

the ratio of means, and a too-narrow distribution produces a

slope downward to the right.

Reanalyses and the WRF Model output considered here

show the downward and rightward slope characteristic of too-

narrow distributions: values are too large in low quantiles and

too small in high quantiles. SBCAPE in the 20th–60th per-

centiles (50–1000 J kg21) is overestimated by 84%–94%, but

above the 95th percentile is underestimated by 6%–10%.

These distributional errors occur even though mean SBCAPE

values are similar in all datasets: within the range from 11%

to 16% with zeroes included, that is, slightly larger in rean-

alyses and the WRF Model than in radiosondes. This distinc-

tion highlights the need for distributional analysis, since even

severe distributional biases may not be reflected in mean

values (shown in supplemental Table S1).

The too-narrow distributions in reanalyses and the WRF

Model are also seen when alternate definitions of CAPE are

used. (Figs. 3 and S2 show MUCAPE and MLCAPE, respec-

tively.) However, MUCAPE and MLCAPE also show signifi-

cant lowmean bias, with mean values from220% to228% for

MUCAPE and from216% to222% forMLCAPE. These low

biases lead to even stronger deficits in the high tail, with

quantiles above the 95th underestimated by ;18%–20% in

MUCAPE and ;15%–17% in MLCAPE.

b. Spatiotemporal structure

Biases might be expected to show spatiotemporal structure,

since CAPE is strongly linked to spatially complex fields of

temperature and humidity. This relationship is illustrated in

Fig. 4, which shows a summertime snapshot of surface values

from the WRF simulation (SBCAPE, temperature, and spe-

cific humidity), coincident with the radiosonde launch time at

which CAPE values are typically highest (0000 UTC, late af-

ternoon or early evening in the contiguous United States). The

FIG. 4. Snapshot of WRF simulation output at 0000 UTC 21 Jul

2012. Panel colors show SBCAPE, 2-m temperature, and specific

humidity. Ocean values are masked out. Circles show IGRA sta-

tions, with circle area showing the magnitude of bias in each vari-

able and color indicating its sign (red 5 high, green 5 low). Note

the low CAPE bias in the central United States associated with too

hot and too drymodel conditions. Soundingsmarked ‘‘X’’ may also

be affected by errors in the location of the warm front.
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time period shown is affected by a frontal system that brings

high humidity to the southeast and high temperatures to the

central United States (see Fig. S3 for a weather map). CAPE

reaches extreme values only where both temperature and

specific humidity are high, resulting in strong spatial gradients

and a narrow band of extreme CAPE extending from south-

eastern Texas to northern Mississippi.

Two processes appear to drive the spatially correlated

CAPE errors in Fig. 4: large-scale patterns of model bias, and

mismatches in the location of fronts or other weather features

associated with strong gradients. The former is clearly evident

in Fig. 4. The WRF Model is too warm and too dry in the

central United States, coincident with and likely causing a large

region of underestimated model CAPE. The warm-and-dry

bias in this WRF simulation is extensively documented (Liu

et al. 2017;Morcrette et al. 2018). Error in front location, on the

other hand, likely produces overestimation of CAPE in sta-

tions in Tennessee and Alabama in Fig. 4. Large-scale and

weather-related errors have different consequences for com-

parisons of CAPE in models and observations. Large-scale

biases should be persistent and will affect the overall distribution

of CAPE. Fine-scale weather-related errors, on the other hand,

vary rapidly on time scales of hours. While they can produce se-

vere mismatch in individual soundings, and therefore introduce

scatter in a model–observation comparison, they should have

minimal effect on CAPE distributions.

c. Calibration with ground observations

Scatter in SBCAPE errors is in fact large in theWRFModel

and reanalysis products considered here, with correlation co-

efficients against radiosonde values of only R 5 0.68–0.83.

Figure 5 shows the comparison of WRF and radiosondes

(Fig. 5a, R 5 0.68; see Figs. S4 and S5 for ERAI and ERA5).

