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Abstract
Ensuring fairness in computational problems has emerged as a key topic during recent
years, buoyed by considerations for equitable resource distributions and social justice.
It is possible to incorporate fairness in computational problems from several perspec-
tives, such as using optimization, game-theoretic or machine learning frameworks. In
this paper we address the problem of incorporation of fairness from a combinatorial
optimization perspective.We formulate a combinatorial optimization framework, suit-
able for analysis by researchers in approximation algorithms and related areas, that
incorporates fairness inmaximumcoverage problems as an interplay between two con-
flicting objectives. Fairness is imposed in coverage by using coloring constraints that
minimizes the discrepancies between number of elements of different colors covered
by selected sets; this is in contrast to the usual discrepancy minimization problems
studied extensively in the literature where (usually two) colors are not given a priori
but need to be selected to minimize the maximum color discrepancy of each indi-
vidual set. Our main results are a set of randomized and deterministic approximation
algorithms that attempts to simultaneously approximate both fairness and coverage in
this framework.
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1 Introduction

In this paper we introduce and analyze a combinatorial optimization framework cap-
turing two conflicting objectives: optimize the main objective while trying to ensure
that the selected solution is as fair as possible. We illustrate the framework with the
following simple graph-theoretic illustration. Consider the graph G of 10 nodes and
18 edges as shown in Fig. 1 where each edge is colored from one of χ = 3 colors
(red, blue or green) representing three different attributes. Suppose that we want to
select exactly k = 3 nodes that maximize the number of edges they “cover” subject
to the “fairness” constraint that the proportion of red, blue and green edges in the
selected edges are the same. An optimal solution is shown in Fig. 1 by the solid black
nodes u1, u2, u3 covering 6 edges; Fig. 1 also shows that the solution is quite different
from what it would have been (the yellow corner nodes v1, v2, v3 covering 11 edges)
if the fairness constraint was absent. A simple consequence of the analysis of our
algorithms for a more general setting is that, assuming that there exists at least one
feasible solution and assuming k is large enough, we can find a randomized solution
to this fair coverage problem for graphs where we select exactly k nodes, cover at
least 63% of the optimal number of edges on an average and, for every pair of colors,
with high probability the ratio of the number of edges of these two colors among the
selected edges is O(1).

In this paper we consider this type of problem inmore general settings. Of course, in
the example in Fig. 1 (and in general) there is nothing special about requiring that the
proportion of red, blue and green edges in the covered edges should be exactly equal
as opposed to a pre-specified unequal proportion. For example, we may also require
that the proportion of edges of different colors in our solution should mimic that in
the entire graph, i.e., in Fig. 1 among the covered edges the proportion of red, blue
and green edges should be q1, q2 and q3 where q1 = 1/6, q2 = 1/3, and q3 = 1/2.
Our algorithms will work with easy modifications for any constant values of q1, q2
and q3.

1.1 Different Research Perspectives in Ensuring Fairness

Theoretical investigations of ensuring fairness in computation can be pursued from
many perspectives. We briefly comment on a few of them.

One line of research dealing with the goal of ensuring fairness uses the optimiza-
tion framework, i.e., we model the problem as an optimization problem with precisely
defined fairness constraints. This is a common framework used by researchers in
combinatorial and graph-theoretic algorithms, such as research works that involve
designing exact or approximation algorithms, investigating fixed-parameter tractabil-
ity issues or proving inapproximability results. In this paper we use such a framework.
Fairness is imposed in coverage by using coloring constraints that minimize the dis-
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Fig. 1 A simple illustration of fairness in maximum coverage problems for graphs

crepancies between different colors among elements covered by selected sets; this is
in contrast to the usual discrepancy minimization problems studied extensively in the
literature [12] where the (usually two) colors are not given a priori but need to be
selected to minimize the maximum color discrepancy of each individual set.

A second line of research dealing with fairness involves machine learning frame-
works. Even though it is a relatively new research area, there is already a large body
of research dealing with ensuring fairness in machine learning algorithms by pre-
processing the data used in the algorithms, optimization of statistical outcomes with
appropriate fairness criteria and metric during the training, or by post-processing the
answers of the algorithms [25, 50, 51].

A third line of research dealing with fairness involves game theoretic frameworks.
For example, developments of solutions for fair ways of sharing transferable utilities in
cooperative game-theoretic environments have given rise to interesting concepts such
as Shapley values and Rabin’s fairness model. We refer the reader to the excellent
textbook in algorithmic game theory by Nisan et al. [39] for further details on these
research topics.

