
SI A M / A S A J. U N C E R T AI N T Y Q U A N TI FI C A TI O N © 2 0 2 2 S o ci et y f or I n d u stri al a n d A p pli e d M at h e m ati c s
a n d A m eri c a n St ati sti c al A s s o ci ati o nV ol. 1 0, N o. 2, p p. 6 1 9 – 6 5 0

G a u s si a n Pr o c e s s e s wi t h I n p u t L o c a ti o n Err or a n d A p pli c a ti o n s t o t h e C o m p o si t e
P ar t s A s s e m bl y Pr o c e s s ∗

W e nji a W a n g † , Xi a o w ei Y u e‡ , B e nj a mi n H a al a n d§ , a n d C. F. J e ff W u ¶

A b s tr a c t. T hi s p a p e r i n v e s ti g a t e s G a u s si a n p r o c e s s m o d eli n g wi t h i n p u t l o c a ti o n e r r o r, w h e r e t h e i n p u t s a r e
c o r r u p t e d b y n oi s e. H e r e, t h e b e s t li n e a r u n bi a s e d p r e di c t o r f o r t w o c a s e s i s c o n si d e r e d, a c c o r di n g
t o w h e t h e r t h e r e i s n oi s e a t t h e t a r g e t l o c a ti o n o r n o t. We s h o w t h a t t h e m e a n s q u a r e d p r e di c ti o n
e r r o r c o n v e r g e s t o a n o n z e r o c o n s t a nt if t h e r e i s n oi s e a t t h e t a r g e t l o c a ti o n, a n d w e p r o vi d e a n
u p p e r b o u n d of t h e m e a n s q u a r e d p r e di c ti o n e r r o r if t h e r e i s n o n oi s e a t t h e t a r g e t l o c a ti o n. We
i n v e s ti g a t e t h e u s e of s t o c h a s ti c K ri gi n g i n t h e p r e di c ti o n of G a u s si a n p r o c e s s e s wi t h i n p u t l o c a ti o n
e r r o r a n d s h o w t h a t s t o c h a s ti c K ri gi n g i s a g o o d a p p r o xi m a ti o n w h e n t h e s a m pl e si z e i s l a r g e. S e v e r al
n u m e ri c al e x a m pl e s a r e gi v e n t o ill u s t r a t e t h e r e s ul t s, a n d a c a s e s t u d y o n t h e a s s e m bl y of c o m p o si t e
p a r t s i s p r e s e nt e d. Te c h ni c al p r o of s a r e p r o vi d e d i n t h e a p p e n di c e s.

K e y w or d s. G a u s si a n p r o c e s s, i n p u t l o c a ti o n e r r o r, s t o c h a s ti c K ri gi n g, c o m p o si t e p a r t s a s s e m bl y
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1. I n tr o d u c ti o n. G a u s si a n pr o c e s s ( G P) m o d eli n g i s wi d el y u s e d t o r e c o v er u n d erl yi n g
f u n cti o n s fr o m s c att er e d e v al u ati o n s, p o s si bl y c orr u pt e d b y n oi s e. T hi s m et h o d h a s b e e n
utili z e d i n s p ati al st ati sti c s f or s e v er al d e c a d e s [ 7 , 2 2 ]. L at er, G P m o d eli n g w a s a p pli e d i n
c o m p ut er e x p e ri m e nt s t o b uil d e m ul at or s of t h eir o ut p ut s [ 2 7 ]. I n or d er t o c a pt ur e t h e r a n-
d o m n e s s of r e al s y st e m s, it i s n at ur al t o u s e st o c h a sti c si m ul ati o n i n c o m p ut er e x p eri m e nt s.
F or G P m o d eli n g, t h e o ut p ut a s s o ci at e d wit h e a c h i n p ut c a n b e d e c o m p o s e d a s t h e s u m
of a m e a n G P o ut p ut a n d a r a n d o m err or t h at i s i n d e p e n d e nt of t h e G P o ut p ut. I n st o-
c h a sti c si m ul ati o n of c o m p ut er e x p eri m e nt s, t h e r a n d o m err or i s t y pi c all y i n d e p e n d e nt a n d
i d e nti c all y di stri b ut e d (i.i. d.) o n e a c h i n p ut l o c ati o n [1 ]. We c all t h e e rr or a d d e d t o t h e
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m e a n G P o ut p ut a s o ut p ut n oi s e. T h e o ut p ut n oi s e i s u s u all y fr o m u n c e rt ai nti e s a s s o ci-
at e d wit h r e s p o n s e s, s u c h a s m e a s ur e m e nt err or s, c o m p ut ati o n al err or s, a n d ot h er u n q u a n-
ti fi e d err or s. T h e c orr e s p o n di n g G P m o d eli n g wit h o ut p ut n oi s e i s c all e d st o c h a sti c K ri gi n g
( S K) [ 1 ].

B e si d e s o ut p ut n oi s e, i n s o m e c a s e s, t h e i n p ut v ari a bl e s ar e al s o c orr u pt e d b y n oi s e. N oi s y
or u n c ert ai n i n p ut s ar e q uit e c o m m o n i n s p ati al st ati sti c s b e c a u s e g e o st ati sti c al d at a ar e
oft e n i n d e x e d b y i m pr e ci s e l o c ati o n s. D et ail e d e x a m pl e s c a n b e f o u n d i n [ 2 , 3 2 ]. We c all t h e
r a n d o m err or of i n p ut v ari a bl e s i n p ut l o c ati o n n oi s e. T h e i n p ut l o c ati o n n oi s e c o m e s fr o m
t h e n at ur al u n c ert ai nti e s i n h er e nt t o t h e c o m pl e x s y st e m s, s u c h a s a ct u ati n g u n c ert ai nt y,
c o ntr oll er fl u ct u ati o n, a n d i nt er n al m e a s ur e m e nt err or. I n c o ntr a st t o t h e o ut p ut n oi s e, w hi c h
i s r el at e d t o t h e r e s p o n s e, i n p ut l o c ati o n n oi s e i s a s s o ci at e d wit h i n p ut v ari a bl e s. If t h e i n p ut
v ari a bl e s ar e c orr u pt e d b y n oi s e i n a G P, it i s k n o w n a s a G P wit h i n p ut l o c ati o n err or, a n d
t h e c orr e s p o n di n g b e st li n e ar u n bi a s e d pr e di ct or i s c all e d Kri gi n g a dj u sti n g f or l o c ati o n err or
( K A L E) [ 8 ]. Al s o s e e [4 , 9 , 1 5 , 2 3 ] f or m or e di s c u s si o n s. K A L E h a s b e e n a p pli e d i n m a n y
ar e a s, i n cl u di n g r o b oti c s [ 1 0 ], wir el e s s n et w or k s [2 4 ], a n d Wi- Fi fi n g er pri nti n g [1 8 ].

K A L E pr e di ct s t h e m e a n G P o ut p ut at p oi nt x ∈ Ω wit h o ut i n p ut l o c ati o n n oi s e. I n
m a n y a p pli c ati o n s, h o w e v er, t h e pr e di cti o n of t h e m e a n G P o ut p ut at p oi nt x ∈ Ω wit h i n p ut
l o c ati o n n oi s e i s d e sir e d. A m oti v ati n g e x a m pl e i s t h e c o m p o sit e air cr aft f u s el a g e a s s e m bl y
pr o c e s s. I n t hi s pr o c e s s, a m o d el i s n e e d e d t o pr e di ct t h e di m e n si o n al d e vi ati o n s u n d er n oi s y
a ct u at or s’ f or c e s. F urt h er, w h e n n e w a ct u at or f or c e s ar e i m pl e m e nt e d i n pr a cti c e, t h er e i s
a n i n e vit a bl e i n p ut l o c ati o n n oi s e, i. e., u n c ert ai nt y i n t h e a ct u all y d eli v e r e d a ct u at or f or c e s.
T h er ef or e, t h e o ut p ut at p oi nt x ∈ Ω h a s i n p ut l o c ati o n n oi s e. U n d er t hi s s c e n ari o, w e c o n si d er
Kri gi n g a dj u sti n g f or l o c ati o n err or a n d n oi s e ( K A L E N), w hi c h i s t h e b e st li n e ar u n bi a s e d
pr e di ct or of t h e m e a n G P o ut p ut at p oi nt x ∈ Ω wit h i n p ut l o c ati o n n oi s e. F or a n ot h er
e x a m pl e, i n t h e el e ctri c st a bilit y c o ntr ol s y st e m of v e hi cl e s, a m o d el i s d e v el o p e d t o li n k t h e
i n p ut s (i. e., br a ki n g pr e s s ur e a n d e n gi n e t or q u e) a n d t h e o ut p ut s (i. e., st a bilit y c o ntr ol l o s s).
I n p ut l o c ati o n n oi s e i n e vit a bl y e xi st s i n t hi s s y st e m d u e t o t h e u n c ert ai nti e s i n w h e el pr e s s ur e
m o d ul at or s, pr e s s ur e r e s er v oir, a n d el e ctri c p u m p. Ot h e r t h a n t h e t w o e x a m pl e s m e nti o n e d
a b o v e, K A L E N fit s m a n y a p pli c ati o n s b ett er t h a n K A L E d u e t o t h e u bi q uit y of a ct u ati n g
err or s i n e n gi n e eri n g s y st e m s.

I n t hi s p a p er, w e di s c u s s t hr e e pr e di ct or s, K A L E, K A L E N, a n d S K, a p pli e d i n pr e di cti o n
a n d u n c ert ai nt y q u a nti fi c ati o n of G P m o d eli n g wit h i n p ut l o c ati o n err or. We s h o w t h at
u nli k e G P m o d eli n g wit h o ut l o c ati o n err or, t h e m e a n s q u ar e d pr e di cti o n err or ( M S P E) d o e s
n ot c o n v er g e t o z er o a s t h e s a m pl e si z e g o e s t o i n fi nit y. F urt h er m or e, w e s h o w t h at t h e li miti n g
M S P E s of K A L E N a n d S K ar e e q u al if p oi nt x ∈ Ω h a s i n p ut l o c ati o n n oi s e. We o bt ai n a n
a s y m pt oti c u p p er b o u n d o n t h e M S P E s of K A L E a n d S K if t h er e i s n o n oi s e at p oi nt x ∈ Ω.
T hi s u p p er b o u n d i s s m all if t h e i n p ut l o c ati o n n oi s e at o b s er v e d p oi nt s i s sli g ht. N u m eri c al
r e s ult s i n di c at e t h at if t h e s a m pl e si z e i s r el ati v el y s m all a n d n oi s e i s r at h e r l ar g e, K A L E or
K A L E N h a s a m u c h s m all er M S P E, a n d t h u s b ot h ar e d e sir a bl e, c o m p ar e d wit h S K. If t h e
s a m pl e si z e i s l ar g e or t h e n oi s e i s q uit e s m all, t h e n t h e p erf or m a n c e of all t hr e e a p pr o a c h e s i s
si mil ar. We al s o c o m p ar e t h e p e rf or m a n c e of K A L E N a n d S K i n t h e m o d eli n g of a c o m p o sit e
p art s a s s e m bl y pr o c e s s pr o bl e m. We fi n d t h at K A L E N a n d S K ar e c o m p ar a bl e a c r o s s a r a n g e
of s m all i n p ut l o c ati o n n oi s e l e v el s, c orr e s p o n di n g t o a r a n g e of a ct u at or t ol er a n c e s, w hi c h i s
c o n si st e nt wit h t h e t h e or eti c al a n al y si s.
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T h e r e m ai n d er of t hi s arti cl e i s str u ct ur e d a s f oll o w s. I n s e cti o n 2 , w e f or m all y st at e
t h e pr o bl e m, i ntr o d u c e K A L E a n d K A L E N, a n d s h o w s o m e a s y m pt oti c pr o p erti e s of t h e
M S P E s of K A L E a n d K A L E N. S e cti o n 3 pr e s e nt s s o m e t h e or eti c al r e s ult s w h e n u si n g S K
i n t h e pr e di cti o n of G P s wit h i n p ut l o c ati o n err or. P ar a m et er e sti m ati o n m et h o d s ar e di s-
c u s s e d i n s e cti o n 4 . N u m eri c al r e s ult s ar e pr e s e nt e d i n s e cti o n 5 . A c a s e st u d y of t h e c o m-
p o sit e p art s a s s e m bl y pr o c e s s i s c o n si d er e d i n s e cti o n 6 . Te c h ni c al d et ail s ar e gi v e n i n t h e
a p p e n di c e s.

2. G P s wi t h i n p u t l o c a ti o n err or. I n t hi s s e cti o n, w e i ntr o d u c e t w o pr e di ct or s of G P s
wit h i n p ut l o c ati o n err or, K A L E a n d K A L E N. We al s o gi v e s e v er al a s y m pt oti c pr o p erti e s of
K A L E a n d K A L E N.

2. 1. T w o pr e di c t or s of G P s wi t h i n p u t l o c a ti o n err or. S u p p o s e f i s a n u n d erl yi n g f u n c-
ti o n d e fi n e d o n R d , a n d t h e v al u e s of f o n a c o n v e x a n d c o m p a ct s et Ω ar e of i nt er e st. S u p p o s e
w e o b s er v e t h e r e s p o n s e s f (x 1 ), . . . , f (x n ) o n X = { x 1 , . . . , xn } ⊂ Ω. F oll o wi n g t h e t er mi n ol-
o g y i n d e si g n of e x p e ri m e nt s [ 3 8 ], w e c all X = { x 1 , . . . , xn } d e si g n p oi nt s. A st a n d ar d t o ol t o
b uil d e m ul at or s b a s e d o n o b s er v e d d at a i s G P m o d eli n g ( s e e [ 1 3 ] a n d [2 8 ], f or e x a m pl e). I n G P
m o d eli n g, t h e u n d erl yi n g f u n cti o n f i s a s s u m e d t o b e a G P. We s u p p o s e f i s st ati o n a r y , w hi c h
m e a n s t h at t h e c o v ari a n c e of f (x ) a n d f (x ) d e p e n d s o nl y o n t h e di ff er e n c e x − x b et w e e n t h e
t w o i n p ut v ari a bl e s x a n d x . We f urt h er a s s u m e C o v(f (x ), f(x )) = σ 2 Ψ( x − x ), w h er e σ 2 i s
t h e v ari a n c e, a n d Ψ i s t h e c orr el ati o n f u n cti o n. T h e n Ψ m u st b e p o siti v e d e fi nit e a n d s ati sf y
Ψ( 0) = 1. Si n c e f i s d e fi n e d o n R d , Ψ s h o ul d al s o b e d e fi n e d o n R d . I n G P m o d eli n g, o n e c a n
a s s u m e t h at t h e m e a n of f i s z er o, a c o n st a nt, or a li n e ar c o m bi n ati o n of k n o w n f u n cti o n s.
T h e c orr e s p o n di n g m et h o d s ar e r ef err e d t o a s si m pl e Kri gi n g, or di n ar y Kri gi n g, a n d u ni v er s al
Kri gi n g, r e s p e cti v el y. Or di n ar y Kri gi n g a n d u ni v er s al Kri gi n g ar e m or e fl e xi bl e a n d m a y i m-
pr o v e t h e pr e di cti o n p e rf or m a n c e, b ut t h e e sti m ati o n of t h e m e a n f u n cti o n i ntr o d u c e s m or e
u n c ert ai nti e s. M or e o v er, T h e or e m 3 of [ 3 4 ] s u g g e st s t h at t h e e sti m ati o n of t h e m e a n f u n cti o n
c a n b e i n c o n si st e nt. T h e s e u n c ert ai nti e s a n d i n c o n si st e n c y m a k e t h e t h e or eti c al a n al y si s m or e
c u m b er s o m e a n d dil ut e t h e f o c u s of t h e o v er all a n al y si s. T h er ef or e, f or t h e e a s e of m at h e-
m ati c al tr e at m e nt, w e a s s u m e t h e m e a n of f i s z er o i n t h e or eti c al d e v el o p m e nt s i n s e cti o n s
2 – 4 , w hi c h i s e q ui v al e nt t o r e m o vi n g t h e m e a n s urf a c e. N e v ert h el e s s, w e u s e a n o n z er o m e a n
f u n cti o n i n n u m eri c al a n d c a s e st u di e s t o i m pr o v e t h e pr e di cti o n p erf or m a n c e b y i ntr o d u ci n g
m or e d e gr e e s of fr e e d o m.

F or a G P wit h i n p ut l o c ati o n err or, t h e i n p ut s ar e c orr u pt e d b y n oi s e. I n t hi s p a p er,
w e m ai nl y f o c u s o n t h e i n p ut l o c ati o n err or a n d a s s u m e t h e r e s p o n s e s ar e n ot i n fl u e n c e d b y
t h e o ut p ut n oi s e. It i s w ort h n oti n g t h at t hi s a s s u m pti o n c a n b e r el a x e d, a n d t h e G P wit h
b ot h i n p ut l o c ati o n err or a n d o ut p ut n oi s e c a n b e a n al y z e d i n a si mil ar m a n n er, a s st at e d
i n R e m ar k 2. 1 . S p e ci fi c all y, s u p p o s e t h e r e s p o n s e s ar e p ert ur b e d b y t h e i n p ut l o c ati o n err or;
t h at i s, w e o b s er v e y j = f (x j + j ) f or x j ∈ X , w h er e t h e j ’ s ar e i.i. d. r a n d o m v e ct or s wit h
m e a n 0 a n d h a v e a pr o b a bilit y d e n sit y f u n cti o n p (·). T h er ef or e, alt h o u g h x j i s k n o w n, t h e
a ct u al l o c ati o n x j + j i s u n k n o w n, a n d w e o b s er v e t h e r e s p o n s e f (x j + j ) o n t hi s u n k n o w n
l o c ati o n. It i s p o s si bl e t o h a v e r e pli c at e s o n s o m e d e si g n p oi nt s, i. e., f or s o m e j = k , x j = x k

f or x j , xk ∈ X b ut j = k . We a s s u m e p (·) i s c o nti n u o u s a n d e a c h el e m e nt of j h a s fi nit e
v ari a n c e ( n ot e t h at j i s a v e ct or).
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F oll o wi n g t h e a p pr o a c h i n [ 8 ], t h e b e st li n e ar u n bi a s e d pr e di ct or of f (x ) o n a p oi nt x i s
gi v e n b y

Q (Y ; x ) = α T
1 Y + α 2 ,( 1)

w h er e α 1 ∈ R n , α2 ∈ R ar e t h e s ol uti o n t o t h e o pti mi z ati o n pr o bl e m

mi n
( α 1 , α2 )

E (f (x ) − Q (Y ; x )) 2 = mi n
( α 1 , α2 )

E (f (x ) − α T
1 Y − α 2 ) 2 ,( 2)

a n d t h e r e s p o n s e s o n t h e d e si g n p oi nt s ar e Y = ( y 1 , . . . , yn ) T . B y mi ni mi zi n g ( 2) wit h r e s p e ct
t o ( α 1 , α2 ), w e o bt ai n t h at t h e s ol uti o n t o ( 2) i s α 1 = R − 1 r (x ) a n d α 2 = 0, w h er e r (x ) =
(r (x, x 1 ), . . . , r(x, x n )) T d e n ot e s t h e c o v ari a n c e v e ct or b et w e e n f (x ) a n d Y wit h

r (x, x j ) = E (f (x )y j ) = σ 2

R d

Ψ( x − (x j + j ))p ( j )d j ,( 3)

a n d R = ( R j k ) j k d e n ot e s t h e c o v ari a n c e m atri x wit h

R j k = E (y j y k ) =
σ 2 Ψ( x j − x j ) = σ 2 , j = k,
σ 2

R d R d Ψ( x j + j − (x k + k ))p ( j )p ( k )d j d k , j = k.
( 4)

Pl u g gi n g α 1 = R − 1 r (x ) a n d α 2 = 0 i nt o ( 1), w e fi n d t h at t h e b e st li n e ar u n bi a s e d pr e di ct or
of f (x ) i s

f̂ ( x ) = r (x ) T R − 1 Y.( 5)

R e m a r k 2. 1. If t h e o b s er v ati o n s al s o h a v e i.i. d. o ut p ut n oi s e wit h m e a n z er o a n d fi nit e
v ari a n c e σ 2

δ , w e o nl y n e e d t o r e pl a c e E (y j y j ) = σ 2 b y E (y j y j ) = σ 2 + σ 2
δ , a n d t h e r e st of t h e

t h e or eti c al a n al y si s r e m ai n s si mil ar. O ur t h e or eti c al a n al y si s c a n al s o b e g e n e r ali z e d t o t h e
c a s e t h at i ’ s ar e i n d e p e n d e nt b ut n ot i d e nti c all y di stri b ut e d. Alt h o u g h t h e s e g e n er ali z ati o n s
d o n ot i n fl u e n c e t h e t h e or eti c al d e v el o p m e nt a l ot, t h e y c o ul d dil ut e t h e m ai n f o c u s of t hi s
p a p er. T h er ef or e, w e f o c u s o n t h e G P s wit h o nl y i.i. d. i n p ut l o c ati o n n oi s e.