Similar behavior is found in other studies, for example, Gensini

et al. (2014) find correlation coefficients of 0.36–0.71; Taszarek

et al. (2018) find 0.71; and Gartzke et al. (2017) show that re-

analysis and satellite pseudosoundings cannot reproduce ra-

diosonde observed SBCAPE at individual time steps.

Following Gartzke et al. (2017), we test to see if these in-

accuracies can be corrected by simply replacing surface ther-

modynamics fields with those from radiosondes (Fig. 5). That

is, we test whether errors in the WRF Model and reanalysis

FIG. 5. Comparison of SBCAPE in WRF and radiosonde observations, for all points during summer (MJJA)

2001–12 when observations are available, inclusive of zeroes. Color bar shows log density (midpoint color is 1% of

all observations), and both axes are also log scale. (a) Raw data, showing wide scatter. Recalculated WRF CAPE

using (b) observed surface temperature, (c) observed surface humidity, and (d) all surface values fromobservations.

All recalculated CAPE values also involve a pressure correction whose effects are small. For analogous figures for

ERAI and ERA5, see Figs. S4–S5.
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SBCAPE are driven primarily by surface conditions rather

than by the structure of atmospheric profiles. Both factors can

be important because CAPE is a function of the integrated

buoyancy across the convective layer, which is determined by

both parcel and environmental temperature and moisture. In

Fig. 5, we successively replace surface values in WRF output,

first temperature and pressure (Fig. 5b), then specific humidity

and pressure (Fig. 5c), then all surface fields (Fig. 5d).

Surface values do seem to govern SBCAPE bias almost en-

tirely. For WRF, correcting the surface specific humidity raises

the correlation coefficient from 0.68 to 0.91, and replacing all

surface fields raises it to 0.99, removing scatter almost entirely.

While correcting temperature does not raise the correlation

coefficient in WRF, and instead lowers it to 0.65, for other

datasets the temperature correction also contributes positively

(see supplemental Table S2). We also consider an alternate

measure of correspondence, the percentage of points that fall

within6800 J kg21 of the one-to-one line (the width of two cells

in Fig. 5). For rawWRFdata, the percentage is 78.6% (RMSE5
846 J kg21); correcting surface temperature raises the percent-

age slightly to 79.3% (RMSE 5 875 J kg21); correcting surface

humidity raises it to 90.2% (RMSE 5 535 J kg21), and full cal-

ibration to 99.5% (RMSE5 162 J kg21). Results for ERAI and

ERA5 are similar. Adjustment of surface values also largely

corrects the distributional problems at high CAPE, so that for

quantiles above 0.9, corrected SBCAPEvalues in reanalyses and

the WRF Model match those from radiosondes to within the

range from 20.2% to 12.0%. Correcting upper-tropospheric

profiles has a minimal effect on CAPE values.

5. Results—CAPE in temperature and humidity space

The fact that reanalyses and modeled SBCAPE can be

brought into agreement with radiosondes by simply replacing

surface values implies that thermodynamic fields at upper

levels are not important factors in SBCAPE biases. It may then

be reasonable to consider SBCAPE as a function of surface

thermodynamic fields alone. We therefore examine SBCAPE

in the 2D parameter space of temperature (T) and specific

humidity (H) to ask the following questions: 1) Is the density

distribution of SBCAPE in T–H parameter space similar in

reanalyses, model, and radiosondes? 2) What surface condi-

tions are related to the highest SBCAPE days? 3)What factors

drive model and reanalysis biases in SBCAPE?

a. Dependence on surface temperature and humidity

CAPE distributions in T–H parameter space are in fact

highly robust across all datasets. Figure 6 shows the heat map

of mean CAPE for radiosonde measurements, with data bin-

ned in steps of 3K and 1.35 g kg21. CAPE values show a

smooth gradient from lowest values at bottom left (warm and

dry conditions) to highest at top right (hot and humid). This

dependence on surface T and H is similar for all datasets

(supplemental Fig. S7). Contour lines at 2000 and 4000 J kg21

for radiosonde observations are therefore nearly identical to

those for other datasets (overlain). This similarity means that

surface T andH robustly determine SBCAPE in all datasets. Of

course, each T–H bin in Fig. 6 involves an underlying CAPE

distribution, but distributions are nearly identical for all da-

tasets; see Fig. 7 for two examples. These results support the

previous finding that bias in SBCAPE can be explained by

bias in surface measurements alone. (See supplemental

Fig. S8 for distributions of reanalyses and model errors in T,

RH, and H for the profiles shown in Fig. 7 and Table S3 for

summary statistics.)

