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Abstract— Modeling stress-induced processes is challenging
and extremely critical in the quality control of advanced man-
ufacturing systems. While residual stresses may be beneficial
in some situations, in composite structures assembly, high
residual stresses and extreme deformations are crucial and
must be accounted for to prevent future catastrophic failures.
Currently, conventional approaches to the optimal placement
of actuators on composite structures are non-optimal, require
ten actuators heuristically, and are insufficient in considering
residual stresses. To overcome these limitations, we propose a
Stress-Aware Optimal Actuator Placement framework. The stress-
aware optimal actuator placement framework is able to achieve
significant reductions of at least 39.3% in mean root mean
squared deviations (RMSD) and 52% in maximum forces (MF),
and only requires eight actuators on average while satisfying
the safety threshold of residual stresses.

Index Terms— Bayesian optimization, composite structures
assembly, physical constraints, residual stress

I. INTRODUCTION

The rapid growth in the development and use of composite
materials has undoubtedly proved their success in various
industrial areas, such as aerospace, automotive, and struc-
tural engineering. A composite material is a heterogeneous
material composed of two or more components. Composite
materials with different components have heterogeneous me-
chanical properties [1], [2]. Carbon Fiber-Reinforced Poly-
mer (CFRP) is one of the most widely used composite
materials in the aerospace industry. CFRPs have outstanding
mechanical properties such as light weight, high fatigue,
and tensile strengths. In the aerospace industry, for example,
composite structures constitute more than 50% by weight of
the Boeing 787 and Airbus 350 [3], as shown in Fig. 1 (a) [4].
Although composites have great properties that distinguish
them from other materials, they are anisotropic and het-
erogeneous. Meanwhile, dimensional deviations inevitably
exist due to manufacturing variability, different batches, or
different suppliers, as shown in Fig. 1 (b-d) [5], [6]. These
challenges make the quality control of composites assembly
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Fig. 1. Aerospace composite structures: (a) composites account for 50 %
in Boeing 787, (b-d) dimensional gap existed during initial joining of
two structures.

processes very challenging. An important factor to impact the
quality of a composite structure is the placement of actuators.

In aerospace manufacturing, the placement of actuators is
the process of placing actuator forces on the edge of the
outer shell of a pre-assembled composite fuselage, as shown
in Fig. 2. This process is carried out by pushing/pulling
the composite structure, via robotic actuators, such that
deviations to the intended design are as small as possible.
A fuselage, a carbon fiber-reinforced composite, represents
the main part of the airplane (i.e., the part holding crew,
passengers, and cargo). The structural deviations along with
the heterogeneity and anisotropicity of such composites
make the placement of actuators on composite structures an
extremely challenging process. The placement of actuators
has a significant impact on the quality control of aircraft
assembly. Moreover, the inappropriate placement of actuators
may cause extreme distortions at some locations resulting in
residual stresses. The mechanical properties of a composite
structure are significantly affected by the formation of resid-
ual stresses.

Residual stresses are usually inevitable after joining two
structures and releasing actuators. Large residual stresses
affect the inner bond of composite structures, which may
cause, debonding, micro-cracking, and degradation, or even
lead to a catastrophic failure of the part prior to its in-
tended lifetime. Hence, accounting for residual stresses when
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Fig. 2. (a) Actuators in the shape control of a fuselage [15], (b) robotic
actuators scheme in the aircraft assembly.

placing the actuators on composite structures is pivotal in
aerospace manufacturing. To study and analyze the failure
of composite materials and structures, many residual stress
failure criteria have been developed. Tsai-Hill [7], Hashin-
Rotem [8], and Tsai-Wu [9], are all mechanics-based failure
criteria that have been used extensively over the past years.
In this paper, we use the Tsai-Wu criterion for its nice math-
ematical representation, effectiveness, and generalization of
other failure criteria (e.g., Tsai-Hill).