I n [8 ] e q u ati o n (5 ) i s r ef err e d t o a s Kri gi n g a dj u sti n g f or l o c ati o n err or ( K A L E). If t h e
pr e di cti o n of y (x ) = f (x + ) o n a p oi nt x wit h i n p ut l o c ati o n n oi s e i s of i nt er e st, it c a n b e
s h o w n t h at w e o nl y n e e d t o r e pl a c e r (x ) i n ( 5 ) b y r N (x ) = ( r N (x, x 1 ), . . . , rN (x, x n )) T , w h er e

r N (x, x j ) = σ 2

R d R d

Ψ( x + − (x j + j ))p ( j )p ( )d j d .( 6)

We r ef e r t o t h e c orr e s p o n di n g b e st li n e ar u n bi a s e d pr e di ct or ˆ y (x ) = r N (x ) T R − 1 Y a s Kri gi n g
a dj u sti n g f or l o c ati o n err or a n d n oi s e ( K A L E N). O n e dir e ct r el ati o n b et w e e n K A L E a n d
K A L E N i s ŷ ( x ) =

R d f̂ ( x + )p ( )d .
I n s o m e c a s e s, t h er e e xi st cl o s e d f or m s of t h e i nt e gr al s i n ( 3 ) –(6 ). F or e x a m pl e, if t h e

c orr el ati o n f u n cti o n Ψ( s − t) = e x p( − θ s − t 2
2 ), a n d t h e n oi s e ∼ N ( 0, σ2 I d ), w h er e θ > 0 i s
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t h e c orr el ati o n p ar a m et er, a n d N ( 0, σ2 I d ) i s a m e a n z er o n or m al di stri b uti o n wit h c o v ari a n c e
m atri x σ 2 I d , t h e n (3 ) –(6 ) c a n b e c al c ul at e d, r e s p e cti v el y, a s [ 6 ]

R j k =
σ 2 , j = k,

σ 2

( 1 + 4 σ 2 θ ) d / 2 e
− θ x j − x k

2
2

1 + 4 σ 2 θ , j = k,

r (x, x j ) =
σ 2

( 1 + 2 σ 2 θ ) d / 2
e

− θ x − x j
2
2

1 + 2 σ 2 θ ,

r N (x, x j ) =
σ 2

( 1 + 4 σ 2 θ ) d / 2
e

− θ x − x j
2
2

1 + 4 σ 2 θ .( 7)

We al s o i n cl u d e t h e c al c ul ati o n of ( 7) i n A p p e n di x C f or t h e r e a d er’ s r ef er e n c e.
U nf ort u n at el y, i n g e n er al, ( 3 ) –(6 ) ar e i ntr a ct a bl e a n d ar e t y pi c all y e sti m at e d vi a M o nt e

C arl o i nt e gr ati o n b y s a m pli n g j ’ s fr o m p (·), w hi c h c a n b e c o m p ut ati o n all y e x p e n si v e. F or
e x a m pl e, if w e c h o o s e t h e M at é r n c o r r el ati o n f u n cti o n, t h e n ( 5) d o e s n ot h a v e a cl o s e d f or m.
I n t hi s c a s e, t h e c al c ul ati o n of ( 5) will r e q uir e m u c h ti m e, a s w e will s e e i n s e cti o n 5 .

Wit h e q u ati o n s ( 3 ) –(6 ), t h e M S P E of K A L E c a n b e c al c ul at e d b y

E (f (x ) − f̂ ( x )) 2 = E (f (x ) − r (x ) T R − 1 Y ) 2

= E (f (x ) 2 ) − 2 r (x ) T R − 1 E (f (x )Y ) + r (x ) T R − 1 E (Y Y T )R − 1 r (x )

= σ 2 − r (x ) T R − 1 r (x ),( 8)

w h er e f̂ i s a s i n ( 5) , a n d r a n d R ar e a s d e fi n e d i n ( 3 ) a n d ( 4 ), r e s p e cti v el y. T h e l a st e q u alit y
i s tr u e b e c a u s e of ( 3) a n d ( 4), a n d E (f (x ) 2 ) = Ψ( 0) = 1. Si mil arl y, o n e c a n c h e c k t h at t h e
M S P E of K A L E N i s

E (y (x ) − ŷ ( x )) 2 = σ 2 − r N (x ) T R − 1 r N (x ),( 9)

w h er e r N i s a s d e fi n e d i n (6 ).

2. 2. A s y m p t o ti c b e h a vi or s of K A L E N. I n t hi s s u b s e cti o n, w e c o n si d er a s y m pt oti c b e-
h a vi or s of K A L E N. D e fi n e

Ψ S (s − t) =
R d R d

Ψ( s + 1 − (t + 2 ))p ( 1 )p ( 2 )d 1 d 2 .( 1 0)

N oti c e t h at t h e M S P E of K A L E N c a n b e e x pr e s s e d a s

E (y (x ) − ŷ ( x )) 2 = σ 2 − r N (x )R − 1 r N (x )

= σ 2 ( 1 − Ψ S ( 0)) + σ 2 Ψ S ( 0) − r N (x )R − 1 r N (x )

= σ 2 ( 1 − Ψ S ( 0))

a c o n s t a nt

+ σ 2 Ψ S ( 0) − r N (x )(R S + σ 2 ( 1 − Ψ S ( 0)) I n ) − 1 r N (x )

“ M S P E of S K ”

,( 1 1)

w h er e R S = σ 2 ( Ψ S (x j − x k )) j k a n d I n i s a n i d e ntit y m atri x. I nt uiti v el y, if t h e s e c o n d t er m i s
i n d e e d a n M S P E of S K, t h e n it c o n v er g e s t o z er o, a n d t h e M S P E of K A L E N c o n v er g e s t o a
c o n st a nt. H o w e v er, t h e s e c o n d t er m i s a n M S P E of S K u nl e s s Ψ S i s a v ali d c orr el ati o n f u n cti o n
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(t h u s R S i s p o siti v e d e fi nit e), a n d t h at i s w h y w e a d d q u ot e m ar k s i n ( 1 1) . I n Pr o p o siti o n 3. 1
of [ 6 ], it i s s h o w n t h at if a f u n cti o n c (s, t ) = Ψ S (s − t) f or s = t a n d c (s, s ) = 1, t h e n c (·, ·) i s a
v ali d c orr el ati o n f u n cti o n. T h er ef or e, t h e c o v ari a n c e m atri x R i s p o siti v e d e fi nit e. I n or d er t o
s h o w t h at R S i n ( 1 1) i s al s o p o siti v e d e fi nit e, w e a s s u m e t h e c orr el ati o n f u n cti o n Ψ s ati s fi e s
t h e f oll o wi n g a s s u m pti o n, w hi c h i s al s o a s s u m e d t o b e tr u e i n t h e r e st of s e cti o n s 2 a n d 3 .

A s s u m pti o n 2. 2. T h e c orr el ati o n f u n cti o n Ψ i s a r a di al b a si s f u n cti o n, i. e., Ψ( s − t) =
φ ( s − t 2 ) f or s, t ∈ R d . F urt h er m or e, φ (r ) > 0 i s a stri ctl y d e cr e a si n g f u n cti o n of r ∈ R + ,
wit h φ ( 0) = 1. T h e r e pr o d u ci n g k er n el Hil b ert s p a c e g e n er at e d b y Ψ c a n b e e m b e d d e d i nt o a
S o b ol e v s p a c e H η ( Ω) wit h η > d / 2.

R e m a r k 2. 3. F or a bri ef i ntr o d u cti o n t o t h e r e pr o d u ci n g k er n el Hil b ert s p a c e, s e e A p p e n-
di x A .

M a n y wi d el y u s e d c orr el ati o n f u n cti o n s, i n cl u di n g i s otr o pi c G a u s si a n c orr el ati o n f u n cti o n s
a n d i s otr o pi c M at é r n c o r r el ati o n f u n cti o n s, s ati sf y t hi s a s s u m pti o n. S e e A p p e n di x A f or
d et ail s. F or a n a ni s otr o pi c c orr el ati o n f u n cti o n t h at h a s f or m Ψ( s − t) = φ ( A (s − t) 2 ) wit h
A a di a g o n al p o siti v e d e fi nit e m atri x a n d s, t ∈ R d , w e c a n str et c h t h e s p a c e Ω t o Ω s u c h
t h at Ψ 1 (s − t ) : = Ψ( s − t) = φ ( s − t 2 ) f or s , t ∈ Ω . A s s u m pti o n 2. 2 i m pli e s ΨS ( 0) < 1.
Wit h A s s u m pti o n 2. 2 , w e c a n s h o w t h at ΨS i s a p o siti v e d e fi nit e f u n cti o n, w hi c h i s st at e d i n
t h e f oll o wi n g l e m m a, w h o s e pr o of i s gi v e n i n A p p e n di x D .

L e m m a 2. 4. S u p p o s e A s s u m pti o n 2. 2 h ol d s. T h e n Ψ S i s a p o siti v e d e fi nit e f u n cti o n.

N e xt, w e c o n si d er t h e a s y m pt oti c pr o p erti e s of t h e M S P E of K A L E N d e fi n e d i n ( 9) a s t h e
fill di st a n c e g o e s t o z er o, w h e r e t h e fill di st a n c e h X of t h e d e si g n p oi nt s X i s d e fi n e d b y

h X : = s u p
x ∈ Ω

mi n
x j ∈ X

x − x j 2 .( 1 2)

S p e ci fi c all y, w e c o n si d er a s e q u e n c e of d e si g n s X m , m = 1 , 2 , . . . , a n d w e a s s u m e t h e f oll o wi n g.

A s s u m pti o n 2. 5. T h e s e q u e n c e of d e si g n p oi nt s X m = { x 1 , . . . , xn m
} s ati s fi e s t h at t h e r e

e xi st s a c o n st a nt C > 0 s u c h t h at h X m
≤ C q X m

f or all m , w h er e

q X m
=  mi n

x j = x k , xj , xk ∈ X m

x j − x k 2 / 2 ,

a n d h X m
i s t h e fill di st a n c e of X m d e fi n e d b y ( 1 2) .

R e m a r k 2. 6. A s s u m pti o n 2. 5 i m pli e s t h at t h e di sti n ct d e si g n p oi nt s ar e q u a si- u nif o r m [3 7 ].

It i s n ot h ar d t o fi n d d e si g n s t h at s ati sf y t hi s a s s u m pti o n. F or e x a m pl e, gri d d e si g n s
s ati sf y A s s u m pti o n 2. 5 . I n t h e r e st of t h e p a p er, w e s u p pr e s s t h e d e p e n d e n c e of X o n m
f or n ot ati o n al si m pli cit y. It c a n b e s h o w n t h at if a G P h a s n o i n p ut l o c ati o n n oi s e, t h e n t h e
M S P E of t h e c orr e s p o n di n g b e st li n e ar u n bi a s e d pr e di ct or c o n v er g e s t o z er o a s t h e fill di st a n c e
g o e s t o z e r o ( s e e L e m m a B. 1 i n A p p e n di x B ). U nli k e a G P wit h o ut i n p ut l o c ati o n err or, w e
s h o w t h at t h e li mit of t h e M S P E of K A L E N i s u s u all y n ot z er o. I n f a ct, ( 1 1) a n d L e m m a 2. 4
i m pl y t h at t h e M S P E of K A L E N i s t h e M S P E of S K pl u s a n o n z er o c o n st a nt. T h e s e r e s ult s
ar e st at e d i n T h e or e m 2. 7 , w h o s e pr o of i s pr o vi d e d i n A p p e n di x E .
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T h e or e m 2. 7. S u p p o s e A s s u m pti o n s 2. 2 a n d 2. 5 h ol d. T h e M S P E of K A L E N ( 9) c o n v e r g e s
t o σ 2 ( 1 − Ψ S ( 0)) a s t h e fill di st a n c e of t h e d e si g n p oi nt s h X c o n v e r g e s t o z e r o, w h e r e Ψ S i s a s
d e fi n e d i n ( 1 0) .

I n T h e or e m 2. 7 , w e pr e s e nt a li mit of t h e M S P E of K A L E N. T h e li mit σ 2 ( 1 − Ψ S ( 0))
i s u s u all y n ot z er o. T hi s i s e x p e ct e d f or K A L E N si n c e t h er e i s a r a n d o m err or at p oi nt x .
T h e M S P E li mit d e p e n d s o n t w o p art s. O n e i s t h e v ari a n c e σ 2 a n d t h e ot h er i s t h e di ff er e n c e
1 − Ψ S ( 0). T h e v ari a n c e σ 2 d e p e n d s o n t h e u n d e rl yi n g pr o c e s s, w hil e t h e di ff er e n c e d e p e n d s o n
t h e pr o b a bilit y d e n sit y f u n cti o n of t h e n oi s e p (·). R o u g hl y s p e a ki n g, t h e di ff er e n c e 1 − Ψ S ( 0)
will b e l ar g er if t h e d e n sit y p (·) i s m or e s pr e a d o ut.

3. C o m p ari s o n B e t w e e n K A L E / K A L E N a n d S K. It i s ar g u e d i n [8 ] a n d [2 9 ] t h at u si n g
a n u g g et t er m i s o n e w a y t o c o u nt er a ct t h e i n fl u e n c e of n oi s e wit hi n t h e i n p ut s. T h er ef or e, it
i s n at ur al t o a s k w h et h er S K ( or Kri gi n g wit h a n u g g et t er m; s e e R e m ar k 3. 2 f or di s c u s si o n
of t h e u s e of t er mi n ol o gi e s) i s a g o o d a p pr o xi m ati o n m et h o d t o pr e di ct t h e v al u e at a p oi nt
x ∈ Ω, si n c e it i s n ot t h e b e st li n e ar u n bi a s e d pr e di ct or u n d er t h e s etti n g s of G P wit h i n p ut
l o c ati o n err or. I n t hi s p a p er, w e s h o w t h at t h e M S P E of S K h a s t h e s a m e li mit a s t h e M S P E
of K A L E N, a n d w e pr o vi d e a n u p p er b o u n d o n t h e M S P E of S K if t h e t ar g et p oi nt x h a s n o
n oi s e, a s st at e d i n T h e or e m 3. 1 . T h e pr o of c a n b e f o u n d i n A p p e n di x F .

T h e or e m 3. 1. S u p p o s e A s s u m pti o n s 2. 2 a n d 2. 5 h ol d. L et µ > 0 b e a n y fi x e d c o n st a nt. A n
S K p r e di ct o r of a G P wit h i n p ut l o c ati o n e r r o r i s d e fi n e d a s

f̂ S (x ) = r Ψ (x )(R Ψ + µ I n ) − 1 Y,( 1 3)

w h e r e r Ψ (x ) = ( Ψ( x − x 1 ), . . . , Ψ( x − x n )) T a n d R Ψ = ( Ψ( x j − x k )) j k .

i. S u p p o s e t h e r e i s n oi s e at a p oi nt x ∈ Ω a n d y (x ) i s t o b e p r e di ct e d. T h e M S P E of t h e
p r e di ct o r ( 1 3) , E (y (x ) − f̂ S (x )) 2 , h a s t h e s a m e li mit a s K A L E N, w hi c h i s σ 2 ( 1 − Ψ S ( 0)),
w h e r e Ψ S i s a s d e fi n e d i n ( 1 0) , w h e n t h e fill di st a n c e of X g o e s t o z e r o.

ii. S u p p o s e t h e r e i s n o n oi s e at a p oi nt x ∈ Ω a n d f (x ) i s t o b e p r e di ct e d. A n a s y m pt oti c
u p p e r b o u n d o n t h e M S P E of t h e p r e di ct o r ( 1 3) , E (f (x ) − f̂ S (x )) 2 , i s

1 .0 4 σ 2

( 2π ) d / 2
R d

|1 − | b (t)||2 F ( Ψ)( t)dt,( 1 4)

w h e r e F ( Ψ) i s t h e F o u ri e r t r a n sf o r m of Ψ a n d b (t) = E (e i T t ) i s t h e c h a r a ct e ri sti c
f u n cti o n of p (·).