Only a restricted set of conditions tend to produce the ‘‘high

tail’’ of CAPE distributions associated with extreme, high-

impact weather. We show both 2000 and 4000 J kg21 contours

to bracket prior definitions of extreme weather thresholds. For

example, Brooks et al. (2003); Trapp et al. (2009), and

Diffenbaugh et al. (2013) all use 2000 J kg21 in MLCAPE,

which corresponds to SBCAPE ;3000 J kg21 in our dataset.

The conditions producing mean SBCAPE above 2000 J kg21

involve temperatures above 297K for 100% relative humidity

(RH), or above 304K for 50% RH. For mean SBCAPE above

4000 J kg21, the required temperatures are 2–3K warmer, that

is, 299K at 100%RH or 307K at 50%RH. Significantly higher

SBCAPE values are possible: in the most extreme conditions

regularly sampled by radiosondes, 308K at 65% RH, the av-

erage observed SBCAPE is over 7400 J kg21. Reanalyses and

the WRF Model rarely produce SBCAPE values this high (8

FIG. 6. Mean radiosonde observed SBCAPE in surface tem-

perature and specific humidity parameter space, for the entire

dataset: summer (MJJA) 2001–12 over the contiguous United

States, inclusive of all launch times and of zero values. Only bins

with at least 10 samples are colored. Colors denote mean CAPE

values averaged in bins of 3 K and 1.35 g kg21. Solid and dashed

lines mark contours of 100% and 50% RH at p 5 1013 hPa.

Soundings with lower surface p will be displaced up and left from

these RH contours. Symbols ‘‘1’’ and ‘‘x’’ mark two cases

(‘‘warm’’ and ‘‘hot’’) used in Fig. 7. Contours show approximate

limits for 2000 and 4000 J kg21 SBCAPE for all datasets with no

surface corrections applied: IGRA (black), ERAI (blue), ERA5

(green), and WRF (red). Similarity of contours means that all da-

tasets show similar bivariate distributions. See Fig. S6 for the ab-

solute occurrence in each bin in IGRA and Fig. S7 for analogous

figures for all datasets.
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out of a million incidences, while observed incidences are

nearly 10 times more frequent at 60 out of a million), not be-

cause they differ in fundamental atmospheric physics but be-

cause they rarely sample the appropriate surface conditions.

b. Identifying sources of CAPE bias

Because SBCABE is strongly determined by surface tem-

perature and humidity, biases in SBCAPE in reanalyses and

the WRF Model appear driven by biases in these surface

thermodynamic values. We can therefore use the T–H diagram

to identify the factors that lead to underprediction of the high

tail of CAPE. Figures 8 and 9 use the same T–H diagram as in

Fig. 6, only now we show not the heat map of CAPE but the

density of observations of eachT–H grid cell and the difference

in that number between datasets. Because the diurnal cycle

strongly affects surface values, we show separate figures for

0000 UTC (U.S. late afternoon/evening) and 1200 UTC (U.S.

early morning), omitting the limited number of samples at

other times. Reanalyses and the WRF Model all underpredict

the extreme T–H values associated with extreme CAPE.

Of the two times routinely sampled by radiosondes, the

cooler 1200 UTC launches—early morning in the United

States—do not generally involve conditions associated with

high CAPE (Fig. 8a). Conditions at this time are almost never

warm enough to produce SBCAPE. 2000 J kg21, even though

relative humidities are high, with a tight distribution centered

around ;80%. Both reanalyses and WRF are biased dry, un-

derpredicting incidences close to saturation, and WRF is also

biased warm (Figs. 8b–d).

