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Vorticity in closed quantum fluid circuits is known to arise in the form of persistent currents. In this work, we
develop a method to engineer transport of the quantized vorticity between density-coupled ring-shaped atomic
Bose-Einstein condensates in experimentally accessible regimes. Introducing a tunable weak link between the
rings, we observe and characterize the controllable periodic transfer of the current and investigate the role of
temperature on suppressing these oscillations via a range of complementary state-of-the-art numerical methods.
Our setup paves the way for precision measurements of local acceleration and rotation.
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I. INTRODUCTION

Persistent currents—quantized flow of atomic Bose-
Einstein condensates (BECs) in closed circuits—enable
fundamental studies of superfluidity and may lead to applica-
tions in high precision metrology and atomtronics [1-3], such
as the recently observed atomtronic SQUID [4]. The ques-
tion of the generation and stability of the atomic persistent
currents—which in the absence of external driving should be
topologically protected—is of fundamental importance; thus
it has been the subject of numerous experiments [5—18].

Beyond the intriguing physics afforded by single ring sys-
tems, several proposals for two parallel or stacked rings have
shown that the persistent current can tunnel between rings
in both many-body [19-21] and mean-field studies [22-25].
At the single-particle level, persistent current tunneling has
been predicted between arrays of adjacent rings and in similar
configurations [26-30]. However, tunneling has been shown
to be forbidden at the mean-field level [30,31]. Such a setup
is the cold-atom analog of a qubit made from adjacent su-
perconducting loops, known as the Mooij-Harmans qubit
[32-34], with control over the tunneling of persistent currents
in a double-ring geometry emulating the original theoretical
scheme.

The geometry considered in this work is of a BEC state ina
co-planar, side-by-side, double-ring geometry [31], including
a tunable weak link across the interface between the two rings;
the latter acts as a mediator for coherent transport of persistent
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current between the two rings, thus overcoming the mean-field
constraints inhibiting transfer between closed rings. Recently,
a similar scenario was studied at the few-particle many-body
level and quantum phase slips were observed in a double-ring
lattice with a tunable weak link [30]. At the many-body level,
the coupling between adjacent rings can lead to superposition
and entanglement of persistent current states, a feature not af-
forded at a mean-field description. However, at the mean-field
level, one has a many-particle state that is highly control-
lable and robust to thermal and quantum fluctuations. In this
scenario, one can either utilize a connecting secondary ring
as a nondestructive measurement device for an experiment
conducted in the primary ring or as a unique double-ring
experiment, where the dependency of external factors on the
transfer of persistent current can act as a highly sensitive
precision measurement device.

In this work, we address the dynamics of a single per-
sistent current, controllably initiated in one of two density
coupled rings, manipulated by an external barrier potential
acting as a tunable weak link separating and reconnecting
the two rings, as shown in Figs. 1(a)-1(c) (top). Such funda-
mental underlying physics is analyzed in detail theoretically
and numerically for experimentally relevant parameters in the
quasi-two-dimensional (quasi-2D) limit, both in the context
of the 7 = 0 mean-field Gross-Pitaevskii equation and its
appropriate dissipative and finite-temperature realizations.

In the pure (T = 0) mean-field limit, we find the persis-
tent current executes undamped oscillation cycles across the
density threshold between the two rings, at a fixed frequency
depending only on the geometry and the barrier amplitude.
After introducing our double-ring geometry (Sec. II), we first
analyze such dynamics in the pure 2D limit, with further
insight into vortex dynamics in this limit provided by a semi-
analytic toy quantum vortex kinetic model (Sec. III). The
effect of thermal dissipation is then investigated (Sec. IV) by
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FIG. 1. Persistent current oscillations. (a) Double-ring ground state solution showing (i) density and (ii) phase, with ring radius
R = 22.6 um. The phase shows an initial antivortex (clockwise circulation) imprinted into the left ring. (b) After opening the gate between two
rings, the antivortex can periodically transfer. The persistent current is measured dynamically through the phase around the dashed ellipses
in (ii), with current plot illustrating first instance of persistent current transfer to right ring. (¢) The timing of closing the gate sets the final
position of the persistent current. (d) Barrier amplitude as a function of time (in units of the system chemical potential). (¢) Dynamic persistent
current for the left n. (red) and right nr (blue) rings. (f) Difference in angular momentum between rings; see Eq. (7).

the addition of a phenomenological damping term through full
numerical simulations, revealing the damping of such oscilla-
tions, with our quantum vortex equation of motion providing
a useful estimate of the thermal cloud dissipation rate required
to halt the oscillations. Our dissipative Gross-Pitaevskii model
is further extended by the addition of fluctuations through
the stochastic Gross-Pitaevskii model, revealing the robust
existence of such oscillations even in the presence of (thermal)
fluctuations.