R e m a r k 3. 2. T h e f or m of t h e S K pr e di ct or i s q uit e si mil ar t o t h at of t h e si m pl e Kri gi n g
wit h a n a d diti o n al t er m µ I n . F oll o wi n g t h e t er mi n ol o g y i n c o m p ut er e x p eri m e nt s [1 6 , 2 5 ],
w e c all µ I n a “ n u g g et ” t er m. D e s pit e a si mil ar f or m, t h er e ar e s o m e di sti n ct r ati o n al e s f or
i n cl u di n g a n u g g et t er m. I n s p ati al st ati sti c s, t h e n u g g et t er m c a n a c c o m m o d at e di s c o nti-
n uiti e s i n t h e c o v ari a n c e f u n cti o n ( s u c h v ari ati o n i s c all e d t h e n u g g et e ff e ct ) [2 6 , 2 9 ], a n d
t h e c orr e s p o n di n g pr e di ct or i s still a n i nt er p ol at or if t h er e i s n o n oi s e [ 2 6 ]. I n d et er mi ni sti c
c o m p ut er e x p e ri m e nt s, t h e n u g g et t e r m c a n b e u s e d t o st a bili z e c o m p ut ati o n of t h e m atri x
i n v er s e [1 6 , 2 5 ]. T h e n u g g et t er m c a n al s o b e u s e d t o c o u nt er a ct t h e i n fl u e n c e of o ut p ut n oi s e
i n st o c h a sti c c o m p ut er si m ul ati o n s a n d s p ati al st ati sti c s [1 , 2 9 ]. I n t h e l att er t w o s c e n ari o s,
t h e c orr e s p o n di n g pr e di ct or i s n o l o n g er a n i nt er p ol at or.
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R e m a r k 3. 3. We s a y b i s a n a s y m pt oti c u p p er b o u n d o n a s e q u e n c e a n if t h er e e xi st s a
s e q u e n c e b n s u c h t h at a n ≤ b n f or all n = 1 , 2 , . . . a n d li m n → ∞ b n = b .

R e m a r k 3. 4. T h e c o n st a nt 1. 0 4 i n ( 1 4) i s n ot e s s e nti al. It c a n b e c h a n g e d t o a n y c o n st a nt
gr e at er t h a n o n e, b ut a s m all e r c o n st a nt l e a d s t o a “ sl o w er ” c o n v er g e n c e s p e e d.

R e m a r k 3. 5. N ot e t h at K A L E i s t h e b e st li n e ar u n bi a s e d pr e di ct or w h e n a p oi nt x ∈ Ω
h a s n o n oi s e. T h er ef or e, t h e u p p er b o u n d of t h e M S P E f or S K i s al s o a n u p p er b o u n d of t h e
M S P E f or K A L E. F or a n ill u str ati o n of t h e u p p er b o u n d a n d l o w er b o u n d of t h e M S P E of
K A L E, s e e E x a m pl e 3. 7 .

T h e or e m 3. 1 s h o w s t h at t h e pr e di ct or ( 1 3) i s a s g o o d a s K A L E N a s y m pt oti c all y. T h e
f oll o wi n g pr o p o siti o n st at e s t h at if t h e n oi s e i s s m all, t h e n ( 1 4) c a n b e c o ntr oll e d. T h e pr o of
of Pr o p o siti o n 3. 6 c a n b e f o u n d i n A p p e n di x G .

Pr o p ositi o n 3. 6. S u p p o s e A s s u m pti o n 2. 2 h ol d s, a n d { n } i s a s e q u e n c e of i n d e p e n d e nt
r a n d o m v e ct o r s t h at c o n v e r g e s t o 0 i n di st ri b uti o n. L et

a n =
σ 2

( 2π ) d / 2
R d

|1 − | b n (t)||2 F ( Ψ)( t)dt,( 1 5)

w h e r e b n (t) = E (e i T
n t ). T h e n a n c o n v e r g e s t o z e r o.

E x a m pl e 3. 7. C o n si d er a G P f wit h m e a n z er o a n d c o v ari a n c e f u n cti o n σ 2 Ψ. S u p p o s e
t h e c orr el ati o n f u n cti o n Ψ( s − t) = e x p( − θ s − t 2

2 ) wit h θ > 0, a n d t h e i n p ut l o c ati o n n oi s e

j ∼ N ( 0, σ2 I d ) i s i.i. d., w h er e N ( 0, σ2 I d ) i s a m e a n z er o n or m al di stri b uti o n wit h c o v ari a n c e
m atri x σ 2 I d . B y T h e or e m 3. 1 , t h e li mit of t h e M S P E of K A L E N E (y (x ) − ŷ ( x )) 2 a n d S K
E (y (x ) − f̂ S (x )) 2 i s σ 2 ( 1 − Ψ S ( 0)), w hi c h c a n b e c o m p ut e d b y

σ 2 ( 1 − Ψ S ( 0)) = σ 2 1 −
R d R d

Ψ( x + 1 − (x + 2 ))p ( 1 )p ( 2 )d 1 d 2

= σ 2 − r N (x, x ) = σ 2 − r N (x j , xj ) = σ 2 ( 1 + 4 σ 2 θ ) d / 2 − 1

( 1 + 4 σ 2 θ ) d / 2
,( 1 6)

w h er e r N (x j , xj ) i s a s i n ( 7) wit h x = x j .
If t h er e i s n o n oi s e at p oi nt x , T h e or e m 3. 1 st at e s t h at a n a s y m pt oti c u p p er b o u n d of

M S P E E (f (x ) − f̂ S (x )) 2 f or S K i s

1 .0 4 σ 2

( 2π ) d / 2
R d

|1 − | b (t)||2 F ( Ψ)( t)dt.

N ot e t h at t h e c h ar a ct e ri sti c f u n cti o n of N ( 0, σ2 I d ) i s b (t) = E (e i T t ) = e − 1

2
σ 2 t T t , a n d F ( Ψ)( t) =

θ − d / 2 e − t T t

4 θ . T h u s, t h e u p p er b o u n d c a n b e c o m p ut e d b y

1 .0 4 σ 2

( 2π ) d / 2
R d

|1 − | b (t)||2 F ( Ψ)( t)dt =
1 .0 4 σ 2

( 2π θ ) d / 2
R d

( 1 − e − σ 2 t T t /2 ) 2 e − t T t

4 θ dt

= 1 .0 4 σ 2 1 +
1

( 1 + 4 σ 2 θ ) d / 2
−

2

( 1 + 2 σ 2 θ ) d / 2
.( 1 7)
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Li mit ( 1 6)

A s y m pt oti c u p p er b o u n d ( 1 7)

Fi g ur e 1. T h e li mit ( 1 6 ) a n d t h e a s y m pt oti c u p p e r b o u n d ( 1 7 ) wit h θ = 1 a n d σ 2 = 1. P a n el 1: d = 2.
P a n el 2: d = 6.

Fi g ur e 1 s h o w s t h e pl ot of li mit ( 1 6) a n d t h e a s y m pt oti c u p p er b o u n d ( 1 7) wit h θ = 1 a n d
σ 2 = 1. It c a n b e s e e n t h at a s t h e v ari a n c e of n oi s e i n cr e a s e s, b ot h ( 1 6) a n d ( 1 7) i n cr e a s e,
a n d ( 1 7) i s l ar g er t h a n ( 1 6) . Fr o m p a n el s 1 a n d 2 of Fi g ur e 1 , t h e err or i s m or e pr o mi n e nt if
t h e di m e n si o n of t h e s p a c e i s l ar g er. T hi s i n di c at e s t h at G P wit h i n p ut l o c ati o n err or i s al s o
i n fl u e n c e d b y t h e di m e n si o n, a s i n m a n y st ati sti c pr o bl e m s.

O n e a d v a nt a g e of S K i s t h at w e c a n si m plif y t h e c al c ul ati o n si n c e w e d o n ot n e e d t o
c al c ul at e t h e i nt e gr al s i n ( 3), (4 ), a n d ( 6 ). If t h e n oi s e i s s m all a n d t h e fill di st a n c e i s
s m all, T h e or e m 3. 1 a n d Pr o p o siti o n 3. 6 st at e t h at t h e M S P E of t h e S K pr e di ct or ( 1 3) c a n b e
c o m p ar a bl e wit h t h e b e st li n e ar u n bi a s e d pr e di ct or.

It i s ar g u e d i n [6 ] t h at si n c e t h e i nt e gr at e d c o v ari a n c e f u n cti o n i n (4 ) i s n ot t h e s a m e
a s t h e c o v ari a n c e f u n cti o n i n t h e ori gi n al G P wit h o ut l o c ati o n err or, a n u g g et t er m al o n e
c a n n ot c a pt ur e t h e e ff e ct of l o c ati o n err or. W hil e it i s tr u e t h at t h e M S P E of K A L E or
K A L E N i s t h e s m all e st a m o n g all t h e li n e ar u n bi a s e d pr e di ct or s, o ur r e s ult s al s o s h o w t h at
wit h a n y fi x e d c o n st a nt n u g g et t er m, t h e pr e di ct or ( 1 3) i s a s g o o d a s K A L E N a s y m pt oti c all y
(i. e., h a s t h e s a m e li mit a s t h at of K A L E N). T h e r e s ult s i n di c at e t h at t h er e i s littl e a b s ol ut e
di ff er e n c e b et w e e n K A L E a n d t h e pr e di ct or ( 1 3) if t h e v ari a n c e of t h e i n p ut l o c ati o n n oi s e
a n d t h e fill di st a n c e ar e s m all, b e c a u s e t h e s a m e a s y m pt oti c u p p er b o u n d f or b ot h M S P E s
E (f (x ) − f̂ ( x )) 2 a n d E (f (x ) − f̂ S (x )) 2 i s s m all. If t h e s a m pl e si z e n i s l ar g e, t h e c o m p ut ati o n al
c o st of K A L E / K A L E N a n d S K will b e hi g h, b e c a u s e t h e c o m p ut ati o n of a d e n s e m atri x
i n v er s e i s O (n 3 ). N ot e t h at t h e d e n s e m atri x i n v er s e al s o a p p e ar s i n or di n ar y G P m o d eli n g.
If t h e s a m pl e si z e i s s m all a n d t h e v ari a n c e of t h e i n p ut l o c ati o n n oi s e i s l ar g e, a s s u g g e st e d
b y n u m eri c al st u di e s, t h e di ff er e n c e b et w e e n t h e M S P E of K A L E or K A L E N a n d S K i s l ar g e.
T h u s S K wit h a si n gl e n u g g et t er m m a y n ot l e a d t o a g o o d pr e di ct or i n t hi s c a s e.

4. P ar a m e t er e s ti m a ti o n. L et Ψ θ ( 1 ) b e a cl a s s of c orr el ati o n f u n cti o n s a n d p θ ( 2 ) (·) b e a
cl a s s of pr o b a bilit y d e n sit y f u n cti o n s i n d e x e d b y ( θ ( 1 ) , θ( 2 ) ) ∈ Θ, r e s p e cti v el y, w h er e θ ( j ) ∈
Θ j ⊂ R q j f or j = 1 , 2. T h u s, Θ = Θ 1 × Θ 2 . S u p p o s e Θ i s a c o m p a ct s u br e gi o n of R q 1 + q 2 .
A n i nt uiti v e a p pr o a c h t o e sti m at e t h e p ar a m et er s i s m a xi m u m li k eli h o o d e sti m ati o n. U p t o a
m ulti pli c ati v e c o n st a nt, t h e li k eli h o o d f u n cti o n i s
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(σ 2 , θ( 1 ) , θ( 2 ) ; X, Y ) ∝
R d

. . .
R d

d et( Σ 1 ) − 1 / 2 e − 1

2
Y T Σ − 1

1 Y p θ ( 2 ) ( 1 ) . . . pθ ( 2 ) ( n )d 1 . . . d n ,( 1 8)

w h er e Σ 1 = ( σ 2 Ψ θ ( 1 ) (x j + j − (x k + k ))) j k , a n d d et(A ) i s t h e d et er mi n a nt of a m atri x
A . U nf ort u n at el y, t h e i nt e gr al i n (1 8 ) i s di ffi c ult t o c al c ul at e, b e c a u s e t h e di m e n si o n of
t h e i nt e gr al i n cr e a s e s a s t h e s a m pl e si z e i n cr e a s e s. I n t hi s w or k, w e u s e a p s e u d o-li k eli h o o d
a p pr o a c h pr o p o s e d b y [ 8 ]. D e fi n e

g (σ 2 , θ( 1 ) , θ( 2 ) ; X, Y ) = ( 2 π ) − n / 2 d et( R ( θ ( 1 ) , θ( 2 ) ) )
− 1 / 2 e x p −

1

2
Y T R − 1

( θ ( 1 ) , θ( 2 ) )
Y ,( 1 9)

w h er e σ 2 , θ( 1 ) , θ( 2 ) ar e p ar a m et er s w e w a nt t o e sti m at e, a n d R ( θ ( 1 ) , θ( 2 ) ) i s d e fi n e d i n ( 4) b y
r e pl a ci n g Ψ a n d p (·) wit h Ψ θ ( 1 ) a n d p θ ( 2 ) (·), r e s p e cti v el y. T h e m a xi m u m p s e u d o-li k eli h o o d
e sti m at or c a n b e d e fi n e d a s

( σ̂ 2
1 , θ̂

( 1 )
1 , θ̂

( 2 )
1 ) = ar g s u p

( σ 2 , θ( 1 ) , θ( 2 ) )
g (σ 2 , θ( 1 ) , θ( 2 ) ; X, Y ).( 2 0)

If ( 2 0) h a s m ulti pl e s ol uti o n s, w e c h o o s e a n y o n e fr o m t h e m. B e c a u s e of n o ni d e nti fi a bilit y,
p ar a m et er s i n si d e t h e G P ( σ 2 , θ( 1 ) ) a n d p ar a m et er s i n si d e t h e pr o b a bilit y d e n sit y f u n cti o n of
i n p ut v ari a bl e n oi s e θ ( 2 ) c a n n ot b e e sti m at e d si m ult a n e o u sl y [ 6 ].

T h e pr o p e rti e s of t h e p s e u d o-li k eli h o o d a p pr o a c h ar e di s c u s s e d i n [ 6 ]. H er e w e li st a f e w
of t h e m. Fir st, t h e p s e u d o- s c or e pr o vi d e s a n u n bi a s e d e sti m ati o n e q u ati o n, i. e.,

E (S (σ 2 , θ( 1 ) , θ( 2 ) ; X, Y )) = E (∇ l o g ( g (σ 2 , θ( 1 ) , θ( 2 ) ; X, Y ))) = 0 .

S e c o n d, t h e c o v ari a n c e m atri x of p s e u d o- s c or e E (S (σ 2 , θ( 1 ) , θ( 2 ) ; X, Y )S (σ 2 , θ( 1 ) , θ( 2 ) ; X, Y ) T )
a n d t h e e x p e ct e d n e g ati v e H e s si a n of l o g p s e u d o-li k eli h o o d E ( ∂ 2

∂ ϑ j ∂ ϑ k
l o g ( g (σ 2 , θ( 1 ) , θ( 2 ) ; X, Y )))

c a n b e c al c ul at e d, w h er e ϑ j a n d ϑ k ar e el e m e nt s i n ( σ 2 , θ( 1 ) , θ( 2 ) ), i. e., ( σ 2 , θ( 1 ) , θ( 2 ) ) =
(ϑ 1 , ϑ2 , . . . , ϑ1 + q 1 + q 2

). H o w e v e r, t h e c o n si st e n c y of p ar a m et er s e sti m at e d b y p s e u d o-li k eli h o o d
i n t h e c a s e of G P h a s n ot b e e n t h e or eti c all y j u sti fi e d t o t h e b e st of o ur k n o wl e d g e.

If w e u s e S K, t h e c orr e s p o n di n g ( mi s s p e ci fi e d) l o g li k eli h o o d f u n cti o n i s, u p t o a n a d diti v e
c o n st a nt,

n u g (σ 2 , θ( 1 ) , µ; X, Y ) = −
1

2
l o g ( d et(R θ ( 1 ) + µ I n )) −

1

2
Y T (R θ ( 1 ) + µ I n ) − 1 Y,( 2 1)

w h er e R θ ( 1 ) = ( Ψ θ ( 1 ) (x j − x k )) j k . T h e m a xi m u m li k eli h o o d e sti m at or of (σ 2 , θ( 1 ) , µ) i s d e fi n e d
b y

( σ̂ 2
2 , θ̂

( 1 )
2 , µ̂ ) = a r g s u p

( σ 2 , θ( 1 ) , µ)
n u g (σ 2 , θ( 1 ) , µ; X, Y ).( 2 2)

N ot e t h at ( 2 1) i s t h e l o g li k eli h o o d f u n cti o n f or a G P wit h o nl y o ut p ut n oi s e. T h u s it i s
mi s s p e ci fi e d, a n d t h e e sti m at e d p ar a m et er s m a y al s o b e mi s s p e ci fi e d. H o w e v er, it h a s b e e n
s h o w n b y t h e w ell- k n o w n w or k s [ 4 0 ] a n d [4 2 ] t h at t h e G P m o d el p ar a m et er s i n t h e c o v ari a n c e
f u n cti o n s m a y n ot h a v e c o n si st e nt e sti m at or s. T h er ef or e, u si n g G P m o d el s f or pr e di cti o n m a y
b e m or e m e a ni n gf ul t h a n d oi n g s o f or p ar a m et er e sti m ati o n. T h e f oll o wi n g t h e or e m i n di c at e s
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t h at t h e c h a n g e of p ar a m et er s d o e s n ot si g ni fi c a ntl y i n fl u e n c e o ur t h e or eti c al r e s ult s o n t h e
M S P E of K A L E, K A L E N, a n d S K. T h e pr o of i s pr e s e nt e d i n A p p e n di x H .

T h e or e m 4. 1. S u p p o s e f o r s o m e c o n st a nt C > 0, 1 / C ≤ µ̃ ≤ C h ol d s f o r all n , a n d

p a r a m et e r s σ̃ 2 , θ̃
( 1 )
1 , θ̃

( 2 )
1 , θ̃

( 1 )
2 a r e d et e r mi ni sti c ( b ut p o s si bl y d e p e n di n g o n n ). L et Ψ̃ 1 a n d

Ψ̃ 2 b e t h e c o r r el ati o n f u n cti o n s wit h p a r a m et e r s θ̃
( 1 )
1 , θ̃

( 1 )
2 ∈ Θ 1 , r e s p e cti v el y. L et p̃ ( ·) b e t h e

p r o b a bilit y d e n sit y f u n cti o n wit h p a r a m et e r s θ̃
( 2 )
1 ∈ Θ 2 . L et Ψ̃ S b e a s i n ( 1 0) wit h p a r a m et e r s

θ̃
( 1 )
1 a n d θ̃

( 2 )
1 . P ot e nti al d e p e n d e n c y of µ̃ , Ψ̃ 1 , Ψ̃ 2 , ˜p (·), a n d Ψ̃ S o n n i s s u p p r e s s e d f o r n ot ati o n al

si m pli cit y. A s s u m e t h e f oll o wi n g.