Most of the observed extreme CAPE values occur during the

warmer late-afternoon 0000 UTC launches (Fig. 9a). Relative

humidities are lower then because specific humidity does not

change much during daytime warming: the modal (most prob-

able) 0000 UTC surface conditions are between 303 and 309K

and;50%RH, with mean SBCAPEof;3000 J kg21, similar to

the ‘‘hot’’ example of Fig. 7. Because reanalyses and WRF are

FIG. 7. Comparison of SBCAPE in all datasets for specified T–H grid cell: the ‘‘warm’’ ex-

ample is centered at 298.5 K and 12.825 g kg21 (63.4%RH) and has mean SBCAPE 791 J kg21;

the ‘‘Hot’’ example is at 307.5K and 16.875 g kg21 (48.7% RH) with mean SBCAPE

3308 J kg21. Each bin is 3 K in width and 1.35 g kg21 in height. (a),(b) Uncorrected SBCAPE

from reanalyses and the WRF Model, and (c),(d) corrected with IGRA surface values. Note

that since the correction involves adjusting surface T and H, the profiles sampled in top and

bottom rows are different. The ‘‘warm’’ bin has 2438 profiles in the uncorrected data and 2063

in the corrected, while ‘‘hot’’ has 378 and 508, respectively. Tick marks at the top of each panel

show the mean of each distribution. Distributions are very similar; correcting surface values

only slightly adjusts means (from a maximum bias of 25% in uncorrected data to 22% after

correction).
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dry biased, they underpredict highRH conditions in general and

especially the extreme hot and humid conditions associated with

the largest CAPE. On the other hand, reanalyses and WRF

overpredict hot and dry conditions,WRF especially so (Figs. 9b–

d). The combined warm and dry bias explains why correcting

WRF surface temperatures alone does not improve thematch to

radiosonde CAPE measurements.

6. Results—Diurnal cycles of CAPE and biases

As shown in section 5, the largest CAPE biases in the WRF

Model and reanalyses occur when conditions are most favor-

able to high CAPE, that is, in daytime. This diurnal difference

could result from inherent nonlinearity but could also reflect a

bias in some aspect of the diurnal cycle of surface thermody-

namic fields. We therefore examine the diurnal cycle of surface

temperature and specific humidity in reanalyses, model, and

radiosondes. As an illustration, we show in Fig. 10 a 5-day episode

exhibiting large CAPE error, which is broadly representative

of problematic reanalyses and model pseudosoundings, and in

Fig. 11 we compare this episode to summertime climatological

mean diurnal cycles for all, low-CAPE, and high-CAPE con-

ditions (10th/90th SBCAPE percentiles). The sequence in

Fig. 10 runs from 24 to 28 July 2012 at a station in Wilmington,

North Carolina. On three occasions, radiosonde profiles show

extreme CAPE of nearly 5000 J kg21, but model and rean-

alyses grossly underpredict these excursions, producing CAPE

values ;2500 J kg21 too low. Since the temporal pattern of

FIG. 8. (a) Density of observed surface conditions in temperature–specific humidity parameter space at

1200 UTC (early morning in the contiguous United States), again for 2001–12 MJJA radiosonde observations.

Contours are repeated from Fig. 6 to mark conditions associated with 2000 and 4000 J kg21 SBCAPE. Darkest blue

color shown is 5.6%–6.4% of distribution; lightest is 0%–0.8%. Grids with no more than ten samples are defined as

outliers and removed (only 0.03% of all model or reanalysis samples). Nighttime and early morning conditions are

tightly distributed in relative humidity (RH ;80%) and tend to be relatively cool (T , 300K), with almost no

conditions sampled that would tend to produce SBCAPE . 2000 J kg21. (b)–(d) Heat maps of density differences

between model/reanalysis and observations for ERA5, WRF, and ERAI. Color scale shows fractional difference

after normalizing each bin by IGRA raw density. Orange 5 underpredicting and purple 5 overpredicting.

Reanalyses and the WRFModel all underestimate relative humidities (orange near the RH5100% contour), and

WRF shows a strong warm dry bias (dark purple in lower right).
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temperature evolution appears synchronous in all datasets,

these biases appear unrelated to any mismatch of frontal sys-

tems. (See Fig. S9 for the WRF Model output and bias struc-

ture and Fig. S10 for the 26 July weather map.)