To account for the self-consistent coupling of the con-
densate to a dynamical thermal cloud while simultaneously
taking account of the full 3D geometry of our setup, we also
consider (Sec. V) a generalized kinetic model, in which the
self-consistently coupled thermal cloud—which modifies the
effective trap felt by the condensate—is itself described by a
collisionless Boltzmann equation.

Confirmation of the existence of persistent current oscilla-
tions across all studied models, including the full 3D kinetic
model, offers further support towards the feasibility of exper-
imental observation of such oscillations.

II. DOUBLE-RING GEOMETRY

The geometry considered throughout this work is that of
two co-planar, partly overlapping density rings, whose planar
2D geometry [31] is shown in Fig. 1 (top).

The double ring geometry is fixed by

Vext (0, 2, 1) = Vexe(p, 1) + V1.(2)
= rings(p) + Vbar‘rier(p’ t) + VL(Z)~ (1)
This is the superposition of a potential of two 2D conjoined
rings
Vings(p) = sma’ min[(o_— R)*, (p— R’],  (2)

with a controllable time-dependent barrier Vyarier(0, ), and a
harmonic transverse confining potential

Vi(z) = imolz. 3

The parameters of each ring have been chosen to match the
single-ring experiment of Ref. [10] based on 2*Na atoms, with

an s-wave scattering length a; = 2.75 nm, but with a larger
fixed total atom number of N = 10°, arbitrarily chosen to
account for the larger system. As such, we have chosen ring
radii R = 22.6 um, p+ = /(x = R)? + y2, a radial trapping
frequency w, = 27 x134 Hz, and a tighter transversal trap-
ping frequency w, = 2w x550 Hz, such that the system is in
the quasi-2D regime, with dominant dynamical features aris-
ing within the central plane (for information, our parameters
give i/ hw, < 4). The barrier potential controlling the degree
of connectedness of the two rings has the form

Voarrier (0, 1) = Vo()O(R — |x])e /%", 4)

featuring a time-dependent amplitude V(¢ ), whose maximum
value is slightly above the system chemical potential i, and a
barrier width o = 3.44 ym, with ®(x) denoting the Heaviside
(step) function.

III. PERSISTENT CURRENT OSCILLATIONS
AT MEAN-FIELD (GROSS-PITAEVSKII) LEVEL

It has been shown previously that persistent currents in a
co-planar double-ring quantum gas will not tunnel between
rings [31]. In this section, we show that including a barrier
potential between the rings does in fact facilitate such persis-
tent current transfer in the pure 7 = 0 condensate limit.

We assume here tight transverse confinement, such that
the full condensate wave function can be expressed in the
form W(r,t) = ¥ (p,t) = ¥ (x, y, t)p(z), where ¢(z) denotes
a transverse Gaussian of width I, = \/ii/mw,. This allows us
to start our theoretical investigations in the context of the
pure two-dimensional (2D) Gross-Pitaevskii equation (GPE)
describing the evolution of the 2D wave function ¥ (p, t) =
Y(x,y,t)via

a .
ihglﬂ(ﬂ, 1) = [Hapl¥] — pwanl¥ (p, 1), &)

where

. R
Heply] = —%W + Ve (p, 1) + gon |V (0, )I*  (6)
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is the 2D Gross-Pitaevskii operator and the density is
normalized such that [[dxdy|y(p, 1) =N. Here,
g = g/N2wl. = /8wha;/ml. is the effective two-
dimensional two-body interaction coupling (g denotes
the 3D coupling), with associated s-wave interaction strength
a; = 2.75 nm, pyp is the 2D chemical potential (related to
the full 3D chemical potential w), and m is the BNa atomic
mass. For our chosen parameters, pop = 14.93/iw, before the
addition of the potential (i.e., for V) = 0). All simulations are
performed in a L,xL, = 120x80 um? grid, with 768x512
grid points.

The barrier amplitude is increased/decreased linearly, with
its maximum constant value slightly exceeding the chemical
potential, in order to establish an effective barrier. Given the
physical importance of the relation of the barrier amplitude to
the chemical potential, throughout this work Vy(¢) will always
be scaled to the relevant chemical potential [see Fig. 1(d)].