Researchers have spent years working on optimizing the
placement of actuators in structural and control design [10],
linear systems [11], vibration control [12], and actively con-
trolled structures [13]. However, little research has been done
on the placement of actuators on composite fuselages. A
shape control system has been proposed to adjust the dimen-
sional shape during the aircraft assembly, and a finite element
model was developed to evaluate the feasibility and shape
control performance [14]. Surrogate model based control has
been proposed to reduce the deviations between two pre-
assembled composite fuselages to an acceptable precision
[15], [16]. In these existing work and current practices, the
best fixed actuator placement policy, a scheme based on en-
gineering domain knowledge and heuristics, is used to place
ten actuators equally spaced from each other on a composite
fuselage to reduce dimensional deviations [15]. Recently, a
sparse learning based optimal actuators placement approach
was developed [17]. This method uses the Alternating Direc-
tion Method of Multipliers (ADMM) to learn parameters and
then use the sparse learning to efficiently identify the best
locations for ten actuators to enable the composite fuselage
shape control. Although these approaches have reduced the
deviations of incoming fuselages, they require a fixed number
of actuators (i.e., ten actuators), and do not include residual
stresses in the optimization process. To overcome these
limitations, we investigate the use of constrained Bayesian
optimization with Gaussian processes (GPs) and propose a
new framework to optimize the placement of actuators for
the ultra-high precision (usually smaller than 0.01 inches)
quality control of composite structures.

In this paper, we propose a Stress-Aware Optimal Actua-
tor Placement approach by incorporating engineering-driven
physical thresholds into constrained Bayesian optimization.

Our approach provides flexibility to the number of actuators
used in the placement scheme as well as constrains the
optimization process by restricting residual stresses through
a mechanics-driven safety threshold. We summarize our
contributions as follows.

1. We propose a Stress-Aware Optimal Actuator Place-
ment framework for ultra-high precision quality control
of composite structures. This method incorporates the
impact of residual stresses in the actuator placement
problem.

2. We develop a computational algorithm to identify the
global optimum for the actuator placement on compos-
ites structures problem.

3. The proposed method provides flexibility in the number
of actuator forces applied, advances the quality control,
and lays a solid foundation for system automation of
robotic actuating.

The remainder of the paper is organized as follows:
Section II discusses the proposed optimal actuator placement
framework, Section III represents the case study of the
placement of actuators on composite structures, Section ??
discusses the computational convergence property of our
methodology, and Section IV validates the proposed algo-
rithm. Finally, a brief summary is provided in Section V.

II. STRESS-AWARE OPTIMAL PLACEMENT OF
ACTUATORS

In this section, we present the generalized stress-aware
optimal actuator placement for ultra-high precision quality
control.

A. Problem Definition

The stress-aware optimal placement framework is formu-
lated as follows: (1) we have a total of N measurement
points (i.e., the points where deviations could be measured),
and (2) we have m possible locations for actuator forces
to be placed. We build our optimization framework upon
the adjusted shape deviations response surface function in-
troduced in [17]. The adjusted shape deviations’ function
shown in Equation 1 is based on the physical assumption
that deformations and applied forces are linearly related in
mechanics.

0=V +UF, ey

where ¢ is an (i X 1) vector representing the adjusted shape
deviations at N measurement points, ¥ is an (¢ x 1) vector
representing the initial shape distortions, and U is an (i X j)
displacement matrix. The vector F' = [wy F,waFy, .., w; Fj]
is a (j x 1) vector representing the designed forces, where
wj is a binary variable representing the indicator whether an
actuator force is placed at location j. In this paper, we aim
to minimize the mean squared adjusted shape deviations §2.

In the proposed optimal placement strategy, the constraint
functions are decided based on engineering safety thresholds,
structural mechanics, and other domain knowledge. The
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Fig. 3. DOE simulations of real deformed composite fuselages.

constraint functions of our proposed optimization framework
are shown in Equations 2, 3, 4, and 5.

