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Vorticity in closed quantum fluid circuits is known to arise in the form of persistent currents. In this work, we

develop a method to engineer transport of the quantized vorticity between density-coupled ring-shaped atomic

Bose-Einstein condensates in experimentally accessible regimes. Introducing a tunable weak link between the

rings, we observe and characterize the controllable periodic transfer of the current and investigate the role of

temperature on suppressing these oscillations via a range of complementary state-of-the-art numerical methods.

Our setup paves the way for precision measurements of local acceleration and rotation.
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I. INTRODUCTION

Persistent currents—quantized flow of atomic Bose-

Einstein condensates (BECs) in closed circuits—enable

fundamental studies of superfluidity and may lead to applica-

tions in high precision metrology and atomtronics [1–3], such

as the recently observed atomtronic SQUID [4]. The ques-

tion of the generation and stability of the atomic persistent

currents—which in the absence of external driving should be

topologically protected—is of fundamental importance; thus

it has been the subject of numerous experiments [5–18].

Beyond the intriguing physics afforded by single ring sys-

tems, several proposals for two parallel or stacked rings have

shown that the persistent current can tunnel between rings

in both many-body [19–21] and mean-field studies [22–25].

At the single-particle level, persistent current tunneling has

been predicted between arrays of adjacent rings and in similar

configurations [26–30]. However, tunneling has been shown

to be forbidden at the mean-field level [30,31]. Such a setup

is the cold-atom analog of a qubit made from adjacent su-

perconducting loops, known as the Mooij-Harmans qubit

[32–34], with control over the tunneling of persistent currents

in a double-ring geometry emulating the original theoretical

scheme.

The geometry considered in this work is of a BEC state in a

co-planar, side-by-side, double-ring geometry [31], including

a tunable weak link across the interface between the two rings;

the latter acts as a mediator for coherent transport of persistent
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current between the two rings, thus overcoming the mean-field

constraints inhibiting transfer between closed rings. Recently,

a similar scenario was studied at the few-particle many-body

level and quantum phase slips were observed in a double-ring

lattice with a tunable weak link [30]. At the many-body level,

the coupling between adjacent rings can lead to superposition

and entanglement of persistent current states, a feature not af-

forded at a mean-field description. However, at the mean-field

level, one has a many-particle state that is highly control-

lable and robust to thermal and quantum fluctuations. In this

scenario, one can either utilize a connecting secondary ring

as a nondestructive measurement device for an experiment

conducted in the primary ring or as a unique double-ring

experiment, where the dependency of external factors on the

transfer of persistent current can act as a highly sensitive

precision measurement device.

In this work, we address the dynamics of a single per-

sistent current, controllably initiated in one of two density

coupled rings, manipulated by an external barrier potential

acting as a tunable weak link separating and reconnecting

the two rings, as shown in Figs. 1(a)–1(c) (top). Such funda-

mental underlying physics is analyzed in detail theoretically

and numerically for experimentally relevant parameters in the

quasi-two-dimensional (quasi-2D) limit, both in the context

of the T = 0 mean-field Gross-Pitaevskii equation and its

appropriate dissipative and finite-temperature realizations.

In the pure (T = 0) mean-field limit, we find the persis-

tent current executes undamped oscillation cycles across the

density threshold between the two rings, at a fixed frequency

depending only on the geometry and the barrier amplitude.

After introducing our double-ring geometry (Sec. II), we first

analyze such dynamics in the pure 2D limit, with further

insight into vortex dynamics in this limit provided by a semi-

analytic toy quantum vortex kinetic model (Sec. III). The

effect of thermal dissipation is then investigated (Sec. IV) by
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FIG. 1. Persistent current oscillations. (a) Double-ring ground state solution showing (i) density and (ii) phase, with ring radius

R = 22.6 µm. The phase shows an initial antivortex (clockwise circulation) imprinted into the left ring. (b) After opening the gate between two

rings, the antivortex can periodically transfer. The persistent current is measured dynamically through the phase around the dashed ellipses

in (ii), with current plot illustrating first instance of persistent current transfer to right ring. (c) The timing of closing the gate sets the final

position of the persistent current. (d) Barrier amplitude as a function of time (in units of the system chemical potential). (e) Dynamic persistent

current for the left nL (red) and right nR (blue) rings. (f) Difference in angular momentum between rings; see Eq. (7).

the addition of a phenomenological damping term through full

numerical simulations, revealing the damping of such oscilla-

tions, with our quantum vortex equation of motion providing

a useful estimate of the thermal cloud dissipation rate required

to halt the oscillations. Our dissipative Gross-Pitaevskii model

is further extended by the addition of fluctuations through

the stochastic Gross-Pitaevskii model, revealing the robust

existence of such oscillations even in the presence of (thermal)

fluctuations.