To analyze the system dynamics, we first numerically ob-
tain the ground state of the system in the absence of the barrier
(i.e., when Vj = 0) via imaginary time propagation. We then
initialize our persistent current oscillator by phase imprinting
a 2m clockwise winding around the center of the left ring,
such that the system state can be characterized by the corre-
sponding winding numbers np, = —1 (left ring) and ng =0
(right ring, no persistent current). The persistent current, or
winding number, is akin to a “ghost” vortex in the center of
the annulus, and this language will be used interchangeably
[with winding number of 41 (—1) respectively corresponding
to the presence of a ghost vortex (antivortex). After phase
imprinting, we allow for 100 ms of thermalization, leading
to the initial condition shown in Fig. 1(a). Previous work in
this geometry has shown that the ghost vortex (or antivortex)
remains trapped in its initial state [31]. However, the inclusion
of an external barrier potential changes the system topology
from a 2-torus to a torus, allowing for the transfer of the
current between rings. This change in topology perhaps makes
the winding number ill defined while the barrier is open;
however, we find that within the radius R of each ring there is
either a 27 or 0 winding of the phase at all times, suggesting
that the singularity of the ghost vortex is always contained
within one of the dashed circles shown in Fig. 1(b)(ii), as
discussed in more detail in the next section.

A. Undamped oscillations

After an initial thermalization period, the barrier poten-
tial is linearly ramped up to the maximum Vy/uop = 1.2
[Fig. 1(d)], with such opening of the gate [around the (x, y) =
(0, 0) region] allowing for vortex transfer between the two
rings. Once V; exceeds w the persistent current begins to
oscillate between the two rings [Fig. 1(e)]. In this set of
simulations, the gate is held open for 200 ms and the current
oscillates at a fixed period of ~50 ms. Then the potential
amplitude is linearly reduced, and the position of the vortex
as Vp crosses p sets in which of the two rings the persistent
current will reside and be detectable. In the example shown,
the persistent current has transferred from its initial state [left
ring, Fig. 1(a)(ii)] to the right ring [Fig. 1(c)(ii)]. Note that,
accompanying the persistent current oscillation is a small
transfer of atom number, as measured on either side of x = 0,

with <0.2% of the total atom number transferring with the
persistent current. Although insignificant in terms of atom
numbers, such a transfer does nonetheless have a numerically
measurable impact on the angular momentum dynamics, to be
described below.

It is important to note that the transfer is instantaneous
when the vortex line crosses the threshold between rings.
The winding is extracted dynamically via the azimuthal phase
measured at a distance R from the center of each ring [e.g.,
dashed circles in Fig. 1(b)(ii)]. Therefore, if a vortex is con-
tained anywhere within the circle of radius R from the ring’s
center the phase measured azimuthally will wind by a factor of
27 ; otherwise, it will return to its initial value. It is possible to
further characterize the dynamic vortex position through mea-
surement of the angular momentum in each ring, and define
the angular momentum difference as AL, = (L, 1) — (L. r),

where
ih 0 d
dxdyy*|y— — X:I:R)—) ;
N r) //72 v (yax ( dy 4
@)

with Ny /g the particle number in the left/right ring and the
integration region R is over the left/right side of the box,
accordingly. From this equation, we associate a value of
AL, =~ —1(+1) when an antivortex is centered in the left
(right) ring, with intermediate values indicating a vortex be-
tween x = (—R, R), where one could approximate the vortex
position along the x axis as (AL,)R. A similar measure was
applied in Ref. [35] to determine the angular momentum
difference between two components. An example trajectory
of AL, is shown in Fig. 1(f). Each crossing of AL, = 0 corre-
sponds to the transfer of persistent current. Whilst the barrier
is open the amplitude of AL, does not exceed 0.5, suggesting
that the vortex does not travel near to the center of a ring
unless the barrier is closed.

Next, we investigate the oscillation period of the persistent
current as a function of the maximum barrier amplitude, still
in the zero-temperature limit (Fig. 2). If the barrier ampli-
tude is smaller than the chemical potential then there are no
observed oscillations, and the vortex remains in its starting
ring indefinitely. However, for all Vy > u,p the vortex exhibits
symmetric oscillations about the center of the system. For
larger barrier amplitudes (Vo > 1.2u;p) the resulting oscil-
lation period is almost constant, at around 50 ms. We have
explored varying the linear ramp gradient and find this only
has a weak effect on the oscillation period (typically =1 ms);
however, if the barrier amplitude reaches its maximum value
in <20 ms this strongly perturbs the system, injecting vortex
pairs and high-amplitude noise.

