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Abstract

Ensuring fairness in computational problems has emerged as a key topic during recent
years, buoyed by considerations for equitable resource distributions and social justice.
It is possible to incorporate fairness in computational problems from several perspec-
tives, such as using optimization, game-theoretic or machine learning frameworks. In
this paper we address the problem of incorporation of fairness from a combinatorial
optimization perspective. We formulate a combinatorial optimization framework, suit-
able for analysis by researchers in approximation algorithms and related areas, that
incorporates fairness in maximum coverage problems as an interplay between two con-
flicting objectives. Fairness is imposed in coverage by using coloring constraints that
minimizes the discrepancies between number of elements of different colors covered
by selected sets; this is in contrast to the usual discrepancy minimization problems
studied extensively in the literature where (usually two) colors are not given a priori
but need to be selected to minimize the maximum color discrepancy of each indi-
vidual set. Our main results are a set of randomized and deterministic approximation
algorithms that attempts to simultaneously approximate both fairness and coverage in
this framework.
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1 Introduction

In this paper we introduce and analyze a combinatorial optimization framework cap-
turing two conflicting objectives: optimize the main objective while trying to ensure
that the selected solution is as fair as possible. We illustrate the framework with the
following simple graph-theoretic illustration. Consider the graph G of 10 nodes and
18 edges as shown in Fig. 1 where each edge is colored from one of x = 3 colors
(red, blue or green) representing three different attributes. Suppose that we want to
select exactly k = 3 nodes that maximize the number of edges they “cover” subject
to the “fairness” constraint that the proportion of red, blue and green edges in the
selected edges are the same. An optimal solution is shown in Fig. 1 by the solid black
nodes uy, us, uz covering 6 edges; Fig. 1 also shows that the solution is quite different
from what it would have been (the yellow corner nodes vy, vz, v3 covering 11 edges)
if the fairness constraint was absent. A simple consequence of the analysis of our
algorithms for a more general setting is that, assuming that there exists at least one
feasible solution and assuming k is large enough, we can find a randomized solution
to this fair coverage problem for graphs where we select exactly k nodes, cover at
least 63% of the optimal number of edges on an average and, for every pair of colors,
with high probability the ratio of the number of edges of these two colors among the
selected edges is O(1).

In this paper we consider this type of problem in more general settings. Of course, in
the example in Fig. 1 (and in general) there is nothing special about requiring that the
proportion of red, blue and green edges in the covered edges should be exactly equal
as opposed to a pre-specified unequal proportion. For example, we may also require
that the proportion of edges of different colors in our solution should mimic that in
the entire graph, i.e., in Fig. 1 among the covered edges the proportion of red, blue
and green edges should be g1, g2 and g3 where g1 = 1/6, g> = 1/3, and g3 = 1/2.
Our algorithms will work with easy modifications for any constant values of g1, g2
and ¢3.

1.1 Different Research Perspectives in Ensuring Fairness

Theoretical investigations of ensuring fairness in computation can be pursued from
many perspectives. We briefly comment on a few of them.

One line of research dealing with the goal of ensuring fairness uses the optimiza-
tion framework, i.e., we model the problem as an optimization problem with precisely
defined fairness constraints. This is a common framework used by researchers in
combinatorial and graph-theoretic algorithms, such as research works that involve
designing exact or approximation algorithms, investigating fixed-parameter tractabil-
ity issues or proving inapproximability results. In this paper we use such a framework.
Fairness is imposed in coverage by using coloring constraints that minimize the dis-
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Fig.1 A simple illustration of fairness in maximum coverage problems for graphs

crepancies between different colors among elements covered by selected sets; this is
in contrast to the usual discrepancy minimization problems studied extensively in the
literature [12] where the (usually two) colors are not given a priori but need to be
selected to minimize the maximum color discrepancy of each individual set.

A second line of research dealing with fairness involves machine learning frame-
works. Even though it is a relatively new research area, there is already a large body
of research dealing with ensuring fairness in machine learning algorithms by pre-
processing the data used in the algorithms, optimization of statistical outcomes with
appropriate fairness criteria and metric during the training, or by post-processing the
answers of the algorithms [25, 50, 51].

A third line of research dealing with fairness involves game theoretic frameworks.
For example, developments of solutions for fair ways of sharing transferable utilities in
cooperative game-theoretic environments have given rise to interesting concepts such
as Shapley values and Rabin’s fairness model. We refer the reader to the excellent
textbook in algorithmic game theory by Nisan et al. [39] for further details on these
research topics.

Yet another more recent line of research dealing with fairness involve applying
fairness criteria in the context of clustering of points in a metric space under k-means
objective, k-median or other £ ,-norm objectives [9, 13]. The assumption of an underly-
ing metric space allows the development of efficient algorithms for these frameworks.

2 Fair Maximum Coverage: Notations, Definitions and Related
Concepts

The Fair Maximum Coverage problem with x colors is defined as follows. We are given
auniverse % = {uy, ..., u,} of n elements, a weight function w : %7 +— R assigning
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a non-negative weight to every element, a color function 4 : Z +— {1,..., x}
assigning a color to every element, a collection of m sets .|, ..., %, € %, and a
positive integer k. A collection of k distinct subsets, say .77, ..., .%;,, with the set of

“covered” elements Ul;zl i; containing p; elements of color i is considered a valid

solution' provided p; = p j for all 7 and j. The objective is to maximize the sum of
weights of the covered elements. More explicitly, our problem is defined as follows:

Problem name: Fair Maximum Coverage with x colors (FMC(x, k))
Input: e universe % = {uy,...,un}

o (clement) weight function w : % +— RT U {0}

o (element) color function ¢ : % + {1, ..., x}

esets A, ..., Im CU
e integer k > 0
Valid solution: collection of k distinct subsets .%;

Vi,jell,....x}:

def .
pi & [{ug lue € UIJ‘-:1 5’?]. and €(ug) = i} |

1o iy satsifying

def '
pj = | uglug GUI;:ryij and %'(u) = j} |

Objective: maximize ZueGUk 2 w(ug)
=171

We denote FMC(, k) by just FMC when x and k are clear from the context. In the
sequel, we will distinguish between the following two versions of the problem:

(i) unweighted FMC in which w(ug) = 1 forall £ € {1, ..., n} and thus the objective
is to maximize the number of elements covered, and
(ii) weighted FMC in which w(ug) > Oforall ¢ € {1, ..., n}.

For the purpose of stating and analyzing algorithmic performances, we define the
following notations and natural parameters associated with an instance of FMC(x, k):

e a € {2,3,...,n}denotes the maximum of the cardinalities (number of elements)
of all sets.
e f e{l,2,...,m}denotes the maximum of the frequencies of all elements, where

the frequency of an element is the number of sets in which it belongs.

e OPT denotes the optimal objective value of the given instance of FMC.

e OPTy denotes the number of covered elements in an optimal solution of the given
instance of FMC. For weighted FMC, if there are multiple optimal solutions then
OPTy will the maximum number of elements covered among these optimal solu-
tions. Note that OPT = OPTy for unweighted FMC. The reason we need to consider
OPTy separately from OPT for weighted FMC is because the coloring constraints
are tied to OPTy whereas the optimization objective is tied to OPT.

! For amore general version of the problem we are given x “color-proportionality constants” gy, ..., gy €
(0, 1] with g1 +- -+ +¢x = 1, and a valid solution must satisfy p;/p; = q;/q; foralli and j. As we men-
tioned already, with suitable modifications our algorithms will work with similar asymptotic performance
guarantee for any constant values of g1, ..., gy, but to simplify exposition we will assume the simple
requirement of ¢ = - - - = gy in the sequel.
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e The performance ratios of many of our algorithms are expressed using the function

p(-):

def

p(x) = (1-1/x)"

Note that p(x) < p(y) forx > y > 0and p(x) > 1 — e~ ! forall x > 0.

For NP-completeness results, if the problem is trivially in NP then we will not mention
it. To analyze our algorithms in this paper, we have used several standard mathematical
equalities or inequalities which are listed explicitly below for the convenience of the
reader:

Vxel[0,1]:e*>1—x (1

Vx:e ¥ =1—x+(x2/2)e ¢ forsome & € [0, x] )
q

Var,...,oq >0 (527:1%) > ]_[7:101]- 3)

vxe[o,l]vyzl:1-(1—§)y2<1—<1—§)y)x )

2.1 Three Special Cases of the General Version of FMC

In this subsection we state three important special cases of the general framework of
FMmc.

Fair maximum k-node coverage or NODE-FMC

This captures the scenario posed by the example in Fig. 1. We are given a connected
undirected edge-weighted graph G = (V, E) where w(e) > 0 denotes the weight

assigned to edge e € E, a color function 4 : E — {1,..., x} assigning a color
to every edge, and a positive integer k. A node v is said to cover an edge e if e is
incident on v. A collection of k nodes v;,, ..., v;, covering p; edges of color i for

each i is considered a valid solution provided p; = p; for all i and j. The objective is
to maximize the sum of weights of the covered edges. It can be easily seen that this is
a special case of FMC by using the standard translation from node cover to set cover,
i.e., the edges are the set of elements, and corresponding to every node v there is a
set containing the edges incident on v. Note that for this special case f = 2 and a is
equal to the maximum node-degree in the graph.

Segregated FMC or SEGR-FMC

Segregated FMC is the special case of FMC when all the elements in any set have the
same color, i.e.,

Viell,....mYuy,ug € % €(up) =€ uy)
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Another equivalent way of describing SEGR- FMC is as follows. Let C; be the set of
all elements colored j for j € {1, ..., x} in the given instance of SEGR- FMC. Let the
notation 24 denote the power set for any set A. Then, SEGR- FMC is the special case
when .7 € U}(zl 2€j holds forall j € {1,...,m}. A simple example of an instance

of SEGR- FMC withn = 6, m = 10 and x = 2 is shown below:

U = {u1,uz, us, ug, us, ug}
Cw1) =C(u2) = C(uz) = 6(ug) =1, €(us) =% (ug)) =2

A = Aur,uz,uz}, S ={uz,u3,us}, S ={us,ue}, 4= {ue}
wu) =wy) =7, wuz) =9, w(ug) =wlus) =wlueg) =1

Even though computing an exact solution of SEGR- FMC is still NP-complete, it is
much easier to approximate (see Sect. 11.1). From our application point of view as
discussed in Sect. 3, this may for example model cases in which city neighborhoods
are segregated in some manner, e.g., racially or based on income.

A-balanced FMC or A-BAL-FMC

A-balanced FMC is the special case of FMC when the number of elements of each
color in a set are within an additive range of A, i.e.,

Vief{l,....m}Vpefl,..., x}:

max{], L@J —A} < |ue | (ue € F5) A (€ ue) = p)| < Pyi—‘ +A
X X

Similar to SEGR- FMC, it is much easier to approximate A-BAL- FMC for small A (see
Sect. 11.2).

Geometric FMC or GEOM-FMC

In this unweighted “geometric” version of FMC, the elements are points in [0, A]?
for some A and some constant d > 2, the sets are unit radius balls in RY, and the
distributions of points of different colors are given by x Lipschitz-bounded measures.
More precisely, the distribution of points of color i is given by a probability measure
w; supported on [0, A]¢ with a C-Lipschitz density function” for some C > 0 that
is upper-bounded by 1. Given a set of k unit balls 4y, ..., %, C R?, the number
of points p; of color i covered by these balls is given by p; ( Ule %i), and the total
number of points covered by these balls is given by Zle Wi ( Uf:l ,%’i). This variant
has an almost optimal polynomial-time approximation algorithm for fixed d and under
some mild assumption on OPT (see Sect. 12).

2 A function f : A — R for some subset A of real numbers is C-Lipschitz provided | f (x) — f(y)| <
C |x — y| for all real numbers x, y € A.
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3 Sketch of Application Scenarios

FMC and its variants are core abstractions of many data-driven societal domain applica-
tions. We present three diverse categories of applications and highlight the real-world
fairness issues addressed by our problem formulations (leaving other applications in
the cited references).