D wi <M, 2)
=1

S <s, 3)

FminSFjSFmaw7 (4)

&)

_J 1 If an actuator is placed at position j
710 Otherwise.

Too many actuators may result in an over-control issue.
Therefore, Equation 2 constrains the total number of placed
actuators to be less than or equal to a pre-specified threshold
M. According to failure criteria of structural mechanics,
Equation 3 restricts the maximum residual stress to a pre-
specified safety threshold denoted as s. Equations 4, and 5
represent the upper and lower limits of each actuator force
and the constraint on placements, respectively. The actua-
tor force limits are influenced by two factors: one is the
configurations of selected actuators, and the other is the
safety threshold that was pre-specified by domain experts.
Equations 4, and 5 are also considered as input search space
for the constrained Bayesian optimization model.

B. Surrogate Modeling for Key Parameter Learning

We use surrogate models such as multivariate linear and
Gaussian process regression models to find the displacement
matrix U and residual stresses S. Firstly, we use the design
of experiments (DOE) to simulate deformed composite struc-
tures. Three examples are shown in Fig. 3. The magnitude of
deformation is comparable to the dimensional deviations in
real composite structures. In Fig. 3, the ideal shape, shown
in blue, and deformed shape, shown in red, are magnified
25 times for better visualization. Based on the physical
assumption of the linear relationship between distortions and
applied forces in mechanics, we find the displacement matrix
U by solving the ordinary least-squares estimation of the
linear regression model shown in Equation 6.

Y; = FpBi + €, 6)

where Y; represents the design shape distortion vector at
each measurement point ¢ and Fp represents the design
actuators force matrix at the m possible locations. The vector
€; represents the residual term of the regression model and is
assumed to follow a normal distribution. The displacement

matrix U represents a vector of the estimated regressors 3;’s
(i.e., [U = [ﬁh /627 <ty /BN])

The residual stresses S are found by modeling the main
pattern f(Y) as a Gaussian process model in Equations 7
and 8.

S=f(¥)+e, )
fY) ~GP(m(Y),k(Y,Y")), (®)

where e represents the error term and is assumed to follow
a normal distribution, and m(Y") and k(Y,Y”) represent the
mean function and kernel function of the Gaussian process
model, respectively.

The mean m(Y") and covariance k(Y,Y”) have the following
expressions

m(Y) = E[f(Y)],
= E[(f(Y) = mY))(fY") = m(Y"))].
Furthermore, for any point Y, the joint Gaussian distribution
of f(Y) and f(Y) is expressed as follows:
K(Y,Ys)
K. Y.,/ )’

(500 o ( (20 (2
F(v.) m(¥.)) \k(v.,Y)
where K (.,.) denotes the Gram matrix of the kernel function
k(.,.). The closed form of the posterior distribution of f(-),

using the properties of the normal distribution, can then be
expressed as:

E(Y,Y")

FY.) ~ N(m(Y.), £(Y.),
where
M(Y)
5(Y.) =

where 7(Y,) and 3(Y,) are the posterior mean and covari-
ance, respectively.

m(Y.) + k(Y. Y)k(Y,Y)™
k(Ye, Vo) = R(Ya, Y)R(Y,

L) =m(Y),
Y)TR(Y, Y,

C. Constrained Bayesian Optimization (CBO)

In the proposed constrained Bayesian optimization for
optimal actuators placement, the goal is to optimize the
unknown and expensive-to-evaluate objective function, f(z),
subject to a set of constraints, ¢,(x)’s, with respect to the
input domain D, as shown below.

min f(z)Vx € Dy,
st.e.(z) <0Vrell,.,R],
where f(x) is associated with the main pattern of residual
stresses and ¢, (x)’s represents the physics-driven constraints
associated with Equations 2 and 3. f(z) and c¢,(z)’s are
expensive-to-evaluate functions modeled as GPs as shown in

Equations 9 and 10, and R represents the total number of
constraints.