( 1) T h e r e e xi st s a c o n st a nt A 1 s u c h t h at f o r all n

m a x
F ( Ψ)

F ( Ψ̃ S ) L ∞

,
F ( Ψ)

F ( Ψ̃ 1 ) L ∞

,
F ( Ψ)

F ( Ψ̃ 2 ) L ∞

≤ A 1 .( 2 3)

( 2) T h e r e e xi st s a S o b ol e v s p a c e H m ( Ω) s u c h t h at A s s u m pti o n 2. 2 h ol d s f o r all Ψ̃ 1 a n d Ψ̃ 2 ,
a n d t h e e m b e d di n g c o n st a nt s h a v e a u nif o r m u p p e r b o u n d f o r all n , i. e., t h e r e e xi st s a
c o n st a nt C s u c h t h at f H m ( Ω ) ≤ C f N Ψ̃ 1

( Ω ) a n d f H m ( Ω ) ≤ C f N Ψ̃ 2
( Ω ) h ol d f o r

all Ψ̃ 1 a n d Ψ̃ 2 .
( 3) A s s u m pti o n 2. 5 h ol d s f o r t h e s e q u e n c e of d e si g n s X .
( 4) All p r o b a bilit y d e n sit y f u n cti o n s p̃ ( ·) a r e c o nti n u o u s a n d h a v e m e a n z e r o a n d s e c o n d

m o m e nt. T h e s e c o n d m o m e nt s of all p̃ ( ·) h a v e a u nif o r m p o siti v e l o w e r b o u n d a n d
u p p e r b o u n d f o r all n .

T h e n t h e f oll o wi n g st at e m e nt s a r e t r u e.

i. S u p p o s e t h e r e i s n oi s e at p oi nt x . T h e n t h e M S P E of K A L E N E (y (x ) − ŷ ( x )) 2 a n d
t h e M S P E of S K E (y (x ) − f̂ S (x )) 2 h a v e t h e li mit σ 2 ( 1 − Ψ S ( 0)) w h e n t h e fill di st a n c e
of X g o e s t o z e r o, w h e r e Ψ S i s d e fi n e d a s i n ( 1 0) .

ii. S u p p o s e t h e r e i s n o n oi s e at p oi nt x . A n a s y m pt oti c u p p e r b o u n d o n t h e M S P E of S K
E (f (x ) − f̂ S (x )) 2 i s

1 .0 4 σ 2

( 2π ) d / 2
R d

|1 − | b (t)|2 | F( Ψ)( t)dt,

w h e r e b (t) = E (e i T t ) i s t h e c h a r a ct e ri sti c f u n cti o n of p (·). F u rt h e r m o r e, if p̃ ( ·) = p (·)

a n d F ( Ψ̃ 1 )
F ( Ψ ) L ∞

≤ A 2 , a n a s y m pt oti c u p p e r b o u n d o n t h e M S P E of K A L E E (f (x ) −

f̂ ( x )) 2 i s

1 .0 4 A 1 A 2 σ 2

( 2π ) d / 2
R d

|1 − | b (t)|2 | F( Ψ)( t)dt.

T h e or e m 4. 1 st at e s if w e h a v e a r e a s o n a bl e s e q u e n c e of p ar a m et e r s, t h e n w e h a v e t h e
f oll o wi n g: (i) If p oi nt x h a s n oi s e (i. e., pr e di cti n g f (x + )), t h e li mit of t h e M S P E of K A L E N
a n d S K r e m ai n s t h e s a m e. (ii) If p oi nt x h a s n o n oi s e (i. e., pr e di cti n g f (x )), t h e u p p er
b o u n d s o n t h e M S P E of K A L E a n d S K c a n b e o bt ai n e d. T h e li mit a n d u p p er b o u n d s ar e
s m all if t h e n oi s e i s s m all. T h e u p p er b o u n d f or t h e M S P E of S K i s t h e s a m e a s t h e b o u n d
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i n T h e or e m 3. 1 . H o w e v er, t h e u p p e r b o u n d f or t h e M S P E of K A L E i s i n fl at e d b y A 1 A 2 . We
b eli e v e t hi s i n fl ati o n i s n ot n e c e s s ar y a n d c a n b e i m pr o v e d.

R e m a r k 4. 2. N ot e t h at t h e p ar a m et er s i n T h e or e m 4. 1 ar e d et e r mi ni sti c . T h er ef or e, t h er e
i s still a g a p b et w e e n T h e or e m 4. 1 a n d t h e c o n v er g e n c e r e s ult s of K A L E / K A L E N / S K wit h
e sti m at e d p ar a m et e r s. T h e a ut h or s c a n n ot c o n fir m if t h e r e s ult s h ol d f or e sti m at e d p ar a m et er s
w hi c h d e p e n d o n t h e r a n d o m o b s er v ati o n s Y . N e v ert h el e s s, gi v e n t h at t h e p ar a m et er s h a v e
s u ffi ci e nt fl e xi bilit y, w e b eli e v e t h at T h e or e m 4. 1 c a n still pr o vi d e s o m e i n si g ht s o n t h e i n fl u e n c e
of t h e p ar a m et er e sti m ati o n. We t h a n k o n e r e vi e w er f or p oi nti n g o ut t h e mi st a k e i n t h e
pr e vi o u s v e r si o n of T h e or e m 4. 1 .

T h e c o m p ut ati o n c o m pl e xit y of ( 2 2) i s a b o ut t h e s a m e a s t h at of ( 2 0) if ( 4) c a n b e c al c u-
l at e d a n al yti c all y. U nf ort u n at el y, ( 4) u s u all y d o e s n ot h a v e a cl o s e d f or m, w hi c h s u b st a nti all y
i n cr e a s e s t h e c o m p ut ati o n ti m e of s ol vi n g ( 2 0) .

5. N u m eri c al r e s ul t s. I n t hi s s e cti o n, w e r e p ort s o m e si m ul ati o n st u di e s t o i n v e sti g at e t h e
n u m eri c al p erf or m a n c e of K A L E, K A L E N, a n d S K. I n E x a m pl e 1, w e u s e G a u s si a n c orr el ati o n
f u n cti o n s t o fit a 1 D f u n cti o n, w h er e t h e pr e di ct or ( 5) h a s a n al yti c f or m. I n E x a m pl e 2, w e
u s e M at é r n c o r r el ati o n f u n cti o n s t o fit a 2 D f u n cti o n, w h er e t h e i nt e gr al s i n ( 3) a n d ( 4) ar e
t y pi c all y e sti m at e d b y M o nt e C arl o s a m pli n g [ 8 ].

5. 1. E x a m pl e 1. S u p p o s e t h e u n d erl yi n g f u n cti o n i s f (x ) = si n( 2 π x / 1 0) + 0 .2 si n( 2 π x / 2 .5),
x ∈ [ 0, 8] [ 1 9 ]. T h e d e si g n p oi nt s ar e s el e ct e d t o b e 1 6 1 e v e nl y s p a c e d p oi nt s o n [ 0, 8]. T h e
i n p ut l o c ati o n n oi s e i s c h o s e n t o b e m e a n z er o n or m all y di stri b ut e d wit h t h e v ari a n c e s 0.0 5 k
f or k = 1 , 2 , 3 , 4. We u s e a G a u s si a n c o v ari a n c e f u n cti o n Ψ( s − t) = σ 2 e x p( − θ s − t 2

2 ) t o m a k e
pr e di cti o n s, a n d w e u s e t h e p s e u d o-li k eli h o o d a p pr o a c h pr e s e nt e d i n s e cti o n 4 t o e sti m at e t h e
u n k n o w n p ar a m et er s σ 2 , θ a n d t h e v ari a n c e of n oi s e σ 2 . F or e a c h v ari a n c e of i n p ut l o c ati o n
n oi s e, w e a p pr o xi m at e t h e s q u ar e d L 2 err or f − f̂ 2

2 b y 8
n

n
i= 1 (f (x i ) − f̂ ( x i ))

2 , w h er e t h e x i ’ s
ar e 8 0 0 1 e v e nl y s p a c e d p oi nt s o n [ 0 , 8]. T h e n w e r u n 1 0 0 si m ul ati o n s a n d t a k e t h e a v er a g e of
8
n

n
i= 1 (f (x i ) − f̂ ( x i ))

2 t o e sti m at e E f − f̂ 2
2 . We e sti m at e E y − ŷ 2

2 b y a si mil ar a p pr o a c h,
i. e., e sti m at e E y − ŷ 2

2 b y t h e a v er a g e of 8
n

n
i= 1 (y (x i ) − ŷ ( x i ))

2 of 1 0 0 si m ul ati o n s, w h er e

y (x i ) = f (x i + i ) a n d i ’ s ar e i n p ut l o c ati o n n oi s e. R e c all t h at E f − f̂ 2
2 a n d E y − ŷ 2

2 ar e
r el at e d t o K A L E a n d K A L E N, r e s p e cti v el y. Wit h a b u s e of t er mi n ol o g y, w e still c all E f − f̂ 2

2

a n d E y − ŷ 2
2 t h e M S P E s.

T h e R M S P E s, w hi c h ar e t h e s q u ar e r o ot s of t h e M S P E s, f or K A L E / K A L E N a n d S K, ar e
s h o w n i n T a bl e 1 / T a bl e 2 , r e s p e cti v el y.

T a bl e 1
C o m p a ri s o n of t h e R M S P E f o r K A L E a n d S K: 1 f u n cti o n wit h G a u s si a n c o v a ri a n c e f u n cti o n. S D st a n d s

f o r st a n d a r d d e vi ati o n of R M P S E. I n t h e f o u rt h c ol u m n, di ff e r e n c e = 3 r d c ol u m n – 2 n d c ol u m n, i. e., t h e
R M S P E of S K – t h e R M S P E of K A L E.

σ 2 R M S P E ( S D ) of K A L E  R M S P E ( S D ) of s t o c h a s ti c K ri gi n g  Di ff e r e n c e

0. 0 5 0. 1 1 4 7 ( 0. 0 2 8 7 ) 0. 1 2 0 9 ( 0. 0 2 8 8 ) 0. 0 0 6 2
0. 1 0 0. 1 5 2 8 ( 0. 0 3 7 2 ) 0. 1 7 6 4 ( 0. 0 3 8 7 ) 0. 0 2 3 6
0. 1 5 0. 1 9 1 7 ( 0. 0 4 7 5 ) 0. 2 3 6 4 ( 0. 0 4 1 8 ) 0. 0 4 4 8
0. 2 0 0. 2 3 8 0 ( 0. 0 5 9 7 ) 0. 3 1 4 9 ( 0. 0 7 7 3 ) 0. 0 7 6 9
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T a bl e 2
C o m p a ri s o n of t h e R M S P E f o r K A L E N a n d S K: 1 f u n cti o n wit h G a u s si a n c o v a ri a n c e f u n cti o n. S D st a n d s

f o r st a n d a r d d e vi ati o n of R M P S E. I n t h e f o u rt h c ol u m n, di ff e r e n c e = 3 r d c ol u m n – 2 n d c ol u m n, i. e., t h e
R M S P E of S K − t h e R M S P E of K A L E N.

σ 2 R M S P E ( S D ) of K A L E N  R M S P E ( S D ) of s t o c h a s ti c K ri gi n g  Di ff e r e n c e

0. 0 5 0. 3 6 2 7 ( 0. 0 0 7 6 ) 0. 3 6 1 9 ( 0. 0 0 7 3 ) - 0. 0 0 1 4
0. 1 0 0. 4 9 4 0 ( 0. 0 0 9 5 ) 0. 4 9 3 1 ( 0. 0 0 9 2 ) - 0. 0 0 0 9
0. 1 5 0. 5 8 8 4 ( 0. 0 1 0 7 ) 0. 5 8 8 5 ( 0. 0 1 0 8 ) 0. 0 0 0 1
0. 2 0 0. 6 6 5 1 ( 0. 0 1 2 7 ) 0. 6 7 0 4 ( 0. 0 1 6 4 ) 0. 0 0 5 3

It c a n b e s e e n fr o m T a bl e s 1 a n d 2 t h at t h e R M S P E ( st a n d ar d d e vi ati o n s) of K A L E / K A L E N
a n d S K d e cr e a s e s a s t h e v ari a n c e of t h e i n p ut l o c ati o n n oi s e dr o p s. T hi s c orr o b or at e s
t h e r e s ult s i n T h e or e m 3. 1 a n d Pr o p o siti o n 3. 6 . T h e di ff er e n c e i n t h e R M S P E b et w e e n
K A L E / K A L E N a n d S K al s o d e cr e a s e s w h e n t h e v ari a n c e of t h e i n p ut l o c ati o n n oi s e d e-
cr e a s e s. C o m p ari n g T a bl e 2 wit h T a bl e 1 , it c a n b e s e e n t h at t h e R M S P E of K A L E N i s l ar g er
t h a n t h at of K A L E. T hi s i s r e a s o n a bl e b e c a u s e K A L E N pr e di ct s y (x ), w hi c h i n cl u d e s a n err or
t er m w hil e f (x ) d o e s n ot. T h e c o m p ut ati o n of K A L E / K A L E N h a s t h e s a m e c o m pl e xit y a s
t h e S K i n t hi s e x a m pl e, b e c a u s e a G a u s si a n c o v ari a n c e f u n cti o n i s u s e d, a n d t h e i nt e gr al s i n
(4 ) a n d ( 6 ) c a n b e c al c ul at e d a n al yti c all y.

I n or d er t o f urt h e r u n d er st a n d t h e p erf or m a n c e of K A L E / K A L E N a n d S K, t w o r e ali z ati o n s
a m o n g t h e 1 0 0 si m ul ati o n s f or T a bl e 1 a n d T a bl e 2 ar e ill u str at e d i n p a n el 1 a n d p a n el 2 of
Fi g ur e 2 , r e s p e cti v el y, w h er e t h e v ari a n c e of t h e i n p ut l o c ati o n n oi s e i s c h o s e n t o b e 0. 0 5.
I n p a n el 1 of Fi g ur e 2 , t h e cir cl e s ar e t h e c oll e ct e d d at a p oi nt s. T h e tr u e f u n cti o n a n d t h e
pr e di cti o n c ur v e s of K A L E a n d S K ar e d e n ot e d b y t h e s oli d li n e, t h e d a s h e d li n e, a n d t h e
d ott e d li n e, r e s p e cti v el y. It c a n b e s e e n fr o m t h e fi g ur e t h at b ot h K A L E a n d S K a p pr o xi m at e
t h e tr u e f u n cti o n w ell. I n P a n el 2 of Fi g ur e 2 , t h e d ot s ar e t h e s a m pl e s of y (x ) o n 8 0 0 1 t e sti n g
p oi nt s. It c a n b e s e e n t h at t h e s a m pl e s ar e ar o u n d t h e pr e di cti o n s of K A L E N a n d S K, b ut
wit h m u c h m or e fl u ct u ati o n. T hi s s h o w s t h at t h e R M S P E i n T a bl e 2 i s l ar g er t h a n t h o s e i n
T a bl e 1 .

We al s o i n cl u d e t h e c o n fi d e n c e i nt er v al r e s ult s i n t hi s s u b s e cti o n. It i s k n o w n [ 6 ] t h at
t h er e i s n o n o ntri vi al str u ct ur e f or (t h at i s, i s n ot i d e nti c al t o z er o) s u c h t h at f (x + )
i s a G P o n Ω. Si n c e t h er e i s n o cl o s e d f or m f or t h e di stri b uti o n of K A L E f̂ ( x ) ( o r K A L E N
ŷ ( x )), w e u s e G a u s si a n a p pr o xi m ati o n. S p e ci fi c all y, w e tr e at f (x ) ( or y (x )) a s n or m all y
di stri b ut e d a n d c o m p ut e t h e p oi nt wi s e c o n diti o n al v ari a n c e σ̂ f (x ) 2 ( or σ̂ y (x ) 2 ). T h e n w e

c o m p ut e t h e p oi nt wi s e c o n fi d e n c e i nt er v al of G P, d e fi n e d b y [ f̂ ( x ) − q β σ̂ f (x ), f̂ ( x ) + q β σ̂ f (x )]
( or [ ŷ ( x ) − q β σ̂ y (x ), ŷ ( x ) + q β σ̂ y (x )]) wit h c o n fi d e n c e l e v el ( 1 − β ) 1 0 0 %, w h er e q β d e n ot e s
t h e ( 1 − β / 2)t h q u a ntil e of st a n d ar d n or m al di stri b uti o n. We s el e ct β = 0 .0 5 a n d u s e t h e
c o v er a g e r at e t o q u a ntif y t h e q u alit y of t h e c o n fi d e n c e i nt er v al, w h er e t h e c o v er a g e r at e i s t h e
pr o p orti o n of t h e ti m e t h at t h e i nt er v al c o nt ai n s t h e tr u e v al u e. H o w e v er, t h e l e n gt h of t h e
c o n fi d e n c e i nt er v al of S K f or G P wit h o nl y o ut p ut err or c o n v er g e s t o z er o, w hi c h d o e s n ot
r e fl e ct t h e f a ct t h at t h e a ct u al M S P E of S K d o e s n ot c o n v er g e t o z er o. B e c a u s e of t hi s, w e
a dj u st t h e e sti m at e d c o n diti o n al v ari a n c e of t h e S K b y a d di n g t h e li mit v al u e σ 2 ( 1 − Ψ S ( 0)).
T h e r e s ult s ar e r e p ort e d i n T a bl e 3 .
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Fi g ur e 2. P a n el 1: A n ill u st r ati o n of K A L E a n d S K. T h e t r u e f u n cti o n a n d t h e p r e di cti o n c u r v e s of K A L E
a n d S K a r e d e n ot e d b y t h e s oli d li n e, d a s h e d li n e, a n d d ott e d li n e, r e s p e cti v el y. T h e ci r cl e s a r e t h e o b s e r v e d
d at a p oi nt s. P a n el 2: A n ill u st r ati o n of K A L E N a n d S K. T h e d ot s a r e t h e s a m pl e s of y ( x ) o n t e sti n g p oi nt s.
T h e t r u e f u n cti o n a n d t h e p r e di cti o n c u r v e s of K A L E N a n d S K a r e d e n ot e d b y t h e s oli d li n e, d a s h e d li n e, a n d
d ott e d li n e, r e s p e cti v el y.

T a bl e 3
C o v e r a g e r at e of p oi nt wi s e c o n fi d e n c e i nt e r v al of K A L E a n d S K ( w h e n t h e r e i s n o n oi s e o n t a r g et p oi nt )

a n d K A L E N a n d S K ( w h e n t h e r e i s n oi s e o n t a r g et p oi nt ). T h e f oll o wi n g n ot ati o n i s u s e d: ( A dj u st e d ) S K 1

= ( A dj u st e d ) S K wit h o ut n oi s e at t h e t a r g et p oi nt; ( A dj u st e d ) S K 2 = ( A dj u st e d ) S K wit h n oi s e at t h e t a r g et
p oi nt. T h e n o mi n al l e v el i s s el e ct e d t o b e 9 5 % .