Service/Facility Allocation

One of the most common data based policy decisions is assigning services/facilities
across different places, e.g., placing schools [33], bus stops, or police/fire stations,
choosing a few hospitals for specific medical facilities or services, or deciding where
to put cell-phone towers. Of course, a major objective in such assignments is to serve
the maximum number of people (i.e., maximize the coverage). Unfortunately, histor-
ical discriminations, such as redlining [29], through their long drawn-out effects of
manifestations in different aspects of public policy are still hurting the minorities.
As a result, blindly optimizing for maximum coverage biases the assignment against
equitable distribution of services. Below are examples of two real cases that further
underline the importance of fairness while maximizing coverage:

e Bike sharing: As more and more cities adopt advanced transportation systems
such as bike-sharing, concerns such as equity and fairness arise with them [49].
For instance, according to [23] the bike-sharing network at NYC neglects many
low-income neighborhoods and communities of color while giving the priority to
well-to-do neighborhoods. Here the location of bike stations (or bikes) determines
the set of people that will have access to the service, perpetuating the unhealthy
cycle of lack of transportation, movement, efc.

e Delivery services for online shopping: Online shopping has by now gained a major
share of the shopping market. Platforms such as Amazon provide services such as
same-day delivery to make e-shopping even more convenient to their customers.
While Amazon’s main aim is to maximize the number of customers covered by
this service, by not considering fairness it demonstrably failed to provide such
services for predominantly black communities [28, 45].

Data Integration

Combining multiple data sources to augment the power of any individual data source
is a popular method for data collection. Naturally the main objective of data integration
is to collect (“‘cover””) a maximum number of data points. However, failing to include an
adequate number of instances from minorities, known as population bias, in datasets
used for training machine learning models is a major reason for model unfairness
[4, 40]. For example, image recognition and motion detection services by Google
[38] and HP [43] with a reasonable overall performance failed to tag/detect African
Americans since their training datasets did not include enough instances from this
minority group. While solely optimizing for coverage may result in biased datasets,
considering fairness for integration may help remove population bias.
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Targeted advertisement

Targeted advertising is popular in social media. Consider a company that wants to
target its “potential customers”. To do so, the company needs to select a set of features
(such as “single” or “college student”) that specify the groups of users to be targeted.
Of course, the company wants to maximize coverage over its customers. However,
solely optimizing for coverage may result in incidents such as racism in the Facebook
advertisements [2] or sexism in the job advertisements [27]. Thus, a desirable goal for
the company would be to select the keywords such that it provides fair coverage over
users of diverse demographic groups.

4 Review of Prior Related Works

To the best of our knowledge, FMC in its full generalities has not been separately
investigated before. However, there are several prior lines of research that conceptually
intersect with FMC.

Maximum k-set coverage and k-node coverage problems

The maximum k-set coverage and k-node coverage problems are the same as the FMC
and NODE- FMC problems, respectively, without element colors and without coloring
constraints. These problems have been extensively studied in the algorithmic literature,
e.g., see [1, 16, 26] for k-set coverage and [3, 17, 20-22, 24, 35] for k-node coverage.
A summary of these results is as follows:

k-set coverage: The best approximation algorithm for k-set coverage is a determin-
istic algorithm that has an approximation ratio of max { p(f), p(k)} >1—1/e
[1, 26]. On the inapproximability side, assuming P % NP an asymptotically opti-
mal inapproximability ratio of 1 — 1/e + ¢ (for any ¢ > 0) is known for any
polynomial-time algorithm [16].

k-node coverage: The best approximation for k-node coverage is a randomized
algorithm that has an approximation ratio of 0.7504 with high probability [17, 24].
On the inapproximability side, k-node coverage is NP-complete even for bipartite
graphs [3], and cannot be approximated within a ratio of 1 — ¢ for some (small)
constant ¢ > 0 [31, 42]. More recently, Manurangsi [35] provided a semidefinite
programming based approximation algorithm with an approximation ratio of 0.92,
and Austrin and Stankovic [6] used the results in [5] to provide an almost matching
upper bound of 0.929 + ¢ (for any ¢ > 0) on the approximation ratio of any
polynomial time algorithm assuming the unique games conjecture is true. There is
also a significant body of prior research on the fixed parameter tractability issues
for the k-node coverage problem: for example, k-node coverage is unlikely to allow
an FPT algorithm as itis W[1]-hard [20], but Marx designed an FPT approximation
scheme in [36] whose running time was subsequently improved in Gupta, Lee and
Liin [21, 22].

However, the coloring constraints make FMC fundamentally different from the max-
imum set or node coverage problems. Below we point out some of the significant
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aspects of these differences. For comparison purposes, for an instance of FMC let
OPTcoverage denote the objective value of an optimal solution for the corresponding
maximum k-set coverage problem for this instance by ignoring element colors and
coloring constraints.

Existence of a feasible solution: For the maximum k-set coverage problem, a feasi-
ble solution trivially exists for any k. However, a valid solution for FMC(x, k) may
not exist for some or all k even if ¥ = 2 and in fact our results (Lemma 1) show that
even deciding if there exists a valid solution is NP-complete. The NP-completeness
result holds even if f = 1 (i.e., the sets are mutually disjoint); note that if f =1
then it is trivial to compute an optimal solution to the maximum k-set coverage
problem. That is why for algorithmic purposes we will assume the existence of
at least one feasible solution® and for showing computational hardness results we
will show the existence of at least one trivial feasible solution.

Number of covered elements: The number of covered elements and the correspond-
ing selected sets in an optimal solution in FMC can differ vastly from that in the
maximum k-set coverage problem on the same instance. The reason for the dis-
crepancy is because in FMC one may need to select fewer covered elements to
satisfy the coloring constraints.

Exactly k sets vs. at most k sets: For the maximum k-set coverage problem any
solution trivially can use exactly k sets and therefore there is no change to the
solution space whether the problem formulation requires exactly k sets or at most
k sets. However, the corresponding situation for FMC is different since it may be
non-trivial to convert a feasible solution containing k' < k sets to one containing
exactly k sets because of the coloring constraints.

Discrepancy minimization problems

Informally, the discrepancy minimization problem for set systems (MIN- DISC) is
orthogonal to unweighted FMcC. Often MIN- DISC is studied in the context of two
colors, say red and blue, and is defined as follows. Like unweighted FMC we are given
m sets over n elements. However, unlike FMC element colors are not given a priori but
the goal is to color every element red or blue to minimize the maximum discrepancy
over all sets, where the discrepancy of a set is the absolute difference of the number
of red and blue elements it contains. The Beck-Fiala theorem [8] shows that the dis-
crepancy of any set system is at most 2 f, Spencer showed in [44] that the discrepancy
of any set system is O (y/nlog(2m/n) ), Bansal provided a randomized polynomial
time algorithm achieving Spencer’s bound in [7], and a deterministic algorithm with
similar bound was provided in [34]. On the lower bound side, it is possible to con-
struct set systems such that the discrepancy is 2 (y/n ) [12]. For generalization of the
formulation to more than two colors and corresponding results, see for example [14,
15, 47].

3 Actually, our LP-relaxation based algorithms require only the existence of a feasible fractional solution
but we cannot say anything about the approximation ratio in the absence of a feasible integral solution.
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Maximization of non-decreasing submodular set functions with linear inequality
constraints

Kulik et al. [30] provided approximation algorithms for maximizing a non-decreasing
submodular set function subject to multiple linear inequality constraints over the
elements. Unfortunately, because the linear constraints in SEGR- FMC are equality
constraints, SEGR- FMC cannot be put in the framework of [30] and the approximation
algorithms in [30] do not directly apply to SEGR- FMC.

5 Summary of Our Contribution
5.1 Feasibility Hardness Results

Obviously FMC (resp., NODE- FMC) obeys all the inapproximability results for the
maximum k-set coverage (resp., k-node coverage) problem. We show in Lemma 1 that
determining feasibility of FMC instances is NP-complete even under very restricted
parameter values; the proofs cover (or can be easily modified to cover) all the spe-
cial cases of FMC investigated in this paper. However, our subsequent algorithmic
results show that even the existence of one feasible solution gives rise to non-trivial
approximation bounds for the objective and the coloring constraints.

5.2 Algorithmic Results

A summary of our algorithmic results is shown in Table 1. Based on the discussion in
the previous section, all of our algorithms assume that at least one feasible solution
for the FMC instance exists.

6 Organization of the Paper and Proof Structures

The rest of the paper is organized as follows.

e In Sect.7 we present our result in Lemma 1 on the computational hardness of
finding a feasible solution of FMmC.

e Based on the results in Sect.7, we need to make some minimal assumptions and
need to consider appropriate approximate variants of the coloring constraints. They
are discussed in Sect. 8 for the purpose of designing (deterministic or randomized)
approximation algorithms.

e In Sect.9 we design and analyze our LP-relaxation based randomized approxi-
mation algorithms for FMC. In particular, in Theorem 1 we employ two different
LP-relaxations of FMC and combine three randomized rounding analyses on them
to get an approximation algorithm whose approximation qualities depend on the
range of relevant parameters.
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e Parts of the algorithm and analysis specific to the three algorithms ALG-LARGE-
OPT#, ALG-MEDIUM-OPT# and ALG-SMALL-OPTy are discussed in Sects.9.4,9.5
and 9.6, respectively.

e Proposition 1 in Sect. 9.7 shows that the dependence of the coloring constraint
bounds in Theorem 1(e)(i)—(ii) on f cannot be completely eliminated by better
analysis of our LP-relaxations even for y = 2.

e In Sect. 10 we provide polynomial-time deterministic approximations of FMC via
iterated rounding of a new LP-relaxation. Our approximation qualities depend on
the parameters f and .

e For better understanding, we first prove our result for the special case NODE-
FMC of FMC in Theorem 2 (Sect. 10.1) and later on describe how to adopt the
same approach for FMC in Theorem 3 (Sect. 10.2).

e The proofs for both Theorem 2 and Theorem 3 are themselves divided into
two parts depending on whether x = O(1) or not.

e In Sect. 11 we provide deterministic approximation algorithms for two special
cases of FMC, namely SEGR- FMC and A-BAL- FMC.
e Sect. 12 provides the deterministic approximation for GEOM- FMC.

Our proofs are structured as follows. A complex proof is divided into subsections
corresponding to logical sub-divisions of the proofs and the algorithms therein. Often
we provide some informal intuitions behind the proofs (including some intuition about
why other approaches may not work, if appropriate) before describing the actual
proofs.

7 Computational Hardness of Finding a Feasible Solution of FMC

We show that determining if a given instance of FMC has even one feasible solution
is NP-complete even in very restricted parameter settings. The relevant parameters of
importance for FMC is a, f and x; Lemma 1 shows that the NP-completeness result
holds even for very small values of these parameters.

Lemma 1 Determining feasibility of an instance of FMC of n elements is NP-complete
even with the following restrictions:

e the instances correspond to the unweighted version,
e the following combinations of maximum set-size a, frequency f and number of
colors x are satisfied:

(a) f € {1, 3}, all but one set contains exactly 3 elements and all x > 2,

(b) the instances correspond to NODE- FMC (which implies f = 2), a = O(/n),
and all x > 2, or

(© f=1a=3and x =n/3.

Moreover, the following assertions also hold:

e Theinstances of FMC generatedin (a) and (b) actually are instances of SEGR- FMC.
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e For the instances of FMC generated in (c), OPTy = x = n/3 and, assuming
P # NP, there is no polynomial time approximation algorithm that has either a
finite approximation ratio or satisfies the coloring constraints in the e-approximate
sense (cf. Eq. (5)) for any finite ¢.

A proof of Lemma 1 appears in the appendix.

Remark 1 It may be tempting to conclude that an approach similar to what is stated
below using the k-set coverage problem as a “black box” may make the claims in
Lemma 1 completely obvious. We simply take any hard instance of k-set coverage
and equi-partition the universe arbitrarily into x many color classes and let this be the
corresponding instance of FMC. Using a suitable standard reductions of NP-hardness
the k-set coverage problem, if there is a feasible solution of FMC then the & sets trivially
cover the entire universe and thus trivially satisfy the color constraints but otherwise
one may (incorrectly) claim that no k sets cover the universe and so the fairness
constraints cannot be satisfied. Additionally, one may be tempted to argue that if one
takes a k-set coverage problem instance with any additional structure (e.g., bounded
occurrence of universe elements) then the coloring does not affect this additional
property at all and hence the property is retained in the k-set coverage problem instance
with color constraints.