To account for the self-consistent coupling of the con-

densate to a dynamical thermal cloud while simultaneously

taking account of the full 3D geometry of our setup, we also

consider (Sec. V) a generalized kinetic model, in which the

self-consistently coupled thermal cloud—which modifies the

effective trap felt by the condensate—is itself described by a

collisionless Boltzmann equation.

Confirmation of the existence of persistent current oscilla-

tions across all studied models, including the full 3D kinetic

model, offers further support towards the feasibility of exper-

imental observation of such oscillations.

II. DOUBLE-RING GEOMETRY

The geometry considered throughout this work is that of

two co-planar, partly overlapping density rings, whose planar

2D geometry [31] is shown in Fig. 1 (top).

The double ring geometry is fixed by

Vext(ρ, z, t ) = Vext(ρ, t ) + V⊥(z)

= Vrings(ρ) + Vbarrier(ρ, t ) + V⊥(z). (1)

This is the superposition of a potential of two 2D conjoined

rings

Vrings(ρ) = 1
2
mω2

ρ min[(ρ−− R)2, (ρ+− R)2], (2)

with a controllable time-dependent barrier Vbarrier(ρ, t ), and a

harmonic transverse confining potential

V⊥(z) = 1
2
mω2

z z2. (3)

The parameters of each ring have been chosen to match the

single-ring experiment of Ref. [10] based on 23Na atoms, with

an s-wave scattering length as = 2.75 nm, but with a larger

fixed total atom number of N = 106, arbitrarily chosen to

account for the larger system. As such, we have chosen ring

radii R = 22.6 µm, ρ± =
√

(x ± R)2 + y2, a radial trapping

frequency ωρ = 2π×134 Hz, and a tighter transversal trap-

ping frequency ωz = 2π×550 Hz, such that the system is in

the quasi-2D regime, with dominant dynamical features aris-

ing within the central plane (for information, our parameters

give µ/h̄ωz < 4). The barrier potential controlling the degree

of connectedness of the two rings has the form

Vbarrier(ρ, t ) = V0(t )�(R − |x|)e−y2/2σ 2

, (4)

featuring a time-dependent amplitude V0(t ), whose maximum

value is slightly above the system chemical potential µ, and a

barrier width σ = 3.44 µm, with �(x) denoting the Heaviside

(step) function.

III. PERSISTENT CURRENT OSCILLATIONS

AT MEAN-FIELD (GROSS-PITAEVSKII) LEVEL

It has been shown previously that persistent currents in a

co-planar double-ring quantum gas will not tunnel between

rings [31]. In this section, we show that including a barrier

potential between the rings does in fact facilitate such persis-

tent current transfer in the pure T = 0 condensate limit.

We assume here tight transverse confinement, such that

the full condensate wave function can be expressed in the

form �(r, t ) = ψ (ρ, t ) ≡ ψ (x, y, t )φ(z), where φ(z) denotes

a transverse Gaussian of width lz =
√

h̄/mωz. This allows us

to start our theoretical investigations in the context of the

pure two-dimensional (2D) Gross-Pitaevskii equation (GPE)

describing the evolution of the 2D wave function ψ (ρ, t ) ≡
ψ (x, y, t ) via

ih̄
∂

∂t
ψ (ρ, t ) = [ĤGP[ψ] − µ2D]ψ (ρ, t ), (5)

where

ĤGP[ψ] = −
h̄2

2m
∇2 + Vext(ρ, t ) + g2D|ψ (ρ, t )|2 (6)
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is the 2D Gross-Pitaevskii operator and the density is

normalized such that
∫∫

dx dy |ψ (ρ, t )|2 = N . Here,

g2D = g/
√

2π lz =
√

8π h̄2as/mlz is the effective two-

dimensional two-body interaction coupling (g denotes

the 3D coupling), with associated s-wave interaction strength

as = 2.75 nm, µ2D is the 2D chemical potential (related to

the full 3D chemical potential µ), and m is the 23Na atomic

mass. For our chosen parameters, µ2D = 14.93h̄ωρ before the

addition of the potential (i.e., for V0 = 0). All simulations are

performed in a Lx×Ly = 120×80 µm2 grid, with 768×512

grid points.

The barrier amplitude is increased/decreased linearly, with

its maximum constant value slightly exceeding the chemical

potential, in order to establish an effective barrier. Given the

physical importance of the relation of the barrier amplitude to

the chemical potential, throughout this work V0(t ) will always

be scaled to the relevant chemical potential [see Fig. 1(d)].