σ 2 K A L E S K 1 A dj u s t e d S K 1 K A L E N S K 2 A dj u s t e d S K 2

0. 0 5 0. 9 1 7 9 0. 8 5 4 7 0. 9 6 3 0 0. 9 2 9 2 0. 4 9 0 3 0. 6 3 2 8
0. 1 0 0. 9 2 6 8 0. 7 9 0 6 0. 9 7 5 4 0. 9 2 9 6 0. 4 4 3 2 0. 6 4 9 0
0. 1 5 0. 9 2 0 2 0. 6 9 8 7 0. 9 6 7 0 0. 9 3 4 5 0. 4 0 3 3 0. 6 6 7 7
0. 2 0 0. 9 1 6 3 0. 5 8 3 4 0. 9 2 1 3 0. 9 3 5 8 0. 3 4 9 4 0. 6 5 4 5

Fr o m T a bl e 3 , it c a n b e s e e n t h at t h e ( mi s s p e ci fi e d) p oi nt wi s e c o n fi d e n c e i nt e r v al d o e s
n ot a c hi e v e t h e n o mi n al l e v el. It i s e x p e ct e d t h at t h e S K h a s p o or c o v er a g e b e c a u s e t h e
m o d el i s mi s s p e ci fi e d. K A L E a n d K A L E N, o n t h e ot h er h a n d, c a n pr o vi d e m or e r eli a bl e
c o n fi d e n c e i nt er v al s. I n f a ct, e v e n f or G P wit h o ut err or, it i s oft e n o b s er v e d t h at G P m o d el s
h a v e p o or c o v er a g e of t h eir c o n fi d e n c e i nt er v al s [ 1 6 , 2 0 , 3 9 ]. T h e r ef or e, a b ett er u n c ert ai nt y
q u a nti fi c ati o n m et h o d ol o g y f or G P wit h i n p ut l o c ati o n e rr or i s n e e d e d.

5. 2. E x a m pl e 2. I n t hi s e x a m pl e, w e c o m p ar e t h e c al c ul ati o n ti m e of S K a n d K A L E,
w h er e t h e pr e di ct or ( 5) of K A L E d o e s n ot h a v e a n a n al yti c f or m. S u p p o s e t h e u n d erl yi n g
f u n cti o n i s f (x ) = [( 3 0 + 5 x 1 si n( 5 x 1 ))( 4 + e x p( − 5 x 2 )) − 1 0 0] / 6 f or x 1 , x2 ∈ [ 0, 1] [ 2 1 ]. We u s e
M at é r n c o r r el ati o n f u n cti o n s [ 2 9 ]

Ψ M (x ; ν, φ ) =
1

Γ( ν ) 2 ν − 1
( 2

√
ν φ x 2 ) ν K ν ( 2

√
ν φ x 2 )( 2 4)
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t o m a k e pr e di cti o n s, w h er e K ν i s t h e m o di fi e d B e s s el f u n cti o n of t h e s e c o n d ki n d, a n d ν, φ >
0 ar e m o d el p ar a m et er s. T h e M at é r n c o r r el ati o n f u n cti o n c a n c o ntr ol t h e s m o ot h n e s s of
t h e pr e di ct or b y ν a n d t h u s i s m or e r o b u st t h a n a G a u s si a n c orr el ati o n f u n cti o n [ 3 4 ]. T h e
c o v ari a n c e f u n cti o n i s c h o s e n t o b e Ψ( x − y ) = Ψ M (x − y ; ν, φ ). T h e i n p ut l o c ati o n n oi s e i s
c h o s e n t o b e m e a n z er o n or m all y di stri b ut e d wit h t h e v ari a n c e s 0 .0 1 k f or k = 2 , 3 , 4 , 5. We u s e
m a xi mi n L ati n h y p er c u b e d e si g n wit h 2 0 p oi nt s t o e sti m at e p ar a m et er s, a n d w e c h o o s e t h e
fir st 1 0 0 p oi nt s i n t h e H alt o n s e q u e n c e [ 1 7 ] a s t e sti n g p oi nt s. T h e s m o ot h n e s s p ar a m et er ν i s
c h o s e n t o b e 3, w hi c h c a n pr o vi d e a r o b u st e sti m at or of f . I n or d er t o i m pr o v e t h e pr e di cti o n
p erf or m a n c e, w e u s e or di n ar y Kri gi n g, w h er e t h e m e a n i n t h e G P m o d el i s a s s u m e d t o b e a n
u n k n o w n c o n st a nt i n st e a d of z er o, i. e., f i s a r e ali z ati o n of G P wit h u n k n o w n m e a n β a n d
c o v ari a n c e f u n cti o n σ 2 Ψ M .

If w e u s e a M at é r n c o r r el ati o n f u n cti o n, t h e i nt e gr al s i n ( 3) a n d ( 4) d o n ot h a v e a n al yti c
f or m s a n d ar e c al c ul at e d b y M o nt e C arl o s a m pli n g. We r a n d o ml y c h o o s e 3 0 p oi nt s t o a p pr o xi-
m at e t h e i nt e gr al i n ( 3), a n d 9 0 0 p oi nt s t o a p pr o xi m at e t h e i nt e gr al i n ( 4). Pr eli mi n ar y r e s ult s
s h o w t h at, if w e u s e M o nt e C arl o s a m pli n g wit h di ff er e nt p oi nt s e v er y ti m e i n t h e e v al u ati o n
of t h e i nt e gr al s i n ( 3 ) a n d ( 4 ), it i s n ot p o s si bl e t o u s e m a xi m u m p s e u d o-li k eli h o o d e sti m ati o n
t o e sti m at e t h e u n k n o w n p ar a m et er s, c o n si sti n g of φ i n ( 2 4) , σ 2 , t h e v ari a n c e of n oi s e σ 2 , a n d
t h e m e a n β . T h e r e a s o n i s t h at at e a c h st e p of t h e o pti mi z ati o n i n m a xi m u m p s e u d o-li k eli h o o d
e sti m ati o n, w e n e e d t o c al c ul at e t h e i nt e gr al, w h o s e c o m p ut ati o n al c o st i s hi g h. T h er ef or e,
w e g e n er at e 9 0 0 p oi nt s a n d 3 0 p oi nt s r a n d o ml y at o n e ti m e a n d u s e t h e s e 9 0 0 p oi nt s a n d 3 0
p oi nt s f or e v al u ati o n s of ( 4 ) a n d ( 3 ), r e s p e cti v el y. T h e n w e u s e m a xi m u m p s e u d o-li k eli h o o d
e sti m ati o n t o e sti m at e t h e u n k n o w n p ar a m et er s. We r u n 2 0 si m ul ati o n s t o o bt ai n di ff er e nt r e-
ali z ati o n s of i n p ut l o c ati o n n oi s e. I n e a c h si m ul ati o n, w e c o m p ut e t h e pr o c e s si n g ti m e a n d t h e
a p pr o xi m at e d M S P E 1

1 0 0
1 0 0
i= 1 (f (x i ) − f̂ ( x i ))

2 , w h er e f̂ i s t h e K A L E p r e di ct or, a n d t h e x i ’ s ar e
t e sti n g p oi nt s. T h e n w e c o m p ut e t h e a v er a g e pr o c e s si n g ti m e a n d t h e a v er a g e a p pr o xi m at e d
M S P E.

F or S K, w e u s e ( mi s s p e ci fi e d) m a xi m u m li k eli h o o d e sti m ati o n t o e sti m at e t h e u n k n o w n
p ar a m et er s, w hi c h ar e φ i n ( 2 4) , σ 2 , t h e n u g g et t er m µ, a n d t h e m e a n β . We r u n 1 0 0
si m ul ati o n s a n d c o m p ut e t h e a v e r a g e pr o c e s si n g ti m e a n d t h e a v er a g e a p pr o xi m at e d M S P E

1
1 0 0

1 0 0
i= 1 (f (x i ) − f̂ ( x i ))

2 , w h er e f̂ i s t h e S K p r e di ct or, a n d t h e x i ’ s ar e t h e s a m e t e sti n g
p oi nt s a s i n K A L E. T h e R M S P E, w hi c h i s t h e s q u ar e r o ot of M S P E, a n d t h e pr o c e s si n g ti m e
of K A L E a n d S K ar e s h o w n i n T a bl e 4 .

T a bl e 4
T h e R M S P E of K A L E a n d S K: 2 f u n cti o n wit h M at é r n c o r r el ati o n f u n cti o n. T h e p r o c e s si n g ti m e i s i n

s e c o n d s. I n t h e si xt h c ol u m n, di ff e r e n c e = 4 t h c ol u m n – 2 n d c ol u m n, i. e., t h e R M S P E of S K − t h e R M S P E of
K A L E. W e u s e P T = P r o c e s si n g ti m e.

σ 2 R M S P E of K A L E  P T of K A L E  R M S P E of S K  P T of S K  Di ff e r e n c e

0. 0 2 1. 5 2 9 2 6 4 8. 8 6 1. 9 8 5 2 0. 6 2 6 1 0. 4 5 5 9
0. 0 3 1. 7 8 9 9 6 3 3. 5 5 2. 2 3 4 6 0. 5 9 4 7 0. 4 4 4 6
0. 0 4 1. 9 7 3 4 6 9 5. 2 7 2. 5 2 2 6 0. 5 8 4 8 0. 5 4 9 2
0. 0 5 2. 4 5 0 1 7 4 8. 3 3 3. 3 4 1 5 0. 5 8 0 3 0. 8 9 1 5
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Fi g ur e 3. S c h e m ati c di a g r a m f o r c o m p o sit e p a rt s h a p e a dj u st m e nt: ( a ) C o m p o sit e p a rt s h a p e a dj u st m e nt
[3 6 ], ( b ) l a y o ut of t e n a ct u at o r s, ( c ) m ulti pl e c riti c al p oi nt s.

It c a n b e s e e n t h at K A L E h a s b ett er pr e di cti o n a c c ur a c y t h a n S K. H o w e v er, K A L E
t a k e s t o o m u c h c o m p ut ati o n ti m e, e v e n t h o u g h t h e n u m b er s of d e si g n p oi nt s a n d t e sti n g
p oi nt s ar e r el ati v el y s m all. T h e c o m p ari s o n w o ul d g et w or s e a s t h e n u m b er of p oi nt s b e-
c a m e l ar g er. T h er ef or e, if t h e i nt e gr al s i n ( 3) a n d ( 4) d o n ot h a v e a n al yti c f or m s, S K i s
pr ef err e d, e s p e ci all y w h e n t h e s a m pl e si z e i s l ar g e a n d t h e v ari a n c e of i n p ut l o c ati o n n oi s e i s
s m all.

6. C a s e S t u d y: A p pli c a ti o n t o c o m p o si t e p ar t s a s s e m bl y pr o c e s s. T o ill u str at e t h e
p erf or m a n c e of K A L E N a n d S K, w e a p pl y t h e m t o a r e al c a s e st u d y, t h e c o m p o sit e p art s
a s s e m bl y pr o c e s s. A s s h o w n i n Fi g ur e s 3 ( a) a n d 3 ( b), t e n a dj u st a bl e a ct u at or s ar e i n st all e d at
t h e e d g e of a c o m p o sit e p art [ 3 6 , 4 1 ]. T h e s e a ct u at or s c a n pr o vi d e p u s h or p ull f or c e s t o a dj u st
t h e s h a p e of t h e c o m p o sit e p art t o t h e t ar g et di m e n si o n s. T h e l o c ati o n s of t h e s e a ct u at or s
c a n b e o pti mi z e d b y t h e s p ar s e l e ar ni n g m et h o d [ 1 2 ]. T h e di m e n si o n al s h a p e a dj u st m e nt
of c o m p o sit e p art s i s o n e of t h e m o st i m p ort a nt st e p s i n t h e air cr aft a s s e m bl y pr o c e s s. It
r e d u c e s t h e g a p b et w e e n t h e c o m p o sit e p art s a n d d e cr e a s e s t h e a s s e m bl y ti m e wit h i m pr o v e d
di m e n si o n al q u alit y. D et ail e d d e s cri pti o n s a b o ut t h e s h a p e a dj u st m e nt of c o m p o sit e p art s c a n
b e f o u n d i n [ 3 6 ]. M o d eli n g of c o m p o sit e p art s i s t h e k e y f or s h a p e a dj u st m e nt. T h e o bj e cti v e
i s t o b uil d a m o d el t h at h a s t h e c a p a bilit y t o pr e di ct t h e di m e n si o n al d e vi ati o n s a c c ur at el y
u n d er s p e ci fi c a ct u at or s’ f or c e s. I n t hi s m o d el, t h e i n p ut v ari a bl e s ar e t e n a ct u at or s’ f or c e s.
T h e r e s p o n s e s ar e t h e di m e n si o n al d e vi ati o n s of m ulti pl e criti c al p oi nt s al o n g t h e e d g e pl a n e
n e ar t h e a ct u at or s, s h o w n i n Fi g ur e 3 ( c). We c o n si d er r e s p o n s e s at 9 1 criti c al p oi nt s ar o u n d
t h e c o m p o sit e e d g e i n t h e c a s e st u d y.

I n t h e s h a p e c o ntr ol of c o m p o sit e p art s, i n p ut l o c ati o n n oi s e c o m m o nl y e xi st s i n t h e a c-
t u at or s’ f or c e s [ 4 1 ]. W h e n a f or c e i s i m pl e m e nt e d b y a n a ct u at or, t h e a ct u al f or c e m a y n ot b e
e x a ctl y t h e s a m e a s t h e t ar g et f or c e. T h e m a g nit u d e s of f or c e s m a y h a v e u n c ert ai nti e s n at u-
r all y d u e t o t h e d e vi c e t ol er a n c e s of t h e h y dr a uli c or el e ctr o m e c h a ni c al s y st e m of a ct u at or s.
U n c ert ai nti e s i n t h e dir e cti o n s a n d a p pli c ati o n p oi nt s of f or c e s c o m e fr o m t h e d e vi ati o n s of
c o nt a ct g e o m etr y of a ct u at or s a n d t h eir i n st all ati o n s. F or t h e m o d eli n g of c o m p o sit e p art s,
t h er e ar e t w o st e p s: (i) tr ai ni n g t h e p ar a m et er s u si n g e x p eri m e nt al d at a; (ii) pr e di cti n g di-
m e n si o n al d e vi ati o n s f or n e w a ct u at or s’ f or c e s. I n t h e tr ai ni n g st e p, w e n e e d t o c o n si d er i n p ut
err or i n t h e e x p eri m e nt al d at a. A d diti o n all y, w h e n n e w a ct u at or f or c e s ar e i m pl e m e nt e d i n
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pr a cti c e, t h e u n c ert ai nt y i n t h e a ct u al d eli v er e d f or c e s i n e vit a bl y e xi st s. T hi s s u g g e st s t h at
K A L E N i s s uit a bl e f or t hi s a p pli c ati o n s c e n ari o. We will s h o w t h e p erf or m a n c e of K A L E N
a n d c o m p ar e it wit h S K a s f oll o w s.

T h e m o d el w e u s e i n t hi s c a s e st u d y i s Y ( j ) = F T β ( j ) + Z ( j ) (F ) f or j = 1 , . . . , 9 1,
w h er e Y ( j ) i s t h e di m e n si o n al d e vi ati o n v e ct or of t h e c o m p o sit e p art at t h e criti c al p oi nt j ,
F = ( F ( 1 ) , . . . , F( 1 0 ) )

T ∈ R 1 0 i s t h e v e ct or of t h e a ct u at or s’ f or c e s, a n d Z ( j ) (·) i s a m e a n z er o

G P, wit h i n p ut v ari a bl e s i n R 1 0 . T h e c o v ari a n c e of Z ( j ) (F 1 ) a n d Z ( j ) (F 2 ) f or a n y f or c e s F 1 =
(F 1 ,( 1 ) , . . . , F1 ,( 1 0 ) )

T a n d F 2 = ( F 2 ,( 1 ) , . . . , F2 ,( 1 0 ) )
T i s a s s u m e d t o b e σ 2

j e x p( − 1 0
k = 1 θ j k (F 1 ,( k ) −

F 2 ,( k ) )
2 ), w h er e σ j , θj k > 0 ar e p ar a m et er s. We a s s u m e t h e i n p ut l o c ati o n n oi s e ∼ N ( 0, σ2 I 1 0 ),

w h er e N ( 0, σ2 I 1 0 ) i s a m e a n z er o n or m al di stri b uti o n wit h c o v ari a n c e m atri x σ 2 I 1 0 . T h e p a-
r a m et er s β ( j ) , θ j k , σ 2 , a n d σ 2

j ar e e sti m at e d b y m a xi m u m ( p s e u d o-)li k eli h o o d e sti m ati o n a s

d e s cri b e d i n s e cti o n 4 . T h e m e a n f u n cti o n F T β ( j ) w e u s e i n t hi s m o d el r e pr e s e nt s t h e li n e ar
c o m p o n e nt i n t h e di m e n si o n al s h a p e c o ntr ol of t h e c o m p o sit e f u s el a g e, w hi c h f oll o w s t h e a p-
pr o a c h i n [ 4 1 ]. S p e ci fi c all y, a c c or di n g t o t h e m e c h a ni c s of c o m p o sit e m at eri al a n d cl a s si c al
l a mi n ati o n t h e or y, t h er e i s a li n e ar r el ati o n s hi p b et w e e n di m e n si o n al d e vi ati o n s a n d a ct u at or s’
f or c e s wit hi n t h e el a sti c z o n e. T h e t er m F T β ( j ) d e s cri b e s h o w t h e a ct u at or s’ f or c e s i m p a ct
t h e p art d e vi ati o n s li n e arl y, a n d Z ( j ) (·) r e pr e s e nt s t h e n o nli n e ar c o m p o n e nt s s o a s t o o bt ai n
a c c ur at e pr e di cti o n s.

F or t h e c o m p ut er e x p eri m e nt s, w e g e n er at e d 5 0 tr ai ni n g s a m pl e s a n d 3 0 t e sti n g s a m pl e s
b a s e d o n a m a xi mi n L ati n h y p er c u b e d e si g n. T h e d e si g n e d e x p eri m e nt s ar e c o n d u ct e d i n
t h e fi nit e el e m e nt si m ul ati o n pl atf or m d e v el o p e d b y [ 3 6 ]. T hi s pl atf or m w a s d e v el o p e d b a s e d
o n t h e A N S Y S C o m p o sit e Pr e p P o st w or k b e n c h. It h a s b e e n c ali br at e d a n d v ali d at e d vi a
a s e n si bl e v ari a bl e i d e nti fi c ati o n a p pr o a c h [ 3 5 ]. It i s w ort h m e nti o ni n g t h at t h e c o m p ut er
si m ul ati o n h er e i s n ot a d et e r mi ni sti c si m ul ati o n b e c a u s e w e a d d t h e i n p ut l o c ati o n n oi s e at
t h e i n p ut p oi nt s i n t h e si m ul ati o n t o si m ul at e t h e r a n d o m n e s s i n t h e r e al pr o c e s s. T h er ef or e,
r e p e at e d r u n s wit h t h e s a m e i n p ut p oi nt s will h a v e di ff er e nt o ut p ut s. T h e i n p ut l o c ati o n n oi s e
i s a d d e d t o t h e a ct u at or s’ f or c e s t o mi mi c r e al a ct u at or s. T h e st a n d ar d d e vi ati o n s ( S D s) of
t h e a ct u at or s’ f or c e s ar e c h o s e n t o b e 0. 0 0 5, 0. 0 1, 0. 0 2, 0. 0 3, a n d 0. 0 4 l bf (l bf i s a u nit of
p o u n d-f or c e), w hi c h i s d et e r mi n e d b y t h e t ol er a n c e of di ff er e nt ki n d s of a ct u at or s a c c or di n g
t o e n gi n e eri n g d o m ai n k n o wl e d g e. T h e m a xi m u m a ct u at or s’ f or c e i s s et t o 6 0 0 l bf. Aft er w e
h a v e t h e c o m p ut er e x p eri m e nt d at a, w e c a n e sti m at e t h e p ar a m et er s of K A L E N b y s ol vi n g t h e
p s e u d o-li k eli h o o d e q u ati o n ( 2 0) , a n d t h e p ar a m et er s of S K b y s ol vi n g t h e m a xi m u m li k eli h o o d
e q u ati o n ( 2 2) . T h e n, w e c a n u s e t h e m o d el t o pr e di ct di m e n si o n al d e vi ati o n s at t h e t ar g et
p oi nt s i n t h e t e sti n g d at a s et.