Yet another more recent line of research dealing with fairness involve applying
fairness criteria in the context of clustering of points in a metric space under k-means
objective, k-median or other �p-normobjectives [9, 13]. The assumption of an underly-
ing metric space allows the development of efficient algorithms for these frameworks.

2 Fair Maximum Coverage: Notations, Definitions and Related
Concepts

TheFairMaximumCoverage problemwithχ colors is defined as follows.We are given
a universeU = {u1, . . . , un} of n elements, a weight function w : U �→ R assigning
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a non-negative weight to every element, a color function C : U �→ {1, . . . , χ}
assigning a color to every element, a collection of m sets S1, . . . ,Sm ⊆ U , and a
positive integer k. A collection of k distinct subsets, saySi1 , . . . ,Sik , with the set of
“covered” elements

⋃k
j=1Si j containing pi elements of color i is considered a valid

solution1 provided pi = p j for all i and j . The objective is to maximize the sum of
weights of the covered elements. More explicitly, our problem is defined as follows:

Problem name: Fair Maximum Coverage with χ colors (Fmc(χ, k))
Input: • universe U = {u1, . . . , un}

• (element) weight function w : U �→ R
+ ∪ {0}

• (element) color function C : U �→ {1, . . . , χ}
• sets S1, . . . ,Sm ⊆ U
• integer k > 0

Valid solution: collection of k distinct subsets Si1 , . . . ,Sik satsifying
∀i, j ∈ {1, . . . , χ} :
pi

def= ∣
∣ {u� | u� ∈ ⋃k

j=1Si j and C (u�) = i} ∣∣
=
p j

def= ∣
∣ {u� | u� ∈ ⋃k

j=1Si j and C (u�) = j} ∣∣
Objective: maximize

∑
u�∈

⋃k
j=1 S i j

w(u�)

We denote Fmc(χ, k) by just Fmc when χ and k are clear from the context. In the
sequel, we will distinguish between the following two versions of the problem:

(i) unweighted Fmc in which w(u�) = 1 for all � ∈ {1, . . . , n} and thus the objective
is to maximize the number of elements covered, and

(ii) weighted Fmc in which w(u�) ≥ 0 for all � ∈ {1, . . . , n}.
For the purpose of stating and analyzing algorithmic performances, we define the
following notations and natural parameters associated with an instance of Fmc(χ, k):

• a ∈ {2, 3, . . . , n} denotes the maximum of the cardinalities (number of elements)
of all sets.

• f ∈ {1, 2, . . . ,m} denotes the maximum of the frequencies of all elements, where
the frequency of an element is the number of sets in which it belongs.

• OPT denotes the optimal objective value of the given instance of Fmc.
• OPT# denotes the number of covered elements in an optimal solution of the given
instance of Fmc. For weighted Fmc, if there are multiple optimal solutions then
OPT# will the maximum number of elements covered among these optimal solu-
tions. Note thatOPT = OPT# for unweighted Fmc. The reason we need to consider
OPT# separately from OPT for weighted Fmc is because the coloring constraints
are tied to OPT# whereas the optimization objective is tied to OPT.

1 For a more general version of the problemwe are given χ “color-proportionality constants” q1, . . . , qχ ∈
(0, 1] with q1 +· · ·+ qχ = 1, and a valid solution must satisfy pi /p j = qi /q j for all i and j . As we men-
tioned already, with suitable modifications our algorithms will work with similar asymptotic performance
guarantee for any constant values of q1, . . . , qχ , but to simplify exposition we will assume the simple
requirement of q1 = · · · = qχ in the sequel.
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• The performance ratios of many of our algorithms are expressed using the function
ρ(·):

ρ(x)
def= (

1 − 1/x
)x

Note that ρ(x) < ρ(y) for x > y > 0 and ρ(x) > 1 − e−1 for all x > 0.

ForNP-completeness results, if the problem is trivially inNP then we will not mention
it. To analyze our algorithms in this paper, we have used several standardmathematical
equalities or inequalities which are listed explicitly below for the convenience of the
reader:

∀ x ∈ [0, 1] : e−x ≥ 1 − x (1)

∀ x : e−x = 1 − x + (x2/2)e−ξ for some ξ ∈ [0, x] (2)

∀α1, . . . , αq ≥ 0 :
(
1
q

∑q
j=1 α j

)q ≥ ∏q
j=1 α j (3)

∀ x ∈ [0, 1] ∀ y ≥ 1 : 1 −
(
1 − x

y

)y ≥
(
1 −

(
1 − 1

y

)y)
x (4)

2.1 Three Special Cases of the General Version of FMC

In this subsection we state three important special cases of the general framework of
Fmc.