However, such a generic reduction will fail because it is incorrect and because it will
not capture all the special parameter restrictions imposed in Lemma 1. For example:

e Even though the k sets may not cover the entire universe, it is still possible that they
may satisfy the color constraints. For example, consider the following instance of
the k-set coverage problem:

U = {ur,uz, uz, us, us, ug}, k =2, A ={ui, u2}, 7>
= {u3, us}, 3 = {us, ug}

Suppose we select the equi-partition {ug, u3, us}, {un, ua, uc}, thus setting
Cw1) = €w3) = €(us) = 1 and € (ur) = €(ug) = €(ug) = 2. Then
any two selected sets will satisfy the coloring constraints.

e Consider the requirements of the FMC instances in part (c). Since f = 1, every
element occurs in exactly one set and thus the set systems for the k-set coverage
problem form a partition of the universe. Such an instance cannot be a hard instance
of k-set coverage since it admits a trivial polynomial time solution: sort the sets in
non-decreasing order of their cardinalities and simply take the first k sets.

8 Relaxing Coloring Constraints for Algorithmic Designs

Based on Lemma 1 we need to make the following minimal assumptions for the
purpose of designing approximation algorithms with finite approximation ratios:

(i) We assume the existence of at least one feasible solution for the given instance of
Fmc.
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(ii) We assume that OPTy is sufficiently large compared to y, e.g., OPTy > cy for
some large constant ¢ > 1.

Lemma 1 and the example in Fig. 1 also show that satisfying the color constraint
exactly (i.e., requiring p; / p; to be exactly equal to 1 for all i and j) need to be relaxed
for the purpose of designing efficient algorithms since non-exact solutions of FMC
may not satisfy these constraints exactly. We define an (deterministic) e-approximate
coloring of FMC (for some ¢ > 1) to be a coloring that satisfies the coloring constraints
in the following manner:

Deterministics —approximatecoloring : Vi, je{l,...,x}: pi<ep; (5)

Note that (5) automatically implies that p; > p;/e for all i and j. Thus, in our ter-
minology, a 1-approximate coloring corresponds to satisfying the coloring constraints
exactly. Finally, if our algorithm is randomized, then the p ;’s could be arandom values,
and then we will assume that the relevant constraints will be satisfied in expectation
or with high probability in an appropriate sense. More precisely, (5) will be modified
as follows:*

Randomized ¢-approximate coloring:

Vi,jefl,....x} : Elpi]l = ¢Elp,] (5"
Randomized strong s-approximate coloring:
Aijetton (Prpi < epi]) = 10D ")

Unless otherwise stated explicitly, our algorithms will select exactly k sets.

9 LP-Relaxation Based Randomized Approximation Algorithms for
Fmc

If k is a constant then we can solve FMC(y, k) exactly in polynomial (i.e., 0 (n*y)
time by exhaustive enumeration, so we assume that k is at least a sufficiently large
constant. In this section we will employ two slightly different LP-relaxations of FMC
and combine three randomized rounding analyses on them to get an approximation
algorithm whose approximation qualities depend on the range of various relevant
parameters. The combined approximation result is stated in Theorem 1. In the proof
of this theorem no serious attempt was made to optimize most constants since we are
mainly interested in the asymptotic nature of the bounds, and to simplify exposition
constants have been over-estimated to get nice integers. In the statement of Theorem 1
and in its proof we will refer to the three algorithms corresponding to the two LP-
relaxations as ALG-SMALL-OPT#, ALG-MEDIUM-OPT# and ALG-LARGE-OPT.

4 We do not provide a bound on E[p;/p;] since p;/p; = oo when p; = 0 and p; may be zero with a
strictly positive probability, and for arbitrary x selecting a set individually for each to avoid this situation
in our randomized algorithms may select too many sets.
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Theorem 1 Suppose that the instance of FMC(x, k) has n elements and m sets. Then,
we can design three randomized polynomial-time algorithms ALG-SMALL-OPTg, ALG-
MEDIUM-OPTy and ALG-LARGE-OPTy with the following properties:

(a) All the three algorithms select k sets (with probability 1).

(b) All the three algorithms are randomized P( f)-approximation for FMC, i.e., the
expected total weight of the selected elements for both algorithms is at least () >
1 — 1/e times OPT.

(c) Allthe three algorithms satisfy the randomized e-approximate coloring constraints
(cf. Inequality (5')) for e = O(f), i.e., foralli, j € {l,..., x}, % < pz(_];) <
3.16f.

(d) The algorithms satisfy the strong randomized e-approximate coloring constraints

,,,,,

OPTy and x as shown below:

e Range of OPTy4 Range of x Algorithm
@ O(f) 2(x+/nlog x) unrestricted ALG-LARGE-OPT
(i) O (fz) R(axlogx) and O(x+/nlog x) unrestricted ALG-MEDIUM-OPTy#
(iii) O(f2/a xOPT) unrestricted x = O(max({l, l‘ggg 1) ALG-SMALL-OPT

Remark 2 Note that the high-probability ¢ = O(f) bound in Theorem 1(d)(i) is
asymptotically the same as the “ratio of expectation” bound in Theorem 1(c).

Remark 3 The dependence on f of the bounds for ¢ in Theorem 1(d)(i)—(ii) can be
contrasted with the Beck-Fiala theorem in discrepancy minimization that shows that
the discrepancy of any set system is at most 2 f.

Remark 4 Consider the special case NODE- FMC with x = O(1): for this case f =
2 and a is equal to the maximum node-degree deg,,,, in the graph. The bounds
in Theorem 1(d)(i)—(ii) for this special case imply a O (1)-approximation of color
constraints unless OPTy is not sufficiently large compared to deg,,,,. To illustrate the
bound for smaller OPTg in Theorem 1(d)(iii), if OPTy = degge{f)% for some ¢ > 0
then the approximation bound of the coloring constraints is O(degﬂllgi).

A proof of Theorem 1 is discussed in the remaining subsections of this section. The
following notations will be used uniformly throughout the proof.

e xi,...,x, € {0,1}and yy, ..., ym € {0, 1} are the usual indicator variables for
the elements uy, ..., u, and the sets .71, ..., %y, respectively, Their values in
an optimal solution of the LP-relaxation under consideration will be denoted by
x{,...,xyand yf, ..., yr, respectively.

e C; is the set of all elements colored j for j € {1,..., x} in the given instance of
Fmc.

e OPTy, is the optimum value of the objective function of the LP-relaxation under
consideration.
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maximize Y7, w(u;)x;
subjectto  x; < Zujey[yg forj=1,...,n

ZZ”:Q’K:IC
0<x;<1 forj=1,....,n
0<y, <1 for/=1,....m

Fig.2 A well-known LP-relaxation of the element-weighted maximum k-set coverage problem

9.1 An Obvious Generalization of LP-Relaxation of Maximum k-Set Coverage Fails

It is well-known that the LP-relaxation for the element-weighted maximum k-set cov-
erage problem as shown in Fig. 2 followed by a suitable deterministic or randomized
rounding provides an optimal approximation algorithm for the problem (e.g., see
[1, 37]). A straightforward way to extend this LP-relaxation is to add the following
x (x — 1)/2 additional constraints, one corresponding to each pair of colors:

Doxe=) " xforije(l,... xhi<]j

uzec,' ugECj

Unfortunately, this may not lead to a e-approximate coloring (cf. Eq. (5)) for any
non-trivial € as the following example shows. Suppose our instance of an unweighted
FMC(2, 2) has four sets . = {u1}, %5 = {uz, ..., un_2}, %3 = {u,_1} and % =
{un,} with the elements u| and u,,— having color 1 and all other elements having color
2. Clearly the solution to this instance consists of the sets .#3 and . with OPT = 2.
On the other hand, the fractional solution y| = y; = x{ = x5 = 1 and all remaining
variables being zero is also an optimal solution of the LP-relaxation, but any rounding
approach that does not change the values of zero-valued variables in the fractional
solution must necessarily result in an integral solutions in which p,/p; = n — 3. The
example is easily generalized for arbitrary k.

9.2 ALG-LARGE-OPTy: Strengthening LP-Relaxation via Additional Inequalities

One problem that the LP-relaxation in Fig. 2 faces when applied to FMC is the following.
We would like each element-indicator variable x; to satisfy x7 = min {1, 3_, <4, ¥/}
in an optimum solution of the LP, but this may not be true as shown in the simple
example in the previous section. Past researchers have corrected this kind of situation
by introducing extra valid inequalities that hold for any solution to the problem but
restrict the feasible region of the LP. For example, Carnes and Shmoys in [10] and
Carr et al. in [11] introduced a set of additional inequalities, which they called the
KC (Knapsack Cover) inequalities, to strengthen the integrality gaps of certain types
of capacitated covering problems. Following their ideas, we add the extra O(fn)
“covering inequalities” which are satisfied by any integral solution of the LP:

xjzyfor j=1,...,n,£=1,...,m, and u; € 7
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maximize Y w(u;)x;

subjectto  x; < ¥, e Ve forj=1,....n
Z?lzlytzk
Xj >y forj=1,....n,{=1,....m,and u; € 7
Y x=O0PTy
Zu;EC,x(f =Zu;ECIx1f for i,je {1-,-»-77(},l'<j
0<x;<1 forj=1,...,n
0<y <1 for{=1,...,m

Fig.3 A LP-relaxation for ALG-LARGE-OPTy with n + m variables and O (fn + X2> constraints

In addition, we adjust our LP-relaxation in the following manner. Since OPTy is an
integer from {x,2x, ..., (ln/x])x}, we can “guess” the correct value of OPTy by
running the algorithm for each of the [n/y | possible value of OPTy, consider those
solutions that maximized its objective function and select that one among these solu-
tions that has the largest value of OPT4. Thus, we may assume that our LP-relaxation
knows the value of OPTy exactly, and we add the following extra equality:

n
Z x; = OPTy

i=1

The resulting LP-relaxation is shown in its completeness in Fig. 3 for convenience.

9.3 A General Technique for Obtaining Joint High-Probability Statement

Suppose that our randomized LP-relaxation based algorithm guarantees that
Pr [pi/pj > s] < 1/(cx?) for some constant ¢ > 3 independently for all i, j €
{1,..., x}. Then

/\Pr[[Jifspj]zl— \/ Pr[pi>8pj]
i,je{l,...x} i,je{l,...x}

1 1
>1- Pripi=epil>1-(H—=1—-=¢
=1- Z [pi = ¢ pj] ) 52 .
i,jefl,...x}
To boost the success probability, we repeat the randomized rounding ¢’ Inn times,
compute the quantity o = max; je1,....x), pﬁéo{ pi/pj} in each iteration, and output

the solution in that iteration that resulted in the minimum value of o. It then fol-
lows that the selected solution satisfies the strong randomized ¢-approximate coloring

.....

9.4 ALG-LARGE-OPTy: Further Details and Relevant Analysis

For our randomized rounding approach, we recall the following result from [46].
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Fact1 [46] Given numbers py, ..., pr € [0, 1] such that £ = Zle pi Is an inte-
ger, there exists a polynomial-time algorithm that generates a sequence of integers
X1, ..., X, such that (a) Zgzl X; with probability 1, (b) Pr[X; = 1] = p; for all
i €{l,...,r}, and (c) for any real numbers a1, ..., o, € [0, 1] the sum Zle o X;
satisfies standard Chernoff bounds.

We round y{, ...,y to y1+, ...,y using the algorithm mentioned in Fact I;
this ensures Y ., y,j = y; = k resulting in selection of exactly k sets. This
proves the claim in (b). We round xi‘, .., Xto xfr, o, x,j in the following way: for
j=1...,nifu; ELS’Zforsomeyzr = lthensetx;.r = 1.