We can gain an insight into the vortex dynamics through
a toy kinetic model. The velocity of a quantum vortex in an
inhomogeneous condensate can be written as [36]

(LLRr)) =

V=E(V<I>—ich1n\/ﬁ), (8)
m

where &k = ks - €, the integer s is the vortex winding number,
k = h/m is the quantum of circulation, and n = |/|> and ®
are the density and phase of the condensate in the absence
of a vortex, respectively. We take the numerically obtained
stationary solution with fixed Vj and choose an appropriate

043171-3



T. BLAND et al.

PHYSICAL REVIEW RESEARCH 4, 043171 (2022)

80 : : , :

(=)
o
T
L

Oscillation period (ms)
©) o
S S
= :

0 . z, . . .
1 1.1 1.2 1.3 1.4 1.5
Barrier amplitude, Vj/u2p

FIG. 2. Persistent current oscillation period as a function of max-
imum barrier amplitude. Main plot: oscillation period obtained from
the zero-temperature GPE (red curve). The blue markers are the
equivalent data from the semianalytic model (see main text). The
initial vortex position for the analytic model is chosen to give the cor-
rect oscillation period for Vy = 1.24u,p (blue circle) and then taken
as an initial condition for square points. The filled region indicates
the analytic oscillation period range. The vertical green dotted line
corresponds to the point where Vj is equal to the chemical potential
in the presence of the barrier, thus denoting the parameter regime
beyond which the toy model acquires its meaning. Inset: vortex
trajectories in the double-ring system. Outer black line sets upper
bound to the analytic model. For V;,/uop < 1 the trajectories do not
connect between rings and there is no vortex transfer, as shown by
disconnected lines inside, giving the lower bound to the filled region
in the main plot. Dashed blue curve corresponds to the vortex orbit
with VO/MZD = 1.24.

starting position for the quantum antivortex near to the point
of the lowest density on the inside edge of the annulus. Using
such initial condition, we iteratively solve Eq. (8) to follow the
vortex trajectory as it traverses around the hourglass-shaped
inside edge. If the orbit is connected, then the vortex traverses
both rings, and the time to return to the initial position gives
the semianalytic oscillation period; otherwise, the orbit is dis-
connected and the vortex does not transfer. The vortex height
on the density distribution is constant, and in order for this to
vary we need to introduce dissipation, which will be the topic
of the next section.

The range of semianalytically obtained oscillation periods
are contained within the shaded region of Fig. 2, bounded by
two lines obtained as described below. The upper boundary
is the oscillation period of a vortex initialized at the “inner”
Thomas-Fermi radius (e.g., at y = 0 and x = —2R + Rrg for
Thomas-Fermi radius Rrg). This is theoretically the longest
orbit, as placing the ghost vortex further out places it on
the condensate density where it would be visible. The lower
boundary is given by the smallest connected loop across both
rings. Example connected and disconnected orbits are shown
as solid lines on the inset to Fig. 2. In setting up such a toy
model, we need to consider the densities in the presence of
the separating barrier V. Due to our constraint on fixed atom
number, this thus corresponds to a slightly higher chemical
potential than the one before the addition of the barrier. As

0 0.5 1 1.5 2
Time, s

FIG. 3. Beating effect at long times. y = 0 simulation extended
tot = 2 s to show the collapse revival of AL, oscillations. Shown are
(a) winding number oscillations in the left well, n (¢), (b) angular
momentum difference AL,(t), and (c) fractional population differ-
ence AN = (NL — Nr)/(NL + Nr)(2).

a result, the toy model can only give results beyond such a
point, indicated by the vertical dashed green line, at which
Vo ~ 1.028 iuop.

Moreover, as such a model ignores the role of self-
consistent vortex-sound interactions on vortex dynamics
(considered in detail in the related setting of Ref. [37]) our
semianalytical predictions cannot fully describe the dynamics
in the regime when the barrier height is too close to the chemi-
cal potential, although such effects are of course fully captured
within GPE numerical simulations. With that in mind, we can
nonetheless further test this model through direct comparison
to the GPE results. First, we find an initial vortex position
in the toy model that corresponds to an oscillation period
matching the GPE, arbitrarily chosen here as Vy/uop = 1.24
(Fig. 2, blue circle, and corresponding orbit in the inset).
Fixing this initial vortex position but varying Vj, we extract the
oscillation periods from our model. Remarkably, we find all
values closely match the GPE results for Vo /op 2 1.13 (such
that a connected orbit is still obtained), thus demonstrating the
semiquantitative validity of such an intuitive toy model.