To analyze the system dynamics, we first numerically ob-

tain the ground state of the system in the absence of the barrier

(i.e., when V0 = 0) via imaginary time propagation. We then

initialize our persistent current oscillator by phase imprinting

a 2π clockwise winding around the center of the left ring,

such that the system state can be characterized by the corre-

sponding winding numbers nL = −1 (left ring) and nR = 0

(right ring, no persistent current). The persistent current, or

winding number, is akin to a “ghost” vortex in the center of

the annulus, and this language will be used interchangeably

[with winding number of +1 (−1) respectively corresponding

to the presence of a ghost vortex (antivortex). After phase

imprinting, we allow for 100 ms of thermalization, leading

to the initial condition shown in Fig. 1(a). Previous work in

this geometry has shown that the ghost vortex (or antivortex)

remains trapped in its initial state [31]. However, the inclusion

of an external barrier potential changes the system topology

from a 2-torus to a torus, allowing for the transfer of the

current between rings. This change in topology perhaps makes

the winding number ill defined while the barrier is open;

however, we find that within the radius R of each ring there is

either a 2π or 0 winding of the phase at all times, suggesting

that the singularity of the ghost vortex is always contained

within one of the dashed circles shown in Fig. 1(b)(ii), as

discussed in more detail in the next section.

A. Undamped oscillations

After an initial thermalization period, the barrier poten-

tial is linearly ramped up to the maximum V0/µ2D = 1.2

[Fig. 1(d)], with such opening of the gate [around the (x, y) =
(0, 0) region] allowing for vortex transfer between the two

rings. Once V0 exceeds µ the persistent current begins to

oscillate between the two rings [Fig. 1(e)]. In this set of

simulations, the gate is held open for 200 ms and the current

oscillates at a fixed period of ∼50 ms. Then the potential

amplitude is linearly reduced, and the position of the vortex

as V0 crosses µ sets in which of the two rings the persistent

current will reside and be detectable. In the example shown,

the persistent current has transferred from its initial state [left

ring, Fig. 1(a)(ii)] to the right ring [Fig. 1(c)(ii)]. Note that,

accompanying the persistent current oscillation is a small

transfer of atom number, as measured on either side of x = 0,

with <0.2% of the total atom number transferring with the

persistent current. Although insignificant in terms of atom

numbers, such a transfer does nonetheless have a numerically

measurable impact on the angular momentum dynamics, to be

described below.

It is important to note that the transfer is instantaneous

when the vortex line crosses the threshold between rings.

The winding is extracted dynamically via the azimuthal phase

measured at a distance R from the center of each ring [e.g.,

dashed circles in Fig. 1(b)(ii)]. Therefore, if a vortex is con-

tained anywhere within the circle of radius R from the ring’s

center the phase measured azimuthally will wind by a factor of

2π ; otherwise, it will return to its initial value. It is possible to

further characterize the dynamic vortex position through mea-

surement of the angular momentum in each ring, and define

the angular momentum difference as �Lz = 〈Lz,L〉 − 〈Lz,R〉,
where

〈Lz,{L,R}〉 =
ih̄

N{L,R}

∫∫

R

dx dy ψ⋆

(

y
∂

∂x
− (x ± R)

∂

∂y

)

ψ,

(7)

with NL/R the particle number in the left/right ring and the

integration region R is over the left/right side of the box,

accordingly. From this equation, we associate a value of

�Lz ≈ −1 (+1) when an antivortex is centered in the left

(right) ring, with intermediate values indicating a vortex be-

tween x = (−R, R), where one could approximate the vortex

position along the x axis as (�Lz )R. A similar measure was

applied in Ref. [35] to determine the angular momentum

difference between two components. An example trajectory

of �Lz is shown in Fig. 1(f). Each crossing of �Lz = 0 corre-

sponds to the transfer of persistent current. Whilst the barrier

is open the amplitude of �Lz does not exceed 0.5, suggesting

that the vortex does not travel near to the center of a ring

unless the barrier is closed.

Next, we investigate the oscillation period of the persistent

current as a function of the maximum barrier amplitude, still

in the zero-temperature limit (Fig. 2). If the barrier ampli-

tude is smaller than the chemical potential then there are no

observed oscillations, and the vortex remains in its starting

ring indefinitely. However, for all V0 > µ2D the vortex exhibits

symmetric oscillations about the center of the system. For

larger barrier amplitudes (V0 > 1.2µ2D) the resulting oscil-

lation period is almost constant, at around 50 ms. We have

explored varying the linear ramp gradient and find this only

has a weak effect on the oscillation period (typically ±1 ms);

however, if the barrier amplitude reaches its maximum value

in <20 ms this strongly perturbs the system, injecting vortex

pairs and high-amplitude noise.