Proof of (b) Our proof of (c) is similar to that for the maximum k-set coverage and is

included for the sake of completeness. Note that x;.r = 0 if and only if yzr = 0 for
every set .y containing u ; and thus:

Elxfl=Prlx] =1]=1-Prlx] =01 =1— ]_[ Py, =01 =1— ]_[ 1=y

ujetfg uj-e&/’g
e, \1=y) i wier, VNS wiess Vi
S 1o (Zuj /j(j( )’z))f./ 1 (1 _ ijj/f\z)f/ >1— (1_ > Jf/[ Vz)f )

where we have used inequality (3). If Zuj % y; = 1 then obviously (6) implies
E[xf] > 0p(f) > p(f)x;‘. Otherwise, x;’f < Zu,—e% y; < 1 and then by (4) we get

. * f x* f
E[xj]gl—(l—M) >1—(1—%) > P(f)x} )

This implies our bound since
n n
E[Y7 wui)x] = Zw(ui)E[xi*] > Zw(ui) P(f)x]
i=1 i=1

= p(f)OPTfrac > p(f)OPT

m}

Proofof (c) Note that inequalities (1) and (2) imply | —x < e ™ < 1 —x + (x2/2)
for all x € [0, 1]. In particular, the following implication holds:

Ve>1Vx e]0, (2/62)(0 —D]:1—=x>1—cx+ (62x2/2) > e X (8)

We estimate an upper bound on E[xf] in terms of x;.‘ in the following manner:

Case 1: 3£ such that uj € S and yz‘ > 1/2. Thus, x;? > yj > 1/2, and ]E[x;.r] <
1< Zx;-‘.
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2x

Case 2: y; <1/2 for every index £ satisfying u; € #. Note that x;’f >

Zu;eﬂ yj) /f, and setting ¢ = 2 in inequality (8) we get | — x > e~
for all x € [0, 1/2]. Now, standard calculations show the following:

Exfl=1- [[a—yp=i- [ e =1-¢ 2
ujef% MjE,Sﬂ[
=1-e U <1 -2fxh) =2fx
Combining all the cases and using (7), it follows that p( f)x;f < IE[x;F] <
min {1, 2fx;.k}. Recall that Zueecj xj = OPTy/x > O forevery j € {I,..., x}.

Since E[p;] = E[Zwecl_ x[] = Zulecj IE[xZ'], we get the following bounds for all
jef{l, ..., x}h

p(NHEE = Y o(f)x; <Elp;]

up GCJ‘
OPT#
= Y Elxfl< Y @fHx;=2f ©)
MgECj M(ECJ
which gives the bound < p(f) foralli,je{l,..., x}. O
Proofs of (d)(i) via Doob martlngales Note that the random variables xf’, e, x,j may
not be pairwise independent since two distinct elements belonging to the same set
are correlated, and consequently the random variables py, ..., p, also may not be

pairwise independent. Indeed in the worst case an element-selection variable may be
correlated to (@ — 1) f other element-selection variables, thereby ruling out straight-
forward use of Chernoff-type tail bounds.

For sufficient large OPTy, this situation can be somewhat remedied by using Doob
martinagales and Azuma’s inequality by finding a suitable ordering of the element-
selection variables conditional on the rounding of the set-selection variables. We
assume that the reader is familiar with basic definitions and results for the theory of
martingales (e.g., see [37, Section 4.4]). Fix an arbitrary ordered sequence yf', el y,‘n“
of the set-indicator variables. Call an element-indicator variable xl.+ “settled” at the ™"
step if and only if Uy, {y;} € {7, .... ) and Uyer {yi} € 070 )
The elementary event in our underlying sample space £2 are all possible 2" assignments
of 0-1 values to the variables xfr, e, x;r. Foreacht € {1, ..., m},let V, be the subset
of element-selection variables whose values are settled at the ™ step, let 77; be an arbi-
trary ordering of the Variables in V;, and let us relabel the element-indicator variable
names so that x1+ , x;’ s X, + is the ordering of all element-selection variables given
by the ordering 1, ..., m,. Foreacht € {0, 1, ..., m} and each wl, .. w, € {0, 1},
let By, ,...,w, denote the event that y;.r =w;forjell,... t}. Let)c1 ,x2 , ...,x;: be
the union of set of all ¢; element-indicator variables that are settled at the i step over
alli € {1, ...,t}, and suppose that the event By, . ,, induces the following assign-

ment of values to the element-indicator variables: x]Jr =by,..., x;]t = by, for some
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by, ..., by € {0, 1}. Define the block B, < £ induced by the event By, x, as
By, o, =11 byrg1 .t Tg 41, .., € {0, 1}}. Letting F; be the o-field
generated by the partition of £2 into the blocks B;Ul .... ws foreachwy, ..., w, € {0, 1},

it follows that Fo,Fy, ... ,F,, form a filter for the o-field (£2,2). Suppose that
% contains n; > 0 elements of color i, let xa I ;[n be the ordered sequence
of the element-selection variables for elements of color i determined by the sub-

sequence of these variables in the orderlng xl ,...,x;}, and suppose that x;= was

s o

X

settled at the tg; step. Let X! = Z'}’ 1 a , and define the Doob martingale sequence

Xo, X1, ..., Xy, where Xg = E[X'] —Z;’;IE[ aj],anng E[X? |y} ,...,ytw]

forall £ € {1,...,n;}. Since n; < n, X,; = X! and |X¢ — X¢—1| < 1 for for all
£ e{l,...,n;}, by Azuma’s inequality (for any A > e),
Pr [ ‘Z, R Sl E[x;,]( > 3+/In Aﬁ]
<PrHZ] 1x X0‘>3vlnA\/_]
- Pr[|x,,, — Xo| > 3«/1nA\/_i] <e 44 _ p—4
= Pr[Z?’zl]E[x;rj] —3WinAya < Yk < Y0 Bl ]+ 3¢ Aﬁ]

>1—-A"*

Recall from (9) that (1 — 1 /e)% < Z"’ E[x+] < 2f=t OPT’* , and the inequal-
ity Z;”: | E[x(j‘j] > 64/InA/n is therefore satlsﬁed prov1ded OPT > 6(1 -

l/e)_l(«/nln A)x. Setting A = 2y and remembering that p; = Z?’ 1xtj, we get
the following bound for any i € {1,..., x}:

Pr[‘ L/e (%) < pi <3f (%)] = 1—(1/16)

and therefore Pr [ﬂ < 6 f] >1— (1/8))(_4. Thus, it follows that

p; = T-1/e
6 6
A [pi = =i Pj] =1- \/ P [Pi > T=1/e Pj]
ije{l .} ijell .}
=1 ) Pf[l’iilfl/el’j]>1—(x2)&(%z3l2
ije{lnx)
This implies our claim in (d)(7) using the technique in Sect.9.3. m|

9.5 ALG-MEDIUM-OPTy: Details and Proofs of Relevant Claims in (a)-(c) and
(d)(ii)

ALG-MEDIUM-OPTy: idea behind the modified LP-relaxation and approach
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maximize Y w(u;)x;

subjectto  x; < ¥y e,V forj=1,...,n
Y=k
Xj >y forj=1,...,n,{=1,....m,and u; €
Y xi=0PTy

Y Vijyi=hjOPTy  forje{l,....x}
Yuecxe=Yuyec;xe  forije{l,....x} i<

0<x;<1 forj=1,....n
0<y <1 for{=1,...,m
Yx <b; <i/x forj=1,...,%

Fig.4 A modified LP-relaxation for ALG-MEDIUM-OPTy with with n +m + x variables and O ( fn+ XZ)
constraints

A limitation of ALG-LARGE-OPTy is that we could not use Fact 1 of Srinivasan
to the fullest extent. Although Fact 1 guaranteed that the set-indicator variables are
negatively correlated and hence Chernoff-type tail bounds can be applied to them due
to the result by Panconesi and Srinivasan [41], our coloring constraints are primarily
indicated by element-indicator variables which depend implicitly on the set-indicator
variables. In fact, it is not difficult to see that the element-indicator variables are not
negatively correlated in the sense of [41, 46]° even if the set-indicator variables are
negatively correlated.

Our idea is to remedy the situation by expressing the coloring constraints also by
set-indicator variables and use the element-indicator variables to implicitly control the
set-indicator variables in these coloring constraints. This will also necessitate using
additional variables.

A modification of the LP-relaxation in Fig. 3

To begin, we quantify the number of elements of different colors in a set .%; using
the following notation: for j € {1,..., x}, let v; ; be the number of elements in
#; of color j. Note that 0 < v; ; < a. Fix an optimal integral solution of FMC(x, k)
covering OPTy elements and a color value j, and consider the following two quantities:
A =Yy ec; xeand B =Y v j yi.Notethat o/ = U 2  {k, k+1,..., ak),
and &7 < # < f</ by definition of f. Thus, # = bh;OPTy is satisfied by a b; that

is'a rational number frf)m t.he sgt {%, % + ﬁ: % + ﬁ, e, § — ﬁ, %} We
will use the LP-relaxation in Fig. 3 with x additional variables by, ..., b, and the

following additional constraints

szzl Vi,j Vi =f]jOPT# forj (S {1,...,)(}
I/x <bj = f/x forj=1,....x

For reader’s convenience, the new LP-relaxation in its entirety is shown in Fig. 4.

5 The binary random variables z1,...,z, € {0, 1} are called negatively correlated in [41, 46] if the
following holds: VI C {1,...,r} : Pr{Ajer(zi =0)] < [[je; Pr[zi =0] and Pr{njer(z; = D] <

[Tier Pr [Zi = 1]
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Analysis of the modified LP-relaxation

By our assumption on b;’s, the LP-relaxation has a feasible solution. We use the
same randomized rounding procedure (using Fact 1) as in Sect.9.4 for ALG-LARGE-
OPT. The proofs for parts (b)—(d) are the same as before since all prior relevant
inequalities are still included. Thus, we concentrate on the proof of (e)(ii). A crucial
thing to note is the following simple observation:

Consider the sum A = )", v; ; y; for any assignment of values yi, ..., Y, €
{0, 1}. Then, the number of elements covered by the sets corresponding to those
variables that are set to 1 is between A/ f and A.

Fix a color j. Let #; = b;OPTy, a; = v’a—’ and consider the summation .,2”] =
Yo e yi+ . Since «; € [0, 1] for all i, by Fact 1 we can apply standard Chernoff
bounds [37] for £;. Note that E[.Z;] = Y /L, a; y* = %.Assuming%fj > 16aln x,
we get the following for the tail-bounds:

P[0 vyt > 5] = Pr[ > 5 ja)] < 27870/a < 2790Mx o =%

. ‘1/
Pr[So v v < H/2) = Pr| 2y < Tt < e et =y

Remember that p; = >, 1€C; x; is the random variable denoting the number of
elements of color j selected by our randomized algorithm. Since % Yo vij yl.+ <
cj <YM vy we get

Prpj > 5] < Pr[ vy > 5] < x 7

H K _
Pr[pj < 2_]‘7] SPr[Zl’-”:l v,-,jylﬂ' < Tj] <x?