B. Observation of a beating effect

The preparation of the initial state can cause small os-
cillations in the atom number between the two rings. The
full impact of these oscillations is only observable in the
long-time limit. We repeat the procedure of Fig. 1, but now
monitoring the temporal evolution when the gate is kept open
(at Vo/uop = 1.2) for the even longer period of time of 1.6 s.
Figure 3 shows (a) the winding number oscillations in the left
well, (b) the angular momentum difference, and (c) the frac-
tional population difference AN = (NL — Nr)/(NL + NR).
Analyzing the dominant frequencies through taking the re-
spective discrete Fourier transforms of (b) and (c), we can
infer a difference of ~1.5 ms in their respective oscillation
periods, which accounts for a beating period of ~1.5 s,
consistent with the features seen in the angular momentum
difference. We thus conclude that the observed beating (which
appears to exhibit no noticeable damping in the y = 0 limit)
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FIG. 4. Suppression of persistent current oscillations. (a)(i) Bar-
rier amplitude. Winding number oscillations for (ii) y =0, (iii)
y = 0.001, and (iv) y = 0.03. (v) Difference in angular momentum
eigenvalues, AL, = (L, 1) — (L, r). (b) Oscillation lifetime as a func-
tion of maximum barrier amplitude and y. There are no oscillations
for y > y, = 0.015.

is a result of coupling of the relative angular momentum to
the relative fractional population difference. When the AL,
amplitude is at its smallest, this effect can produce glitches
in our winding number measurements, as seen at ~1.1 s
[Fig. 4(a)(i1)]. The wait time after the phase-imprinting pro-
tocol but prior to opening up the barrier controls the phase
within a given beating cycle. For the remainder of the work,
we focus our analysis on timescales (broadly) consistent with
a single beating half cycle, in order to best highlight the role
of dissipation and fluctuations.

IV. FINITE TEMPERATURE EFFECTS:
ROLE OF DISSIPATION AND FLUCTUATIONS

Actual experiments are typically conducted at low, but
nonzero, temperatures—and so are prone to both dissipation
and fluctuations, which we consider in this section. The net
effect of such contributions, as described in detail below,
is to damp, or even completely suppress, persistent—current
oscillations.

For a more stringent test of the mean-field predictions,
we supplement our 2D model by additional contributions.

In Sec. IV A, we assess the role of dissipation through the
addition of phenomenological damping to the GPE. We then
further add corresponding thermal fluctuations to the model in
Sec. IV B. The generalization to full 3D considerations is then
discussed in Sec. V.

A. Inclusion of phenomenological dissipation:
Dissipative Gross-Pitaevskii equation

To include the dissipative effects of temperature, we extend
our 2D model from Eq. (5) to the damped (or dissipative)
GPE, given by

a A
i (p, 1) = (1= iy)[Harl¥] = waol¥ (0, ). (9)

Here damping is phenomenologically included in the dimen-
sionless parameter y < 1, with Hgp unchanged from Eq. (6).

As previously reported, in the zero temperature model
(y = 0), oscillations continue indefinitely for as long as the
barrier V exceeds the system chemical potential.

Having addressed the issue of the changing amplitude in
AL; in the y = 0 limit of a pure GPE, we next investigate
the role of damping on the lifetime of the oscillations. The
results of our analysis using the dissipative GPE is shown, for
0 <y < 1,inFig. 4.

As evident from Fig. 4, the oscillations halt after 600 ms for
small y = 0.001 [panel (a)(iii)], as opposed to the undamped
y = 0 oscillations shown in panel (a)(ii). Increasing to larger
y = 0.03 the vortex does not transfer at all until (potentially)
when the gate is closed [Fig. 4(a)(iv)]. Evaluation of AL,
for y = 0.03 shows that the vortex becomes trapped at the
center of the system [Fig. 4(a)(v)], and as the gate is closed
the vortex is forced into the center of a randomly chosen ring,
independent of the initial condition [i.e., the vortex may stay
in the same ring or cross to the other ring—the latter occurring
in Fig. 4(a)].

Intermediate values of y reveal the oscillation damping,
with the AL, oscillation amplitude rapidly decreasing to 0, an
effect quite distinct to the y = 0 beating discussed above.

We also map out the oscillation lifetime, defined as the
time from the barrier opening to the last vortex transfer, as
a function of y: our results are shown in Fig. 4(b). For small
y < 1073 the oscillations are long lived, surviving for ~1 s.
The lifetime rapidly decreases with y,and aty > y. = 0.015
the lifetime is smaller than half of the oscillation period,
trapping the persistent current in its initial ring. The lifetime
of the oscillations is only weakly dependent on the maximum
barrier amplitude.