We can gain an insight into the vortex dynamics through

a toy kinetic model. The velocity of a quantum vortex in an

inhomogeneous condensate can be written as [36]

v =
h̄

m
(∇
 − κ̂ × ∇ ln

√
n), (8)

where κ̂ = κs · êz, the integer s is the vortex winding number,

κ = h/m is the quantum of circulation, and n = |ψ |2 and 


are the density and phase of the condensate in the absence

of a vortex, respectively. We take the numerically obtained

stationary solution with fixed V0 and choose an appropriate

043171-3



T. BLAND et al. PHYSICAL REVIEW RESEARCH 4, 043171 (2022)

FIG. 2. Persistent current oscillation period as a function of max-

imum barrier amplitude. Main plot: oscillation period obtained from

the zero-temperature GPE (red curve). The blue markers are the

equivalent data from the semianalytic model (see main text). The

initial vortex position for the analytic model is chosen to give the cor-

rect oscillation period for V0 = 1.24µ2D (blue circle) and then taken

as an initial condition for square points. The filled region indicates

the analytic oscillation period range. The vertical green dotted line

corresponds to the point where V0 is equal to the chemical potential

in the presence of the barrier, thus denoting the parameter regime

beyond which the toy model acquires its meaning. Inset: vortex

trajectories in the double-ring system. Outer black line sets upper

bound to the analytic model. For V0/µ2D < 1 the trajectories do not

connect between rings and there is no vortex transfer, as shown by

disconnected lines inside, giving the lower bound to the filled region

in the main plot. Dashed blue curve corresponds to the vortex orbit

with V0/µ2D = 1.24.

starting position for the quantum antivortex near to the point

of the lowest density on the inside edge of the annulus. Using

such initial condition, we iteratively solve Eq. (8) to follow the

vortex trajectory as it traverses around the hourglass-shaped

inside edge. If the orbit is connected, then the vortex traverses

both rings, and the time to return to the initial position gives

the semianalytic oscillation period; otherwise, the orbit is dis-

connected and the vortex does not transfer. The vortex height

on the density distribution is constant, and in order for this to

vary we need to introduce dissipation, which will be the topic

of the next section.

The range of semianalytically obtained oscillation periods

are contained within the shaded region of Fig. 2, bounded by

two lines obtained as described below. The upper boundary

is the oscillation period of a vortex initialized at the “inner”

Thomas-Fermi radius (e.g., at y = 0 and x = −2R + RTF for

Thomas-Fermi radius RTF). This is theoretically the longest

orbit, as placing the ghost vortex further out places it on

the condensate density where it would be visible. The lower

boundary is given by the smallest connected loop across both

rings. Example connected and disconnected orbits are shown

as solid lines on the inset to Fig. 2. In setting up such a toy

model, we need to consider the densities in the presence of

the separating barrier V0. Due to our constraint on fixed atom

number, this thus corresponds to a slightly higher chemical

potential than the one before the addition of the barrier. As

FIG. 3. Beating effect at long times. γ = 0 simulation extended

to t = 2 s to show the collapse revival of �Lz oscillations. Shown are

(a) winding number oscillations in the left well, nL(t ), (b) angular

momentum difference �Lz(t ), and (c) fractional population differ-

ence �N = (NL − NR)/(NL + NR)(t ).

a result, the toy model can only give results beyond such a

point, indicated by the vertical dashed green line, at which

V0 ∼ 1.028µ2D.

Moreover, as such a model ignores the role of self-

consistent vortex-sound interactions on vortex dynamics

(considered in detail in the related setting of Ref. [37]) our

semianalytical predictions cannot fully describe the dynamics

in the regime when the barrier height is too close to the chemi-

cal potential, although such effects are of course fully captured

within GPE numerical simulations. With that in mind, we can

nonetheless further test this model through direct comparison

to the GPE results. First, we find an initial vortex position

in the toy model that corresponds to an oscillation period

matching the GPE, arbitrarily chosen here as V0/µ2D = 1.24

(Fig. 2, blue circle, and corresponding orbit in the inset).

Fixing this initial vortex position but varying V0, we extract the

oscillation periods from our model. Remarkably, we find all

values closely match the GPE results for V0/µ2D � 1.13 (such

that a connected orbit is still obtained), thus demonstrating the

semiquantitative validity of such an intuitive toy model.

B. Observation of a beating effect

The preparation of the initial state can cause small os-

cillations in the atom number between the two rings. The

full impact of these oscillations is only observable in the

long-time limit. We repeat the procedure of Fig. 1, but now

monitoring the temporal evolution when the gate is kept open

(at V0/µ2D = 1.2) for the even longer period of time of 1.6 s.

Figure 3 shows (a) the winding number oscillations in the left

well, (b) the angular momentum difference, and (c) the frac-

tional population difference �N = (NL − NR)/(NL + NR).