Note that % < J#; =1h,;0PTy < A OPT# , and therefore 1/ f < % < f for any two
J

def V4

i,jef{l,..., x}. Let & be the event defined as &; f < 5.%;. Then for

any two i, j € {1, ..,X}weget

Pr[ﬁglofz] > Pr[& Ag’j]=1—Pr[?,-v?j] zl—Pr[?,-]—Pr[?j]

Dj
>1—Prlp; > 54 —Prlp; < H/Q2f))—Pr[p; >5%;]—Pr[p; < #;/2f)]
>1— 2()(796 + sz) (10)

The assumption of %Z; > 16aln yx, is satisfied provided OPTy > 16ay In x. (10)
implies our claim in (d)(ii) using the technique in Sect.9.3.
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9.6 ALG-SMALL-OPT: Details and Proofs of Relevant Claims in (a)-(c) and (d)(iii)

Another modification of the LP-relaxation in Fig. 3

Note that for this case x = O(1). Fix an optimal solution for our instance of FMC.
Let <7 be the collection of those sets that contain at least one element of color i and let
Zi=Y Fyedd Yt indicate the number of sets from .o7; selected in an integral solution
of the LP; obviously Z; > 1. We consider two cases for Z; depending on whether it is
at most 51In x or not. We cannot know a priori whether Z; < 51n x or not. However,
for our analysis it suffices if we can guess just one set belonging to Z; correctly. We
can do this by trying out all relevant possibilities exhaustively in the following manner.
Let ¥ = {1,..., x} be the set of indices of all colors. For each of the 2% — 1 subsets
¥’ of ¥, we “guess” that Z; < 51n x if and only if i € ¥’. Of course, we still do
not know one set among these 5 1n x subset for each such i, so we will exhaustively
try out each of the at most |7 | < m sets for each i. For every such choice of ¥’ and
every such choice of aset .} , € .7 foreachi € ¥’, we perform the following steps:

e Select the sets .7 - and their elements for each i € ¥’ Set the variables corre-
sponding to these sets and elements to 1 in the LP-relaxation in Fig. 3, i.e., set
Vi, = landx; = 1 foreveryi € ¥'.7; , and j €. Remove any constraint that is
already satisfied after the above step.

e Add the following (at most y ) constraints to the LP-relaxation:

Z(u(eC,-)/\(weYj) yj > 5In x fori ¢ ¥’

Note that the total number of iterations that is needed is at most O ((2m)*), which is
polynomial provided x = O(max {1 logn } )

> logm

Analysis of the modified LP-relaxation

We now analyze that iteration of the LP-relaxation that correctly guesses the value
of OPTy, the subset ¥’ C ¥ and the sets .7}, € 7 for each i € ¥'. As already
mentioned elsewhere, the random variables xfr, el x,J[ may not be pairwise inde-
pendent since two distinct elements belonging to the same set are correlated, and
consequently the random variables p1, ..., p, also may not be pairwise indepen-

dent. For convenience, let u; = IEJ[)cl.Jr ] and &; denote the event & = x;’ = 1; note

that (1 — e_l)xi* < Pr[é&] = w; < min{l, 2fx}. We first calculate a bound on
cov(x;r , x;r) for all i # j as follows. If x;’ and x;.L are independent then of course
cov(xf, x;r) = 0, otherwise

—min{u,-, Mj} < —Pr[&;]Pr [(E’j] <Pr [(5”, /\cg’j] —Pr[é}]Pr[cgfi] = ]E[x;rx;f] — Wil

= cov(x;", x) < Pr& A &j] = iy < min {i, py} = pigey < min {pi, ;)
giving the following bounds:
— min {p(f)xi*, p(f)x;f} < cov(x;t, x7) < min {fol-*, 2fx%, 1} (11)
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For notational convenience, let %; ; = {€|u;,u; € %, j # i} be the indices of
those sets in which both the elements u; and u ; appear, and let ; = U’}: 1%, ;- Note

that |Z; ;| < f,1%;| < (a — 1) f, and the random variable xi+ is independent of all
x}" satisfying j ¢ Z;. Using this observation and (11), forany i € {1, ..., n} we get

n
D covix, x) < Y (min{p, wi}) < 1% i < af i < min {2afx, af }
j= j€%;

> coveah) = = Y minfui, i} = —min {1710, 005 Y x5} (12)
j= i€ i€

> —min{@—1f i, 0(f) Y x}} > —arx} (13)
J€Y;

The above bounds can be used to bound the total pairwise co-variance between ele-
ments in two same or different color classes as follows. Consider two color classes C;
and C; (i = j is allowed). Then,

DD covitxh < Y Y Teovntxf) < D min{2af%x), af}

ureC; uxGCj u,reC; j:l u,e€Ci

— i 2 * . : 2 OPTy

- mln{Zaf Y e, X af|C,|} < min {24/ 4 fn) (14)
Z Z cov(x,", x) > — Z Zmin{ur, wil > — Z aij:—af%
ur€C; useCj ureCi je9, u,e€Ci

15)

For calculations of probabilities of events of the form “p; > Ap;”, we first need
to bound the probability of events “p; = 0” for j € {1,..., x}. If j € ¥’ then
Pr [ pj= O] = 0 since at least one set containing an element of color j is always
selected. Otherwise, Z%w{j y; > 5Inx,and p; = Oifand only if yZ‘ = 0 for every
¢ € o/;. This gives us the following bound for j ¢ ¥':

Pripj=0]= [] Prly/=0]= [J a-yp= [] e

Sred; Sred; Sredd;

> e Vi _ _
e eV < e SInX = =5

Combining both cases, we have Pr[p; = 0] < 1/x° forall ;.
We now can calculate the probabilities of events of the form “p; > Ap;” for
A=A1+A>1,A1,A>0andi, je{l,...,x} asfollows:
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Pr[p: > Ap;] < Pr[p; = 0] +Pr[pi = Ap; | pj = 1]
<x 7 HPrpi=Aipj+ Malpj = 1]
s Prli = Aipj+4) A (py = D] _ S [pi = Arp; + 4]
Pr(p; > 1] 1—Pr[p; =0]
_s  Prpi= Aipj + A]
+ _5
=X

<X (16)

For areal number ¢ > 0, let§; ; = p; — ¢ p;. We have the following bound on E[§; ;]
forall¢ > 3f:

OPT. OPT.
f_re(H—E <0
X X

E[6;, ;1 =E[p:] - ¢E[p;] <2f

Therefore, using Chebyshev’s inequality we get (forall ¢ > 3 f and A > 1):

Pl pi = £pj+ 0 Jvarsi | = Pr[8i; = v )]
<Pr [| 5 — B8 ;1| > A, /Var((Si,j)] <122 (17)
Using (17) in (16) with Ay = ¢, Ay = A,/var(§; ;) and A = 10 we get

Prpi < (¢ +10x/var(3;, ;) ) pj] =1 —Pr[pi = (¢ + 10x/var(5; ;) ) pj]

100
>1—x7 — IX_st >1—x* (18)

We now calculate a bound on var(§;, ;) using (14) and (15) as follows:

var(di,j) = var(p; — ¢ pj) =var( Yoxf + Y (=¢x))

ugeCi ugeC_,-
= Zvar(xg‘*) 12 Z var(x;") + Z cov(x,", x) + Z cov(—¢xt, —¢x)
/en ugeCj Uy, us€Ci,r#s ur,us€Cj,r#s
+ Y covixt, —zxh)
u,eC,-,useCj
2 2 OPT. 2
< Domete? Y e +2af?F 4% Y eovint ) — 0 Y covia!xf)
ugeC; ueeCj up,us€Cj,r#s ur€Ci,us€Cj

< Blei] + ¢°Ele;] + 2af> % +20%af> e + caf O

<2f % 4 20 O 4 02t 4 ¢20a 2 Os 4 caf Ot < 4¢%q 2 OFls
= Jvar(8;, ;) < 2¢/af/OPTy/x (19)

Setting ¢ = 3 f andusing (19)in (18) we getPr [¢; < (3f + 604/a f>/OPTyx ) ¢;] >
1-— X_4~ This implies our claim in (d)(iii) using the technique in Sect.9.3.
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9.7 Limitations of Our LP-Relaxation: “A Gap of Factor f’ for Coloring Constraints

The coloring constraint bounds in Theorem 1(e)(i)—(ii) depend on f or f 2 only. It is
natural to ask as a possible first direction of improvement whether this dependence
can be eliminated or improved by better analysis of our LP-relaxations. Proposition 1
shows that this may not be possible even for x = 2 unless one uses a significantly
different LP-relaxation for FMC(y, k).

Proposition 1 There exists optimal non-integral solutions of FMC with the following
property: any rounding approach that does not change the values of zero-valued vari-
ables in the fractional solution must necessarily result in an integral solutions in which
the color constraints differ by at least a factor of f.

Proof We will show our result for the LP-relaxation in Fig. 3; proofs for other modified
versions of this LP-relaxation are similar. Consider « >> 1 disjoint collections of sets

and elements of the following type: fqr j € {1, ...,a}, the j‘h collection coqsists
of a set of a + 1 elements %/ = {u{, ey uéﬂ} with ‘@”(u{) =1 'and %(ué) =
o= Cul, ) =2 and the @ + 1 sets .7/, ...,.7) | where .7/ = %I\{u]}
fori € {1,...,a + 1} (note that each element ulj is in exactly « sets). Add to these
collections the additional 2« + 2 elements u’f, u% with ‘K(uf) = l and ‘K(ug) =2,and
the o + 1 sets .7¢ = {u‘f, uﬁ} forf € {e + 1, ..., 2a + 1}. Note that for our created
instance f = o. Consider the following two different solutions of the LP-relaxation:
(1) For a non-integral solution, let y{ = = yiH = 1/a, let x{ = 1 and let

xy = =x5,, = l/afor j € {l,..., a}, and set all other variables to zero.

This results in a solution with summation of set variables being o + 1 (i.e., ¢ + 1
sets are selected non-integrally), and summation of element variables being 2o +2
(i.e., 2a + 2 elements are selected non-integrally). Moreover, the summation of
element variables with the color value of 1 is precisely the same as summation of
element variables with the color value of 2 since both are equal to « + 1.

(2) For an integral solution, let y‘Z = xle = xg =1forl e{a+1,...,20 + 1}. This
also results in a solution in which « + 1 sets are selected, the number of elements
covered is 2« + 2 and the number of elements of each color is o + 1.

The crucial things to note here is that the two above solutions are disjoint (i.e., non-zero
variables in one solution are zero in the other and vice versa), and thus any rounding
approach for the solution in (1) that does not change values of the zero-valued variables
results in an integral solution in which the number of elements of color 2 is f times
the number of elements of color 1. O

10 A Tale of Fewer Colors: Deterministic Approximation for FMcC
When yis “not too large”

In this section we provide polynomial-time deterministic approximations of FMC via

the iterated rounding technique for LP-relaxations. We assume that the reader is famil-
iar with the basic concepts related to this approach as described, for example, in [32].

@ Springer



Algorithmica

Our approximation qualities will depend on the parameters f and x and the coloring
constraint bounds are interesting only if x is not too large, e.g., no more than, say,
poly-logarithmic in n. For better understanding of the idea, we will first consider the
special case NODE- FMC of FMC for which f = 2, and later on describe how to adopt
the same approach for arbitrary f. As per the proof of Theorem 1 (see Sect.9.2) we
may assume we know the value of OPTy4 exactly. A main ingredient of the iterated
rounding approach is the following “rank lemma”.

Fact2 (Rank lemma)[32, Lemma 2.1.4] Consider any convex polytope P déf {x €
R"|Ajx > b; for j € {1,...,m}, x > O} for some Ay,..., A, € R" and
(b1, ....bn)T € R™. Then the following property holds for every extreme-point for
P: the number of any maximal set of linearly independent tight constraints (i.e., con-
straints satisfying A jx = b; for some j) in this solution equals the number of non-zero
variables.

10.1 Approximating NODE-FMC

Theorem 2 We can design a deterministic polynomial-time approximation algorithm
ALG-ITER-ROUND for NODE- FMC with the following properties:

k+2%5L ifx=00)

(a) The algorithm selects T nodes where T < )
k+ x — 1, otherwise

(b) The algorithm is a %-approximation for NODE- FMC, i.e., the total weight of the
selected elements is at least OPT/2.

(¢) The algorithm satisfies the e-approximate coloring constraints (cf. Inequality (5))
as follows:

. 444y, if x =001
foralli,je ... x) 2 < (2T Tx =00
pj 4425 +4x°, otherwise
We discuss the proof in the rest of this section. Let G = (V, E) be the given graph,
and let deg(v) denote the degree of node v. Assume that G has no isolated nodes.

10.1.1 The Case of y = 0(1)

Since the problem can be exactly solved in polynomial time by exhaustive enumeration
if k is a constant, we can assume k is at least a sufficiently large integer, e.g., assume
that k > 10y.