In order to obtain an estimate for y., we return to the
vortex kinetic model. As in the damped GPE, dissipation in
our model is included by replacing the Hamiltonian from
Ref. [36] with the dissipative one [?:igp — (1 — iy)’;‘:lgp] to
give the next correction for the velocity of the vortex core,

V= E[V((b —yIn/n)—k x V(n/n+y®). (10)
m

Discarding terms with V& (which are small compared to
contributions from the density gradient) gives

h
v=——pVInJn+i&xVinJn)=vi+vy (1)
m
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where v, corresponds to radial vortex motion to larger or
smaller densities, i.e., changing the orbit length, and v, cor-
responds to the azimuthal vortex displacement along the orbit
trajectory at constant density. We can get a useful expression
if we compare small displacements of the vortex along the
above-mentioned directions through the ratio

vl _dl _ lyVingal

Vgl — dly |k xVinyn
We can use this to estimate the critical y at which the vortex
drifts from an initially connected to a disconnected orbit. For
this, we take the vortex initially placed at the blue point in the
inset of Fig. 2 (for which the correct oscillation period was
obtained in the y = 0 limit) and find the smallest value of y at
which the vortex meets the threshold between rings, but does
not cross it. Here, the displacement along the radial direction
is the distance from the Thomas-Fermi radius to the point with
the shortest connected orbit, so d/, =~ Al, = 0.87 um, and the
azimuthal displacement is a quarter of the total length of the
vortex orbit, dly ~ Aly = 44.27 um. For these values, we get
vor ~ 0.0197, which is reasonably close to the observed value
0.015.

As we can see, Y. depends on the geometry of the system.
This fact has some important consequences. First, the smallest
connected orbit gets shorter for higher values of V, and this
makes y,, larger which we, however, do not observe from
numerical investigation (see Fig. 4). Second, by making the
radius of the ring smaller (keeping the peak density fixed) or
by making the ring wider—thus separating more the highest
and the lowest connected orbits—we can increase y,,; in effect
this makes the oscillations more robust to finite tempera-
ture effects. We have verified that doubling the radius (with
fixed peak density and barrier amplitude Vy = 1.3u,) does
indeed decrease the critical y parameter by about one-half to
values y.; € [0.006, 0.007]. On the contrary, when the atom
number of rings with double radius is instead unchanged
(increasing the distance between the highest and the lowest
connected orbits) we observed a higher critical dissipation of
Yer € [0.008, 0.009].

Having identified the dissipative persistent current os-
cillation feature, we next investigate the role of thermal
fluctuations.

12)

B. Inclusion of fluctuations: (Projected) stochastic
Gross-Pitaevskii model

To include the effects of thermal fluctuations, we further
extend our model in Eq. (9) to the stochastic projected Gross-
Pitaevskii equation (SPGPE) [38—42], along similar lines to
previous studies in single ring-trap geometries [43—46]. In
this formalism, the energy modes of the system are decom-
posed into the low-energy coherent region, described by the
multimode order parameter W(p, t) mapping to the so-called
“classical” or “c-field” region, and the high-energy incoherent
region which is assumed to play the role of a static heat bath
of temperature 7. Individual trajectories of the coherent re-
gion dynamics evolve according to the stochastic equation of
motion [41]

a N .
iﬁg‘l’ = P{( = iy)[Hep[W] — uopl¥ + n(p, 1)}, (13)

describing their coupling to the higher-lying modes, where
again Hgp is unchanged from Eq. (6). The complex Gaus-
sian noise satisfies (n*(p, )n*(p’, 1)) = (n(p, t)n(p’, 1)) =
0 and (n*(p,t)n(p’,t")) = 2ykpT /hS(p — p')3(t —1'). The
projector P implements the energy cutoff, ensuring that the
occupation of the largest included mode has average occu-
pation of order unity. The energy cutoff here is fixed to
€cu(Mop, T) = 3uap, consistent with previous studies [40],
and the 2D chemical potential remains fixed to wop =
14.93hw,.

Each numerical realization has a different dynamical
noise field and can be qualitatively interpreted as a single
experimental run (in the sense that an ensemble over nu-
merical runs should produce the same results about mean
values and fluctuations as an ensemble over many ex-
periments). The procedure is to simulate the dynamical
setting multiple times based on different random noise
sampling and then extract appropriately averaged physical
quantities.

In each numerical realization for a given temperature, an
initial state is generated by dynamical equilibration from a
noisy initial field, leading to a state in thermal equilibrium
with approximately N ~ 10° atoms in the c-field. This state
is then phase imprinted (as in the 7 = 0 case) with a 27
winding, and taken as the initial condition.

In Fig. 5 we show example single-trajectory oscillations
for T =50, 150, and 250 nK, from left to right, and fixed
y = 0.001. Example initial states are shown on the top row of
Fig. 5, with increasing fluctuations. Individual trajectories of
the persistent current oscillations are shown in row (ii). Fluc-
tuations reduce visibility of the oscillations with increasing
temperature, essentially shifting the phase of the oscillation.
This phase shift washes out the signal of the average winding
number, (n;), taken over 100 distinct numerical noise real-
izations in (iii). The absolute value of the average winding
number is related to the probability of finding the current in
the left, or right, ring. We have chosen this quantity as the eas-
iest to realize in an experiment, through repeated destructive
measurements of the winding number. Even for relatively high
temperatures, there are still clearly observable oscillations. In
all cases, we find a final value |(ny)| = 0.5, which corresponds
to a random final configuration.