Analyzing the dominant frequencies through taking the re-

spective discrete Fourier transforms of (b) and (c), we can

infer a difference of ∼1.5 ms in their respective oscillation

periods, which accounts for a beating period of ∼1.5 s,

consistent with the features seen in the angular momentum

difference. We thus conclude that the observed beating (which

appears to exhibit no noticeable damping in the γ = 0 limit)
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FIG. 4. Suppression of persistent current oscillations. (a)(i) Bar-

rier amplitude. Winding number oscillations for (ii) γ = 0, (iii)

γ = 0.001, and (iv) γ = 0.03. (v) Difference in angular momentum

eigenvalues, �Lz = 〈Lz,L〉 − 〈Lz,R〉. (b) Oscillation lifetime as a func-

tion of maximum barrier amplitude and γ . There are no oscillations

for γ > γcr = 0.015.

is a result of coupling of the relative angular momentum to

the relative fractional population difference. When the �Lz

amplitude is at its smallest, this effect can produce glitches

in our winding number measurements, as seen at ∼1.1 s

[Fig. 4(a)(ii)]. The wait time after the phase-imprinting pro-

tocol but prior to opening up the barrier controls the phase

within a given beating cycle. For the remainder of the work,

we focus our analysis on timescales (broadly) consistent with

a single beating half cycle, in order to best highlight the role

of dissipation and fluctuations.

IV. FINITE TEMPERATURE EFFECTS:

ROLE OF DISSIPATION AND FLUCTUATIONS

Actual experiments are typically conducted at low, but

nonzero, temperatures—and so are prone to both dissipation

and fluctuations, which we consider in this section. The net

effect of such contributions, as described in detail below,

is to damp, or even completely suppress, persistent–current

oscillations.

For a more stringent test of the mean-field predictions,

we supplement our 2D model by additional contributions.

In Sec. IV A, we assess the role of dissipation through the

addition of phenomenological damping to the GPE. We then

further add corresponding thermal fluctuations to the model in

Sec. IV B. The generalization to full 3D considerations is then

discussed in Sec. V.

A. Inclusion of phenomenological dissipation:

Dissipative Gross-Pitaevskii equation

To include the dissipative effects of temperature, we extend

our 2D model from Eq. (5) to the damped (or dissipative)

GPE, given by

ih̄
∂

∂t
ψ (ρ, t ) = (1 − iγ )[ĤGP[ψ] − µ2D]ψ (ρ, t ). (9)

Here damping is phenomenologically included in the dimen-

sionless parameter γ ≪ 1, with ĤGP unchanged from Eq. (6).

As previously reported, in the zero temperature model

(γ = 0), oscillations continue indefinitely for as long as the

barrier V0 exceeds the system chemical potential.

Having addressed the issue of the changing amplitude in

�Lz in the γ = 0 limit of a pure GPE, we next investigate

the role of damping on the lifetime of the oscillations. The

results of our analysis using the dissipative GPE is shown, for

0 < γ ≪ 1, in Fig. 4.

As evident from Fig. 4, the oscillations halt after 600 ms for

small γ = 0.001 [panel (a)(iii)], as opposed to the undamped

γ = 0 oscillations shown in panel (a)(ii). Increasing to larger

γ = 0.03 the vortex does not transfer at all until (potentially)

when the gate is closed [Fig. 4(a)(iv)]. Evaluation of �Lz

for γ = 0.03 shows that the vortex becomes trapped at the

center of the system [Fig. 4(a)(v)], and as the gate is closed

the vortex is forced into the center of a randomly chosen ring,

independent of the initial condition [i.e., the vortex may stay

in the same ring or cross to the other ring—the latter occurring

in Fig. 4(a)].

Intermediate values of γ reveal the oscillation damping,

with the �Lz oscillation amplitude rapidly decreasing to 0, an

effect quite distinct to the γ = 0 beating discussed above.

We also map out the oscillation lifetime, defined as the

time from the barrier opening to the last vortex transfer, as

a function of γ : our results are shown in Fig. 4(b). For small

γ < 10−3 the oscillations are long lived, surviving for ∼1 s.

The lifetime rapidly decreases with γ , and at γ > γcr = 0.015

the lifetime is smaller than half of the oscillation period,

trapping the persistent current in its initial ring. The lifetime

of the oscillations is only weakly dependent on the maximum

barrier amplitude.

In order to obtain an estimate for γcr, we return to the

vortex kinetic model. As in the damped GPE, dissipation in

our model is included by replacing the Hamiltonian from

Ref. [36] with the dissipative one [ĤGP → (1 − iγ )ĤGP] to

give the next correction for the velocity of the vortex core,

v =
h̄

m
[∇(
 − γ ln

√
n) − κ̂ × ∇(ln

√
n + γ
)]. (10)

Discarding terms with ∇
 (which are small compared to

contributions from the density gradient) gives

v = −
h̄

m
(γ∇ ln

√
n + κ̂ × ∇ ln

√
n) = vr + vφ, (11)
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where vr corresponds to radial vortex motion to larger or

smaller densities, i.e., changing the orbit length, and vφ cor-

responds to the azimuthal vortex displacement along the orbit

trajectory at constant density. We can get a useful expression

if we compare small displacements of the vortex along the

above-mentioned directions through the ratio

|vr|
|vφ|

≡
dlr

dlφ
=

|γ∇ ln
√

n|
|κ̂ × ∇ ln

√
n|

= γ . (12)