Fair maximum k-node coverage orNODE-FMC

This captures the scenario posed by the example in Fig. 1. We are given a connected
undirected edge-weighted graph G = (V , E) where w(e) ≥ 0 denotes the weight
assigned to edge e ∈ E , a color function C : E �→ {1, . . . , χ} assigning a color
to every edge, and a positive integer k. A node v is said to cover an edge e if e is
incident on v. A collection of k nodes vi1 , . . . , vik covering pi edges of color i for
each i is considered a valid solution provided pi = p j for all i and j . The objective is
to maximize the sum of weights of the covered edges. It can be easily seen that this is
a special case of Fmc by using the standard translation from node cover to set cover,
i.e., the edges are the set of elements, and corresponding to every node v there is a
set containing the edges incident on v. Note that for this special case f = 2 and a is
equal to the maximum node-degree in the graph.

Segregated FMC or SEGR-FMC

Segregated Fmc is the special case of Fmc when all the elements in any set have the
same color, i.e.,

∀ j ∈ {1, . . . ,m} ∀ u p, uq ∈ S j : C (u p) = C (uq)
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Another equivalent way of describing Segr- fmc is as follows. Let C j be the set of
all elements colored j for j ∈ {1, . . . , χ} in the given instance of Segr- fmc. Let the
notation 2A denote the power set for any set A. Then, Segr- fmc is the special case
whenS j ∈ ⋃χ

j=1 2
C j holds for all j ∈ {1, . . . ,m}. A simple example of an instance

of Segr- fmc with n = 6, m = 10 and χ = 2 is shown below:

U = {u1, u2, u3, u4, u5, u6}
C (u1) = C (u2) = C (u3) = C (u4) = 1, C (u5) = C (u6)) = 2

S1 = {u1, u2, u3}, S2 = {u2, u3, u4}, S3 = {u5, u6}, S4 = {u6}
w(u1) = w(u2) = 7, w(u3) = 9, w(u4) = w(u5) = w(u6) = 1

Even though computing an exact solution of Segr- fmc is still NP-complete, it is
much easier to approximate (see Sect. 11.1). From our application point of view as
discussed in Sect. 3, this may for example model cases in which city neighborhoods
are segregated in some manner, e.g., racially or based on income.

1-balanced FMC or1-BAL-FMC

Δ-balanced Fmc is the special case of Fmc when the number of elements of each
color in a set are within an additive range of Δ, i.e.,

∀ j ∈ {1, . . . ,m} ∀ p ∈ {1, . . . , χ} :
max

{

1,

⌊ |S j |
χ

⌋

− Δ

}

≤ ∣
∣u� | (u� ∈ S j ) ∧ (C (u�) = p)

∣
∣ ≤

⌈ |S j |
χ

⌉

+ Δ

Similar to Segr- fmc, it is much easier to approximate Δ-bal- fmc for small Δ (see
Sect. 11.2).

Geometric FMC orGEOM-FMC

In this unweighted “geometric” version of Fmc, the elements are points in [0,Δ]d
for some Δ and some constant d ≥ 2, the sets are unit radius balls in R

d , and the
distributions of points of different colors are given by χ Lipschitz-bounded measures.
More precisely, the distribution of points of color i is given by a probability measure
μi supported on [0,Δ]d with a C-Lipschitz density function2 for some C > 0 that
is upper-bounded by 1. Given a set of k unit balls B1, . . . ,Bk ⊂ R

d , the number
of points pi of color i covered by these balls is given by μi

(⋃k
i=1Bi

)
, and the total

number of points covered by these balls is given by
∑χ

i=1 μi
(⋃k

i=1Bi
)
. This variant

has an almost optimal polynomial-time approximation algorithm for fixed d and under
some mild assumption on OPT (see Sect. 12).

2 A function f : Δ �→ R for some subset Δ of real numbers is C-Lipschitz provided | f (x) − f (y)| ≤
C |x − y| for all real numbers x, y ∈ Δ.
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3 Sketch of Application Scenarios

Fmc and its variants are core abstractions ofmany data-driven societal domain applica-
tions. We present three diverse categories of applications and highlight the real-world
fairness issues addressed by our problem formulations (leaving other applications in
the cited references).

