Downloaded 08/02/22 to 45.3.127.204 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM/ASA J. UNCERTAINTY QUANTIFICATION (©) 2022 Society for Industrial and Applied Mathematics
Vol. 10, No. 2, pp. 619-650 and American Statistical Association

Gaussian Processes with Input Location Error and Applications to the Composite
Parts Assembly Process®

Wenjia WangT, Xiaowei Yuet, Benjamin Haaland®, and C. F. Jeff Wu¥
|

Abstract. This paper investigates Gaussian process modeling with input location error, where the inputs are
corrupted by noise. Here, the best linear unbiased predictor for two cases is considered, according
to whether there is noise at the target location or not. We show that the mean squared prediction
error converges to a nonzero constant if there is noise at the target location, and we provide an
upper bound of the mean squared prediction error if there is no noise at the target location. We
investigate the use of stochastic Kriging in the prediction of Gaussian processes with input location
error and show that stochastic Kriging is a good approximation when the sample size is large. Several
numerical examples are given to illustrate the results, and a case study on the assembly of composite
parts is presented. Technical proofs are provided in the appendices.
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1. Introduction. Gaussian process (GP) modeling is widely used to recover underlying
functions from scattered evaluations, possibly corrupted by noise. This method has been
utilized in spatial statistics for several decades [7, 22|. Later, GP modeling was applied in
computer experiments to build emulators of their outputs [27]. In order to capture the ran-
domness of real systems, it is natural to use stochastic simulation in computer experiments.
For GP modeling, the output associated with each input can be decomposed as the sum
of a mean GP output and a random error that is independent of the GP output. In sto-
chastic simulation of computer experiments, the random error is typically independent and
identically distributed (i.i.d.) on each input location [1]. We call the error added to the
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mean GP output as oufput noise. The output noise is usually from uncertainties associ-
ated with responses, such as measurement errors, computational errors, and other unquan-
tified errors. The corresponding GP modeling with output noise is called stochastic Kriging
(SK) [1].

Besides output noise, in some cases, the input variables are also corrupted by noise. Noisy
or uncertain inputs are quite common in spatial statistics because geostatistical data are
often indexed by imprecise locations. Detailed examples can be found in [2, 32]. We call the
random error of input variables input location noise. The input location noise comes from
the natural uncertainties inherent to the complex systems, such as actuating uncertainty,
controller fluctuation, and internal measurement error. In contrast to the output noise, which
is related to the response, input location noise is associated with input variables. If the input
variables are corrupted by noise in a GP, it is known as a GP with input location error, and
the corresponding best linear unbiased predictor is called Kriging adjusting for location error
(KALE) [8]. Also see [4, 9, 15, 23] for more discussions. KALE has been applied in many
areas, including robotics [10], wireless networks [24], and Wi-Fi fingerprinting [18].

KALE predicts the mean GP output at point z € Q without input location noise. In
many applications, however, the prediction of the mean GP output at point x € {2 with input
location noise is desired. A motivating example is the composite aircraft fuselage assembly
process. In this process, a model is needed to predict the dimensional deviations under noisy
actuators’ forces. Further, when new actuator forces are implemented in practice, there is
an inevitable input location noise, i.e., uncertainty in the actually delivered actuator forces.
Therefore, the output at point z € 2 has input location noise. Under this scenario, we consider
Kriging adjusting for location error and noise (KALEN), which is the best linear unbiased
predictor of the mean GP output at point z € 2 with input location noise. For another
example, in the electric stability control system of vehicles, a model is developed to link the
inputs (i.e., braking pressure and engine torque) and the outputs (i.e., stability control loss).
Input location noise inevitably exists in this system due to the uncertainties in wheel pressure
modulators, pressure reservoir, and electric pump. Other than the two examples mentioned
above, KALEN fits many applications better than KALE due to the ubiquity of actuating
errors in engineering systems.

In this paper, we discuss three predictors, KALE, KALEN, and SK, applied in prediction
and uncertainty quantification of GP modeling with input location error. We show that
unlike GP modeling without location error, the mean squared prediction error (MSPE) does
not converge to zero as the sample size goes to infinity. Furthermore, we show that the limiting
MSPEs of KALEN and SK are equal if point z € 2 has input location noise. We obtain an
asymptotic upper bound on the MSPEs of KALE and SK if there is no noise at point z € €.
This upper bound is small if the input location noise at observed points is slight. Numerical
results indicate that if the sample size is relatively small and noise is rather large, KALE or
KALEN has a much smaller MSPE, and thus both are desirable, compared with SK. If the
sample size is large or the noise is quite small, then the performance of all three approaches is
similar. We also compare the performance of KALEN and SK in the modeling of a composite
parts assembly process problem. We find that KALEN and SK are comparable across a range
of small input location noise levels, corresponding to a range of actuator tolerances, which is
consistent with the theoretical analysis.
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The remainder of this article is structured as follows. In section 2, we formally state
the problem, introduce KALE and KALEN, and show some asymptotic properties of the
MSPEs of KALE and KALEN. Section 3 presents some theoretical results when using SK
in the prediction of GPs with input location error. Parameter estimation methods are dis-
cussed in section 4. Numerical results are presented in section 5. A case study of the com-
posite parts assembly process is considered in section 6. Technical details are given in the
appendices.

2. GPs with input location error. In this section, we introduce two predictors of GPs
with input location error, KALE and KALEN. We also give several asymptotic properties of
KALE and KALEN.

2.1. Two predictors of GPs with input location error. Suppose f is an underlying func-
tion defined on R4, and the values of f on a convex and compact set €2 are of interest. Suppose
we observe the responses f(z1),..., f(z,) on X = {z;,...,z,} C Q. Following the terminol-
ogy in design of experiments [38], we call X = {z1,...,2,} design points. A standard tool to
build emulators based on observed data is GP modeling (see [13] and [28], for example). In GP
modeling, the underlying function f is assumed to be a GP. We suppose f is stationary, which
means that the covariance of f(z) and f(z’) depends only on the difference z — 2’ between the
two input variables z and 2. We further assume Cov(f(z), f(z')) = 02¥(z — '), where o2 is
the variance, and WV is the correlation function. Then ¥ must be positive definite and satisfy
¥(0) = 1. Since f is defined on R4, ¥ should also be defined on R%. In GP modeling, one can
assume that the mean of f is zero, a constant, or a linear combination of known functions.
The corresponding methods are referred to as simple Kriging, ordinary Kriging, and universal
Kriging, respectively. Ordinary Kriging and universal Kriging are more flexible and may im-
prove the prediction performance, but the estimation of the mean function introduces more
uncertainties. Moreover, Theorem 3 of [34] suggests that the estimation of the mean function
can be inconsistent. These uncertainties and inconsistency make the theoretical analysis more
cumbersome and dilute the focus of the overall analysis. Therefore, for the ease of mathe-
matical treatment, we assume the mean of f is zero in theoretical developments in sections
2—4, which is equivalent to removing the mean surface. Nevertheless, we use a nonzero mean
function in numerical and case studies to improve the prediction performance by introducing
more degrees of freedom.

For a GP with input location error, the inputs are corrupted by noise. In this paper,
we mainly focus on the input location error and assume the responses are not influenced by
the output noise. It is worth noting that this assumption can be relaxed, and the GP with
both input location error and output noise can be analyzed in a similar manner, as stated
in Remark 2.1. Specifically, suppose the responses are perturbed by the input location error;
that is, we observe y; = f(x; +¢;) for ; € X, where the ¢;’s are i.i.d. random vectors with
mean 0 and have a probability density function p(-). Therefore, although z; is known, the
actual location z; + €; is unknown, and we observe the response f(z; + ¢;) on this unknown
location. It is possible to have replicates on some design points, i.e., for some j # k, z; = z},
for zj,zr € X but €¢; # €. We assume p(-) is continuous and each element of €; has finite
variance (note that €; is a vector).
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Following the approach in [8], the best linear unbiased predictor of f(z) on a point z is
given by

(1) QY;z)=alY +as,

where a; € R™, as € R are the solution to the optimization problem

(2) min E(f(z) — Q(Y;2))? = min E(f(z)—olY — ap)?,

(@1,02) (a1,02)
and the responses on the design points are Y = (y1,...,yn)!. By minimizing (2) with respect
to (ai,ay), we obtain that the solution to (2) is @; = R !r(z) and ay = 0, where r(z) =
(r(z,1),...,7(z,2,))T denotes the covariance vector between f(z) and Y with
(3) r(@, z5) = E(f(2)y;) = o* /Rd U(z — (25 + &))p(ej)des,

and R = (Rji)jr denotes the covariance matrix with

o?¥(z; — xj) = 02 j=k
4 Rip = E(y;y) = g ’ ™
@) B = Ely;m) { 02 [oa Jua Uz + € — (x5, + ex))p(e;)p(er)dejder, § # k.

Plugging a; = R™'r(z) and a2 = 0 into (1), we find that the best linear unbiased predictor
of f(z) is

(5) f(z) =r(z)TR7Y.

Remark 2.1. If the observations also have i.i.d. output noise with mean zero and finite
variance o2, we only need to replace E(y;y;) = o2 by E(y;y;) = 0% + 02, and the rest of the
theoretical analysis remains similar. Our theoretical analysis can also be generalized to the
case that ¢;’s are independent but not identically distributed. Although these generalizations
do not influence the theoretical development a lot, they could dilute the main focus of this
paper. Therefore, we focus on the GPs with only i.i.d. input location noise.