T h e p erf or m a n c e of K A L E N a n d S K ar e c o m p ar e d i n t er m s of m e a n a b s ol ut e err or ( M A E).
T hi s i s a n i n d e x t h at h a s b e e n c o m m o nl y u s e d i n t h e c o m p o sit e p art s a s s e m bl y d o m ai n t o
e v al u at e t h e m o d eli n g p erf or m a n c e. We al s o c o m p ar e t h e R M S P E s of K A L E N a n d S K a n d
t h e pr o c e s si n g ti m e of g e n er ati n g e a c h o ut p ut. T h e R M S P E i s t h e s q u ar e r o ot of t h e M S P E,
w hi c h i s a p pr o xi m at e d b y t h e a v er a g e of 1

3 0
3 0
i= 1 (Y ( j ) (F i ) − Ŷ ( j ) (F i ))

2 o n t h e 9 1 p oi nt s, w h er e

F i ’ s ar e t h e i n p ut s of t e sti n g s a m pl e s, Y ( j ) (F i ) i s t h e o b s er v e d t e sti n g d at a, a n d Ŷ ( j ) (F i ) i s
t h e K A L E N pr e di ct or. T h e M A E i s a p pr o xi m at e d b y 1

3 0
3 0
i= 1 |Y ( j ) (F i ) − Ŷ ( j ) (F i )| o n t h e 9 1

p oi nt s.
T h e M A E s a n d R M S P E s of K A L E N a n d S K ar e s u m m ari z e d i n T a bl e 5 . A s t h e S D of

a ct u at or s’ f or c e s c h a n g e s fr o m 0. 0 4 l bf t o 0. 0 0 5 l bf, t h e M A E s a n d R M S P E s of K A L E N a n d S K
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T a bl e 5
T h e M A E ( R M S P E ) of K A L E N a n d S K i n t h e c o m p o sit e p a rt m o d eli n g. I n 4 t h c ol u m n, di ff e r e n c e = 3 r d

c ol u m n – 2 n d c ol u m n. T h e p r o c e s si n g ti m e i s i n s e c o n d s. T h e f oll o wi n g a b b r e vi ati o n i s u s e d: A F = a ct u at o r s’
f o r c e s, P T = P r o c e s si n g ti m e f o r e a c h o ut p ut.

M A E ( R M S P E ) M A E ( R M S P E ) P T of  P T of
S D of A F of K A L E N of S K Di ff e r e n c e K A L E N S K

0. 0 0 5 0. 0 0 5 9 ( 0. 0 0 8 1 ) 0. 0 0 5 9 ( 0. 0 0 8 1 ) 7 .1 × 1 0 − 7 ( 1 .9 × 1 0 − 6 ) 0. 1 5 0 0 0. 3 4 1 5
0. 0 1 0. 0 1 1 7 ( 0. 0 1 4 7 ) 0. 0 1 1 9 ( 0. 0 1 5 1 ) 1 .7 × 1 0 − 4 ( 3 .7 × 1 0 − 4 ) 0. 4 6 9 1 0. 3 9 3 8
0. 0 2 0. 0 2 1 6 ( 0. 0 2 6 5 ) 0. 0 2 1 7 ( 0. 0 2 6 4 ) 9 .5 × 1 0 − 5 ( − 8 .7 × 1 0 − 5 ) 0. 5 0 4 8 0. 3 9 6 4
0. 0 3 0. 0 2 8 6 ( 0. 0 3 3 5 ) 0. 0 3 0 4 ( 0. 0 3 7 6 ) 1 .7 × 1 0 − 3 ( 4 .1 × 1 0 − 3 ) 0. 6 7 4 6 0. 4 1 1 5
0. 0 4 0. 0 3 8 9 ( 0. 0 4 7 8 ) 0. 0 4 8 6 ( 0. 0 6 1 0 ) 9 .7 × 1 0 − 3 ( 1 .3 × 1 0 − 2 ) 0. 6 5 2 9 0. 4 3 0 2

al s o d e cr e a s e. T hi s r e s ult i s c o n si st e nt wit h t h e c o n cl u si o n s i n T h e or e m 3. 1 a n d Pr o p o siti o n
3. 6 . T h e M A E a n d R M S P E of K A L E N ar e sli g htl y s m all er t h a n t h e M A E a n d R M S P E of
S K. G e n er all y s p e a ki n g, t h eir p erf or m a n c e s ar e c o m p ar a bl e, e s p e ci all y w h e n t h e S D of t h e
a ct u at or s’ f or c e s i s s m all. T h e m ai n r e a s o n i s t h at, w h e n t h e u n c ert ai nt y i n t h e i n p ut v ari a bl e s
i s s m all, S K c a n a p pr o xi m at e t h e b e st li n e ar u n bi a s e d pr e di ct or K A L E N v er y w ell. Si n c e a
G a u s si a n c orr el ati o n f u n cti o n i s u s e d, t h e c o m p ut ati o n al c o m pl e xiti e s of K A L E N a n d S K ar e
t h e s a m e. T h e c o m p ut ati o n ti m e of K A L E N i s s m all er t h a n t h at of S K i n t hi s e x a m pl e. We
c o nj e ct ur e t hi s i s b e c a u s e of t h e di ff er e nt c o m p ut ati o n ti m e of m a xi m u m ( p s e u d o-)li k eli h o o d
e sti m ati o n. I n s u m m ar y, if hi g h- q u alit y a ct u at or s ar e u s e d a n d t h e i n p ut l o c ati o n n oi s e i n
t h e a ct u at or s i s t h er ef or e s m all, t h e n b ot h K A L E N a n d S K c a n r e ali z e v er y g o o d pr e di cti o n
p erf or m a n c e. W h e n t h e i n p ut l o c ati o n n oi s e i n t h e a ct u at or s’ f or c e s b e c o m e s l ar g er, K A L E N
o ut p erf or m s S K.

7. C o n cl u si o n s a n d di s c u s si o n. We fir st s u m m ari z e o ur c o ntri b uti o n s i n t hi s w or k. We
h a v e i n v e sti g at e d t hr e e pr e di ct or s, K A L E, K A L E N, a n d S K, a s a p pli e d t o G P s wit h i n p ut
l o c ati o n err or. W h e n pr e di cti n g t h e m e a n G P o ut p ut at a p oi nt wit h i n p ut l o c ati o n n oi s e,
w e pr o v e t h at t h e li mit s of t h e M S P E s of K A L E N a n d S K ar e t h e s a m e a s t h e fill di st a n c e
of t h e d e si g n p oi nt s g o e s t o z er o. If t h e r e i s n o n oi s e at p oi nt x ∈ Ω, w e pr o vi d e a n u p p er
b o u n d o n t h e M S P E s of K A L E a n d S K. T h e u p p er b o u n d i s cl o s e t o z er o if t h e n oi s e i s
s m all, w hi c h i m pli e s t h e M S P E s of K A L E a n d S K ar e cl o s e. We al s o pr o vi d e a n a s y m pt oti c
u p p er b o u n d o n t h e M S P E s of K A L E / K A L E N a n d S K wit h e sti m at e d p ar a m et er s. T h e s e
r e s ult s i n di c at e t h at if t h e n u m b er of d at a p oi nt s i s l ar g e or t h e v ari a n c e of t h e i n p ut l o c ati o n
n oi s e i s s m all, t h e n t h er e i s n ot m u c h di ff er e n c e b et w e e n K A L E / K A L E N a n d S K i n t er m s of
pr e di cti o n a c c ur a c y. T h e n u m eri c al r e s ult s c orr o b or at e o ur t h e or y. A c a s e st u d y i s pr e s e nt e d
t o ill u str at e t h e p erf or m a n c e of K A L E N a n d S K f or m o d eli n g i n t h e c o m p o sit e p art s a s s e m bl y
pr o c e s s.

T h e c al c ul ati o n of t h e pr e di ct or ( 5) i s n ot c o m p ut ati o n all y e ffi ci e nt if t h e i nt e gr al s i n ( 3)
a n d ( 4) d o n ot h a v e a n a n al yti c f or m, w h er e M o nt e C arl o i nt e gr ati o n i s t y pi c all y u s e d. If
t h e s a m pl e si z e i s l ar g e, t h e n u si n g p s e u d o m a xi m u m li k eli h o o d t o e sti m at e t h e u n k n o w n
p ar a m et er s i s c h all e n gi n g, e s p e ci all y w h e n t h e i nt e gr al s i n ( 3) a n d ( 4) d o n ot h a v e a n al yti c
f or m s. I n t hi s c a s e, u si n g S K a s a n alt er n ati v e w o ul d b e m or e d e sir a bl e.

T h er e ar e s e v er al pr o bl e m s t h at r e m ai n t o b e s ol v e d. I n t hi s p a p er, t h e M S P E s of K A L E,
K A L E N, a n d S K ar e pri m aril y c o n si d er e d a s y m pt oti c all y, i. e., t h e n u m b er of d e si g n p oi nt s
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g o e s t o i n fi nit y. T h e t h e or y d o e s n ot c o v er t h e r e s ult s u n d er n o n a s y m pt oti c c a s e s, i. e., t h e
n u m b er of d e si g n p oi nt s i s fi x e d. It c a n b e e x p e ct e d t h at t h e di ff er e n c e b et w e e n t h e M S P E s
of K A L E / K A L E N a n d S K will d e cr e a s e a s t h e fill di st a n c e d e cr e a s e s. If t h er e i s n o n oi s e o n
p oi nt x ∈ Ω, o nl y u p p er b o u n d s ar e o bt ai n e d f or K A L E a n d S K. T h e a s y m pt oti c p erf or m a n c e
of K A L E a n d S K w h e n t ar g et p oi nt h a s n o n oi s e will b e p ur s u e d i n f ut ur e w or k.

A p p e n di x A. R e pr o d u ci n g k er n el Hil b er t s p a c e, S o b ol e v s p a c e, a n d k er n el ri d g e r e-
gr e s si o n. S u p p o s e Ω ⊂ R d i s c o n v e x a n d c o m p a ct. A s s u m e t h at K : Ω× Ω → R i s a s y m m etri c
p o siti v e d e fi nit e k er n el f u n cti o n. D e fi n e t h e li n e ar s p a c e

F K ( Ω) =

n

k = 1

β k K (·, xk ) : β k ∈ R , xk ∈ Ω , n ∈ N ,( 2 5)

a n d e q ui p t hi s s p a c e wit h t h e bili n e ar f or m

n

k = 1

β k K (·, xk ),

m

j = 1

γ j K (·, x j )

K

: =

n

k = 1

m

j = 1

β k γ j K (x k , x j ).

T h e n t h e r e p r o d u ci n g k e r n el Hil b e rt s p a c e N K ( Ω) g e n er at e d b y t h e k er n el f u n cti o n K i s
d e fi n e d a s t h e cl o s ur e of F K ( Ω) u n d er t h e i n n e r pr o d u ct ·, · K , a n d t h e n or m of N K ( Ω)

i s f N K ( Ω ) = f, f N K ( Ω ) , w h er e ·, · N K ( Ω ) i s i n d u c e d b y ·, · K . T h e f oll o wi n g t h e or e m

gi v e s a n ot h er c h ar a ct e ri z ati o n of t h e r e pr o d u ci n g k er n el Hil b ert s p a c e w h e n K i s d e fi n e d b y
a st ati o n ar y k er n el f u n cti o n Ψ, vi a t h e F o uri er tr a n sf or m. N ot e t h at a k er n el f u n cti o n Ψ i s
s ai d t o b e st ati o n ar y if t h e v al u e Ψ( x, x ) o nl y d e p e n d s o n t h e di ff er e n c e x − x . T h u s, w e c a n
writ e Ψ( x − x ) : = Ψ( x, x ).

T h e or e m A. 1 (s e e [ 3 7 , T h e or e m 1 0. 1 2]). L et Ψ b e a p o siti v e d e fi nit e k e r n el f u n cti o n w hi c h
i s st ati o n a r y, c o nti n u o u s, a n d i nt e g r a bl e i n R d . D e fi n e

G : = { f ∈ L 2 (R d ) ∩ C (R d ) : F (f )/ F ( Ψ) ∈ L 2 (R d )} ,

wit h t h e i n n e r p r o d u ct

f, g N Ψ ( R d ) = ( 2 π ) − d / 2

R d

F (f )(ω )F (g )(ω )

F ( Ψ)( ω )
d ω.

T h e n G = N Ψ (R d ), a n d b ot h i n n e r p r o d u ct s c oi n ci d e.

B y B o c h n er’ s t h e or e m ( p a g e 2 0 8 of [ 1 4 ]; T h e or e m 6. 6 of [3 7 ]) a n d T h e or e m 6. 1 1 of [3 7 ], if
Ψ i s a c orr el ati o n f u n cti o n (t h u s p o siti v e d e fi nit e), t h er e e xi st s a f u n cti o n f Ψ s u c h t h at

Ψ( x ) =
R d

e i ω T x f Ψ (ω )d ω

f or a n y x ∈ R d . T h e f u n cti o n f Ψ i s k n o w n a s t h e s p e ct r al d e n sit y of Ψ.

C o n diti o n A. 2. T h e r e e xi st c o n st a nt s c 2 ≥ c 1 > 0 a n d η > d / 2 s u c h t h at, f o r all ω ∈ R d ,

c 1 ( 1 + ω 2
2 ) − η ≤ f Ψ (ω ) ≤ c 2 ( 1 + ω 2

2 ) − η .
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We s a y a Hil b ert f u n cti o n s p a c e G 1 c a n b e ( c o nti n u o u sl y) e m b e d d e d i nt o a n ot h er Hil b ert
f u n cti o n s p a c e G 2 if t h er e e xi st s a c o n st a nt C s u c h t h at

g 1 G 2
≤ C g 1 G 1

∀ g 1 ∈ G 1 ,

w h er e · G 1
a n d · G 2

ar e t h e n or m s of t h e f u n cti o n s p a c e s G 1 a n d G 2 , r e s p e cti v el y. T h er ef or e,
it c a n b e s e e n fr o m T h e or e m A. 1 t h at if, f or t w o p o siti v e d e fi nit e f u n cti o n s Φ 1 a n d Φ 2 , t h e
s p e ctr al d e n siti e s f Φ 1

a n d f Φ 2
s ati sf y f Φ 1

≤ C f Φ 2
, t h e n t h e r e pr o d u ci n g k er n el Hil b ert s p a c e

N Φ 1
(R d ) c a n b e e m b e d d e d i nt o N Φ 2

(R d ).
F or a p o siti v e n u m b er η > d / 2, t h e S o b ol e v s p a c e o n R d wit h s m o ot h n e s s η c a n b e d e fi n e d

a s

H η (R d ) = { f ∈ L 2 (R d ) : | F(f )(·)|( 1 + · 2
2 ) m / 2 ∈ L 2 (R d )} ,

e q ui p p e d wit h a n i n n er pr o d u ct

f, g H η ( R d ) = ( 2 π ) − d / 2

R d

F (f )(ω )F (g )(ω )( 1 + ω 2
2 ) η d ω.

It c a n b e s h o w n t h at H η (R d ) c oi n ci d e s wit h t h e r e pr o d u ci n g k er n el Hil b ert s p a c e N Ψ (R d ) if
Ψ s ati s fi e s C o n diti o n A. 2 ( s e e C or oll ar y 1 0. 1 3 of [ 3 7 ]).

R e m a r k A. 3. I n t hi s w or k, w e ar e o nl y i nt er e st e d i n S o b ol e v s p a c e s wit h η > d / 2 b e c a u s e
t h e s e s p a c e s c o nt ai n o nl y c o nti n u o u s f u n cti o n s a c c or di n g t o t h e S o b ol e v e m b e d di n g t h e or e m.

T h e i s otr o pi c M at é r n c o r r el ati o n f u n cti o n ( 2 4) h a s t h e s p e ctr al d e n sit y [ 3 0 ]

f Ψ M
(ω ; ν, φ ) = π − d / 2 Γ( ν + d / 2)

Γ( ν )
( 4ν φ 2 ) ν ( 4ν φ 2 + ω 2

2 ) − ( ν + d / 2 ) .

We c a n s e e t h at Ψ M s ati s fi e s C o n diti o n A. 2 . T h u s, t h e r e pr o d u ci n g k er n el Hil b ert s p a c e
g e n er at e d b y Ψ M c oi n ci d e s wit h t h e S o b ol e v s p a c e H ν + d / 2 , w hi c h i m pli e s t h at ΨM f ul fill s
A s s u m pti o n 2. 2 .

T h e i s otr o pi c G a u s si a n c orr el ati o n f u n cti o n Ψ G (x ) = e − θ x 2

h a s t h e s p e ctr al d e n sit y
( T h e or e m 5. 2 0 of [ 3 7 ])

f Ψ G
(ω ) = ( 4 π θ ) − d / 2 e − ω 2

2 / ( 4 θ ) .

Si n c e f or a n y fi x e d ν , f Ψ G
(ω ) ≤ C ( 1 + ω 2

2 ) − ν − d / 2 f or s o m e c o n st a nt C n ot d e p e n di n g o n ω ,
t h e r e pr o d u ci n g k er n el Hil b ert s p a c e g e n er at e d b y Ψ G c a n b e e m b e d d e d i n t h e S o b ol e v s p a c e
H ν + d / 2 (R d ). T hi s i m pli e s t h at Ψ G f ul fill s A s s u m pti o n 2. 2 .

A r e pr o d u ci n g k er n el Hil b ert s p a c e c a n al s o b e d e fi n e d o n a s uit a bl e s u b s et (f or e x a m pl e,
c o n v e x a n d c o m p a ct) Ω ⊂ R d , d e n ot e d b y N Ψ ( Ω), wit h n or m

f N Ψ ( Ω ) = i nf { f E N Ψ ( R d ) : f E ∈ N Ψ (R d ), fE |Ω = f } ,

w h er e f E |Ω d e n ot e s t h e r e stri cti o n of f E t o Ω. A S o b ol e v s p a c e o n Ω c a n b e d e fi n e d i n a
si mil ar w a y. B y t h e e xt e n si o n t h e or e m [ 1 1 ], t h e r e pr o d u ci n g k er n el Hil b ert s p a c e d e fi n e d o n
s p a c e Ω g e n er at e d b y Ψ M a n d Ψ G c a n b e e m b e d d e d i nt o t h e S o b ol e v s p a c e H ν + d / 2 ( Ω).