Initial preprocessing

To begin, we “guess” x + 1 nodes, say vi,...,vy41 € V with deg(vy) <
deg(v2) < --- < deg(vy41) such that there exists an optimal solution contains
these x + 1 nodes with the following property: “the remaining k — (x + 1) nodes
in the solution have degree ar most deg(vy)”. Since there are at most (Xil) =0
choices for such x + 1 nodes, we can try them out in an exhaustive fashion. Thus, we
only need to analyze that run of our algorithm where the our guess is correct. Once
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these x + 1 nodes have been selected, we will use the following sets of nodes in V and

“incidence-indexed” edges E as input to our algorithm (note that an edge ¢ e {u v}
may appear as two members (e, 1) and (e, v) in E if both u and v are in V)

V=V\({vi,...,vy41} U {v] degree of v in G is strictly larger than deg(v))})
E:{(e,u)l(edzef{u,v}EE)/\(U¢{v1,...,vx+1})/\(ueV)}

Fix an optimal solution Vopy € V that includes the nodes vy, . . ., vy 1. We next make
the following parameter adjustments:

e We update an estimate for p; (the number of edges of color j covered by the
optimal solution) from its initial value of OPTy/x in the following manner. Let
wj be the number of edges of color j incident on at least one of the nodes in

{v1, ..., vy+1}. Consider the quantity g; = ) A {u,v} €

ueVop \{vi,....vy+1} i {
El(v & {vi,....ve41}) A (€(e) = j)}|- Note that ZX“ deg(v;) < 20PTy
and g is an integer in the set {% — U, % —ui+1,., 2(OPT# M])]
{0, 1,2, ..., n}since any edge can be covered by either one or two nodes. Note that
there are at most o';T —uj+1=< OXT# < ; possible number of integers values
that each g; may take. Since x = O(1), we can try out all possible combinations
of g values over all colors in polynomial time since (n/x)* = n?M  Thus, we
henceforth assume that we know the correct value of g; for each j € {1, ..., x}.
Note that g; > 0 since our guess is correct.
e Update k (the number of nodes to be selected) by subtracting x + 1 from it, and
call the new value k.
e Update C; (the set of edges of color i) to be the set of edges in E that are of color
i
Yet another LP-relaxation
Let|V| =7 and |E| = 1. We will start with an initial LP-relaxation of NODE- FMC
on G which will be iteratively modified by our rounding approach. Our LP-relaxation
is the following modified version of the LP-relaxation in Fig. 3.

e There is a node indicator variable y, for every node v € V and an edge indicator
variable x, , for every edge (e, u) € E; thus we have 7 + m variables in total.

o Constraints of the form “x; > y,” and “x; < Zu_/eﬂ y¢” in Fig. 3 are rerEoved
now and instead replaced by at most two constraints x,, = y, if y, € V and
Xe,v = Yy if y, € V. This is done so that we can apply the rank lemma in a
meaningful way.

e Note that the quantity ), ¢ Z der
mentioned before.

e To maximize the parameter ranges over which our algorithm can be applied, we

X R « B
replace the (2) constraints in Fig. 3 of the form Zwecl_ Xy = Zulecj xg for
. . . +99 3 -~ —_ /
i,jefl,...,x}i < j” bythe x constraints ), ¢ Zedéf{u,v}ec,- Xeu = qj for
ief{l,..., x}

1eC, Xe.u for each color i is the integer g;
M v
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maximize Y=Y,y ¥, e W(€)reu

subject to
@ Xeu = Yu forallu € V and (e,u) € E
(2 ZVEV[ Yy = k N
3) Youch Zedéf{u_y}eci Xew=¢q; forallie{l,. 2 x}
“) 0<xeu<1 for all (e,u) € E
5) 0<y, <1 forallveV

Fig. 5 The initial LP-relaxation . = & O for the graph G used in Theorem 2. The iterated rounding
approach will successively modify the LP to create a sequence .2 M, 2@ of LP’s

The entire initial LP-relaxation .# for G is shown in Fig. 5 for convenience. Note that
the number of constraints in lines (1)—(3) of Fig. 5 is exactly m + x + 1.
Details of iterated rounding

We will use the variable ¢ € {0, 1, 2, ..., n} to denote the iteration number of our
rounding, with ¢t = 0 being the situation before any rounding has been performed, and
we will use a “superscript (t)” for the relevant quantities to indicate their values or
status after the 1 jteration of the rounding, e.g., 70 = 7 and 7V is the value of 77
after the first iteration of rounding. Our iterated rounding algorithm ALG-ITER-ROUND
in high level details is shown in Fig. 6, where the following notation is used for brevity
foranodeu € V:

Z’\;ariables = [} U {xe,u | (e, u) € E}

For concise analysis of our algorithm, we will use the following notations:

e WX+l is the sum of weights of all the edges incident to one or more nodes from
the set of nodes {v1, ..., vy41]. R
o w(X)= qu_eeX w(e) for a subset of variable X C {x, , | (e, u) € E}.

° V%(Lt?} = w()? fg)l) is the sum of weights of the edges whose variables are in X 52)1

(thus, for example, VI{\(&) =0).

° OPTg?w is the optimum value of the objective function of the LP-relaxation .2"")
during the " iteration of rounding.

° ﬁl.(t ) is the number of edges of color i selected by ALG-ITER-ROUND up to and

including the t™ iteration of rounding.
o 1Ml i the value of 7 in the last iteration of rounding.

Lemma 2 ALG-ITER-ROUND terminates after at most n iterations and selects at most
k+ XT_I nodes.

Proof For finite termination, it suffices to show that at least one of the three cases in
ALG-ITER-ROUND always applies. Consider the first iteration, say when ¢ = «, when
neither Case 1 nor Case 2 applies. Note that this also implies that x,, ¢ {0, 1} for
any variable x,, in LP@® since otherwise the variable y, in LP®”) will be either 0 or
1 via the equality constraint y, = x, , and one of Case 1 or Case 2 will apply. Thus
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(* initialization )
0 Vi e 0 Xep < 0; Var-CoUNtremaining — -+ 74— ;147
(* iterations of rounding )
while (var-countremaining 7 0) do
t—t+1
find an extreme-point optimal solution of objective value OPTE;C]) for the LP .2¢—1 (cf. Fig. 5)
begin cases
Case 1: there exists a variable y, in the solution such that y, =0
Var-coNtremaining <— Var- countremammg |Z"a“ab1“ ‘, nen—1
Fe 7o | {xe.u ‘xe u Zvarlables } | sol — Xsol U {xe " ‘xg " Z‘\‘/ariables }
remove the variables in Z"“""bl“ from .2~ 1), and delete or update the constraints
and the objective function to reflect the removal of variables
Case 2: there exists a variable y, in the solution such that y, = 1
qul — Vsol U {u} Va-r'countremammg — Var'countremalmng ‘Zxariables
kek—1; Aen—1; r(—r—‘{xw|x” EZW‘“abl“}}
Xinl — Xiol U c Zvarmbles
remove the va.rlables in Z;’“""bl“ from 2~ and delete or update the constraints
and the objective function to reflect the removal of variables
Vie{l,...,x}: @i Gi— | {Xe | Yeu € Zy2101S and G'(e) =i} |
subtract the value ¥, ¢ zvariaies W(€)xe, from the objective function yl=1
Case3: 1 <n<y+1
let yy; ..., yu, be the remaining non-zero 1 < 7' <7/ node indicator variables
var-countremaining <— 0; ke 0; 740, 70
Vie{lw“’x}zé\t(*‘/f\t }{)‘eulxeuezvanableg a_nd(ﬁ 71}'
‘7501 <~ i/\sol u {uh un’} Xsol <~ Xsol U {xe uj ‘xe uj S ZVdndble& ] € {1 } }
end cases
end while
OPTfrac <0
returnVSOl

nal)

~ (i
Fig.6 Pseudo-code of the iterated rounding algorithm ALG-ITER-ROUND used in Theorem 2. VS(;] is the

set of nodes selected in our solution

the total number of non-zero variables is 7*) 4+ 7% Since the constraints in lines
(4)—(5) of Fig. 5 are not strict constraints now (i.e., not satisfied with equalities), the
total number of any maximal set of strict constraints is at most the total number of
constraints in lines (1)—(3) of Fig. 5, i.e., at most 7l 4 x + 1. By the rank lemma
(Fact2) 7@ 4+ y + 1 > 2@ 4+ 7@ = 7@ < y 4+ 1, which implies Case 3 applies
and the algorithm terminates.

We now prove the bound on the number of selected sets. The value of ¥k decreases
by 1 every time a new node is selected in Case 2 and remains unchanged in Case 1
where no node is selected. In the very last iteration involving Case 3, since G has no
isolated nodes the number of node indicator variables is at least the number of edge
indicator variables, implying n’ <7n/2 < XTH Since €™ =1 > 1, the total number
of nodes selected is at most k + (7' — 1) < k + XT_I mi

Lemma 3 The sum of weights I" of the edges selected by ALG-ITER-ROUND is at least
OPT/2.

Proof Let W?; w = Vig(lg — Wx*l and OPT_y = OPT — WXT! The proof of

Lemma 2 shows that Case 3 of ALG-ITER-ROUND is executed only when ¢ = ¢final,
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Thus, the details of ALG-ITER-ROUND in Fig. 6 imply the following sequence of asser-
tions:

(i) OPT > OPT_y and OPT!) = OPT{ " — (w(XY) — w(X![")) fort €

frac = frac frac Y .
{1 ¢fnal _ 1} Since the variables x, . € X (@ gD are at most 1, we
[ : Cu,j sol sol ’
have
(lﬁnal) _ (tﬁ“‘dl,]) ([ﬁﬂiil,])
OPTfrac - OPTfrac - Z w(e)x€u,_f z OPTfrac
o(¢finaly = final _p)
Xey, j EXsol \Xsol
- 2,  wE
S(finaly = final )
x“u,j eXsol Xsol
_ (lﬁnalfl) A(lﬁnal) A([ﬁnalil)
- OPTfrac - (w(Xsol ) — w(Xsol ))

final
Using the fact that OPTg,‘lC ) = 0, we can therefore unravel the recurrence to get

final -~ (+final -~ (¢final
OPTI™ = OPTID, — (R > w(RI™) 2 OPTL, = OPT 4 (20)

frac

() Wy = 0and W)y = Wi + (wXE) — wXEM) for 1 e

lg—W sol sol
{1,...,t™Ma) Using (20) we can unravel the recurrence we get
(tﬁnal) A(tﬁual

) (0)
Mlgfw - w(Xsol )z OPTfrac = OPT_w

. def . .. final
Noting that an edge e = {u, v} can contribute the value of w(e) twice in WA(; )

corresponding to the two variables x, , and x, ,, the total weight I" of selected edges
in our solution is at least

X+1 (tﬁnal) |
re iy Ly L W Wy W4 0Py OPT
- Alg = 2 - 2 2

]

Our proof of Theorem 2 is therefore completed once we prove the following lemma.

A(tﬁnal)
Lemma4 Foralli,j € (l,..., x) Pp <4+ 4x.
p,

J

(tﬁna]) A(lﬁnal_l)
1 1

A([ﬁ“al 1) /\(tﬁl]al) A?toﬁnal —1) 50 .

7 —q; > q; . Noting

def . . . , .
that an edge e = {u, v} can contribute twice in the various ?ji(t) s corresponding to the

Proof When t = ¢f"! Case 3 applies and, since the variables Xe,; € X
tﬁnal)

are at most 1, Z]\l( < 0 and consequently
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two variables x, , and x, , and remembering that Zjl.(o) =q;, we get

lﬁnal tﬁna171
final 1 1 l —1 ﬁnal_l
A= (X =2 +mz (X @ -2 +a )
=1 t=1
A(O)
+Mi=l7+lti
G OPT. : OPT :
_@y s 0P _m OPTe i

=T T2 THMELTS
final final
We can get an upper bound on pl " by gettlng an upper bound on g A([ -b Zji(t )

in the following manner. Consider the 7™ < 7™ < x+1 nodes ULy ooy Unfinaly
in Case 3. By choice of the nodes vy, ..., v, of degrees deg(vy), ..., deg(vy+1),
respectively, the number of edges incident on u; is at most deg(v;) for all i €

naly/ final __ final
(L. 7] Thus, we get 7V =g < Y%7 deg(v)) < 20PTy, and
consequently

tﬁnal tﬁnal 1

final
) < ZA(’ V-3 = > (""" -3") +20PTy = G +20PTy
t=1

<2 (OPT# - m) +20PTy = (2 +2,) 2T

Thus, foralli, j € {1, ..., x} we have

S (0 4 0y OPT
. x)
Pi X < 4+4yn0

A(tﬁnal) — OPTy4 Kj
P; > T3

10.1.2 The Case of Arbitrary y

As stated below, there are two steps in the previous algorithm that cannot be executed
in polynomial time when y is not a constant:

(1) We cannot guess the x + 1 nodes vy, ..., vy1 in polynomial time. Instead, we
guess only one node v; such that there exists an optimal solution contains v; with
the following property: “the remaining kK — 1 nodes in the solution have degree at
most deg(vy)”.