f(@) ~ GP(m(x),
cr(x) ~ GP(ur(2), 0,

We model the response surface variable y, for every input
k, in Bayesian optimization as y; = f(x)+ €, where ¢y is

k(z, ")), ©9)
(x))¥rel,.,R.  (10)
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the error term at point k£ and is assumed to follow a GP model
(.e., ey ~ GP(0,%?)). In CBO, to optimize the objective
function, a constrained acquisition function is used to acquire
the next point to be evaluated from the feasible input search
space. We use the constrained expected improvement [18]
as the constrained acquisition function, which we denote as
cEL

In CBO, each constraint function, given z, is modeled
as a conditional independent Gaussian process model, thus,
the posterior distribution of each constraint function, ¢, (z),
is normal. Under this assumption, the constrained expected
improvement acquisition function can be expressed as fol-
lows,

cEI(z)=FE

E

"~

o(@)|2] = Elle()<ol(2)]2]

e(x)<o|z] X ElI(z)|z]

—_

pr(c.(xz) <0) x EI(zx),

1
b

1

\3
Il

where pr(c,(x) < 0) is a Gaussian probability and represents
the probability of feasibility of each constraint function r at
point . The CDF (i.e., cumulative distribution function) of
each constraint function is then used as the probability of
feasibility of each acquired point as shown in Equations 11
and 12.

(1)

>7 12)

) represents the CDF of constraint function

pr(c.(z) <0) = ¢<Mr(ar))7

or(x)

R
r(7)
cEI(z) = EI(x) oL
1} (mx)
;U'T(I)

or(x)
r, and p,.(x) and o,.(x) are the posterior predictive mean

and standard deviation of the " constraint, respectively.

where ® (

D. Optimization Algorithm

We utilize the proposed constrained Bayesian optimization
to minimize the objective function while satisfying a set
of physical constraints. As we mentioned earlier, In this
setting, both the objective and set of constraint functions are
modeled as Gaussian processes. The optimization process
starts with obtaining initial design points that are sampled
randomly from the input design search space. The GP priors
are then updated and used, with the help of the constrained
expected improvement acquisition function, to infer the next
design point to be evaluated. The optimization process will
then continue until no further evaluations are allowed. Fi-
nally, posterior GP models along with the estimated global
optimum of the objective function are reported. The use
of Gaussian processes as surrogate models highly benefits
the optimization process in quantifying uncertainty and in
reliable estimation of highly complex response surface func-
tions. A detailed step-by-step documentation of the proposed
stress-aware optimal actuator placement framework is shown
in Algorithm 1.

Algorithm 1 Stress-Aware Optimal Actuator Placement
Inputs: The displacement matrix U (i.e., Equation 6) and
residual stresses S (i.e., Equation 7), the objective function
(i.e., 62 from Equation 1) and set of constraint functions (i.e.,
Equations 2 and 3), the input search space (i.e., Equations 4
and 5, a set of (1) initial points X; = [z, ®2, .., x;] sampled
randomly from the input search space, and the maximum
number of optimization iterations (B).

1: Find the initial objective function  values
f(wl)a f(il"?)v ) f(a:l)
2: Find the initial constraint functions values

cr(@1), er(x2), .., ¢ () for every r € [1,.., R].
3 forb=1014+1,..,B do
4: Update the hylperparameters set 6 for every Gaussian
process model.

5: Update the mean and variance of the GP models of
the objective and constraint functions.

6: Using cEI (i.e., Equation 12), we select the best point
to be evaluated x; such that x, = argmaxz cEI(x)
for x € Dy.

7: Find the values of f(x) and ¢, (xp) at x;, for each
constraint r.

Evaluate y, = f(xp) + €

Update the mean and variance of the GP model of
the response y.

10: Find the so far optimal y* at input design point x*.