Results from Fig. 4 revealed a decreasing oscillation life-
time with increasing dissipation rate y. As expected, in the
limit of low temperatures (7T = 50 nK case), where the fluctu-
ations are relatively small, the average (AL,) over stochastic
realizations [Fig. 5(a)(iv)] exactly coincides with the dissi-
pative result of the damped GPE [Eq. (9)] with the same
dissipation parameter y [Fig. 4(a)(v)], the latter shown by the
red curve in Fig. 5(a)(iv). However, as evident from Fig. 5,
stronger noise (corresponding to a higher temperature) may
conceal some features, pointing towards an even shorter pe-
riod over which oscillations are detectable in the presence of
fluctuations, as expected to be relevant in realistic experimen-
tal settings.

If one is interested in more directly identifying the effect
on the condensate mode, within a 3D setting which also fully
accounts for transverse degrees of freedom, one could alter-
natively use a 3D kinetic model, to which we next turn our
attention.
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FIG. 5. Persistent current oscillations for increasing temperature from left to right columns. Rows: (i) equilibrium SPGPE density profiles.
(i) Example persistent current oscillation in the left ring for a single run. (iii) Winding number oscillations averaged over 100 runs. The
absolute value |(n.)| can be interpreted as a probability of finding the vortex in the left ring. (iv) Mean angular momentum difference between
rings. Shading indicates one standard deviation from the mean (solid line). Red curve indicates barrier ramp protocol. Dashed line in (a)(iv) is

the equivalent 7 = 0, y = 0.001 data from Fig. 4.

V. OSCILLATIONS IN A 3D KINETIC MODEL

Finally, we extend our analysis to a fully three-dimensional
(3D) finite temperature system, to fully and self-consistently
numerically account for the effect of the perpendicular har-
monic trap on the persistent current oscillations. Rather than
implementing the same SPGPE model in 3D, we instead
choose to describe the system in terms of a kinetic model
which facilitates a direct distinction between the condensate
and the self-consistently coupled thermal cloud.

A. Collisionless ZNG model: Gross-Pitaevskii coupled
to a collisionless Boltzmann equation

At finite temperature, the bosonic quantum gas is partially
condensed and we must consider the presence of the thermal
cloud. We have used the collisionless version of the Zaremba-
Nikuni-Griffin (ZNG) model [47] to describe the behavior of
this system. In this model the condensate mode dynamics are
described by a generalized GPE, which includes an additional
term accounting for the mean field potential of the thermal
cloud, 2gny,, which can be thought of as a time-dependent
correction to the 3D trapping potential Ve (p, z, ). The con-
densate mode, ¥(p, z, t), thus obeys the 3D equation [47]

2
ihE = (—h—vz + Ve + 8|V + 2nth)>\ll, (14)
ot 2m

where the 3D scattering amplitude is g = 4w h%a,/m. This
equation is solved self-consistently with a collisionless
Boltzmann equation for the single—particle phase-space dis-
tribution, f(r, p, t). The single—particle distribution function
is defined as the number of particles within a neighborhood
of the phase-space point (r, p) at time ¢. The thermal—cloud
density, ny(r, 1), at time ¢ can be extracted from f(r, p, ) by
integrating over p:

nu(r, 1) = /d3pf(r, p. 7). 5)
The collisionless Boltzmann equation for f has the form
0
VR =V Vo =0. (1)
ot m

The effective potential felt by the thermal atoms now takes
the form Vi = Vixe + 28(|¥|? + n). The ZNG kinetic theory
has been successfully used to model a range of dynamical
phenomena in single- and multicomponent condensates (see,
e.g., Refs. [47-52] and references therein).

The initial thermal-equilibrium wave function, ¥,, and
thermal cloud density, ”31’ are set by the temperature-
dependent system chemical potential w(7"), with the initial
finite-temperature equilibrium distribution obtained itera-
tively for a fixed total atom number, as described in
Refs. [47,53]. For consistency, and easier interpretation of our
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FIG. 6. Persistent current oscillations in 3D. (a) Condensate density isosurfaces at (i) r = 0, (ii) = 1 s, and (iii) # = 2 s. Isosurface level
is at 5% of the maximum density. (b)(i) Initial condensate column density for 7 = 300 nK. Other temperatures show similar distributions.
(b)(ii) and (b)(iii) Thermal cloud density slices through n(x, y, z = 0) for (ii) 7 = 100 nK and (iii) 7 = 300 nK. (c) Example persistent current
oscillation and angular momentum difference between rings for a single run, for increasing temperature with each column. Red curve indicates

barrier ramp protocol.

results, throughout our 7 > 0 simulations we ensure that the
BEC number is equal to the corresponding 7 = 0 number,
fixed here to 10° particles. As a result, the fotal particle num-
ber in the system increases with increasing temperature, and
in this section we investigate the dissipative role of the thermal
cloud, up to the point where the condensate and thermal atoms
become comparable (i.e., an ~50% condensate fraction).