In [8] equation (5) is referred to as Kriging adjusting for location error (KALE). If the
prediction of y(z) = f(x + €) on a point & with input location noise is of interest, it can be
shown that we only need to replace r(z) in (5) by rn(z) = (ry (z,21),...,rN(z,22))T, where

(6) ry (@, 2;) = o /R d /R W+ e~ (o + )ples)p(e)dejde.

We refer to the corresponding best linear unbiased predictor (z) = ry (;t:)TR_lY as Kriging
adjusting for location error and noise (KALEN). One direct relation between KALE and
KALEN is §(z) = [pa f(z + €)p(€)de.

In some cases, there exist closed forms of the integrals in (3)—(6). For example, if the
correlation function ¥ (s — t) = exp(—0||s — t||2), and the noise € ~ N(0,0214), where § > 0 is
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the correlation parameter, and N(0,021,) is a mean zero normal distribution with covariance
matrix o214, then (3)—(6) can be calculated, respectively, as [6]

2 .
av, J:ka
Rjp = 2 ZOllz; =k 13

(LH?TWE vz j#k,
( ) o2 —snw—min%
"z, zj) = ———F-7,¢€ 14207
(1+ 2020)4/2
2 —bllz—=;I3
, i —1ra076
(7) N (2, 2;) o

=————-¢€
(1 + 4026)d/2

We also include the calculation of (7) in Appendix C for the reader’s reference.

Unfortunately, in general, (3)—(6) are intractable and are typically estimated via Monte
Carlo integration by sampling €;’s from p(-), which can be computationally expensive. For
example, if we choose the Matérn correlation function, then (5) does not have a closed form.
In this case, the calculation of (5) will require much time, as we will see in section 5.

With equations (3)—(6), the MSPE of KALE can be calculated by
E(f(z) - f(x))* = E(f(z) —r(z) R7'Y)?
=E(f(z)?) — 2r(z)TR'E(f(2)Y) + r(z) TR'E(YYT)R ' r()
(8) =02 — r(;t:)TR_lr(;t:),
where f is as in (5), and r and R are as defined in (3) and (4), respectively. The last equality

is true because of (3) and (4), and E(f(z)?) = ¥(0) = 1. Similarly, one can check that the
MSPE of KALEN is

(9) E(y(z) — §(2))” = 0 = rn(2) " R™'rn(a),

where ry is as defined in (6).

2.2. Asymptotic behaviors of KALEN. In this subsection, we consider asymptotic be-
haviors of KALEN. Define

(10) Ug(s—1t) = /d /d V(s + €1 — (t + €2))p(e1)p(e2)derdes.
re JR
Notice that the MSPE of KALEN can be expressed as

E(y(z) — §(2))* = 0” —rn(2) RN (@)
= 0?(1 — Ug(0)) + 0?Us(0) — rn (z) R ry (x)
(11) = 172(1 - lI'S(O))J—i—E}'QlIJS(O) —ry(z)(Rs + o*(1 — IIJS(O))IH)_ITN(Q:)J,

a coﬁgta.nt “MSPﬁrof SK”

where Rg = 0%(Us(z; — z1))jk and I,, is an identity matrix. Intuitively, if the second term is
indeed an MSPE of SK, then it converges to zero, and the MSPE of KALEN converges to a

constant. However, the second term is an MSPE of SK unless ¥ is a valid correlation function
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(thus Rg is positive definite), and that is why we add quote marks in (11). In Proposition 3.1
of [6], it is shown that if a function ¢(s,t) = Vg(s —t) for s # ¢t and c(s,s) = 1, then ¢(-,-) is a
valid correlation function. Therefore, the covariance matrix R is positive definite. In order to
show that Rg in (11) is also positive definite, we assume the correlation function ¥ satisfies
the following assumption, which is also assumed to be true in the rest of sections 2 and 3.

Assumption 2.2. The correlation function ¥ is a radial basis function, i.e., ¥(s —t) =
é(||s — t||2) for s,t € RY. Furthermore, ¢(r) > 0 is a strictly decreasing function of r € R*,
with ¢(0) = 1. The reproducing kernel Hilbert space generated by ¥ can be embedded into a
Sobolev space H"(2) with n > d/2.

Remark 2.3. For a brief introduction to the reproducing kernel Hilbert space, see Appen-

dix A.

Many widely used correlation functions, including isotropic Gaussian correlation functions
and isotropic Matérn correlation functions, satisfy this assumption. See Appendix A for
details. For an anisotropic correlation function that has form (s —t) = ¢(||A(s — t)||2) with
A a diagonal positive definite matrix and s,t € R?, we can stretch the space Q to €’ such
that Uy(s" —t') := U(s — t) = ¢(||s" — ¢'||2) for &', ¢’ € Q. Assumption 2.2 implies Ug(0) < 1.
With Assumption 2.2, we can show that Wg is a positive definite function, which is stated in
the following lemma, whose proof is given in Appendix D.

Lemma 2.4. Suppose Assumption 2.2 holds. Then Vg is a positive definite function.

Next, we consider the asymptotic properties of the MSPE of KALEN defined in (9) as the
fill distance goes to zero, where the fill distance hx of the design points X is defined by

(12) hx := sup min ||z — zj||2.
zeQ T EX
Specifically, we consider a sequence of designs X,,,, m = 1,2, ..., and we assume the following.

Assumption 2.5. The sequence of design points X,, = {z1,...,%,, } satisfies that there
exists a constant C' > 0 such that hx, K < Cgqx, for all m, where

= i 5 — 2
X, =, min lz; — zll2/2,

and hx,, is the fill distance of X, defined by (12).
Remark 2.6. Assumption 2.5 implies that the distinct design points are quasi-uniform [37].

It is not hard to find designs that satisfy this assumption. For example, grid designs
satisfy Assumption 2.5. In the rest of the paper, we suppress the dependence of X on m
for notational simplicity. It can be shown that if a GP has no input location noise, then the
MSPE of the corresponding best linear unbiased predictor converges to zero as the fill distance
goes to zero (see Lemma B.1 in Appendix B). Unlike a GP without input location error, we
show that the limit of the MSPE of KALEN is usually not zero. In fact, (11) and Lemma 2.4
imply that the MSPE of KALEN is the MSPE of SK plus a nonzero constant. These results

are stated in Theorem 2.7, whose proof is provided in Appendix E.
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Theorem 2.7. Suppose Assumptions 2.2 and 2.5 hold. The MSPE of KALEN (9) converges
to 0%(1—Wg(0)) as the fill distance of the design points hx converges to zero, where Vg is as
defined in (10).

In Theorem 2.7, we present a limit of the MSPE of KALEN. The limit o%(1 — ¥g(0))
is usually not zero. This is expected for KALEN since there is a random error at point z.
The MSPE limit depends on two parts. One is the variance o2 and the other is the difference
1—Ug(0). The variance o2 depends on the underlying process, while the difference depends on
the probability density function of the noise p(-). Roughly speaking, the difference 1 — ¥g(0)
will be larger if the density p(-) is more spread out.

3. Comparison Between KALE/KALEN and SK. It is argued in [8] and [29] that using
a nugget term is one way to counteract the influence of noise within the inputs. Therefore, it
is natural to ask whether SK (or Kriging with a nugget term; see Remark 3.2 for discussion
of the use of terminologies) is a good approximation method to predict the value at a point
x € €, since it is not the best linear unbiased predictor under the settings of GP with input
location error. In this paper, we show that the MSPE of SK has the same limit as the MSPE
of KALEN, and we provide an upper bound on the MSPE of SK if the target point # has no
noise, as stated in Theorem 3.1. The proof can be found in Appendix F.

Theorem 3.1. Suppose Assumptions 2.2 and 2.5 hold. Let p > 0 be any fired constant. An
SK predictor of a GP with input location error is defined as

(13) fs(@) = re(@)(Ry + L) 'Y,

where ry(z) = (¥(z —x1),...,¥(x — 2))T and Ry = (¥(zj — zk)) k-

i. Suppose there is noise at a point x € Q and y(x) is to be predicted. The MSPE of the
predictor (13), E(y(z)— fs(x))2, has the same limit as KALEN, which is o2(1—¥g(0)),
where Ug is as defined in (10), when the fill distance of X goes to zero.

ii. Suppose there is no noise at a point x € Q and f(x) is to be predicted. An asymptotic

upper bound on the MSPE of the predictor (13), E(f(z) — fs(z))?, is

1.0402 9
14 — 1—|b(t W) (t)dt
(14) ooy L, 1L~ POIPF) O
where F(U) is the Fourier transform of U and b(t) = E(e*'t) is the characteristic

function of p(-).

Remark 3.2. The form of the SK predictor is quite similar to that of the simple Kriging
with an additional term pl,. Following the terminology in computer experiments [16, 25],
we call ul;, a “nugget” term. Despite a similar form, there are some distinct rationales for
including a nugget term. In spatial statistics, the nugget term can accommodate disconti-
nuities in the covariance function (such variation is called the nugget effect) [26, 29], and
the corresponding predictor is still an interpolator if there is no noise [26]. In deterministic
computer experiments, the nugget term can be used to stabilize computation of the matrix
inverse [16, 25]. The nugget term can also be used to counteract the influence of output noise
in stochastic computer simulations and spatial statistics [1, 29]. In the latter two scenarios,
the corresponding predictor is no longer an interpolator.
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Remark 3.3. We say b is an asymptotic upper bound on a sequence a,, if there exists a
sequence by, such that a, < b, for alln =1,2,... and limy o b = b.