We can use this to estimate the critical γ at which the vortex

drifts from an initially connected to a disconnected orbit. For

this, we take the vortex initially placed at the blue point in the

inset of Fig. 2 (for which the correct oscillation period was

obtained in the γ = 0 limit) and find the smallest value of γ at

which the vortex meets the threshold between rings, but does

not cross it. Here, the displacement along the radial direction

is the distance from the Thomas-Fermi radius to the point with

the shortest connected orbit, so dlr ≈ �lr = 0.87 µm, and the

azimuthal displacement is a quarter of the total length of the

vortex orbit, dlφ ≈ �lφ = 44.27 µm. For these values, we get

γcr ≈ 0.0197, which is reasonably close to the observed value

0.015.

As we can see, γcr depends on the geometry of the system.

This fact has some important consequences. First, the smallest

connected orbit gets shorter for higher values of Vb and this

makes γcr larger which we, however, do not observe from

numerical investigation (see Fig. 4). Second, by making the

radius of the ring smaller (keeping the peak density fixed) or

by making the ring wider—thus separating more the highest

and the lowest connected orbits—we can increase γcr; in effect

this makes the oscillations more robust to finite tempera-

ture effects. We have verified that doubling the radius (with

fixed peak density and barrier amplitude V0 = 1.3µ2D) does

indeed decrease the critical γ parameter by about one-half to

values γcr ∈ [0.006, 0.007]. On the contrary, when the atom

number of rings with double radius is instead unchanged

(increasing the distance between the highest and the lowest

connected orbits) we observed a higher critical dissipation of

γcr ∈ [0.008, 0.009].

Having identified the dissipative persistent current os-

cillation feature, we next investigate the role of thermal

fluctuations.

B. Inclusion of fluctuations: (Projected) stochastic

Gross-Pitaevskii model

To include the effects of thermal fluctuations, we further

extend our model in Eq. (9) to the stochastic projected Gross-

Pitaevskii equation (SPGPE) [38–42], along similar lines to

previous studies in single ring-trap geometries [43–46]. In

this formalism, the energy modes of the system are decom-

posed into the low-energy coherent region, described by the

multimode order parameter �(ρ, t ) mapping to the so-called

“classical” or “c-field” region, and the high-energy incoherent

region which is assumed to play the role of a static heat bath

of temperature T . Individual trajectories of the coherent re-

gion dynamics evolve according to the stochastic equation of

motion [41]

ih̄
∂

∂t
� = P̂{(1 − iγ )[ĤGP[�] − µ2D]� + η(ρ, t )}, (13)

describing their coupling to the higher-lying modes, where

again ĤGP is unchanged from Eq. (6). The complex Gaus-

sian noise satisfies 〈η⋆(ρ, t )η⋆(ρ′, t )〉 = 〈η(ρ, t )η(ρ′, t )〉 =
0 and 〈η⋆(ρ, t )η(ρ′, t ′)〉 = 2γ kBT/h̄δ(ρ − ρ

′)δ(t − t ′). The

projector P̂ implements the energy cutoff, ensuring that the

occupation of the largest included mode has average occu-

pation of order unity. The energy cutoff here is fixed to

ǫcut(µ2D, T ) = 3µ2D, consistent with previous studies [40],

and the 2D chemical potential remains fixed to µ2D =
14.93h̄ωρ .

Each numerical realization has a different dynamical

noise field and can be qualitatively interpreted as a single

experimental run (in the sense that an ensemble over nu-

merical runs should produce the same results about mean

values and fluctuations as an ensemble over many ex-

periments). The procedure is to simulate the dynamical

setting multiple times based on different random noise

sampling and then extract appropriately averaged physical

quantities.

In each numerical realization for a given temperature, an

initial state is generated by dynamical equilibration from a

noisy initial field, leading to a state in thermal equilibrium

with approximately N ∼ 106 atoms in the c-field. This state

is then phase imprinted (as in the T = 0 case) with a 2π

winding, and taken as the initial condition.

In Fig. 5 we show example single-trajectory oscillations

for T = 50, 150, and 250 nK, from left to right, and fixed

γ = 0.001. Example initial states are shown on the top row of

Fig. 5, with increasing fluctuations. Individual trajectories of

the persistent current oscillations are shown in row (ii). Fluc-

tuations reduce visibility of the oscillations with increasing

temperature, essentially shifting the phase of the oscillation.