11: end for

12: Return The global optimum y* (i.e., the minimum mean
squared deviations) at input design point * (i.e., optimal
actuator forces and locations), and the values of the
constraint functions at x* (i.e., the optimal number of
placed actuators and the resulting residual stresses).

III. CASE STUDY: THE PLACEMENT OF ACTUATORS ON
COMPOSITE FUSELAGES

In this section, we formulate the placement of actuators
problem in the aerospace manufacturing in Subsection III-A,
discuss the process of parameter estimation and optimization
model specifications in Subsection III-B, and finally, we
show the results in Subsection III-C.

A. Problem Formulation

The placement of actuators on composite fuselages is an
extremely challenging problem. Physical constraints on the
location of actuators play an important role in assuring the
quality and life-cycle reliability of a composite fuselage.
Restrictions to the possible locations of actuators, applied
forces, and resulting residual stresses are physical constraints
that restrain the placement of actuators process. Taking these
factors into consideration, we design our problem as follows:
(1) we have 18 limited possible locations of actuators (i.e.,
due to the engineering constraints, these 18 locations are
dispersed on the lower bottom edge of the fuselage), (2)
we seek to place a maximum of 10 actuators from these 18
possible locations, (3) we specify lower (i.e., -200 lbs) and
upper (i.e., 200 lbs) limits on each actuator force, and (4)
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we use the max Tsai-Wu [9] values for estimating residual
stresses and to be more conservative, we specify the safety
threshold to be 0.3.

B. Parameter Estimation and Optimization Model Specifica-
tions

We estimate the displacement matrix U and residual
stresses S using Equations 6 and 7. We train the Gaussian
process regression model with Matern 5/2 using 40 training
fuselages. Next, we evaluate the trained models using 20
testing fuselages and achieve a mean squared error (MSE)
of 0.0088 and a mean absolute error (MAE) of 0.0532 for the
multivariate linear regression model, shown in Equation 6,
and an MSE of 0.00005 and an MAE of 0.0052 for the
Gaussian process regression model, shown in Equation 7.
From these results, we can find that the prediction accuracy
of the Gaussian process model is higher than that of the
multivariate linear regression model.

In our constrained Bayesian optimization algorithm, we
use Gaussian processes as surrogate models. Specifically, we
use Matern 5/2 as the kernel function along with the standard
constant (i.e., zero) mean function. We use 1000 maximum
optimization iterations with one initial point sampled ran-
domly from the input search space.

C. Results and Discussion

We evaluate our proposed stress-aware optimal actua-
tor placement framework using the 20 testing fuselages.
We compare the stress-aware optimal placement with the
best fixed actuator placement [15] and the sparse learning
based approach [17]. For comparison purposes, we use eight
metrics namely, mean and maximum root mean squared
deviations (RMSD), mean and maximum of maximum ap-
plied absolute forces (MF), mean and maximum number
of actuators (NA), and mean and maximum of maximum
stresses (MS).

The results of the placement of actuators process for the
three benchmarks are shown in Table I. From Table I, we
conclude that our proposed stress-Aware optimal actuator
placement framework outperforms the other two bench-
marks. More precisely, we show significant reductions of at
least 39.3% in mean RMSD and 8.7% in maximum RMSD
(inches) and at least 23.1% reduction in mean MF (Ibf) and
52% reduction in maximum MF (Ibf). Only 8 actuators are
needed on average and a maximum 9 actuators are needed
for the optimal placement process. The mean and maximum
of maximum residual stresses are 0.04 and 0.0809 inverse
reserve factor (IRF), respectively.

We also compare the stress-aware optimal actuator place-
ment strategy with the MGP-CBO approach without con-
sidering internal stresses [19]. The results can be found in
Table II. The MGP-CBO is a non-stationary constrained
Bayesian optimization model used to infer and represent
expensive-to-evaluate non-stationary response surface func-
tions. Although residual stresses incorporation has made
the problem of actuators placement extremely complex
and challenging, the proposed stress-aware optimal actuator

Sample 1 Sample 2 Sample 3

(a) The suggested optimal actuator placements for three samples of deformed fuselages.