Remark 3.4. The constant 1.04 in (14) is not essential. It can be changed to any constant
greater than one, but a smaller constant leads to a “slower” convergence speed.

Remark 3.5. Note that KALE is the best linear unbiased predictor when a point z € §2
has no noise. Therefore, the upper bound of the MSPE for SK is also an upper bound of the
MSPE for KALE. For an illustration of the upper bound and lower bound of the MSPE of
KALE, see Example 3.7.

Theorem 3.1 shows that the predictor (13) is as good as KALEN asymptotically. The
following proposition states that if the noise is small, then (14) can be controlled. The proof
of Proposition 3.6 can be found in Appendix G.

Proposition 3.6. Suppose Assumption 2.2 holds, and {e,} is a sequence of independent
random vectors that converges to 0 in distribution. Let

(15) o = o [, 1= IO F(¥) 0

where by (t) = E(e*n?). Then an converges to zero.

Ezample 3.7. Consider a GP f with mean zero and covariance function ¢?W¥. Suppose
the correlation function ¥(s —t) = exp( f||s — t||2) with & > 0, and the input location noise
j ~ N(0,02I4) is i.i.d., where N(0,0214) is a mean zero normal distribution with covariance

ma,tnx oF Id By Theorem 3.1, the limit of the MSPE of KALEN E(y(z) — 9(x))? and SK
E(y(z) — fs(z))? is 6%(1 — ¥g(0)), which can be computed by

o2(1 — U(0)) = o2 (1 _ /R /R U(z+e— (o4 62))p(61)p(€2)d61d62)

(1+4020)42 -1
(1+4026)4/2 )

(16) = o? —ry(z,x) = 0® — ry(zj, 25) 20'2(

where ry(z;, ;) is as in (7) with z = z;.
If there is no noise at point x, Theorem 3.1 states that an asymptotic upper bound of

MSPE E(f(z) — fs(x))? for SK is

1.040?

(2m)d/2 / 11— [b(t)[ [ F (L) (t)dt.

Note tha,t the characteristic function of N (0, 021,) is b(t) = E(e’"t) = ¢~2%"t and F(¥)(t) =
6—4/2¢ . Thus, the upper bound can be computed by

1.040 1.0402 ar T
(mrwf = BOIPF@)0d = gy [ 1=

(17) _ 1.0402 (1 L 2 ) .

(1+4020)%2 (14 2020)%/2
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- — Limit (16) — Limit (16)
--- Asymptotic upper bound (17} ---- Asymptotic upper bound {17}

T T T T T T T T T T T T
0.0 02 04 08 08 10 0.0 0z 04 0.8 08 10

ﬂ\eva’imeeufnoiseof The variance of naise - 2

Figure 1. The limit (16) and the asymptotic upper bound (17) with # = 1 and 0® = 1. Panel 1: d = 2.
Panel 2: d =6.

Figure 1 shows the plot of limit (16) and the asymptotic upper bound (17) with # = 1 and
02 = 1. Tt can be seen that as the variance of noise increases, both (16) and (17) increase,
and (17) is larger than (16). From panels 1 and 2 of Figure 1, the error is more prominent if
the dimension of the space is larger. This indicates that GP with input location error is also
influenced by the dimension, as in many statistic problems.

One advantage of SK is that we can simplify the calculation since we do not need to
calculate the integrals in (3), (4), and (6). If the noise is small and the fill distance is
small, Theorem 3.1 and Proposition 3.6 state that the MSPE of the SK predictor (13) can be
comparable with the best linear unbiased predictor.

It is argued in [6] that since the integrated covariance function in (4) is not the same
as the covariance function in the original GP without location error, a nugget term alone
cannot capture the effect of location error. While it is true that the MSPE of KALE or
KALEN is the smallest among all the linear unbiased predictors, our results also show that
with any fixed constant nugget term, the predictor (13) is as good as KALEN asymptotically
(i.e., has the same limit as that of KALEN). The results indicate that there is little absolute
difference between KALE and the predictor (13) if the variance of the input location noise
and the fill distance are small, because the same asymptotic upper bound for both MSPEs
E(f(z) — f(z))? and E(f(z) — fs(«))? is small. If the sample size n is large, the computational
cost of KALE/KALEN and SK will be high, because the computation of a dense matrix
inverse is O(n®). Note that the dense matrix inverse also appears in ordinary GP modeling.
If the sample size is small and the variance of the input location noise is large, as suggested
by numerical studies, the difference between the MSPE of KALE or KALEN and SK is large.
Thus SK with a single nugget term may not lead to a good predictor in this case.

4. Parameter estimation. Let Wya) be a class of correlation functions and py@) (-) be a
class of probability density functions indexed by (9(1),9(2)) € O, respectively, where 80) e
©; C R% for j = 1,2. Thus, ©® = ©; x ©5. Suppose O is a compact subregion of R?1%,
An intuitive approach to estimate the parameters is maximum likelihood estimation. Up to a
multiplicative constant, the likelihood function is
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(18) £(62,6W,6P; X Y) /d . /d det(El)_lﬂe_%erl_1Yp9(z; (€1)...pg> (en)der . . . dep,
R R

where ¥1 = (02Wg0)(zj + €j — (T + €k)))jk, and det(A) is the determinant of a matrix
A. Unfortunately, the integral in (18) is difficult to calculate, because the dimension of
the integral increases as the sample size increases. In this work, we use a pseudo-likelihood
approach proposed by [8]. Define

_ _ 1 _
(19) Ly(0?,0M,03); X, Y) = (2m) "/ 2det(R g g2r)) /% exp (— §YTR(9}1),9{2))Y),
where 02,01 02 are parameters we want to estimate, and R g is defined in (4) by

replacing ¥ and p(-) with Uyn) and pge (), respectively. The maximum pseudo-likelihood
estimator can be defined as

(20) 63,000,60) = argsup £y(o%,6M,0?; X, Y).
(02,60 6(2))
If (20) has multiple solutions, we choose any one from them. Because of nonidentifiability,
parameters inside the GP (o2, 9(1)) and parameters inside the probability density function of
input variable noise #(?) cannot be estimated simultaneously [6].
The properties of the pseudo-likelihood approach are discussed in [6]. Here we list a few
of them. First, the pseudo-score provides an unbiased estimation equation, i.e.,

E(S(0% W, 09, X,Y)) = E(V log(£,(c2,0V,6®; X,Y))) = 0.

Second, the covariance matrix of pseudo-score E(S(a2,0(1),0); X Y)S(02,0M),62); X, Y)T)
and the expected negative Hessian of log pseudo-likelihood E(#;m log(£,(02,0M,02); X,Y)))
can be calculated, where ¥; and ¥ are elements in (02,001 02), ie., (02,61,02) =
(th,P2,...,P14q,+q,). However, the consistency of parameters estimated by pseudo-likelihood
in the case of GP has not been theoretically justified to the best of our knowledge.

If we use SK, the corresponding (misspecified) log likelihood function is, up to an additive
constant,

1 1
(21) gnug (021 9(1)1 ey X1 Y) = _§ 10g(det(R9(1) + lu’In)) - EYT(RGU) + lu’Iﬂ)_IY?

where Ryay = (¥ga) (2 — o)) jk- The maximum likelihood estimator of (02, (1), 1) is defined
by

(22) (&%,@él),ﬁ) = argsup fnug(og,ﬂ(l),p;X,Y).

(02,00 ,p1)
Note that (21) is the log likelihood function for a GP with only output noise. Thus it is
misspecified, and the estimated parameters may also be misspecified. However, it has been
shown by the well-known works [40] and [42] that the GP model parameters in the covariance
functions may not have consistent estimators. Therefore, using GP models for prediction may
be more meaningful than doing so for parameter estimation. The following theorem indicates
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that the change of parameters does not significantly influence our theoretical results on the

MSPE of KALE, KALEN, and SK. The proof is presented in Appendix H.

Theorem 4.1. Suppose for some constant C > 0, 1/C < g < C holds for all n, and
parameters &2, 9(1) 9(2) 9(1) are deterministic (but possibly depending on n). Let U, and
U, be the correlation functions with pummetfrs égl),éél) € ~91, respectively. Let p(-) be the
probability density function with parameters 9&2) € Oy. Let ¥g be as in (10) with parameters
5&1) and §§2). Potential dependency of fi, Uy, 0y, p(-), and Ug on n is suppressed for notational

simplicity. Assume the following.
Loo

(1) There exists a constant Ay such that for all n
(23) {H F(Y)
f(IIJS

(2) There exists a Sobolev space H™ () such that Assumption 2.2 holds for all ¥, and ¥,
and the embedding constants have a uniform upper bound for all n, i.e., there exists a
constant C such that | f|gm@q) < C”f”N\i-l(Q) and || f|lgm@) < C||f||N®2(g) hold for
all lill and @2.

(3) Assumption 2.5 holds for the sequence of designs X.

(4) All probability density functions p(-) are continuous and have mean zero and second
moment. The second moments of all p(-) have a uniform positive lower bound and

FO | | F®

upper bound for all n.
Then the following statements are true.

i. Suppose there is noise at point . Then the MSPE of KALEN E(y(z) — §(z))? and
the MSPE of SK E(y(z) — fs(z))? have the limit 02(1 — Ug(0)) when the fill distance
of X goes to zero, where Vg is defined as in (10).

ii. Suppose there is no noise at point x. An asymptotic upper bound on the MSPE of SK

E(f(x) - fs(x))? is
1.0402

e LSOl ACIOT

where b(t) = E(e*€"t) is the characteristic function of p(-). Furthermore, if p(-) = p(-)

and ||];(?Il)) L. < As, an asymptotic upper bound on the MSPE of KALE E(f(z) —

f(x))? is

% /m L= [BOPIF(R) ().