I n t h e r e st of t h e a p p e n di x, w e u s e C, C j , j ≥ 0 , t o d e n ot e g e n eri c p o siti v e c o n st a nt s,
w h o s e v al u e c a n c h a n g e fr o m li n e t o li n e.

C o p yri g ht © b y SI A M a n d A S A. U n a ut h ori z e d r e pr o d u cti o n of t hi s arti cl e i s pr o hi bit e d.

Do
wn

lo
ad

ed
 0

8/
02

/2
2 
to

 4
5.

3.
12

7.
20

4 .
 

Re
di

st
ri

bu
ti

on
 s

ub
je

ct
 t

o 
SI

A
M 
li

ce
ns

e 
or
 c

op
yr

ig
ht
; 

se
e 

ht
tp

s:
//

ep
ub

s.
si

a
m.

or
g/
te

r
ms

-p
ri

va
cy



G A U S SI A N P R O C E S S E S WI T H I N P U T L O C A TI O N E R R O R 6 3 9

A p p e n di x B. A l e m m a a b o u t M S P E of s t o c h a s ti c Kri gi n g.

L e m m a B. 1. L et Φ b e a r a di al b a si s f u n cti o n, p o siti v e d e fi nit e, a n d st ati o n a r y. S u p p o s e
t h e r e p r o d u ci n g k e r n el Hil b e rt s p a c e g e n e r at e d b y Φ c a n b e e m b e d d e d i nt o a S o b ol e v s p a c e
H η ( Ω) wit h η > d / 2. A s s u m e A s s u m pti o n 2. 5 i s t r u e f o r a s e q u e n c e of d e si g n s X =
{ x 1 , . . . , xn } . T h e n f o r a n y fi x e d c o n st a nt µ > 0, Φ( 0) − r Φ (x ) T (R Φ + µ I n ) − 1 r Φ (x ) c o n v e r g e s
t o z e r o p oi nt wi s el y a s t h e fill di st a n c e of X g o e s t o z e r o, w h e r e r Φ (x ) = ( Φ( x − x 1 ), . . . , Φ( x −
x n )) T a n d R Φ = ( Φ( x j − x k )) j k .

P r o of. L et ¯X = { x̄ 1 , . . . , x̄
n

} b e t h e di sti n ct d e si g n p oi nt s c orr e s p o n di n g t o X . At e a c h
d e si g n p oi nt x̄ j ∈ ¯X , s u p p o s e t h er e ar e a j r e pli c at e s; t h u s,

X = { x̄
( 1 )
1 , . . . , x̄

( a 1 )
1

a 1 r e pli c a ti o n s

, x̄
( 1 )
2 , . . . , x̄

( a 2 )
2

a 2 r e pli c a ti o n s

, . . . , x̄
( 1 )

n
, . . . , x̄

( a
n

)

n

a
n

r e pli c a ti o n s

} .

It c a n b e s h o w n t h at Φ( 0) − r Φ (x ) T (R Φ + µ I n ) − 1 r Φ (x ) = Φ( 0) − r̄ Φ (x ) T ( R̄ Φ + Λ I
n

) − 1 r̄ Φ (x ),

w h er e r̄ Φ (x ) = ( Φ( x − x 1 ), . . . , Φ( x − x̄
n

)) T , R̄ Φ = ( Φ( x̄ j − x̄ k )) j k , a n d Λ = di a g(λ 1 , . . . , λm )
wit h λ j = µ / a j ( s e e L e m m a 3. 1 of [ 3 ] a n d t h e pr o of of Pr o p o siti o n 3. 1 of [3 3 ]). L et a = mi n j a j

a n d fi x a p oi nt x . We h a v e

Φ( 0) − r Φ (x ) T (R Φ + µ I n ) − 1 r Φ (x )

= Φ( 0) − r̄ Φ (x ) T ( R̄ Φ + Λ I
n

) − 1 r̄ Φ (x )

≤ Φ( 0) − r̄ Φ (x ) T ( R̄ Φ + µ / a I
n

) − 1 r̄ Φ (x )

≤ g x L ∞ ( Ω ) ,

w h er e t h e fir st i n e q u alit y i s b e c a u s e ( R̄ Φ + Λ I
n

) − 1 ( R̄ Φ + µ / a I
n

) − 1 , a n d g x (t) = Φ( t − x ) −

r̄ Φ (t) T ( R̄ Φ + µ / a I
n

) − 1 r̄ Φ (x ). H er e A B d e n ot e s t h at f or a n y v e ct or b , b T (A − B )b ≥ 0.
Si n c e N Φ ( Ω) c a n b e e m b e d d e d i nt o a S o b ol e v s p a c e H η ( Ω), w e h a v e g x ∈ H η ( Ω), w h er e

H η ( Ω) i s t h e S o b ol e v s p a c e wit h s m o ot h n e s s η . B y t h e i nt er p ol ati o n i n e q u alit y [5 ], g x L ∞ ( Ω ) ≤

C 1 g x
1 − d

2 η

L 2 ( Ω ) g x

d

2 η

H η ( Ω ) . B y C or oll ar y 1 0. 2 5 i n [3 7 ] a n d t h e f a ct t h at R̄ − 1
Φ ( R̄ Φ + µ / a I

n
) − 1 ,

it c a n b e s h o w n t h at

g x
2
H η ( Ω ) ≤ C 2 g x

2
N Φ ( Ω )

≤ C 2 ( 1 − 2 r̄ Φ (x ) T ( R̄ Φ + µ / a I
n

) − 1 r̄ Φ (x )

+ r̄ Φ (x ) T ( R̄ Φ + µ / a I
n

) − 1 R̄ Φ ( R̄ Φ + µ / a I
n

) − 1 r̄ Φ (x ))

≤ C 2 ( 1 − r̄ Φ (x )( R̄ Φ + µ / a I
n

) − 1 r̄ Φ (x ) T ) ≤ C 2 ,

w h er e g x N Φ ( Ω ) i s t h e n or m of g i n t h e r e pr o d u ci n g k er n el Hil b ert s p a c e N Φ ( Ω). T h u s, t h e
r e s ult f oll o w s if w e c a n s h o w t h at g x L 2 ( Ω ) c o n v er g e s t o z er o. B y t h e r e pr e s e nt er t h e or e m,
ĝ 1 (t) : = r̄ Φ (t) T ( R̄ Φ + µ / a I

n
) − 1 r̄ Φ (x ) i s t h e s ol uti o n t o t h e o pti mi z ati o n pr o bl e m

mi n
g 1 ∈ N Φ ( Ω )

1

n

n

j = 1

(g 1 ( x̄ j ) − Φ( x − x̄ j ))
2 +

µ

a n
g 1

2
N Φ ( Ω ) .( 2 6)
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N ot e t h at g x (t) = Φ( t − x ) − ĝ 1 (t). U n d er A s s u m pti o n 2. 5 , b y L e m m a 3. 4 of [3 1 ], t h e r e s ult
f oll o w s fr o m

g x
2
L 2

≤ C 3
1

n

n

j = 1

( ĝ 1 ( x̄ j ) − Φ( x − x̄ j ))
2 + h 2 η

¯X
g x

2
H η ( Ω )

≤ C 3
1

n

n

j = 1

( ĝ 1 ( x̄ j ) − Φ( x − x̄ j ))
2 +

µ

a n
ĝ 1

2
N Φ ( Ω ) + h 2 η

¯X
g x

2
H η ( Ω )

≤ C 3
1

n

n

j = 1

( Φ(x − x̄ j ) − Φ( x − x̄ j ))
2 +

µ

a n
Φ( x − · ) 2

N Φ ( Ω ) + h 2 η
¯X

g x
2
H η ( Ω ) → 0 ,

w h er e t h e l a st i n e q u alit y i s tr u e b e c a u s e ĝ 1 i s t h e s ol uti o n t o ( 2 6) .

A p p e n di x C. C al c ul a ti o n of ( 7 ). I n t hi s s e cti o n, w e s h o w t h at if t h e c orr el ati o n f u n cti o n
i s Ψ(s − t) = e x p( − θ s − t 2

2 ), a n d t h e n oi s e ∼ N ( 0, σ2 I d ), w h er e θ > 0 i s t h e c orr el ati o n
p ar a m et er, a n d N ( 0, σ2 I d ) i s t h e m e a n z er o n or m al di stri b uti o n wit h c o v ari a n c e m atri x σ 2 I d ,
t h e n ( 3 ) –( 6 ) c a n b e c al c ul at e d, r e s p e cti v el y, a s i n ( 7). L et p N (t) b e t h e pr o b a bilit y d e n sit y
f u n cti o n of n or m al di stri b uti o n N ( 0, σ2 I d ), i. e.,

p N (t) =
1

( 2π σ 2 ) d
e x p −

tT t

2 σ 2
.

T h e i d e a of c al c ul ati n g ( 3 ) –(6 ) i s t o utili z e

R d

1

( 2π a 2 ) d / 2
e x p −

s − b 2
2

2 a 2
d s = 1

f or a > 0 m ulti pl e ti m e s. B y dir e ct c al c ul ati o n, w e h a v e

r N (x, x j ) = σ 2

R d R d

Ψ( x + − (x j + j ))p ( j )p ( )d j d

= σ 2

R d R d

e x p( − θ x + − (x j + j )
2
2 )

1

( 2π σ 2 ) d

× e x p −
T
j j

2 σ 2

1

( 2π σ 2 ) d
e x p −

T

2 σ 2
d j d

= σ 2 e x p( − θ x − x j
2
2 )

( 2π σ 2 ) d
R d R d

e x p − θ +
1

2 σ 2
T − 2 θ (x − x j − j )

T d

× e x p − θ +
1

2 σ 2
T
j j + 2 θ (x − x j )

T
j d j .( 2 7)
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G A U S SI A N P R O C E S S E S WI T H I N P U T L O C A TI O N E R R O R 6 4 1

We fir st c o m p ut e

R d

e x p − θ +
1

2 σ 2
T − 2 θ (x − x j − j )

T d

=
R d

e x p − θ +
1

2 σ 2
+

θ (x − x j − j )

θ + 1
2 σ 2

2

2

+
θ 2

θ + 1
2 σ 2

x − x j − j
2
2 d

= e x p
2 σ 2 θ 2

1 + 2 σ 2 θ
x − x j − j

2
2 2 π

σ 2

1 + 2 θ σ 2

d

.( 2 8)

Pl u g gi n g ( 2 8) i nt o ( 2 7) yi el d s

r N (x, x j ) = σ 2 e x p( − θ x − x j
2
2 )

( 2π σ 2 ) d
2 π

σ 2

1 + 2 θ σ 2

d

R d

e x p
2 σ 2 θ 2

1 + 2 σ 2 θ
x − x j − j

2
2

× e x p − θ +
1

2 σ 2
T
j j + 2 θ (x − x j )

T
j d j .( 2 9)

We n e xt c o m p ut e

R d

e x p
2 σ 2 θ 2

1 + 2 σ 2 θ
x − x j − j

2
2 e x p − θ +

1

2 σ 2
T
j j + 2 θ (x − x j )

T
j d j

= e x p
2 σ 2 θ 2

1 + 2 σ 2 θ
x − x j

2
2

R d

e x p − θ +
1

2 σ 2
−

2 σ 2 θ 2

1 + 2 σ 2 θ
T
j j

+ 2 θ −
2 σ 2 θ 2

1 + 2 σ 2 θ
(x − x j )

T
j d j

= e x p
2 σ 2 θ 2

1 + 2 σ 2 θ
x − x j

2
2

R d

e x p −
1 + 4 σ 2 θ

( 1 + 2 σ 2 θ )σ 2
T
j j +

2 θ

1 + 2 σ 2 θ
(x − x j )

T
j d j

= e x p
2 σ 2 θ 2

1 + 2 σ 2 θ
x − x j

2
2 2 π

( 1 + 2 σ 2 θ )σ 2

1 + 4 σ 2 θ

d

e x p
( 1 + 2 σ 2 θ )σ 2

1 + 4 σ 2 θ

θ 2

( 1 + 2 σ 2 θ ) 2
x − x j

2
2 .

( 3 0)

B y pl u g gi n g ( 3 0) i nt o ( 2 9) , w e o bt ai n

r N (x, x j ) = σ 2 e x p( − θ x − x j
2
2 )

( 2π σ 2 ) d
2 π

σ 2

1 + 2 θ σ 2

d

× e x p
2 σ 2 θ 2

1 + 2 σ 2 θ
x − x j

2
2 2 π

( 1 + 2 σ 2 θ )σ 2

1 + 4 σ 2 θ

d

e x p
2( 1 + 2 σ 2 θ )σ 2

1 + 4 σ 2 θ

θ 2

( 1 + 2 σ 2 θ ) 2
x − x j

2
2

=
σ 2

( 1 + 4 σ 2 θ ) d / 2
e x p

− θ x − x j
2
2

1 + 4 σ 2 θ
,

( 3 1)
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w hi c h i s d e sir e d. T h e t er m r (x, x j ) c a n b e c o m p ut e d b y

r (x, x j ) = σ 2

R d

Ψ( x − (x j + j ))p ( j )d j

= σ 2

R d

e x p( − θ x − (x j + j )
2
2 )

1

( 2π σ 2 ) d
e x p −

T
j j

2 σ 2

= σ 2 e x p( − θ x − x j
2
2 )

( 2π σ 2 ) d R d

e x p − θ +
1

2 σ 2
T
j j + 2 θ (x − x j )

T
j d j

= σ 2 e x p( − θ x − x j
2
2 )

( 2π σ 2 ) d
e x p

2 σ 2 θ 2

1 + 2 σ 2 θ
x − x j

2
2 2 π

σ 2

1 + 2 θ σ 2

d

=
σ 2

( 1 + 2 σ 2 θ ) d / 2
e x p

− θ x − x j
2
2

1 + 2 σ 2 θ
.( 3 2)

N ot e t h at K j k = r N (x j , xk ) if j = k . T o g et h er wit h ( 3 1) a n d ( 3 2) , w e o bt ai n ( 7).

A p p e n di x D. Pr o of of L e m m a 2. 4. B y F o uri er tr a n sf or m [ 3 7 ], w e h a v e

Ψ( x j − x k ) =
1

( 2π ) d / 2
R d

e i x j − x k ,t F ( Ψ)( t)dt,( 3 3)

w h er e s, t = s T t i s t h e i n n er pr o d u ct i n R d . T h er ef or e, b y F u bi ni’ s t h e or e m, dir e ct c al c ul ati o n
l e a d s t o

Ψ S (x j − x k ) =
R d R d

1

( 2π ) d / 2
R d

e i x j + 1 − ( x k + 2 ) ,t F ( Ψ)( t)p ( 1 )p ( 2 )dt d 1 d 2

=
1

( 2π ) d / 2
R d R d R d

e i x j + 1 − ( x k + 2 ) ,t p ( 1 )p ( 2 )d 1 d 2 F ( Ψ)( t)dt

=
1

( 2π ) d / 2
R d

e i x j − x k ,t

R d

e i 1 ,t

R d

e i − 2 ,t p ( 1 )p ( 2 )d 1 d 2 F ( Ψ)( t)dt

=
1

( 2π ) d / 2
R d

e i x j − x k ,t

R d

e i 1 ,t p ( 1 )d 1
R d

e i − 2 ,t p ( 2 )d 2 F ( Ψ)( t)dt.( 3 4)

F or a n y w = ( w 1 , . . . , wn ) T , b y ( 3 4) , w e h a v e

n

j, k = 1

w j w̄ k Ψ S (x j − x k )

=

n

j, k = 1

w j w̄ k
1

( 2π ) d / 2
R d

e i x j − x k ,t

R d

e i 1 ,t p ( 1 )d 1
R d

e i − 2 ,t p ( 2 )d 2 F ( Ψ)( t)dt

=
1

( 2π ) d / 2
R d

n

j = 1

w j e
i x j ,t

2

R d

e i 1 ,t p ( 1 )d 1
R d

e i − 2 ,t p ( 2 )d 2 F ( Ψ)( t)dt.

( 3 5)
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G A U S SI A N P R O C E S S E S WI T H I N P U T L O C A TI O N E R R O R 6 4 3

L et

c (t) =
R d

e i 1 ,t p ( 1 )d 1
R d

e i − 2 ,t p ( 2 )d 2 .

T h u s, c (t) ∈ R a n d c (t) > 0. T h er ef or e, n
j, k = 1 w j w̄ k Ψ S (x j − x k ) ≥ 0 a n d e q u al t o z er o if a n d

o nl y if w = 0, w hi c h fi ni s h e s t h e pr o of.

A p p e n di x E. Pr o of of T h e or e m 2. 7 . C o n si d er t h e f oll o wi n g G P wit h o ut p ut err or:

y S (x ) = M S (x ) + δ (x ),( 3 6)

w h er e M S i s a m e a n z er o G P wit h c o v ari a n c e f u n cti o n σ 2 Ψ S , a n d δ (x ) i s a n i n d e p e n d e nt n oi s e
pr o c e s s wit h m e a n z er o a n d v ari a n c e µ . T h e b e st li n e ar u n bi a s e d pr e di ct or of ( 3 6) i s

f̂ S (x ) = r N (x ) T (R S + µ I n ) − 1 Y,( 3 7)

a n d t h e M S P E i s

M S P E S = σ 2 Ψ S ( 0) − r N (x ) T (R S + µ I n ) − 1 r N (x ).( 3 8)

B y L e m m a B. 1 , ( 3 8) g o e s t o z er o a s t h e fill di st a n c e of d e si g n p oi nt s X g o e s t o z er o.
T a k e µ = σ 2 ( 1 − Ψ S ( 0)). It c a n b e s e e n t h at ( 3 8) i s e q u al t o σ 2 Ψ S ( 0) − r N (x )R − 1 r N (x ).

B y ( 9) , E (y (x ) − ŷ ( x )) 2 = M S P E S + σ 2 ( 1 − Ψ S ( 0)), w hi c h c o n v er g e s t o σ 2 ( 1 − Ψ S ( 0)) a s t h e
fill di st a n c e of t h e d e si g n p oi nt s g o e s t o z er o. T hi s c o m pl et e s t h e pr o of.