Sample 1 Sample 2 Sample 3

(b) The final corrected shape of three samples of fusclages after suggested forces are applied.

Fig. 4.  Validation of the proposed stress-aware optimal actuator
placement framework.

placement outperformed MGP-CBO in terms of the mean
RMSD. While other comparison metrics seem comparable,
the inclusion of residual stresses will definitely improve the
quality of the composite structure which in turn results in a
better reliable part.

IV. INFERENCE AND VALIDATION

In this section, we validate our proposed stress-aware opti-
mal actuator placement framework. Specifically, we perform
another finite element simulation to verify the results we
obtained in Table I by applying the suggested optimal actu-
ator forces and their locations to the deformed fuselages we
used in the optimization procedure. The simulation setup is
reflected in Fig. 4 (a), which illustrates our proposed actuator
locations and forces for correcting the shape deviations from
the DOE for three test samples. In Fig. 4 (b), we show the
final fuselage shapes after applying the suggested actuator
forces to the DOE shapes. In these examples, the final shape
RMSD errors are respectively reduced by 76.9%, 26.2%,
and 18.0% compared to the starting (DOE) configuration.
We also show, based on these suggested optimal actuator
forces and locations, the resulting stress maps in Fig. 5. We
find that the Tsai-Wu IRF values observed are at most on
the order of 0.1, which leaves a conservative safety margin
for the shape adjustment during the assembly step. We note
that peak values of stress often arise around the supporting
fixtures rather than individual actuator locations. This may
be attributed to the avoidance of large forces at individual
actuator locations during the optimization procedure. [Note:
interactive figures of the validation results can be found in
the Multimedia appendix.]

V. CONCLUSION

In the process of actuators placement on composite struc-
tures, high residual stresses due to large forces and de-
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TABLE I
COMPARISON RESULTS OF THREE ACTUATOR PLACEMENT METHODS.

Benchmark Mean RMSD Max RMSD Mean MF Max MF Mean NA Max NA Mean MS Max MS
Best Fixed Placement 0.0034 0.0062 291.0714 449.6754 10 10 - -
Sparse Learning Placement 0.0028 0.0046 231.2973 397.9796 10 10 - -
Stress-Aware Optimal Placement 0.0017 0.0042 177.9724 191.0035 8 9 0.0400 0.0809
TABLE II
COMPARISON RESULTS OF THE MGP-CBO AND STRESS-AWARE OPTIMAL PLACEMENT.
Benchmark Mean RMSD Max RMSD Mean MF Max MF Mean NA Max NA Mean MS Max MS
MGP-CBO 0.0020 0.0042 178.8052 190.5369 8 9 - -
Stress-Aware Optimal Placement 0.0017 0.0042 177.9724 191.0035 8 9 0.0400 0.0809

Sample 1 Sample 2 Sample 3

Fig. 5.

formations can cause damage to the inner matrix of the
composite structure resulting in micro-cracking and possible
catastrophic failure of the part. Hence, incorporation of these
residual stresses when optimizing the location of actuators
is paramount to the ultra-high precision quality control of
composite structures. In this paper, we proposed a Stress-
Aware Optimal Actuator Placement framework. Utilizing
Bayesian optimization models and Gaussian processes, the
proposed optimization framework was able to add flexi-
bility to the number of placed actuators while satisfying
the residual stresses safety threshold. We compared our
proposed optimization framework with two state-of-the-art
optimal placement policies in advanced aircraft assembly and
showed significant improvements. Specifically, the proposed
framework was able to achieve significant reductions of at
least 39.3% in mean RMSD (inches) and 52% in maximum
MF (Ibf). Moreover, while satisfying residual stresses safety
threshold, the proposed optimization framework was able to
achieve these significant improvements at only 8 actuators
on average. The validation simulations were carried out to
verify the results obtained by the proposed framework.
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