Theorem 4.1 states if we have a reasonable sequence of parameters, then we have the
following: (i) If point & has noise (i.e., predicting f(z +€)), the limit of the MSPE of KALEN
and SK remains the same. (ii) If point = has no noise (i.e., predicting f(z)), the upper

bounds on the MSPE of KALE and SK can be obtained. The limit and upper bounds are
small if the noise is small. The upper bound for the MSPE of SK is the same as the bound
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in Theorem 3.1. However, the upper bound for the MSPE of KALE is inflated by 4;A45. We

believe this inflation is not necessary and can be improved.

Remark 4.2. Note that the parameters in Theorem 4.1 are deterministic. Therefore, there
is still a gap between Theorem 4.1 and the convergence results of KALE/KALEN/SK with
estimated parameters. The authors cannot confirm if the results hold for estimated parameters
which depend on the random observations Y. Nevertheless, given that the parameters have
sufficient flexibility, we believe that Theorem 4.1 can still provide some insights on the influence
of the parameter estimation. We thank one reviewer for pointing out the mistake in the
previous version of Theorem 4.1.

The computation complexity of (22) is about the same as that of (20) if (4) can be calcu-
lated analytically. Unfortunately, (4) usually does not have a closed form, which substantially
increases the computation time of solving (20).

5. Numerical results. In this section, we report some simulation studies to investigate the
numerical performance of KALE, KALEN, and SK. In Example 1, we use Gaussian correlation
functions to fit a 1D function, where the predictor (5) has analytic form. In Example 2, we
use Matérn correlation functions to fit a 2D function, where the integrals in (3) and (4) are
typically estimated by Monte Carlo sampling [8].

5.1. Example 1. Suppose the underlying function is f(z) = sin(27z/10)+0.2 sin(27z/2.5),
z € [0,8] [19]. The design points are selected to be 161 evenly spaced points on [0, 8]. The
input location noise is chosen to be mean zero normally distributed with the variances 0.05k
for k =1,2,3,4. We use a Gaussian covariance function ¥(s—t) = o exp(—6||s—t||2) to make
predictions, and we use the pseudo-likelihood approach presented in section 4 to estimate the
unknown parameters 02,6 and the variance of noise o2. For each variance of input location
noise, we approximate the squared Ly error || f— f |2 by % Yo (fzi)— f (x;))?, where the z;’s
are 8001 evenly spaced points on [0, 8]. Then we run 100 simulations and take the average of
AN (f(zi) — F(:))? to estimate E||f — f||3. We estimate E||y — 9||2 by a similar approach,
i.e., estimate E[ly — 9||3 by the average of 23" | (y(z:) — §(z:))? of 100 simulations, where
y(z;) = f(z; + €) and ¢;’s are input location noise. Recall that E||f — f||% and E||y — g||3 are
related to KALE and KALEN, respectively. With abuse of terminology, we still call E||f — f 1K
and E|ly — §||3 the MSPEs.

The RMSPEs, which are the square roots of the MSPEs, for KALE/KALEN and SK, are
shown in Table 1/Table 2, respectively.

Table 1
Comparison of the RMSPE for KALE and SK: 1 function unth Gaussian covariance function. SD stands
for standard deviation of RMPSE. In the fourth column, difference = 3rd column — 2nd column, 1.e., the
RMSPE of SK — the RMSPE of KALE.

o? RMSPE (SD) of KALE RMSPE (SD) of stochastic Kriging Difference
0.05 0.1147(0.0287) 0.1209(0.0288) 0.0062
0.10 0.1528(0.0372) 0.1764(0.0387) 0.0236
0.15 0.1917(0.0475) 0.2364(0.0418) 0.0448
0.20 0.2380(0.0597) 0.3149(0.0773) 0.0769

Copyright (C) by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 08/02/22 to 45.3.127.204 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

GAUSSIAN PROCESSES WITH INPUT LOCATION ERROR 631

Table 2
Comparison of the RMSPE for KALEN and SK: 1 function with Gaussian covariance function. SD stands
for standard dewviation of RMPSE. In the fourth column, difference = 3rd column — 2nd column, 1.e., the
RMSPE of SK — the RMSPE of KALEN.

ol RMSPE (SD) of KALEN RMSPE (SD) of stochastic Kriging Difference
0.05 0.3627(0.0076) 0.3619(0.0073) -0.0014
0.10 0.4940(0.0095) 0.4931(0.0092) -0.0009
0.15 0.5884(0.0107) 0.5885(0.0108) 0.0001
0.20 0.6651(0.0127) 0.6704(0.0164) 0.0053

It can be seen from Tables 1 and 2 that the RMSPE (standard deviations) of KALE/KALEN
and SK decreases as the variance of the input location noise drops. This corroborates
the results in Theorem 3.1 and Proposition 3.6. The difference in the RMSPE between
KALE/KALEN and SK also decreases when the variance of the input location noise de-
creases. Comparing Table 2 with Table 1, it can be seen that the RMSPE of KALEN is larger
than that of KALE. This is reasonable because KALEN predicts y(z), which includes an error
term while f(z) does not. The computation of KALE/KALEN has the same complexity as
the SK in this example, because a Gaussian covariance function is used, and the integrals in
(4) and (6) can be calculated analytically.

In order to further understand the performance of KALE/KALEN and SK, two realizations
among the 100 simulations for Table 1 and Table 2 are illustrated in panel 1 and panel 2 of
Figure 2, respectively, where the variance of the input location noise is chosen to be 0.05.
In panel 1 of Figure 2, the circles are the collected data points. The true function and the
prediction curves of KALE and SK are denoted by the solid line, the dashed line, and the
dotted line, respectively. It can be seen from the figure that both KALE and SK approximate
the true function well. In Panel 2 of Figure 2, the dots are the samples of y(z) on 8001 testing
points. It can be seen that the samples are around the predictions of KALEN and SK, but
with much more fluctuation. This shows that the RMSPE in Table 2 is larger than those in
Table 1.

We also include the confidence interval results in this subsection. It is known [6] that
there is no nontrivial structure for e (that is, € is not identical to zero) such that f(z + €)
is a GP on Q. Since there is no closed form for the distribution of KALE f(z) (or KALEN
y(x)), we use Gaussian approximation. Specifically, we treat f(z) (or y(z)) as normally
distributed and compute the pointwise conditional variance &¢(z)? (or 6y(z)%). Then we
compute the pointwise confidence interval of GP, defined by [f(z) — qsé(z), f(z) + gs67(z)]
(or [g(x) — gaby(x),y(x) + qady(z)]) with confidence level (1 — 3)100%, where gg denotes
the (1 — 8/2)th quantile of standard normal distribution. We select § = 0.05 and use the
coverage rate to quantify the quality of the confidence interval, where the coverage rate is the
proportion of the time that the interval contains the true value. However, the length of the
confidence interval of SK for GP with only output error converges to zero, which does not
reflect the fact that the actual MSPE of SK does not converge to zero. Because of this, we
adjust the estimated conditional variance of the SK by adding the limit value o2(1 — ¥5(0)).
The results are reported in Table 3.
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Figure 2. Panel 1: An illustration of KALE and SK. The true function and the prediction curves of KALE
and SK are denoted by the solid line, dashed line, and dotted line, respectively. The circles are the observed
data points. Panel 2: An illustration of KALEN and SK. The dots are the samples of y(z) on testing points.
The true function and the prediction curves of KALEN and SK are denoted by the solid line, dashed line, and
dotled line, respectively.

Table 3
Coverage rate of pointwise confidence interval of KALE and SK (when there is no noise on target point)
and KALEN and SK (when there is noise on target point). The following notation is used: (Adjusted) SKi
= (Adjusted) SK without noise at the target point; (Adjusted) SK2 = (Adjusted) SK with noise atl the target
point. The nominal level is selected to be 95%.

o2 KALE SKi Adjusted SK; KALEN SKa Adjusted SK3
0.05 0.9179 0.8547 0.9630 0.9292 0.4903 0.6328
0.10 0.9268 0.7906 0.9754 0.9296 0.4432 0.6490
0.15 0.9202 0.6987 0.9670 0.9345 0.4033 0.6677
0.20 0.9163 0.5834 0.9213 0.9358 0.3494 0.6545

From Table 3, it can be seen that the (misspecified) pointwise confidence interval does
not achieve the nominal level. It is expected that the SK has poor coverage because the
model is misspecified. KALE and KALEN, on the other hand, can provide more reliable
confidence intervals. In fact, even for GP without error, it is often observed that GP models
have poor coverage of their confidence intervals [16, 20, 39]. Therefore, a better uncertainty
quantification methodology for GP with input location error is needed.