This phase shift washes out the signal of the average winding

number, 〈nL〉, taken over 100 distinct numerical noise real-

izations in (iii). The absolute value of the average winding

number is related to the probability of finding the current in

the left, or right, ring. We have chosen this quantity as the eas-

iest to realize in an experiment, through repeated destructive

measurements of the winding number. Even for relatively high

temperatures, there are still clearly observable oscillations. In

all cases, we find a final value |〈nL〉| = 0.5, which corresponds

to a random final configuration.

Results from Fig. 4 revealed a decreasing oscillation life-

time with increasing dissipation rate γ . As expected, in the

limit of low temperatures (T = 50 nK case), where the fluctu-

ations are relatively small, the average 〈�Lz〉 over stochastic

realizations [Fig. 5(a)(iv)] exactly coincides with the dissi-

pative result of the damped GPE [Eq. (9)] with the same

dissipation parameter γ [Fig. 4(a)(v)], the latter shown by the

red curve in Fig. 5(a)(iv). However, as evident from Fig. 5,

stronger noise (corresponding to a higher temperature) may

conceal some features, pointing towards an even shorter pe-

riod over which oscillations are detectable in the presence of

fluctuations, as expected to be relevant in realistic experimen-

tal settings.

If one is interested in more directly identifying the effect

on the condensate mode, within a 3D setting which also fully

accounts for transverse degrees of freedom, one could alter-

natively use a 3D kinetic model, to which we next turn our

attention.
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FIG. 5. Persistent current oscillations for increasing temperature from left to right columns. Rows: (i) equilibrium SPGPE density profiles.

(ii) Example persistent current oscillation in the left ring for a single run. (iii) Winding number oscillations averaged over 100 runs. The

absolute value |〈nL〉| can be interpreted as a probability of finding the vortex in the left ring. (iv) Mean angular momentum difference between

rings. Shading indicates one standard deviation from the mean (solid line). Red curve indicates barrier ramp protocol. Dashed line in (a)(iv) is

the equivalent T = 0, γ = 0.001 data from Fig. 4.

V. OSCILLATIONS IN A 3D KINETIC MODEL

Finally, we extend our analysis to a fully three-dimensional

(3D) finite temperature system, to fully and self-consistently

numerically account for the effect of the perpendicular har-

monic trap on the persistent current oscillations. Rather than

implementing the same SPGPE model in 3D, we instead

choose to describe the system in terms of a kinetic model

which facilitates a direct distinction between the condensate

and the self-consistently coupled thermal cloud.

A. Collisionless ZNG model: Gross-Pitaevskii coupled

to a collisionless Boltzmann equation

At finite temperature, the bosonic quantum gas is partially

condensed and we must consider the presence of the thermal

cloud. We have used the collisionless version of the Zaremba-

Nikuni-Griffin (ZNG) model [47] to describe the behavior of

this system. In this model the condensate mode dynamics are

described by a generalized GPE, which includes an additional

term accounting for the mean field potential of the thermal

cloud, 2gnth, which can be thought of as a time-dependent

correction to the 3D trapping potential Vext(ρ, z, t ). The con-

densate mode, �(ρ, z, t ), thus obeys the 3D equation [47]

ih̄
∂�

∂t
=

(

−
h̄2

2m
∇2 + Vext + g(|�|2 + 2nth)

)

�, (14)

where the 3D scattering amplitude is g = 4π h̄2as/m. This

equation is solved self-consistently with a collisionless

Boltzmann equation for the single–particle phase-space dis-

tribution, f (r, p, t ). The single–particle distribution function

is defined as the number of particles within a neighborhood

of the phase-space point (r, p) at time t . The thermal–cloud

density, nth(r, t ), at time t can be extracted from f (r, p, t ) by

integrating over p:

nth(r, t ) =
∫

d3p f (r, p, t ). (15)

The collisionless Boltzmann equation for f has the form

∂ f

∂t
+

p

m
· ∇r f − ∇rVeff · ∇p f = 0. (16)

The effective potential felt by the thermal atoms now takes

the form Veff = Vext + 2g(|�|2 + nth). The ZNG kinetic theory

has been successfully used to model a range of dynamical

phenomena in single- and multicomponent condensates (see,

e.g., Refs. [47–52] and references therein).

The initial thermal-equilibrium wave function, �0, and

thermal cloud density, n0
th, are set by the temperature-

dependent system chemical potential µ(T ), with the initial

finite-temperature equilibrium distribution obtained itera-

tively for a fixed total atom number, as described in

Refs. [47,53]. For consistency, and easier interpretation of our
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FIG. 6. Persistent current oscillations in 3D. (a) Condensate density isosurfaces at (i) t = 0, (ii) t = 1 s, and (iii) t = 2 s. Isosurface level

is at 5% of the maximum density. (b)(i) Initial condensate column density for T = 300 nK. Other temperatures show similar distributions.