To ensure a comparable final barrier height across all
T > 0 simulations, throughout our present analysis the barrier
height is fixed in terms of the temperature-dependent chemical
potential according to Vp = 1.2u(T"). As before, a 27 winding
is imprinted in the left ring 100 ms before + = 0. An initial
condensate density isosurface is shown in Fig. 6(a)(i), and
corresponding column density in Fig. 6(b)(i).

First, we confirm the persistence of undamped current os-
cillations in a T = 0 3D system. As before, we restrict our
dynamical simulations to a barrier opening (approximately)
consistent with a beat half cycle and report such undamped
oscillations in Fig. 6(c)(i). The oscillation period is found to

be ~60 ms, slightly longer than the 2D model but still within
the analytic prediction, which is still valid assuming the vortex
traverses along z = 0 and k& = ks - &,. Similar oscillations are
observed in AL, with evidence of the beating effect between
persistent current and atom number oscillations clearly vis-
ible also here [54]. Finally, we note that, although we only
show results for V) = 1.2u3p(T) here, oscillations are found
already at lower maximum barrier amplitudes.

At finite temperatures, the thermal cloud tends to build
up in the low density regions surrounding the condensate, as
shown in the thermal equilibrium density slices at z =0 in
Fig. 6(b) for T = 100 nK [panel (ii)] and 7 = 300 nK [panel
(iii)] corresponding to the condensate density of panel (i).
The oscillations are still clearly visible in both n, and AL,
for T = 100 nK, but (as already mentioned in the context of
the damped GPE) the low amplitude oscillations in AL, can
wash out the visibility of the persistent current oscillations
at higher temperature (7' = 300 nK) [55]. We also see here
that the maximum amplitude of the AL, beat decreases with
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increasing temperature. This is a clear signature of damping
due to the dynamical coupling of the condensate to the ther-
mal cloud. Nonetheless, the key underlying feature of AL,
oscillations about a zero value remains detectable even at
non-negligible finite temperatures (the 7 = 300 nK case has
a near ~50% depletion), with |AL,| < 0.5 across all probed
3D regimes.

Our results here, corresponding to single experimental
runs, are visually much cleaner than the SPGPE c-field anal-
ysis. This is due to the direct access to the condensate mode
facilitated within the present model (with the observed differ-
ence in the trend of the AL, oscillations between 2D SPGPE
and 3D ZNG attributed to our different initialization proto-
cols). Importantly, however, the 3D nature of the simulations
qualitatively replicates the main features analyzed in detail in
2D in earlier sections.

VI. CONCLUSIONS

We have theoretically demonstrated the ability to control
the periodic transfer of persistent current across two rings in
which a quasi-2D quantum gas is trapped. Simulations for a
pure atomic condensate have clearly confirmed the stability of
oscillations of the state between the two rings. Our extensive
2D and 3D simulations conducted in the context of a quasi-2D
geometry have further revealed such oscillations to be long
lived, even at finite temperature, based on two distinct state-
of-the-art finite temperatures models. At low temperatures and
with minimal damping, these oscillations dissipate until the
vortex, the carrier of the persistent current, sits in the center
of the system. If the damping is large enough, there are no
oscillations.

These results were backed up by an analytic model for
the vortex dynamics, assuming the vortex traverses the low
density region on the central edge of the rings. This same
model qualitatively predicts the critical damping parameter at
which the oscillations are halted. Our numerical and analytical

predictions suggest that the oscillation frequency could be
a good probe for intrinsic system parameters and that the
oscillation lifetime could be utilized as a thermometer. Our
findings should be within observational reach based on current
experimental capabilities and detection schemes (see, e.g.,
Refs. [2,13-15,56-60]) and pave the way for future quantum
technological devices and sensors. For example, we envisage
our model will be applicable for precise measurements of
rotation and acceleration. Under large damping, the vortex is
known to sit at the center of the system; however, external
rotation or acceleration will affect the vortex’s final position.
Applications of our work to an accelerometer will be the
subject of future work. Furthermore, here we have focused
on single winding number dynamics, whereas implementation
of multiple winding numbers could provide intriguing new
physics.

Data supporting this publication are openly available under
a Creative Commons CC-BY-4.0 License in Ref. [61].
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