In the example episode of Fig. 10, strong CAPE discrep-

ancies result when models and reanalyses fail to capture short-

term increases in specific humidity associated with extreme

CAPE. Biases are driven by humidity, since throughout the 5-

day period the WRF Model and reanalyses are slightly too

warm, with a fairly accurate diurnal temperature cycle (;5–

6K, with the WRF Model exhibiting the largest amplitude).

Comparison with climatological means on the T–H diagram of

Fig. 11 suggests that the daytime humidity rise in the example

episode is extreme even for high-CAPE conditions, but the

climatological biases are otherwise broadly similar. Reanalyses

andWRF have overall dry biases that are exacerbated inWRF

during the day (in the climatological case, by an actual daytime

drop in specific humidity). Diurnal cycles of temperature cycles

are similar, though daytime warming is slightly too weak in

reanalyses, and WRF has an overall high temperature bias of

;1.3K. In all cases, too-low surface-level humidity appears to

be the driving factor that strongly suppresses incidences of

extreme CAPE.

CAPE biases in the example episode of Fig. 10 differ in

ERA reanalyses and the WRF Model, but both produce defi-

cits in specific humidity. In all datasets, temperatures match

reasonably well in early morning (1200 UTC), but daytime

temperature rise is slightly too small in ERA reanalyses and

considerably too large in WRF. ERA RH is reasonably accu-

rate throughout, so its too-low temperatures are associated

with a small specific humidity deficit. In WRF, specific hu-

midity actually falls during the day, something not seen in re-

analyses or radiosondes, contributing to erroneously low

relative humidities. During the two ‘‘missed-high-CAPE’’

FIG. 9. As in Fig. 8, but for 0000 UTC (late afternoon/early evening in the contiguous United States) (a) Density

of observed surface conditions in T–H diagram. At this time period the density distribution peaks in conditions

associated with 2000–4000 J kg21 CAPE. Darkest blue color shown is 2.1%–2.4% of distribution; lightest is 0%–

0.3%. (b)–(d) Density differences between reanalyses / model and radiosondes. ERA5 and ERAI underpredict

both the highest relative humidities and the highest temperatures (orange near the RH5 100% contour and on the

right side), while WRF shows a warm dry bias (purple in lower right). Reanalyses and model all severely under-

predict the conditions associated with extreme CAPE (orange in upper right).
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episodes, WRF RH is ;25 percentage points below that in

radiosondes.

To demonstrate that biases during this single-station episode

are typical for warm conditions conducive of extreme CAPE

formation, we compare its diurnal cycle to climatological

means across all stations. Figure 11 uses the temperature–

humidity (T–H) diagram to show mean diurnal cycles of the 5-

day episode at station Wilmington (Fig. 11a) and across the

whole dataset (Fig. 11b), showing both the overall summertime

average and also subsets of days involving the highest and

lowest radiosonde SBCAPE values (90th/10th percentiles).

The biases in the July 2012 example episode are similar to

those generally experienced in high-CAPE conditions. On

average, the ERA reanalyses experience slightly too-weak

daytime warming (i.e., a too-small diurnal cycle in tempera-

ture) and are slightly too dry. WRF has an overall high bias in

temperature of ;1.3K and is substantially too dry. The warm

dry bias in WRF is exacerbated at midday by the fact that spe-

cific humidity erroneously drops during the day. This daytime

humidity loss strongly suppresses incidences of extreme CAPE.

7. Conclusions and discussion

Despite the importance of CAPE to both model construction

andmeteorology, few prior studies have evaluated CAPEbiases

against radiosondes on a large enough scale to evaluate clima-

tological distributions. This study of nearly 200 000 proximity

soundings in two reanalyses and a convection-permitting model

confirms consistent patterns of distributional bias. CAPE dis-

tributions are too narrow in all cases, with underprediction of the

most extreme values that are associated with severe weather

events. Values in the high tail (95th percentile and above) are

6%–10% too low in surface-based CAPE and even more se-

verely underestimated under alternative definitions, at 18%–

20% too low inMUCAPE and 15%–17% too low inMLCAPE.