5.2. Example 2. In this example, we compare the calculation time of SK and KALE,
where the predictor (5) of KALE does not have an analytic form. Suppose the underlying
function is f(x) = [(30 + 5z sin(5z1))(4 + exp(—5z2)) — 100] /6 for z1,z2 € [0,1] [21]. We use
Matérn correlation functions [29]

(24) Wit (530, 9) = prpygr VPdlele) Ko (2el)
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to make predictions, where K, is the modified Bessel function of the second kind, and v, ¢ >
0 are model parameters. The Matérn correlation function can control the smoothness of
the predictor by v and thus is more robust than a Gaussian correlation function [34]. The
covariance function is chosen to be ¥(z — y) = ¥ys(z — y; v, ¢). The input location noise is
chosen to be mean zero normally distributed with the variances 0.01k for k = 2,3,4,5. We use
maximin Latin hypercube design with 20 points to estimate parameters, and we choose the
first 100 points in the Halton sequence [17] as testing points. The smoothness parameter v is
chosen to be 3, which can provide a robust estimator of f. In order to improve the prediction
performance, we use ordinary Kriging, where the mean in the GP model is assumed to be an
unknown constant instead of zero, i.e., f is a realization of GP with unknown mean 8 and
covariance function oW ).

If we use a Matérn correlation function, the integrals in (3) and (4) do not have analytic
forms and are calculated by Monte Carlo sampling. We randomly choose 30 points to approxi-
mate the integral in (3), and 900 points to approximate the integral in (4). Preliminary results
show that, if we use Monte Carlo sampling with different points every time in the evaluation
of the integrals in (3) and (4), it is not possible to use maximum pseudo-likelihood estimation
to estimate the unknown parameters, consisting of ¢ in (24), o2, the variance of noise o2, and
the mean 3. The reason is that at each step of the optimization in maximum pseudo-likelihood
estimation, we need to calculate the integral, whose computational cost is high. Therefore,
we generate 900 points and 30 points randomly at one time and use these 900 points and 30
points for evaluations of (4) and (3), respectively. Then we use maximum pseudo-likelihood
estimation to estimate the unknown parameters. We run 20 simulations to obtain different re-
alizations of input location noise. In each simulation, we compute the processing time and the
approximated MSPE ﬁ ;i(i (f(zi)— f (z;))?, where f is the KALE predictor, and the z;’s are
testing points. Then we compute the average processing time and the average approximated
MSPE.

For SK, we use (misspecified) maximum likelihood estimation to estimate the unknown
parameters, which are ¢ in (24), 02, the nugget term u, and the mean 3. We run 100
simulations and compute the average processing time and the average approximated MSPE
ﬁzgi (f(x:) — f(2))?, where f is the SK predictor, and the z;’s are the same testing
points as in KALE. The RMSPE, which is the square root of MSPE, and the processing time
of KALE and SK are shown in Table 4.

Table 4
The RMSPE of KALE and SK: 2 function unth Matérn correlation function. The processing time is in
seconds. In the sizth column, difference = 4th column — 2nd column, i.e., the RMSPE of SK — the RMSPE of
KALE. We use PT = Processing time.

o2 RMSPE of KALE PT of KALE RMSPE of SK PT of SK Difference
0.02 1.5292 648.86 1.9852 0.6261 0.4559
0.03 1.7899 633.55 2.2346 0.5947 0.4446
0.04 1.9734 695.27 2.5226 0.5848 0.5492
0.05 2.4501 748.33 3.3415 0.5803 0.8915
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Figure 3. Schematic diagram for composite part shape adjustment: (a) Composite part shape adjustment
[36], (b) layout of ten actuators, (c) multiple critical points.

It can be seen that KALE has better prediction accuracy than SK. However, KALE
takes too much computation time, even though the numbers of design points and testing
points are relatively small. The comparison would get worse as the number of points be-
came larger. Therefore, if the integrals in (3) and (4) do not have analytic forms, SK is
preferred, especially when the sample size is large and the variance of input location noise is
small.

6. Case Study: Application to composite parts assembly process. To illustrate the
performance of KALEN and SK, we apply them to a real case study, the composite parts
assembly process. As shown in Figures 3(a) and 3(b), ten adjustable actuators are installed at
the edge of a composite part [36, 41]. These actuators can provide push or pull forces to adjust
the shape of the composite part to the target dimensions. The locations of these actuators
can be optimized by the sparse learning method [12]. The dimensional shape adjustment
of composite parts is one of the most important steps in the aircraft assembly process. It
reduces the gap between the composite parts and decreases the assembly time with improved
dimensional quality. Detailed descriptions about the shape adjustment of composite parts can
be found in [36]. Modeling of composite parts is the key for shape adjustment. The objective
is to build a model that has the capability to predict the dimensional deviations accurately
under specific actuators’ forces. In this model, the input variables are ten actuators’ forces.
The responses are the dimensional deviations of multiple critical points along the edge plane
near the actuators, shown in Figure 3(c). We consider responses at 91 critical points around
the composite edge in the case study.

In the shape control of composite parts, input location noise commonly exists in the ac-
tuators’ forces [41]. When a force is implemented by an actuator, the actual force may not be
exactly the same as the target force. The magnitudes of forces may have uncertainties natu-
rally due to the device tolerances of the hydraulic or electromechanical system of actuators.
Uncertainties in the directions and application points of forces come from the deviations of
contact geometry of actuators and their installations. For the modeling of composite parts,
there are two steps: (i) training the parameters using experimental data; (ii) predicting di-
mensional deviations for new actuators’ forces. In the training step, we need to consider input
error in the experimental data. Additionally, when new actuator forces are implemented in
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practice, the uncertainty in the actual delivered forces inevitably exists. This suggests that
KALEN is suitable for this application scenario. We will show the performance of KALEN
and compare it with SK as follows.

The model we use in this case study is Y) = FTBU + ZU)(F) for j = 1,...,91,
where Y ) is the dimensional deviation vector of the composite part at the critical point 7,
F = (Fpy,- .. ,F(m))T € R0 is the vector of the actuators’ forces, and ZU)(-) is a mean zero
GP, with input variables in R'?. The covariance of ZU)(F}) and ZU)(F) for any forces Fy =
(Fl,(l)= ey Fl,(lD))T and FQ = (FZ,(I)ﬂ [ ,FQ,(IO))T is assumed to be O"? exp(— Zflcﬂ=1 gjk(Fl,(k)_
Fg,(k))2), where 0,8 > 0 are parameters. We assume the input location noise € ~ N (0,02 I10),
where N(0,02I10) is a mean zero normal distribution with covariance matrix 02I19. The pa-
rameters SU), Ojk, o2, and J:_,? are estimated by maximum (pseudo-)likelihood estimation as
described in section 4. The mean function FT30) we use in this model represents the linear
component in the dimensional shape control of the composite fuselage, which follows the ap-
proach in [41]. Specifically, according to the mechanics of composite material and classical
lamination theory, there is a linear relationship between dimensional deviations and actuators’
forces within the elastic zone. The term FTB() describes how the actuators’ forces impact
the part deviations linearly, and Z (j)(-) represents the nonlinear components so as to obtain
accurate predictions.

For the computer experiments, we generated 50 training samples and 30 testing samples
based on a maximin Latin hypercube design. The designed experiments are conducted in
the finite element simulation platform developed by [36]. This platform was developed based
on the ANSYS Composite PrepPost workbench. It has been calibrated and validated via
a sensible variable identification approach [35]. It is worth mentioning that the computer
simulation here is not a deterministic simulation because we add the input location noise at
the input points in the simulation to simulate the randomness in the real process. Therefore,
repeated runs with the same input points will have different outputs. The input location noise
is added to the actuators’ forces to mimic real actuators. The standard deviations (SDs) of
the actuators’ forces are chosen to be 0.005, 0.01, 0.02, 0.03, and 0.04 1bf (Ibf is a unit of
pound-force), which is determined by the tolerance of different kinds of actuators according
to engineering domain knowledge. The maximum actuators’ force is set to 600 lbf. After we
have the computer experiment data, we can estimate the parameters of KALEN by solving the
pseudo-likelihood equation (20), and the parameters of SK by solving the maximum likelihood
equation (22). Then, we can use the model to predict dimensional deviations at the target
points in the testing dataset.

The performance of KALEN and SK are compared in terms of mean absolute error (MAE).
This is an index that has been commonly used in the composite parts assembly domain to
evaluate the modeling performance. We also compare the RMSPEs of KALEN and SK and
the processing time of generating each output. The RMSPE is the square root of the MSPE,
which is approximated by the average of % Zfﬂl (YU(F) —y@ (F;))? on the 91 points, where
Fy’s are the inputs of testing samples, Y9)(F}) is the observed testing data, and ?U)(Fi) is
the KALEN predictor. The MAE is approximated by - SN YO(E) - YU)(F;)| on the 91
points.

The MAEs and RMSPEs of KALEN and SK are summarized in Table 5. As the SD of
actuators’ forces changes from 0.04 1bf to 0.005 1bf, the MAEs and RMSPEs of KALEN and SK
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Table 5
The MAE (RMSPE) of KALEN and SK in the composite part modeling. In 4th column, difference = 3rd
column — 2nd column. The processing time is in seconds. The follounng abbreviation is used: AF = actuators’
forces, PT = Processing time for each output.