A p p e n di x F. Pr o of of T h e or e m 3. 1 . Wit h o ut l o s s of g e n er alit y, a s s u m e σ = 1. Fir st,
w e c o n si d er t h at t h e r e i s n oi s e at p oi nt x . F or a n y u = ( u 1 , . . . , un ) T , it c a n b e s h o w n t h at
t h e M S P E of pr e di ct or u T Y i s

E Ψ( · − (x + )) −

n

j = 1

u i Ψ( · − (x j + j ))
2

N Ψ ( Ω )

= E



 1 − 2

n

j = 1

u i Ψ(( x j + j ) − (x + )) +

n

j, k = 1

u j u k Ψ(( x j + j ) − (x k + k ))





= 1 − 2

n

j = 1

u j Ψ S (x − x j ) +

n

j, k = 1

u j u k Ψ S (x j − x k ) + a u 2
2 ,( 3 9)

w h er e · N Ψ ( Ω ) i s t h e n or m of t h e r e pr o d u ci n g k er n el Hil b ert s p a c e N Ψ ( Ω) a n d a = 1 − Ψ S ( 0),
a n d t h e l a st e q u alit y f oll o w s fr o m ( 1 0) . N oti c e t h at

Ψ S (x j − x k ) =
1

( 2π ) d / 2
R d

e i x j − x k ,t c (t)F ( Ψ)( t)dt,

w h er e

c (t) =
R d

e i j ,t p ( j )d j
R d

e i − k ,t p ( k )d k .
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Si n c e |e i − j ,t | ≤ 1, c (t) ≤ 1. T h er ef or e, ( 3 9) c a n b e b o u n d e d b y

1 − 2

n

j = 1

u j Ψ S (x − x j ) +

n

j, k = 1

u j u k Ψ S (x j − x k ) + a u 2
2

= u T R S u − 2 u T r S (x ) + Ψ S (x − x ) + a u 2
2 + a

=
1

( 2π ) d / 2
R d

n

j = 1

u j e
i x j ,t − e i x,t

2

c (t)F ( Ψ)( t)dt + a u 2
2 + a

≤
1

( 2π ) d / 2
R d

n

j = 1

u j e
i x j ,t − e i x,t

2

F ( Ψ)( t)dt + a u 2
2 + a

= u T R Ψ u − 2 u T r Ψ (x ) + 1 + a u 2
2 + a

≤ m a x { 1 , a / µ} (u T R Ψ u − 2 u T r Ψ (x ) + 1 + µ u 2
2 ) + a,( 4 0)

w h er e r S (x ) = ( Ψ( x − x 1 ), . . . , Ψ( x − x n )) T a n d t h e s e c o n d e q u alit y f oll o w s fr o m ( 3 5) . Pl u g gi n g

u = ( R Ψ + µ I n ) − 1 r Ψ (x )

i nt o ( 3 9) a n d ( 4 0) , w e h a v e t h e M S P E of pr e di ct or ( 1 3) u p p er b o u n d e d b y

m a x { 1 , a / µ} ( 1 − r Ψ (x ) T (R Ψ + µ I n ) − 1 r Ψ (x )) + a.

B y L e m m a B. 1 , 1 − r Ψ (x ) T (R Ψ + µ I n ) − 1 r Ψ (x ) c o n v er g e s t o z er o a s t h e fill di st a n c e g o e s t o
z er o si n c e µ i s a c o n st a nt, w hi c h c o m pl et e s t h e pr o of i n t hi s c a s e.

N e xt, w e c o n si d er t h e c a s e t h at t h er e i s n o n oi s e at p oi nt x . F or a n y u = ( u 1 , . . . , un ) T , it
c a n b e s h o w n t h at t h e M S P E of pr e di ct or u T Y i n t hi s c a s e i s

E Ψ( · − x ) −

n

j = 1

u j Ψ( · − (x j + ))
2

N Ψ

= u T R S u − 2 u T r (x ) + Ψ( x − x ) + a u 2
2 .( 4 1)

L et b (t) =
R d e i i ,t h ( i )d i . T h u s, f or a n y u = ( u 1 , . . . , un ) T , w e h a v e

u T R S u − 2 u T r (x ) + Ψ( x − x ) + a u 2
2

=
1

( 2π ) d / 2
R d

n

j = 1

u j e
i x j ,t b (t) − e i x,t

2

F ( Ψ)( t)dt + a u 2
2

≤
1 + C 2

( 2π ) d / 2
R d

n

j = 1

u j e
i x j ,t − e i x,t

2

|b (t)|2 F ( Ψ)( t)dt

+
1 + C − 2

( 2π ) d / 2
R d

|1 − | b (t)||2 F ( Ψ)( t)dt + a u 2
2
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≤ ( 1 + C 2 )(u T R Ψ u − 2 u T r Ψ (x ) + 1) + a u 2
2

+ ( 1 + C − 2 )
1

( 2π ) d / 2
R d

|1 − | b (t)||2 F ( Ψ)( t)dt

≤ m a x { ( 1 + C 2 ), a / µ} (u T R Ψ u − 2 u T r Ψ (x ) + 1 + µ u 2
2 )

+
1 + C − 2

( 2π ) d / 2
R d

|1 − | b (t)||2 F ( Ψ)( t)dt,( 4 2)

w h er e w e u s e 2 a, b ≤ C 2 |a |2 + C − 2 |b |2 i n t h e fir st i n e q u alit y, wit h C a fi x e d c o n st a nt.
Pl u g gi n g

u = ( R Ψ + µ I n ) − 1 r Ψ (x )

i nt o ( 4 1) a n d ( 4 2) , w e h a v e t h e M S P E of pr e di ct or ( 1 3) u p p er b o u n d e d b y

m a x { ( 1 + C 2 ), a / µ} ( 1 − r Ψ (x ) T (R Ψ + µ I n ) − 1 r Ψ (x )) +
1 + C − 2

( 2π ) d / 2
R d

|1 − | b (t)||2 F ( Ψ)( t)dt.

B y L e m m a B. 1 , 1 − r Ψ (x ) T (R Ψ + µ I n ) − 1 r Ψ (x ) c o n v er g e s t o z er o a s t h e fill di st a n c e g o e s t o
z er o si n c e µ i s a c o n st a nt. T h e c o n st a nt C i n fl u e n c e s t h e n u m b er of d e si g n p oi nt s n e e d e d s u c h
t h at m a x { ( 1 + C 2 ), a / µ} ( 1 − r Ψ (x ) T (R Ψ + µ I n ) − 1 r Ψ (x )) i s cl o s e t o z er o. F or a fi x e d n u m b er
of d e si g n p oi nt s, t h e l ar g er C i s, t h e l ar g er m a x{ ( 1 + C 2 ), a / µ} ( 1 − r Ψ (x ) T (R Ψ + µ I n ) − 1 r Ψ (x ))
i s. T o d eri v e a n e x pli cit b o u n d, w e l et C 2 = 2 5, w hi c h yi el d s a n a s y m pt oti c u p p er b o u n d

1 .0 4

( 2π ) d / 2
R d

|1 − | b (t)||2 F ( Ψ)( t)dt.

T hi s fi ni s h e s t h e pr o of.

A p p e n di x G. Pr o of of Pr o p o si ti o n 3. 6 . N oti c e t h at E (e i T
n t ) c o n v er g e s t o 1 si n c e n

c o n v er g e s t o 0 i n di stri b uti o n a n d e i T
n t i s b o u n d e d, a n d b (t) i s b o u n d e d f or all t ∈ R d . B y t h e

d o mi n at e d c o n v er g e n c e t h e or e m, t h e r e s ult h ol d s.

A p p e n di x H. Pr o of of T h e or e m 4. 1 . We fir st pr e s e nt a l e m m a, w hi c h i s a g e n er ali z ati o n
of L e m m a B. 1 .

L e m m a H. 1. S u p p o s e t h e c o n diti o n s of T h e o r e m 4. 1 h ol d. T h e n 1 − r̃ Ψ (x ) T ( R̃ Ψ + µ̃ I ) − 1 r̃ Ψ (x )
c o n v e r g e s t o z e r o a s t h e fill di st a n c e of X c o n v e r g e s t o z e r o, w h e r e Ψ̃ = Ψ̃ 1 o r Ψ̃ 2 .

P r o of. T h e pr o of of L e m m a H. 1 i s si mil ar t o t h e pr o of of L e m m a B. 1 . T h e o nl y di ff er e n c e
i s t h at if w e d e fi n e g̃ ( t) = Ψ̃ ( t − x ) − r̃ Ψ (t) T ( R̃ Ψ + µ̃ I ) − 1 r̃ Ψ (x ), t h e n g̃ H η ( Ω ) ≤ C 2 f or all g̃ .
T h u s, t h e r e s ult f oll o w s fr o m t h e pr o of of L e m m a B. 1 .

N o w w e ar e r e a d y t o s h o w t h e pr o of of T h e or e m 4. 1 . L et ˜y (x ) b e t h e S K pr e di ct or wit h
p ar a m et er s ( θ̃ 2 , µ̃ ). T h u s,

ỹ ( x ) = r̃ 2 (x ) T ( R̃ 2 + µ̃ I n ) − 1 Y,( 4 3)

w h er e r̃ 2 (x ) = ( Ψ̃ 2 (x, x 1 ), . . . , Ψ̃ 2 (x, x n )) T a n d R̃ 2 = ( Ψ̃ 2 (x j − x k )) j k .
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P r o of of st at e m e nt (i): Dir e ct c al c ul ati o n s h o w s t h at t h e M S P E c a n b e e x pr e s s e d a s

E (y (x ) − ỹ ( x )) 2 = σ 2 ( 1 − 2 r̃ 2 (x ) T ( R̃ 2 + µ̃ I n ) − 1 r N (x )

+ r̃ 2 (x ) T ( R̃ 2 + µ̃ I n ) − 1 R ( R̃ 2 + µ̃ I ) − 1 r̃ 2 (x )),( 4 4)

w h er e R a n d r N ar e a s i n ( 4) a n d ( 6), r e s p e cti v el y. Si mil ar t o ( 4 0) , w e h a v e f or a n y u =
(u 1 , . . . , un ) T

1 − 2

n

j = 1

u j Ψ S (x − x j ) +

n

j, k = 1

u j u k Ψ S (x j − x k ) + a u 2
2

= u T R S u − 2 u T r S (x ) + Ψ S (x − x ) + a u 2
2 + a

=
1

( 2π ) d / 2
R d

n

j = 1

u j e
i x j ,t − e i x,t

2

c (t)F ( Ψ)( t)dt + a u 2
2 + a

≤
1

( 2π ) d / 2
R d

n

j = 1

u j e
i x j ,t − e i x,t

2

F ( Ψ)( t)dt + a u 2
2 + a

≤
A 1

( 2π ) d / 2
R d

n

j = 1

u j e
i x j ,t − e i x,t

2

F ( Ψ̃ 2 )(t)dt + a u 2
2 + a

= A 1 (u T R̃ 2 u − 2 u T r̃ 2 (x ) + Ψ̃ 2 (x − x )) + a u 2
2 + a

≤ m a x { A 1 , a /µ̃ } ( u T R̃ 2 u − 2 u T r̃ 2 (x ) + Ψ̃ 2 ( 0) + µ̃ u 2
2 ) + a,( 4 5)

w h er e

c (t) =
R d

e i j ,t p ( j )d j
R d

e i − k ,t p ( k )d k ,

a n d a = 1 − Ψ S ( 0). Pl u g gi n g

u = ( R̃ 2 + µ̃ I n ) − 1 r̃ 2 (x )

i nt o ( 4 4) a n d ( 4 5) , w e h a v e t h at t h e M S P E of pr e di ct or ( 4 4) i s u p p er b o u n d e d b y

m a x { A 1 , a /µ̃ } ( Ψ̃ 2 ( 0) − r̃ 2 (x ) T ( R̃ 2 + µ̃ I n ) − 1 r̃ 2 (x ) + a

≤ m a x { A 1 , a C} ( Ψ̃ 2 ( 0) − r̃ 2 (x ) T ( R̃ 2 + C I n ) − 1 r̃ 2 (x ) + a.

B y L e m m a H. 1 , Ψ̃ 2 ( 0) − r̃ 2 (x ) T ( R̃ 2 + C I n ) − 1 r̃ 2 (x ) c o n v er g e s t o z er o a s t h e fill di st a n c e g o e s
t o z er o, w hi c h i n di c at e s t h at σ 2 a i s a n a s y m pt oti c u p p er b o u n d o n t h e M S P E of S K wit h
p ar a m et er s. N ot e t h at σ 2 a i s al s o t h e li mit of K A L E N wit h t h e tr u e p ar a m et er s, w hi c h i s t h e
b e st li n e ar u n bi a s e d pr e di ct or. T h er ef or e, σ 2 a i s t h e li mit of S K wit h p ar a m et er s.

N ot e t h at K A L E N i s

ŷ ( x ) = r̃ N (x ) T ( R̃ S + ˜a I n ) − 1 Y,( 4 6)
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w h er e R̃ S = ( Ψ̃ S (x j − x k )) j k , ˜r N (x ) = ( Ψ̃ S (x − x 1 ), . . . , Ψ̃ S (x − x n )),

Ψ̃ S (s − t) =
R d R d

Ψ̃ 1 (s + 1 − (t + 2 )) p̃ ( 1 ) p̃ ( 2 )d 1 d 2 ,

a n d ã = Ψ̃ 1 ( 0) − Ψ̃ S ( 0). C o n diti o n ( 4) i n T h e or e m 4. 1 i m pli e s t h at ã i s b o u n d e d a w a y fr o m
z er o. T h u s, r e p e ati n g t h e ar g u m e nt i n t h e pr o of of S K c o m pl et e s t h e pr o of of st at e m e nt (i).

P r o of of st at e m e nt (ii): B y dir e ct c al c ul ati o n, it c a n b e s h o w n t h at

E (y (x ) − ỹ ( x )) 2 = σ 2 ( 1 − 2 r̃ 2 (x ) T ( R̃ 2 + µ̃ I n ) − 1 r (x )

+ r̃ 2 (x ) T ( R̃ 2 + µ̃ I n ) − 1 R ( R̃ 2 + µ̃ I ) − 1 r̃ 2 (x ),( 4 7)

w h er e r (x ) i s a s i n ( 3). L et b (t) =
R d e i j ,t p ( j )d j . F or a n y u = ( u 1 , . . . , un ) T , w e h a v e

u T R S u − 2 u T r (x ) + 1 + a u 2
2

=
1

( 2π ) d / 2
R d

n

j = 1

u j e
i x j ,t b (t) − e i x,t

2

F ( Ψ)( t)dt + a u 2
2

≤
( 1 + C 2

1 )

( 2π ) d / 2
R d

n

j = 1

u j e
i x j ,t − e i x,t

2

|b (t)|2 F ( Ψ)( t)dt

+
( 1 + C − 2

1 )

( 2π ) d / 2
R d

|1 − | b (t)||2 F ( Ψ)( t)dt + a u 2
2

≤
( 1 + C 2

1 )A 1

( 2π ) d / 2
R d

n

j = 1

u j e
i x j ,t − e i x,t

2

|b (t)|2 F ( Ψ̃ 2 )(t)dt

+
( 1 + C − 2

1 )

( 2π ) d / 2
R d

|1 − | b (t)||2 F ( Ψ)( t)dt + a u 2
2

≤ ( 1 + C 2
1 )A 1 (u T R̃ 2 u − 2 u T r̃ 2 (x ) + Ψ̃ 2 (x − x )) + a u 2

2

+
( 1 + C − 2

1 )

( 2π ) d / 2
R d

|1 − | b (t)|2 | F( Ψ)( t)dt

≤ m a x { ( 1 + C 2
1 )A 1 , a /µ̃ } ( u T R̃ 2 u − 2 u T r̃ 2 (x ) + Ψ̃ 2 ( 0) + µ̃ u 2

2 )

+
( 1 + C − 2

1 )

( 2π ) d / 2
R d

|1 − | b (t)|2 | F( Ψ)( t)dt.( 4 8)

Pl u g gi n g u = ( R̃ 2 + µ̃ I ) − 1 r̃ 2 (x ) i nt o ( 4 7) a n d ( 4 8) , w e fi n d t h at t h e M S P E of pr e di ct or ( 1 3)
i s u p p er b o u n d e d b y

m a x { ( 1 + C 2
1 )A 1 , a /µ̃ } ( Ψ̃ 2 ( 0) − r̃ 2 (x ) T ( R̃ 2 + µ̃ I n ) − 1 r̃ 2 (x )

+
( 1 + C − 2

1 )

( 2π ) d / 2
R d

|1 − | b (t)|2 | F( Ψ)( t)dt

≤ m a x { ( 1 + C 2
1 )A 1 , a C} ( Ψ̃ 2 ( 0) − r̃ 2 (x ) T ( R̃ 2 + C I n ) − 1 r̃ 2 (x )

+
( 1 + C − 2

1 )

( 2π ) d / 2
R d

|1 − | b (t)|2 | F( Ψ)( t)dt.
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We t a k e C 2
1 = 2 5. B y L e m m a H. 1 , Ψ̃ 2 ( 0) − r̃ 2 (x ) T ( R̃ 2 + C I n ) − 1 r̃ 2 (x ) c o n v er g e s t o z er o a s t h e

fill di st a n c e g o e s t o z er o si n c e C i s a c o n st a nt, w hi c h fi ni s h e s t h e pr o of f or S K.
N ot e t h at t h e K A L E i s

f̂ ( x ) = r̃ ( x ) T ( R̃ S + ˜a I ) − 1 Y,

w h er e r̃ ( x ) i s a s i n ( 3) wit h p ar a m et er s θ̃
( 1 )
1 , a n d R̃ S a n d ã a r e a s i n ( 4 6) . B e c a u s e Ψ̃ 1 i s a

c orr el ati o n f u n cti o n a n d p̃ ( ·) = p (·), w e h a v e Ψ̃ 1 ( 0) = 1 a n d Ψ̃ S ( 0) = Ψ S ( 0), w hi c h i m pl y
ã = 1̃ − Ψ̃ S ( 0) = 1 − Ψ S ( 0) = a . T h e n f or a n y u = ( u 1 , . . . , un ) T , w e h a v e

u T R S u − 2 u T r (x ) + 1 + a u 2
2

=
1

( 2π ) d / 2
R d

n

j = 1

u j e
i x j ,t b (t) − e i x,t

2

F ( Ψ)( t)dt + a u 2
2

≤
A 1

( 2π ) d / 2
R d

n

j = 1

u j e
i x j ,t b (t) − e i x,t

2

F ( Ψ̃ 1 )(t)dt + a u 2
2

= A 1 (u T R̃ S u − 2 u T r̃ ( x ) + Ψ̃ 1 (x − x )) + a u 2
2 .( 4 9)

N ot e t h at f̂ ( x ) mi ni mi z e s ( 4 9) . T h e n r e p e ati n g t h e pr o of of T h e or e m 3. 1 gi v e s a n u p p er
b o u n d

1 .0 4 A 1 σ 2

( 2π ) d / 2
R d

|1 − | b (t)|2 | F( Ψ̃ 1 )(t)dt.

T o g et h er wit h F ( Ψ̃ 1 )(t) ≤ A 2 F ( Ψ)( t) f or a n y t, w e fi ni s h t h e pr o of.

A c k n o wl e d g m e n t s. T h e a ut h or s ar e gr at ef ul t o t h e A E a n d all t h e r e vi e w er s f or t h eir
v er y h el pf ul c o m m e nt s a n d s u g g e sti o n s.
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