In this study, both distributional biases and ‘‘mismatch error’’

in CAPE appear driven by conditions at the surface and/or

boundary layer. SBCAPE shows a tight and similar dependence

on surface temperature and humidity in all datasets; the de-

pendence is so strong that CAPE distributions as a function of

surfaceT,H are almost identical, even though individual profiles

may have inaccurate surface values. The underprediction of the

high tail of CAPE occurs simply because reanalyses and WRF

runs underpredict the hot and humid conditions associated with

extreme CAPE values.

These results emphasize the importance of land and boundary

layer treatment in the performance of high-resolution models.

Discussion of improving models has tended to focus on increased

resolution and its effect on the atmospheric profile (e.g., Fosser

et al. 2015). However, the similarity of biases in model and re-

analysis output with resolved and parameterized convection

suggests that surface biases are unrelated to the treatment of

convection. Many authors have noted that SBCAPE is strongly

dependent on surface conditions (e.g.,Maddox andDoswell 1982;

Zhang 2002; Donner and Phillips 2003; Guichard et al. 2004), but

land surface feedbacks may be crudely treated even in state-of-

the-art high-resolution models (Prein et al. 2015).

Dry biases such as those seen here could be produced by

misrepresentation of land surface evaporation, by excess vertical

mixing of the boundary layer, or, for the central United States,

by too-weak advection of moisture from the Gulf of Mexico

(Feng et al. 2021). In this study, the greater bias in MUCAPE

than SBCAPE across all datasets points to boundary layer

processes as the problematic elements. It is well established

that treatment of mixing in boundary layer (PBL) schemes

can modify the diurnal cycle of temperature and humidity

(Kalthoff et al. 2009; García-Díez et al. 2013; Xu et al. 2019).

Several recent studies have evaluated the impacts of PBL

treatment on CAPE, and consistently find that ‘‘local’’

schemes tend to undermix and moisten the boundary layer

while ‘‘nonlocal’’ ones, like those used in the datasets shown

here, overmix and dry it (Coniglio et al. 2013; Cohen et al.

2017; Evans et al. 2018). The YSU scheme used in our WRF

runs is especially prone to producing a dry bias (Coniglio

et al. 2013; Liu et al. 2017).

FIG. 10. An example episode of high CAPE and substantial

CAPE error: 5 days from 24 to 28 Jul 2012 overWilmington, North

Carolina, color coded as before. Reanalyses and the WRF Model

are shown every 6 hours; IGRA soundings are generally every 12

hours (although note the irregular timing for radiosonde launching

on the 26th, when daytime sampling occurred 6 hours earlier than

usual, at 1800 UTC). Vertical lines mark the two examples dis-

cussed in text. Over this entire period, reanalyses andWRFModel

show hot and dry bias; when the bias in absolute humidity is large,

the dry bias produces too-low CAPE even despite too-high

temperatures.
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While prior studies evaluating the effect of boundary layer

treatment on CAPE have generally evaluated only mean

values and have found only small biases, results here suggest

that the high tails can be much more strongly affected. This

finding is consistent with Evans et al. (2018), who note in a

small sample of soundings that dry biases produced by nonlocal

PBL schemes appear larger when observed CAPE is larger.

The dependence of biases on underlying conditions means that

even models and data products whose mean CAPE is well

validated may be inaccurate in capturing the strong convective

events that lead to large socioeconomic losses. This problem

cannot be assessed with studies that match soundings to severe

weather events, since model displacement of weather features

means that ‘‘mismatch’’ error is large and proximity soundings

will not necessarily capture the same meteorological context.

On the flip side, the accuracy of relatively low CAPE is also

critical for convective parameterization schemes, since convec-

tive initiation thresholds are commonly set at only 65 J kg21.

Subtle distributional biases can therefore affect convective trig-

gering and total mass flux, and indirectly affect precipitation di-

urnal timing and amplitude. Given the importance of CAPE as a

key meteorological parameter linking the large-scale environ-

ment to weather-scale events, and its sensitivity to details of

boundary layer treatment, its evaluation warrants careful distri-

butional analysis.
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