(2) We cannot guess the exact value of g; by exhaustive enumeration and therefore
we cannot use the x constraints “) " Zed;f{u,v}ec Xey = ;" in line (3) of

the LP-relaxation in Fig. 5 anymore. However, note that it still holds that g; is an
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integer in the set {% — Wi, OPT# — i +1, 2(% — u;)}. Thus, instead

we use the 2x constraints

(3) OPT# — i < Z Z Xeu = ql < Z(OPT# — Mi) forall i € {1 ..... X}

ueV &y, e,

We need modifications of the bounds in the previous proof to reflect these changes as
follows:

e We make some obvious parameter value adjustments such as: V= VA {v1}, E =
E\{{u, v1} | {u, v} € E},?(O) =k —1,u; <deg(vy) foralli.

The number of constraints in lines (1)—(3) of Fig. 5 is now m + 2 + 1.

The condition in Case 3 of Fig. 6isnow 1 <7 <2y + 1.

e In Lemma 2, we select at most |_k + ZXT_IJ =k + x — 1 nodes.
fl al
4 .

e The calculations for the upper bound for p! 2 in Lemma 4 change as follows.
By choice of the node v; of degree deg(vy), the number of edges incident on u; is

nal ﬁndl nal
at most deg(vy) forall i € {1, ..., 7"}, This now glvesA( -b Z]‘l.(th ) <
nal
2x + 1)deg(vy) < (2x + 1)OPTy, and therefore P pl- S qi + 2x +1)OPTy <
2 (% — u,-) +(2x + DOPTy < (24 x +2x*) %2 This gives us the following
updated bound:

ﬁi(tﬁnal) (2 + X + 2)(2) OPT#

<
final OPT#
Py +4

<4+2)(+4)(2

10.2 The General Case: Approximating FMC

Theorem 3 (generalizing Theorem 2 for FMC) We can design a deterministic
polynomial-time approximation algorithm for FMC with the following properties:

k+ 2555 ifx=0()

k+ x — 1, otherwise

(b) The algorithm is a 1/ f-approximation for NODE- FMC, i.e., the total weight of the
selected elements is at least OPT/ f.

(¢) The algorithm satisfies the e-approximate coloring constraints (cf. Inequality (5))
as follows:

(a) The algorithm selects T sets where T < {

Omin{x2f, x f2), ifx = 0(1)

oralli,je{l,...,x}, & <
f Jed x} pj {0(f2+X2f), otherwise

The proof of Theorem 3 is a suitable modified version of the proof of Theorem 2.
We point out the important alterations that are needed.
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General Modifications

e Nodes and edges now correspond to sets and elements, respectively, incidence of
an edge on a node corresponds to membership of an element in a set, and degree
of a node corresponds to number of elements in a set.

e There is a set indicator variable y; for every element S e V. For every element
(u;, y ) E E there is an element indicator variable x; andaconstralnt Xij =Yj.

e Now ZX || < min{y, f}OPTy since any element in any one of the sets from
A, - yx+l can appear in at most min{y, f} other sets in the collection of
sets A, ..., Sy+1. Also, ?jj is an integer in the set i% — j, % —uj+

1,..., f(% —/,Lj)} c {0, 1,2,...,n}since any element can appear in at most

f sets.
e Anelement u; appearingin f; < f sets, say sets .77, ..., ./, can now contribute

final
the value of w(u;) atmost f; < ftimesin VVA(ltg ) corresponding to the f; variables

Xi1,...,%; f. Thus, we get a 1/ f-approximation to the objective function.

Modifications Related to y = O(1) case

e Anelement u; appearingin f; < f sets, say sets .77, ..., /f,, can now contribute
at most f; < f times in the various Z]\l( ) corresponding to the f; variables

final
Xi1, ..., Xi,f. This modifies the relevant inequality for ﬁf’ ) as follows:

X ~(0)
final . OPT. OPT.
P 2t e T R s T
f fx f fx
final X
P <G+ Y 1A < F(% — i) + min{x, fIOPTy < min{x? + f. 2 f) T
i=1
A(tﬁnal) . 2 %
P min{yx” + f, 2x f} , .
’ L < min{’f + £, 2x /% = O(min{x*f, x f*})

A(tﬁnal) = OPTx
P Fx

Modifications related to the arbitrary y case

final
e The calculations for the upper bound for ﬁf’ ) in Lemma 4 change as follows.
ST — i) + @x 4+ DOPTy < (f + x +2x%) & < (f +3¢%) %

A(thnal>
This gives the final bound of £ e < < P32 F =0+ X% ).
P;

@ Springer



Algorithmica

11 Approximation Algorithms for Two Special Cases of FMC

For approximating these special cases of FMC, which are still NP-complete, we will be
specific about the various constants and will try to provide approximation algorithms
with as tight a constant as we can. For this section, let p = max{p(f), P(k)}. Note
thatp > 1 — 1/e.

11.1 SEGR-FMC: Almost Optimal Deterministic Approximation with “at most” k
Sets

Note that Lemma 1 shows that finding a feasible solution is NP-complete even for
unweighted SEGR- FMC with x = 2. Further inapproximability results for SEGR- FMC
are stated in Remark 5.

Theorem 4 There exists a polynomial-time deterministic algorithm ALG-GREED-PLUS
that, given an instance of unweighted SEGR- FMC (x, k) outputs a solution with the
following properties:

(a) The number of selected sets is at most k.
(b) The approximation ratio is at least P > 1 — 1/e.
(¢c) The coloring constraints are 2-approximately satisfied (cf. (5)), i.e.,

Vi,jef{l,....x}: pi <2p,

Remark 5 Based on the (1 —1/e)-inapproximability result of Feige in [16] for the max-
imum k-set coverage problem, it is not difficult to see the two constants in Theorem 4,
namely p and 2, cannot be improved beyond 1 —1/e+4-¢ and (1 — 1/e)_1+£ ~ 1.58+¢,
respectively, for any ¢ > 0 and all y > 2 assuming P % NP.

Remark 6 The “at most k sets” part of the proof arises in the following steps of the
algorithm. Since we cannot know k, exactly, we can only assume ky < k, since it is
possible that the algorithm for the maximum k-set coverage also covers at least p %
elements for some k < k,. Secondly, even if we have the guessed the correct value
of k,, the algorithm for the maximum k,-set coverage may cover more than Zp%
elements, and thus we have to “un-select” some of the selected sets to get the desired
bounds (the proof shows that sometimes we may have to un-select all but one set). The
following example shows that a solution that insists on selecting exactly k sets may

need to select sets all of which are not in our solution. Consider the following instance

of unweighted FmMC(1, €): % = {uy,...,un}, £ = n/2, A = {uy,. .., Uy2}, and
FLjr1 ={u@2+j}for j =1,...,n/2. Our algorithm will select the set .# whereas
any solution that selects exactly £ sets must select the sets .72, ..., A /2)+1-

Proof We reuse the notations, terminologies and bounds shown in the proof of Theo-
rem 1 as needed. Let %/, ..., %, be the partition of the universe based on the color
of the elements, i.e., 2% = {uy | € (u¢) = r}forr € {1, ..., x}. By the definition of
SEGR- FMC every set contains elements from exactly one such partition and thus, after
renaming the sets and elements for notational convenience, we may set assume that
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our collection .77, ..., .7, of m sets is partitioned into x collection of sets, where
the r™ collection (for r € {1,..., x}) contains the sets .7, ..., yyzr over the uni-
verse % = {u1, ..., un,} of n, elements such that Zle m, = m and Zle n, =n.
Forr € {1,..., x} and any ¢ let FMC, (1, £) be the unweighted FMC(1, £) problem
defined over the universe %, and the collection of sets 7, ..., .7, . The following
observation holds trivially.

Unweighted SEGR- FMC (, k) has a valid solution covering £ € {x,2x, ...,
n/x] x} elements if and only if (i) foreach r € {1, ..., x}, FMC.(1, k) has a
valid solution covering £/ x elements for some k, > 0, and (ii) Zle k, = k.

The above observation suggests that we can guess the value of OPTy by trying
out all possible values of £ just like the algorithms in Theorem 1, and for each such
value of ¢ we can solve x independent FMC instances and combine them to get a
solution of the original SEGR- FMC instance. Although we cannot possibly solve the
FMmc, (1, k) problems exactly, appropriate approximate solutions of these problems
do correspond to a similar approximate solution of SEGR- FMC (y, k) as stated in the
following observation:

Suppose that for each r € {1, ..., x} we have a solution 5”1’1, R 5”,% C U
of FmcC, (1, k;) wiﬁh the following properties (for some 71 < 1 and 1, > 1):
(i) m/x) < | UI;VZI Z;| < n/x), and (ii) I}; < k,. Then, the collection
of sets {Z;r 16, € {1,... k), rell,. .., x}} outputs a solution of SEGR-
FMC (x, k) with the following properties: (a) the number of selected sets is at
most k, (b) the number of elements covered is at least n1¢, and (c¢) for any pair
i,jefl,....x}pi/pj < m2/m.

By the above observation, to prove our claim it suffices if we can find a solution
for FMC (1, k) for any r with £ = OPTy, n = P and 1, = 2 p. For convenience,
we will omit the superscript r from the set labels while dealing with FmC (1, k).
Remove from consideration any sets from .7, ..., .}, that contains more than £/
elements, and consider the standard (unweighted) maximum k-set coverage problem,
that ignores constraint (i) of the above observation, on these remaining collection of
sets 7 over the universe %, . Since we have guessed the correct value of ¢, there is at
least one valid solution and thus the following assertions hold: (I) there exists a set of
k, sets that covers % elements, and (II) |.7| > k,.

Let v denote the maximum number of elements that can be covered by selecting k
sets from .7. There are the following two well-known algorithms for the maximum k-
set coverage problem both of which select exactly & sets: the greedy algorithm covers
at least p(k)vy elements [16, Proposition 5.1], where the pipage-rounding algorithm
(based on the LP-relaxation in Fig. 2) covers at least 0( f) vy elements [1]. Note that we
do not know the exact value of k, and we cannot guess by enumerating every possible
k, values for every r € {1, ..., x} in polynomial time. To overcome this obstacle, we
use the following steps.
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e We run both the algorithms for nlaximum k-set coverage for k = 1,2, ... until
we find the first (small/cist) index k, < k, such that the better of the two algorithms
cover at least max{p(k,), p(f)}c% > p% elements.

e Suppose that this algorithm selects the l;; sets (after possible re-numbering of

set indices) .71, ..., S, where we have ordered the sets such that for every
Jj € 1{2,3,...,k;} the number of elements covered by .%; and not covered by
any of the sets .1, ...,.%;_1 is at least as many as the number of elements

covered by .#; and not covered by any of the sets .77, ..., .1 forany £ > j.
Remember that max el ,gr}{|c§’j|} < OPTy4/x. Let j be the smallest index such

,,,,,

| Ué;; il <p % but | Uﬁzl Sil=p %. We have the following cases.

-If|Z =0 % then we select .%; as our solution since % < |1 <

OPTy _ o p OPTy
X x

— Otherwise |.7;| < p % and in this case we select the j < k, < k, sets
A, ..., in our solution since p% <| Ué:1 S <2 p%. O

11.2 A-BAL-FMC: Improved Deterministic Approximation

Proposition 2 There exists a polynomial-time deterministic algorithm ALG-GREEDY
that, given an instance of unweighted A-BAL- FMC(x, k) outputs a solution with the
following properties:

(a) The number of selected sets is (exactly) k.

(b) The approximation ratio is at least P > 1 — 1/e.

(¢) The coloring constraints are O (Af)-approximately satisfied (cf. (5)), i.e., Vi, j €
{L,....x}: pi/pj = (2+2A)f.