(b)(ii) and (b)(iii) Thermal cloud density slices through n(x, y, z = 0) for (ii) T = 100 nK and (iii) T = 300 nK. (c) Example persistent current

oscillation and angular momentum difference between rings for a single run, for increasing temperature with each column. Red curve indicates

barrier ramp protocol.

results, throughout our T > 0 simulations we ensure that the

BEC number is equal to the corresponding T = 0 number,

fixed here to 106 particles. As a result, the total particle num-

ber in the system increases with increasing temperature, and

in this section we investigate the dissipative role of the thermal

cloud, up to the point where the condensate and thermal atoms

become comparable (i.e., an ∼50% condensate fraction).

To ensure a comparable final barrier height across all

T > 0 simulations, throughout our present analysis the barrier

height is fixed in terms of the temperature-dependent chemical

potential according to V0 = 1.2µ(T ). As before, a 2π winding

is imprinted in the left ring 100 ms before t = 0. An initial

condensate density isosurface is shown in Fig. 6(a)(i), and

corresponding column density in Fig. 6(b)(i).

First, we confirm the persistence of undamped current os-

cillations in a T = 0 3D system. As before, we restrict our

dynamical simulations to a barrier opening (approximately)

consistent with a beat half cycle and report such undamped

oscillations in Fig. 6(c)(i). The oscillation period is found to

be ∼60 ms, slightly longer than the 2D model but still within

the analytic prediction, which is still valid assuming the vortex

traverses along z = 0 and κ̂ = κs · êz. Similar oscillations are

observed in �Lz, with evidence of the beating effect between

persistent current and atom number oscillations clearly vis-

ible also here [54]. Finally, we note that, although we only

show results for V0 = 1.2µ3D(T ) here, oscillations are found

already at lower maximum barrier amplitudes.

At finite temperatures, the thermal cloud tends to build

up in the low density regions surrounding the condensate, as

shown in the thermal equilibrium density slices at z = 0 in

Fig. 6(b) for T = 100 nK [panel (ii)] and T = 300 nK [panel

(iii)] corresponding to the condensate density of panel (i).

The oscillations are still clearly visible in both nL and �Lz

for T = 100 nK, but (as already mentioned in the context of

the damped GPE) the low amplitude oscillations in �Lz can

wash out the visibility of the persistent current oscillations

at higher temperature (T = 300 nK) [55]. We also see here

that the maximum amplitude of the �Lz beat decreases with
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increasing temperature. This is a clear signature of damping

due to the dynamical coupling of the condensate to the ther-

mal cloud. Nonetheless, the key underlying feature of �Lz

oscillations about a zero value remains detectable even at

non-negligible finite temperatures (the T = 300 nK case has

a near ∼50% depletion), with |�Lz| < 0.5 across all probed

3D regimes.

Our results here, corresponding to single experimental

runs, are visually much cleaner than the SPGPE c-field anal-

ysis. This is due to the direct access to the condensate mode

facilitated within the present model (with the observed differ-

ence in the trend of the �Lz oscillations between 2D SPGPE

and 3D ZNG attributed to our different initialization proto-

cols). Importantly, however, the 3D nature of the simulations

qualitatively replicates the main features analyzed in detail in

2D in earlier sections.

VI. CONCLUSIONS

We have theoretically demonstrated the ability to control

the periodic transfer of persistent current across two rings in

which a quasi-2D quantum gas is trapped. Simulations for a

pure atomic condensate have clearly confirmed the stability of

oscillations of the state between the two rings. Our extensive

2D and 3D simulations conducted in the context of a quasi-2D

geometry have further revealed such oscillations to be long

lived, even at finite temperature, based on two distinct state-

of-the-art finite temperatures models. At low temperatures and

with minimal damping, these oscillations dissipate until the

vortex, the carrier of the persistent current, sits in the center

of the system. If the damping is large enough, there are no

oscillations.

These results were backed up by an analytic model for

the vortex dynamics, assuming the vortex traverses the low

density region on the central edge of the rings. This same

model qualitatively predicts the critical damping parameter at

which the oscillations are halted. Our numerical and analytical

predictions suggest that the oscillation frequency could be

a good probe for intrinsic system parameters and that the

oscillation lifetime could be utilized as a thermometer. Our

findings should be within observational reach based on current

experimental capabilities and detection schemes (see, e.g.,

Refs. [2,13–15,56–60]) and pave the way for future quantum

technological devices and sensors. For example, we envisage

our model will be applicable for precise measurements of

rotation and acceleration. Under large damping, the vortex is

known to sit at the center of the system; however, external

rotation or acceleration will affect the vortex’s final position.

Applications of our work to an accelerometer will be the

subject of future work. Furthermore, here we have focused

on single winding number dynamics, whereas implementation

of multiple winding numbers could provide intriguing new

physics.

Data supporting this publication are openly available under

a Creative Commons CC-BY-4.0 License in Ref. [61].
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