MAE (RMSPE) MAE (RMSPE) PTof PT of
SD of AF of KALEN of SK Difference KALEN SK
0.005 0.0059 (0.0081)  0.0059 (0.0081) 7.1x 1077 (1.9x 10~)  0.1500  0.3415
0.01 0.0117 (0.0147)  0.0119 (0.0151) 1.7 x 10~* (3.7 x 10~%)  0.4691  0.3938
0.02 0.0216 (0.0265) 0.0217 (0.0264) 9.5 x 10~° (—8.7 x 10~5) 0.5048  0.3964
0.03 0.0286 (0.0335) 0.0304 (0.0376) 1.7x 1072 (4.1x10"%)  0.6746  0.4115
0.04 0.0389 (0.0478)  0.0486 (0.0610) 9.7x107% (1.3x 1072)  0.6529  0.4302

also decrease. This result is consistent with the conclusions in Theorem 3.1 and Proposition
3.6. The MAE and RMSPE of KALEN are slightly smaller than the MAE and RMSPE of
SK. Generally speaking, their performances are comparable, especially when the SD of the
actuators’ forces is small. The main reason is that, when the uncertainty in the input variables
is small, SK can approximate the best linear unbiased predictor KALEN very well. Since a
Gaussian correlation function is used, the computational complexities of KALEN and SK are
the same. The computation time of KALEN is smaller than that of SK in this example. We
conjecture this is because of the different computation time of maximum (pseudo-)likelihood
estimation. In summary, if high-quality actuators are used and the input location noise in
the actuators is therefore small, then both KALEN and SK can realize very good prediction
performance. When the input location noise in the actuators’ forces becomes larger, KALEN
outperforms SK.

7. Conclusions and discussion. We first summarize our contributions in this work. We
have investigated three predictors, KALE, KALEN, and SK, as applied to GPs with input
location error. When predicting the mean GP output at a point with input location noise,
we prove that the limits of the MSPEs of KALEN and SK are the same as the fill distance
of the design points goes to zero. If there is no noise at point x € {2, we provide an upper
bound on the MSPEs of KALE and SK. The upper bound is close to zero if the noise is
small, which implies the MSPEs of KALE and SK are close. We also provide an asymptotic
upper bound on the MSPEs of KALE/KALEN and SK with estimated parameters. These
results indicate that if the number of data points is large or the variance of the input location
noise is small, then there is not much difference between KALE/KALEN and SK in terms of
prediction accuracy. The numerical results corroborate our theory. A case study is presented
to illustrate the performance of KALEN and SK for modeling in the composite parts assembly
process.

The calculation of the predictor (5) is not computationally efficient if the integrals in (3)
and (4) do not have an analytic form, where Monte Carlo integration is typically used. If
the sample size is large, then using pseudo maximum likelihood to estimate the unknown
parameters is challenging, especially when the integrals in (3) and (4) do not have analytic
forms. In this case, using SK as an alternative would be more desirable.

There are several problems that remain to be solved. In this paper, the MSPEs of KALE,
KALEN, and SK are primarily considered asymptotically, i.e., the number of design points
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goes to infinity. The theory does not cover the results under nonasymptotic cases, i.e., the
number of design points is fixed. It can be expected that the difference between the MSPEs
of KALE/KALEN and SK will decrease as the fill distance decreases. If there is no noise on
point z € 2, only upper bounds are obtained for KALE and SK. The asymptotic performance
of KALE and SK when target point has no noise will be pursued in future work.

Appendix A. Reproducing kernel Hilbert space, Sobolev space, and kernel ridge re-
gression. Suppose @ C R? is convex and compact. Assume that K : 2x € — R is a symmetric
positive definite kernel function. Define the linear space

(25) Fr(Q) = {Z BeK (- zr) : Br € Rz € Qun € N} ,
k=1

and equip this space with the bilinear form

<Z BeK (-, k), nyjK(.,mfj)> =Y BuyK (z, 2'5).
k=1 Jj=1

K k=1 j=1
Then the reproducing kernel Hilbert space Ny () generated by the kernel function K is
defined as the closure of Fi({2) under the inner product (-,-)g, and the norm of Ny ()
is || fllnve@ = y/{fs FInk(@), where (-, ) aq () is induced by (-,-)k. The following theorem
gives another characterization of the reproducing kernel Hilbert space when K is defined by
a stationary kernel function ¥, via the Fourier transform. Note that a kernel function ¥ is

said to be stationary if the value ¥(z,z’) only depends on the difference  — z’. Thus, we can
write ¥(z — z’) :== ¥(z,z').

Theorem A.1 (see [37, Theorem 10.12]). Let ¥ be a positive definite kernel function which

is stationary, continuous, and integrable in R%. Define

G :={f € LR NCRY) : F(f)/VF(T) € La(RI)},

with the inner product

cap [ FO@FQD®)
e FO))

Then G = Ng(R?), and both inner products coincide.

By Bochner’s theorem (page 208 of [14]; Theorem 6.6 of [37]) and Theorem 6.11 of [37], if
V¥ is a correlation function (thus positive definite), there exists a function fy such that

Uo) = [ o)

(fs @) N (re) = (2)

for any z € R%. The function fy is known as the spectral density of U.
Condition A.2. There ezist constants ca > ¢; > 0 and 1 > d/2 such that, for all w € R,

c1(1+ [|wll2) ™" < fa(w) < c2(1+ [lw][3) 7"
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We say a Hilbert function space G; can be (continuously) embedded into another Hilbert
function space G» if there exists a constant C' such that

lgillg. < Cliarllg, Va1 € Gu,

where ||-||g, and ||-||g, are the norms of the function spaces G and Gs, respectively. Therefore,
it can be seen from Theorem A.1 that if, for two positive definite functions ®; and ®,, the
spectral densities fg, and fs, satisfy fs, < Cfs,, then the reproducing kernel Hilbert space
Na, (R?) can be embedded into N, (R?).

For a positive number n > d/2, the Sobolev space on R? with smoothness 7 can be defined
as

H'RY) = {f € La(R?) : |[F(£)()I(L + | - [5)™? € La(R)},

equipped with an inner product

(Frhsen = m) " [ FOF@@ + ol

It can be shown that H(R?) coincides with the reproducing kernel Hilbert space Ng(R?) if
¥ satisfies Condition A.2 (see Corollary 10.13 of [37]).

Remark A.3. In this work, we are only interested in Sobolev spaces with > d/2 because
these spaces contain only continuous functions according to the Sobolev embedding theorem.

The isotropic Matérn correlation function (24) has the spectral density [30]

—a2T'(v +d/2)

I'(v)
We can see that W)s satisfies Condition A.2. Thus, the reproducing kernel Hilbert space
generated by Wjs coincides with the Sobolev space HY1%/2 which implies that ¥js fulfills
Assumption 2.2.

The isotropic Gaussian correlation function Ug(z) = e
(Theorem 5.20 of [37])

fou(wiv,0) =7 (4vd?)" (4v¢” + [lw]3) =@+,

—Olzl* has the spectral density

fo (W) = (4m0)~4/2e~IwIE/(10),

Since for any fixed v, fy,(w) < C(1+ ||Jw||2)™~%? for some constant C' not depending on w,
the reproducing kernel Hilbert space generated by ¥ can be embedded in the Sobolev space
HY*4/2(R4). This implies that ¥ fulfills Assumption 2.2.

A reproducing kernel Hilbert space can also be defined on a suitable subset (for example,
convex and compact) Q C R?, denoted by Ny (), with norm

I flIne @) = inf{|| fE e ey : fE € Na(RY), fela = £},

where fg|q denotes the restriction of fg to Q. A Sobolev space on 2 can be defined in a
similar way. By the extension theorem [11], the reproducing kernel Hilbert space defined on
space ) generated by U); and ¥Ug can be embedded into the Sobolev space HV 14/ 2(9).

In the rest of the appendix, we use C,C},j > 0, to denote generic positive constants,
whose value can change from line to line.
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Appendix B. A lemma about MSPE of stochastic Kriging.

Lemma B.1. Let ® be a radial basis function, positive definite, and stationary. Suppose
the reproducing kernel Hilbert space generated by ® can be embedded into a Sobolev space
H(Q2) with n > d/2. Assume Assumption 2.5 is true for a sequence of designs X =
{z1,...,2n}. Then for any fized constant p > 0, ®(0) — ro(z)T (Re + pln) " ra(x) converges
to zero pointwisely as the fill distance of X goes to zero, where ro(z) = (®(z —z1),...,P(z—
z5))T and Rg = (®(z; — 7)) jk-

Proof. Let X = {z1,... ,:En:} be the distinct design points corresponding to X. At each
design point z; € X, suppose there are a; replicates; thus,

_ _(a1) — _(as _ _(a 1)
X:{f:gl),..., ga)l,it:gl),...,;t:ga)J,...,a:(l,),.. z }
N —

a ; replications
n

", v
a, replications a, replications

It can be shown that ®(0) — r¢(z)T (R + ,uI ) lre(z) = ®(0) — 7o (z)T (Re + A W) lrg(z),
where 7¢(z) = (®(z — z1),...,P(z — Z :)) R = (®(Z; — 7k))jk, and A = dlag()q, <y Am)
with A\j = p/a; (see Lemma 3.1 of [3] and the proof of Proposition 3.1 of [33]). Let @ = min; a;
and fix a point z. We have

8(0) — ra(@)" (Ro + uln) "*ro(2)
= ®(0) — 7g(x)T (Rp + AIn,-)_lfq,(a:)
< 8(0) — 7o(2) (Ra + p/al ) Vra(2)
< llgzllzo
where the first inequality is because (Rg + Al W) 1> (Rs +pfal )" 1 and g,(t) = ®(t— =) —
7o (t)T(Re + plal 1)~ 17%(z). Here A > B denotes that for any vector b, bT(A— B)b > 0.