Proof As already mentioned in the proof of Theorem 4 and elsewhere, there is a
deterministic polynomial-time algorithm for the maximum k-set coverage problem
with an approximation ratio of p. For the given instance of A-BAL- FMC(x, k), we run
this algorithm (ignoring element colors) selecting k sets, say .77, . .., -%%. Obviously,
the total weight of all the elements covered in the selected solution is at least p OPT.
Letat = Y0 [1.%1/xy1 + Aand e = Yk_ max {1, [|.#|/x] — A}. Note that
k<a  <at <a™ 4 (24 + 1)k. Since each of the sets in the solution is balanced,
an upper bound for the number p; of elements of color i in the solution is given by

pi < a™. Also note that by definition of f we have p; > "‘7 It thus follows that for

anyiandjwehavepi/pjgfx;‘—t5(2+2A)f. O
12 Approximating GEOM-FMC via Randomized Shifting
We refer the reader to textbooks such as [48] for a general overview of the randomized

shifting technique (textbook [48] illustrates the technique in the context of Euclidean
travelling salesperson problem).
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Theorem 5 For any constant 0 < ¢ < 1, we can design a randomized algorithm
ALG-GEOM for GEOM- FMC with the following properties:

(a) ALG-GEOM runs in O((A/d)@2€4/9% P kdy time.
(b) ALG-GEOM satisfies the following properties with probability 1 —o(1) (cf. Inequal-
ity (5')~(5")):
e The algorithm covers at least (1 — O(e))(OPT — ex) points.
e The algorithm satisfies the (1 + &)-approximate coloring constraints (cf.
Inequality (5")), i.e., foralli, j e {l,..., x}, pi < (1 +¢&)pj.

Remark 7 In many geometric applications, the dimension parameter d is a fixed con-
stant. For this case, ALG-GEOM runs in polynomial time, and moreover, under the
mild assumption of OTPT > n for some constant n > 1, ALG-GEOM covers at least
(1 — O(¢e))OPT points, i.e., under these conditions ALG-GEOM behaves like a random-
ized polynomial-time approximation scheme.

Proof Fix an optimal solution having k unit balls %7, ..., %; C R4, such that for
alli, je{l, ..., x}, wi(#*) = nj($*), where #* = Ule 2. Thus, we need to
show that our algorithm ALG-GEOM computes in (A/d)42(¢4/ 9D rd time a set of

unit balls By, ..., By C R4 such that the following assertions hold with probability
1 — o(1) (where B = |J*_, B)):

X X
D wi(B) > (1—0(e) Y (wi(#*) — &)
i=1 i=1

Vi,je{l,....x}: wi(B) < (1+e)u;(B)

Set L = 8d/s. Let G C RY be an axis-parallel grid such that every connected
component of R? \ G is an open d-dimensional hypercube isometric to (0, L)?. In
other words, G is the union of d infinite families of axis-parallel (d — 1)-dimensional
hyperplanes, spaced apart by L in each orthonormal direction. Let « € [0, L) be
chosen uniformly at random, and let G’ = G + « be the random translation of G by
a, i.e.,

(pr+o,....,pa+a)eG = (p1,...,ps) €G

Let F is the set of indices of all balls % that has a non-empty intersection with the
randomly shifted grid G/, i.e.,

F={ie{l,....k}: B NG # ¥}
Let #F =, <r % . Any point p € R is contained in Z*F only if it is contained
in some unit ball intersecting G’. Therefore, p € %* only if it is at distance at

most 2 from G’ (in other words, Z* ¥ is contained in the 2-neighborhood of G’).
The probability that any particular point p is at distance at most 2 from any family of
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parallel randomly shifted hyperplanes in G’ is exactly 4/L. By the union bound over
all dimensions, Pr[p € BT < 4d /L. Therefore, by the linearity of expectation,

4d
. #, Ny _ *, F . . *
Elu (&= Y Pr[pe B! | up) = Tu(#)
peUfY:I%;‘

Consequently, by Markov’s inequality, we get
Pr[pi (#°F) = i (#9] < 172

Setd = 2_@(d)s/C. Let B{™, ..., B;" be the collection of unit balls in R obtained as
follows. For each i € {1, ..., k}\ F, obtain a unit ball by translating %l* such that its
center has coordinates that are integer multiples of §, i.e., it is an element of the dilated
integer lattice § - Z¢. For every i € F, we obtain a unit ball by picking an arbitrary
ball obtained for some j € {1,...,k} \ F as described above. Essentially, the new
solution B, ..., B/ is missing all the balls that intersect G’, and rounds every other
ball so that its center is contained in some integer lattice. In this construction, each
ball 93;*, with i ¢ F, gets translated by at most some distance J/d$. Since for all
J €{l,..., x}, uj is C-Lipschitz, it follows that

1 (B — wj(BF)| < vol(#F) vVd s C <2°@DsC
Letting B** = Ule B, we getthat foralli € {1,..., x},
i (B*) — i (B)| < k2°@sc

Let .# be the set of connected components of [0, A]¢ \ G’. We refer to the elements
of .# as cells. For each A € .#, we enumerate the set, .74, of all possible subsets of at
most k unit balls with centers in AN (8- Z%). There are at most (L /8) lattice points in
A, and thus there are at most 2L/ such subsets of unit balls. Since |7 < ([A/L)?,
it follows that this enumeration takes O ((A/ L)d 2L/ ‘”d) time.

For each enumerated subset J € .4 of unit balls, we record the vector

£ k £ k
<|J|, i {MI(X)EJ R {Mk(X)EJ>

where X = Jy, Y. There are at most (2°@k/e)? such vectors for each cell in .#.
Via standard dynamic programming, we can inductively compute all possible sums
of vectors such that we pick at most one vector from each cell, and the total sum of
the first coordinate, i.e., the number of unit balls, is at most k. This can be done in
O((A/Ly42L/ 8¢ (29@ /)@y time. For the correct choice of vectors that corresponds
to the solution B**, the sum of the vectors we compute is correct up to an additive
factor of & on each coordinate. This means that we compute a solution By, ..., By,
with the following property:
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X

k X
DB = (=) (B = (1= o) Y (1i(#) = 2°95C - (™)) |

i=1 i=1 i=1

=

> (1—&—(8d/L)) [Z (wi(B*) — 2@<d>ac)] (1-2e [ZX: (i %2)—5]
i=1

i=1

with probability at least 1/2. Repeating the algorithm O (logn) times and returning
the best solution found, results in the high-probability assertion, which concludes the
proof. O

13 Conclusion and Open Problems

In this paper we formulated a natural combinatorial optimization framework for incor-
porating fairness issues in coverage problems and provided a set of approximation
algorithms for the general version of the problem as well as its special cases. Of
course, it is possible to design other optimization frameworks depending on the par-
ticular application in hand, and we encourage researchers to do that. Below we list
some future research questions related to our framework:

Eliminating the gap of factor f in LP-relaxation: As noted in Sect.9.7, all of our
LP-relaxations incur a gap of factor f in the coloring constraints while rounding.
It seems non-trivial to close the gap using additional linear inequalities while
preserving the same approximation ratio. However, it may be possible to improve
the gap using SDP-relaxations.

Primal-dual schema: Another line of attack for the FMC problems is via the primal-
dual approach [48]. For example, can the primal-dual approach for partial coverage
problem by Gandhi, Khuller and Srinivasan [18] be extended to FMC? A key
technical obstacle seems to center around effective interpretation of the dual of the
coloring constraints. Our iterated rounding approach was able to go around this
obstacle but the case when x = @ (1) may be improvable.

Fixed parameter tractability: As mentioned in Sect. 4 fixed-parameter tractability
issues for k-node coverage have been investigated by prior researchers such as
Marx [36] and Gupta, Lee and Li in [21, 22]. It would be interesting to extend
these results to NODE- FMC.

Generalizing to non-decreasing submodular set objective functions: The proofs
and proof techniques in this paper do not generalize to the case when the objective
function for our FMC problems is a (more general) non-decreasing submodular set
function. It would be interesting to devise new algorithmic techniques and proofs
for this more general case. Approximation algorithms for such generalizations for
the standard maximum k-set coverage problem (see Sect. 4) were provided in [30].
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Appendix
Proof of Lemma 1

(a) We describe the proof for x = 2; generalizationto x > 2 is obvious. The reduction
is from the Exact Cover by 3-sets (X3C) problem which is defined as follows. We are

given an universe %' = {uy, ..., u,} of n’ elements for some n’ that is a multiple of
3, and a collection of n’ subsets .77, ..., %, of % such that U" 5”] = U, every
element of %’ occurs in exactly 3 sets and |#j| =3 for j =1,...,n'. The goal is

to decide if there exists a collection of n’/3 (disjoint) sets whose union is %’'. X3C
is known to be NP-complete [19]. Given an instance (%', ., ..., .%y) of X3C as

described, we create the following instance (%, .71, ..., Sw+1, k) of FMC(2, k):
(i) The universe is % = {uy, ..., uy} U {uy 11, ..., uzy} (and thus n = 2n'),
(ii) w(u;) =1forj=1,...,2n/,

(iii) the sets are .71, ..., .y and anew set .11 = {Up4q, .- -, Uy},

Lifl<j<n

. , and
2, otherwise

(iv) the coloring function is given by € (u;) = {
) k=%+1=%+1

Clearly, every element of %/ occurs in no more than 3 sets and all but the set ./ 4
contains exactly 3 elements. The proof is completed once the following is shown:

() the given instance of X3C has a solution if and only if the transformed instance
of FMC(2, 1 + n/6) has a solution.

A proof of (x) is easy: since the set .%,;; must appear in any valid solution of FMC, a
solution .%,, ..., 5@”,/3 of X3C corresponds to a solution .%; , ..., .%; e w41 of
FMcC(2, k) and vice versa.
(b) The proof is similar to that in (a) but now instead of X3C we reduce the node cover
problem for cubic (i.e., 3-regular) graphs (VC3) which is defined as follows: given a
cubic graph G = (V, E) of n’ nodes and 3n'/2 edges and an integer k', determine if
there is a set of k' nodes that cover all the edges. V C3 is known to be NP-complete
even if G is planar [19]. For the translation to an instance of FMC(2, k), edges of G
are colored with color 1, we add a new connected component .%#(3,/ /241 to G that
is a complete graph of (3n’/2) + 1 nodes with every edge having color 2, transform
this to the set-theoretic version of FMC using the standard transformation from node
cover to set cover and set k = k' + 1; note that n = 3n'/2 + ((3n’/22)+1) = O()?
and a = 3n'/2 = O(y/n). To complete the proof, note that any feasible solution for
the FMC(2, k) instance must contain exactly one node from J#(3,//2)+1 covering 3n’/2
edges and therefore the solution for the edges with color 1 must correspond to a node
cover in G (and vice versa).
(c) We given a different reduction from X3C. Given an instance (%', 1, ..., %)
of X3C as in (a), we create the following instance (%, 71, ..., Ty, k) of EMC(n’, k):
(i) For every set . = {uil, Uiy, ui3} of X3C we have three elements ”:1 uﬁz uf}

and a set J; = {u! e Jul ,uf}} in FMC (and thus n = 3n’,a =3 and f = 1),

)
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(ii) w(u;Ij) = 1 and %(u;/_) =ij;fori € {1,...,n'},j € {1,2,3} (and thus x =
n' =n/3),
(iii) k =n'/3 =n/9.

The proof is completed by showing the given instance of X3C has a solution if and
only if the transformed instance of FMC(n/3, n/9) has a solution. This can be shown as
follows. We include the set .7; in the solution for FMC if and only if the set .%; is in the
solution for X3C. For any valid solution of X3C and every j € {1, ..., n’} the element
uj € %' appears in exactly one set, say ./ = {ugl, Ugy, Upy } of X3C where one of
the elements, say uy,, is u ;. Then, the solution of FMC contains exactly one element,
namely the element ufl ,of color £; = j. Conversely, given a feasible solution of FMC
with at most k < n/9 sets, first note that if k < n/9 then the total number of colors
of various elements in the solution is 3k < n’ and thus the given solution is not valid.
Thus, k = n/9 and therefore the solution of X3C contains n/9 = n’/3 sets. Now, for
every color j the solution of FMC contains a set, say .7; = {uf1 , ufz, uZ } containing

an element of color j, say the element uﬁl. Then £; = j and the element u ; appears
in a set in the solution of X3C. To see that remaining claims about the reduction, there
is no solution of FMC that includes at least one element of every color and that is not
a solution of X3C.
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