Since N (f2) can be embedded into a Sobolev space H(2), we have g, € H"(2), where
H"()is the Sobolev space with smoothness 77. By the interpolation inequality [5], ||gz||1_ (o) <

Cl||gﬂ-“||L2(Q)||gﬁ-“||Hrr(Q) By Corollary 10.25 in [37] and the fact that R3' = (Rg + plal )7,
it can be shown that

||gm||?qn(m < 02||9m||,2\f4,(n)
< Cy(1 — 27 (z)T (Re + p/aIn:)_1F¢($)
+ (@) (Ro + pi/al,y) " Ra(Ro + u/al y)~*o())
< Cy(1 — 7p(z)(Re + p/aIn;)_lfé(a:)T) < Cs,

where ||gz||z; () is the norm of g in the reproducing kernel Hilbert space Ng(Q2). Thus, the
result follows if we can show that ||g.||1,(q) converges to zero. By the representer theorem,
G1(t) == ro(t)T (Re + p/al ) 17 () is the solution to the optimization problem

— 12 H 2
(26) g%(ng(m(wj (e —2))" + ol o)
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Note that g,(t) = ®(t — ) — §1(t). Under Assumption 2.5, by Lemma 3.4 of [31], the result
follows from

Lo, _
ool < Ca(£ 3" 0n@) — 80— 2 + 1 B
<Cln*—._¢, _ 202+ Pyaaz R2| gzl
<C3 RZ(QI(%) (z —z5)) +an||91||Nq,(n)+ x 19zl @)
1 — _ _ 7
< a5 Y (B - ) — a2 + 180 — a0y + ¥l aslrn ) 0.

where the last inequality is true because §; is the solution to (26). [ |

Appendix C. Calculation of (7). In this section, we show that if the correlation function
is U(s — t) = exp(—0|s — t||3), and the noise € ~ N(0,521;), where § > 0 is the correlation
parameter, and N (0,021;) is the mean zero normal distribution with covariance matrix 021,
then (3)—(6) can be calculated, respectively, as in (7). Let py(t) be the probability density
function of normal distribution N(0,021y), i.e.,

o 1 tT't
pn(t) = 7(2?1_03){1 exp _T&Q .

The idea of calculating (3)—(6) is to utilize

! lIs — bll3
/Rd (2ma?)?/2 P (_ 2a? ds=1

for a > 0 multiple times. By direct calculation, we have
rn(z,z;) = 0-2/ /d U(z +e— (x; + €))p(€ej)p(e)dejde
R

o [ [ exp(-ble+ e ($J+€;-)||2)m

EJTEj
X exp | —

1 T
ex ( ¢ E) dejde
p —_—
202 | \/(2mo2)d 202 ) 7

ZJZeXP(_(gﬂiggff”g) /]Rd[Rdexp( ( )e € — 200 —a; — )7 ) :

o2
E
1
(27) xexp|—|0+ 27‘52 Ej +20(z — z;)Te;
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We first compute

/Rd exp (—(9 t Z;E)ETE —20(x —x; — Ej)TE) de
2
0(z —zj — &)

1 2
:/ exp(— (9+ 2) 5 —1—7”:13—1::;—63'”2)({6
R4 20 0+ 557 1
€ 20 2 (9+ T"f)
20262 o2 d
_ 2
@) —ew ({2l ej||2)\/ (2r 372 -

Plugging (28) into (27) yields

N sexp(—f|lz — 3’:.-”2) 2026? ) 12
rN(z,zj) =0 2oy 1+2902 RdEXP 1+20629||37 zj — €2

(29) xexp( (9+ E)E & +20(z — x;) f:,) de;.

2

€+

We next compute

1\ r T
/dex (1+2 29” fj||2)exp( (9+R)fjfj+29(m—mj) Ej) de;
20262 9 1 20262
: (g —  _ZTe” ) Te.
P (1 T 202018~ "”2) /Rd P ( ( T 1T 2039)63 <
20’292 T
+2(9 ] +20_29)( — ;) Ej) de;j

20262 9 1+4020 \ 1 20 T
(1 + 2020 = x""'?) /Rd P ( - ((1 + 2039)03)63' 9t 172020 (== 25) Ej) e
(30)

20262 2 (1+2026)02 d (1+2026)0? 62
= _— - 2 —_ € € . 2 .
o (1+2 781" “"”2)\/( " 144026 ) exp( 14026 (17202021 ”’3”2)

By plugging (30) into (29), we obtain

d
2exp(—0|lz — z;|[3) (2 a2 )

(e %) = @ro?)? 172002

29 2 (1+2020)02\*  (2(142020)02 ,
X . Qr_ e J7E € € .
exp (1+2 29” _2'”2)\/( ™ 174020 exp 174020 (142020)° |z—z;||3

_ o? exp —Ollz — ;12
(1 + 4026)4/2 144020 )’
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which is desired. The term r(z,z;) can be computed by
rway) =0t [ W (@ + e)nle)de

[ (=0l — (2 + ) B —— ke,
=0 exp(—0llz — (z; 4+ €;)]|5) ———=exp | —
Ré s (2mo2)d 202

€

exp(—0||z—xz;||? 1
_2exp(—blla—a;3) [ exp (_(MF)E;reﬁzg(x_mﬂTfj) de;

Vv (2ma2) 2

— Ol z—mx:I? 25202 2 d
— O,QBXP( ||$t? 2$;||2) BXP( O¢ 29”37_-7-:3”%) (2# 0.69 2)

,,.-"(271'0'6) 1+20€ 1+2 [

o —0llz — ;|3
(32) ~ (1 +2020)42 P ( 1+ 2026 ) '

Note that Kjr = rn(zj, k) if 7 # k. Together with (31) and (32), we obtain (7).

Appendix D. Proof of Lemma 2.4. By Fourier transform [37], we have

(33) U(zj — m) = W A ) M@ eel) (W) (1) dt,

where (s,t) = sTt is the inner product in R%. Therefore, by Fubini’s theorem, direct calculation
leads to

) = 1 [ dera-@ten
Ug(x; ;t:k)—/Rd e (2m) 772 /Rde F () (t)p(€1)p(ez)dtde, dey

71 Wrj+€1—(Trtez
= (2m)a2 /,R ( A Af( rarinr )’t}P(El)P(GQ)dﬁldez)f(lIJ)(t)dt
1

__ - i(fj—mk,t) i{fl,t) 'F:(—Eg,t) d d W t dt
o L ([ e [ e penteade ) FE)0)

1 i —Tp,t i{eq,t i{—€z,t
(34) = @nis /]R de( >( A de{ >p(fl)del) ( A de{ }p(eg)d@)}'(\lf)(t)dt.

For any w = (w1,...,ws)T, by (34), we have

n
Z wjﬁ,rkllfg(mj — :Ek)
J.k=1

mn
1 . . .
— T ( i st} { lst) {_ 27t}
= > wm«wfmd eHe (/Rd e P(fl)dfl) (/Rd ee p(e:))dEz)f(‘I’)(t)dt

7,k=1
2 ( A emt)p&l)dﬂ) ( A e”_ﬁ’”p(fa)d@)f(w)(t)dt.

(35)

13

3 wjeld

j=1
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c(t) = ( A ) e“flsf?p(q)dq) ( A ) e“—fzst}p(q)de;,).

Thus, ¢(t) € R and ¢(t) > 0. Therefore, 3 7 w;jwp¥s(z; —zx) > 0 and equal to zero if and
only if w = 0, which finishes the proof.

Let

Appendix E. Proof of Theorem 2.7. Consider the following GP with output error:
(36) ys(z) = Ms(z) + 6(),

where Mg is a mean zero GP with covariance function 02¥g, and §(z) is an independent noise
process with mean zero and variance p. The best linear unbiased predictor of (36) is

(37) fs(@) = rn(2)T(Rs + pln) 'Y,
and the MSPE is
(38) MSPEg = 0?¥5(0) — ry(z)T (Rs + pln) 1y (z).

By Lemma B.1, (38) goes to zero as the fill distance of design points X goes to zero.

Take p1 = 0?(1 — ¥g(0)). It can be seen that (38) is equal to 02Wg(0) — ry (z) R 'ry ().
By (9), E(y(z) — §(z))? = MSPEg + 02(1 — ¥g(0)), which converges to o2(1 — Ug(0)) as the
fill distance of the design points goes to zero. This completes the proof.

Appendix F. Proof of Theorem 3.1. Without loss of generality, assume o = 1. First,
we consider that there is noise at point . For any v = (ui,..., un)T, it can be shown that

the MSPE of predictor «TY is

]EH\I!(— —(z+¢€)— 2:; w V(- — (2 +€5))

2
N ()

—E[1-2) w¥((zj+¢)—(=+)+ Y wjur¥((z; + &) — (zk +ex))
Jj=1 J.k=1

mn mn
(39) =1- ZZ u;jWg(x —x;) + Z ujuVs(zj — o) + al|ul|3,
Jj=1 J.k=1

where || - ||z, () is the norm of the reproducing kernel Hilbert space Ng(Q2) and a = 1—-V5(0),
and the last equality follows from (10). Notice that

Us(z; —ak) = ﬁ /md T2t o (1) F(T) (t)dt,

ot) = ([ e ) ([ e plen)dee).

where
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Since |e!=¢!)| < 1, ¢(t) < 1. Therefore, (39) can be bounded by

1— 221;3.1113(3: —z;) + Z wjupUs(z; — zx) + al|ul3
j.k=1

_ TRSu —2ulrs(z) + Us(z — x) + a|jul? +a

1 n
= (9m)d/2 /
(271') / R =

Z ujel@t) _ ¢i@i)
1 n 2
] Gty i(x,t
j=1

= TR.;,u — Q'uT:r'q,(m) +1+ a||u||% +a
(40) < max{1,a/p}(u" Ryu — 2u"ry(z) + 1+ plul3) + a,

c(t)F(U)(t)dt + al|u||2 +a

(0)(t)dt + al|ul + a

where rg(z) = (U(z—z1),...,¥(z—=z,))T and the second equality follows from (35). Plugging

u = (Ry + plp) 'ry(z)

into (39) and (40), we have the MSPE of predictor (13) upper bounded by

max{1,a/u}(1 - ro(@)7 (Ry + pla) 'ra(2)) +a.

By Lemma B.1, 1 — rg(z)T (Ry + pl,) " 'rg(z) converges to zero as the fill distance goes to
zero since p is a constant, which completes the proof in this case.

Next, we consider the case that there is no noise at point z. For any v = (u1,..., un)T, it
can be shown that the MSPE of predictor »IY in this case is

2

]EH\I!( — ) — Z:;Ujll'(' —(zj +¢))

(41) = uT Rsu — 2uT r(z) + U(z — z) + al|ul|2.

T

Let b(t) = [pa e{€:t h(e;)de;. Thus, for any u = (uy,...,u,)T, we have

UTRSu - QUTT’(.’I:) +U(z — ) + al|u|)?

271')df2 /
<1t c? iz,0) _ gilzt)
zﬁ)dﬂ /Rd Z use

14+C2

+ i / 1= BOIPF@)(0de +alful}

2

e @b(t) — @D F(T)(t)dt + alju2

[b(£)|*F () (t)dt
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< 1+ Ryu — 2uTry(z) + 1) + alju?
+(1+C7Y) (Qﬂl)d - /R 1 ()| PF (W) 1)

< max{(1 + C?),a/u}(uT Ryu — 2uTry(z) + 1 + pul|3)

1(2+ ;'ﬂ / |1 — [b(t)[[>F (¥)(¢)dt,

(42)

where we use 2(a,b) < C?|a|? + C72|b? in the first inequality, with C a fixed constant.
Plugging

u=(Ry + pl,)  ry ()
into (41) and (42), we have the MSPE of predictor (13) upper bounded by

max{(1 + C?),a/u}(1 — re(z)" (Ry + pln) 're(z)) + wa / |1 — |b(t)||*F(T)(t)dt.

By Lemma B.1, 1 — r¢(z)T (Ry + pI) 'ry(z) converges to zero as the fill distance goes to
zero since p is a constant. The constant C influences the number of design points needed such
that max{(1+ C?),a/u}(1 — r¢(z)T(Ry + pln) 'ry(z)) is close to zero. For a fixed number
of design points, the larger C is, the larger max{(1+C?),a/u}(1 —rg(z)T (Ry + pul,) " try(z))
is. To derive an explicit bound, we let C? = 25, which yields an asymptotic upper bound

% /R 11— [p()|[*F(T)(t)dt.

This finishes the proof.

Appendix G. Proof of Proposition 3.6. Notice that ]E(eifzt) converges to 1 since ¢,
converges to 0 in distribution and ¢ is bounded, and b(t) is bounded for all ¢ € R?. By the
dominated convergence theorem, the result holds.

Appendix H. Proof of Theorem 4.1. We first present a lemma, which is a generalization
of Lemma B.1.

Lemma H.1. Suppose the conditions of Theorem 4.1 hold. Then l—f\p(xm)T(fa’,@:l—ﬁI)_lfw (x)
converges to zero as the fill distance of X converges to zero, where ¥V = Wy or U,

Proof. The proof of Lemma, H.1 is similar to the proof of Lemma B.1. The only difference
is that if we define §(t) = U(t — z) — 7y (t)T (Ry + aI)"'7y(z), then |G| zrn () < C? for all g.
Thus, the result follows from the proof of Lemma B.1. [ |

Now we are ready to show the proof of Theorem 4.1. Let g(x) be the SK predictor with
parameters (62, ). Thus,

(43) §(@) = 7a(2)T(Ra + i)',

where 73(z) = (lIfg(a: z1),. (:13 ::cn)) and Ry = (li'g(a:j — k) jk
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Proof of statement (i): Direct calculation shows that the MSPE can be expressed as

E(y(z) - §(2))* = 0*(1 — 272(2)" (R2 + iln) "'7n(2)
(44) +7a(2)T (R + iln) "' R(Ry + il ) "' (),

where R and ry are as in (4) and (6), respectively. Similar to (40), we have for any u =
(ul,...,un)T

T mn
1-2) w¥s(e—=z5) + Y wur¥s(z; — o) +alul3
j=1 jok=1

= uT Rgu — 2uT'rg(z) + Ug(z — z) + a||u) +a

1 n o , 2
= @ik A ) D uget@t — B0 () F(T)(t)dt + aflull3 + a
j=1
1 n , , 2
< ami A ) D uget@ — 0| F(T)(t)dt + allull3 +a
j=1
Ay ¢ i(x;,t) i(x,t) 2 2
< @ Jo D uze —e F(Uo)(t)dt + al|ul)3 +a
j=1

= Ay (uT Rou — 2uT 7y (2) + U (x — z)) + al|ul|2 + a
(45) < max{Ay, a/a}(u” Ryu — 2u 7a(2) + Ua(0) + fillu3) +a,

o0) = ([ e ntedes) ([ e niendar).

and a = 1 — ¥Ug(0). Plugging

where

u = (ﬁ’z + ﬁfn)_lfg(m)
into (44) and (45), we have that the MSPE of predictor (44) is upper bounded by

max{ A1, a/fiH(F2(0) — 7a(a)T (e + iln) Fa(e) +a
< max{A;,aC}(¥3(0) — 7o(x)T (Ry + CI,,) '75(z) + a.

By Lemma H.1, ¥5(0) — 7o(z)T (Ra + CI,)~'72(x) converges to zero as the fill distance goes
to zero, which indicates that o2a is an asymptotic upper bound on the MSPE of SK with
parameters. Note that o2a is also the limit of KALEN with the true parameters, which is the
best linear unbiased predictor. Therefore, o2a is the limit of SK with parameters.

Note that KALEN is

(46) i(x) = ix(x)T (Rs + al,) 7Y,
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where Rs = (Us(zj — zk))jk, 7n(z) = (Us(z — x1), ..., Us(z — z)),
Ug(s—t) = /Rd /Rd Uy (s+ e — (t+€3))p(er)p(ez)derdes,

and @ = U (0) — U5(0). Condition (4) in Theorem 4.1 implies that @ is bounded away from
zero. Thus, repeating the argument in the proof of SK completes the proof of statement (i).
Proof of statement (ii): By direct calculation, it can be shown that

E(y(2) — 5(x))* = 02(1 — 2a(a)" (Ry + jil) 'r(2)
(47) + #a(2)T (Ry + i) " R(Ry + i) i),

where r(z) is as in (3). Let b(t) = [5a €0 p(e;)dej. For any u = (u1,...,un)’, we have

ul Rgu — 2ulr(z) + 1 + al|ul|?

= G oo | S0 = 0| @0t + ol
2
< ((12:)3112) Zu @t _ @O (1) 2F (0) (t)dt
1+cd

i / 11— BOIEF@)Ode + allul}

o+ CHA Z“ GilEt) _ gilz)

- (2m)9/?
(1+cr?) 2
et / 1~ [b(6) |2 (W) 6t + ol
< (1+ C3) A1 (uT Ryu — 2u"7(z) + Ua(z — x)) + al|ul3
CLo2 [ n-boriFw@d
< max{(1 + ) A1, /) (7 Ry — 20775 () + B2(0) + )

(1(;%2)/ |1 — [b(®)[*|F (T) (¢)dt

Ib(t)lgf (P2)(t)dt

(48)

Plugging u = (Ra + il )~'79(z) into (47) and (48), we find that the MSPE of predictor (13)
is upper bounded by

max{(1 + C3) Ay, a/fi}(¥5(0) - () (R + filn) " Fa(a)

o [ - BFiFw @

< max{(1+ C?)A1,aC}(¥(0) — 7o(z)T (Ry + CI,) " 17a(x)

H LG [ - borE@oa
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We take C? = 25. By Lemma H.1, U3(0) — #ao(z)T (Ra 4+ CI,) ~172(x) converges to zero as the
fill distance goes to zero since C is a constant, which finishes the proof for SK.

Note that the KALE is
f(z) = 7#(z)T (Rs + al)~'Y,

where 7(z) is as in (3) with parameters éil), and Rs and a are as in (46). Because U, is a
correlation function and p(-) = p(-), we have ¥;(0) = 1 and ¥g(0) = W¥gs(0), which imply
@=1—Wg(0) =1— Ug(0) = a. Then for any u = (u1,...,un)T, we have

ul Rgu — 2u” r(z) + 1 + al|u||2

2
e E0p(8) — @0 F(T)(t)dt + al|ul2

Ay N L
< G Z uie @ 0b(t) — "0 F(81)(t)dt + al|ulf3
(49) — Ay (u” Rsu — 2u #(z) + U1 (z — z)) + alul)3.

Note that f (z) minimizes (49). Then repeating the proof of Theorem 3.1 gives an upper
bound

e 1t bR (0

Together with F(¥1)(t) < A2F(¥)(t) for any t, we finish the proof.
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