Service/Facility Allocation

One of the most common data based policy decisions is assigning services/facilities
across different places, e.g., placing schools [33], bus stops, or police/fire stations,
choosing a few hospitals for specific medical facilities or services, or deciding where
to put cell-phone towers. Of course, a major objective in such assignments is to serve
the maximum number of people (i.e., maximize the coverage). Unfortunately, histor-
ical discriminations, such as redlining [29], through their long drawn-out effects of
manifestations in different aspects of public policy are still hurting the minorities.
As a result, blindly optimizing for maximum coverage biases the assignment against
equitable distribution of services. Below are examples of two real cases that further
underline the importance of fairness while maximizing coverage:

• Bike sharing: As more and more cities adopt advanced transportation systems
such as bike-sharing, concerns such as equity and fairness arise with them [49].
For instance, according to [23] the bike-sharing network at NYC neglects many
low-income neighborhoods and communities of color while giving the priority to
well-to-do neighborhoods. Here the location of bike stations (or bikes) determines
the set of people that will have access to the service, perpetuating the unhealthy
cycle of lack of transportation, movement, etc.

• Delivery services for online shopping:Online shopping has by now gained amajor
share of the shopping market. Platforms such as Amazon provide services such as
same-day delivery to make e-shopping even more convenient to their customers.
While Amazon’s main aim is to maximize the number of customers covered by
this service, by not considering fairness it demonstrably failed to provide such
services for predominantly black communities [28, 45].

Data Integration
Combiningmultiple data sources to augment the power of any individual data source

is a popular method for data collection. Naturally themain objective of data integration
is to collect (“cover”) amaximumnumber of data points. However, failing to include an
adequate number of instances from minorities, known as population bias, in datasets
used for training machine learning models is a major reason for model unfairness
[4, 40]. For example, image recognition and motion detection services by Google
[38] and HP [43] with a reasonable overall performance failed to tag/detect African
Americans since their training datasets did not include enough instances from this
minority group. While solely optimizing for coverage may result in biased datasets,
considering fairness for integration may help remove population bias.
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Targeted advertisement
Targeted advertising is popular in social media. Consider a company that wants to

target its “potential customers”. To do so, the company needs to select a set of features
(such as “single” or “college student”) that specify the groups of users to be targeted.
Of course, the company wants to maximize coverage over its customers. However,
solely optimizing for coverage may result in incidents such as racism in the Facebook
advertisements [2] or sexism in the job advertisements [27]. Thus, a desirable goal for
the company would be to select the keywords such that it provides fair coverage over
users of diverse demographic groups.

4 Review of Prior RelatedWorks

To the best of our knowledge, Fmc in its full generalities has not been separately
investigated before. However, there are several prior lines of research that conceptually
intersect with Fmc.

Maximum k-set coverage and k-node coverage problems

The maximum k-set coverage and k-node coverage problems are the same as the Fmc
and Node- fmc problems, respectively, without element colors and without coloring
constraints. These problems have been extensively studied in the algorithmic literature,
e.g., see [1, 16, 26] for k-set coverage and [3, 17, 20–22, 24, 35] for k-node coverage.
A summary of these results is as follows:

k-set coverage: The best approximation algorithm for k-set coverage is a determin-
istic algorithm that has an approximation ratio of max

{
ρ( f ), ρ(k)

}
> 1 − 1/e

[1, 26]. On the inapproximability side, assuming P �=NP an asymptotically opti-
mal inapproximability ratio of 1 − 1/e + ε (for any ε > 0) is known for any
polynomial-time algorithm [16].

k-node coverage: The best approximation for k-node coverage is a randomized
algorithm that has an approximation ratio of 0.7504 with high probability [17, 24].
On the inapproximability side, k-node coverage is NP-complete even for bipartite
graphs [3], and cannot be approximated within a ratio of 1 − ε for some (small)
constant ε > 0 [31, 42]. More recently, Manurangsi [35] provided a semidefinite
programming based approximation algorithmwith an approximation ratio of 0.92,
and Austrin and Stankovic [6] used the results in [5] to provide an almostmatching
upper bound of 0.929 + ε (for any ε > 0) on the approximation ratio of any
polynomial time algorithm assuming the unique games conjecture is true. There is
also a significant body of prior research on the fixed parameter tractability issues
for the k-node coverage problem: for example, k-node coverage is unlikely to allow
an FPT algorithm as it isW [1]-hard [20], butMarx designed an FPT approximation
scheme in [36] whose running time was subsequently improved in Gupta, Lee and
Li in [21, 22].

However, the coloring constraints make Fmc fundamentally different from the max-
imum set or node coverage problems. Below we point out some of the significant
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aspects of these differences. For comparison purposes, for an instance of Fmc let
OPTcoverage denote the objective value of an optimal solution for the corresponding
maximum k-set coverage problem for this instance by ignoring element colors and
coloring constraints.

Existence of a feasible solution: For the maximum k-set coverage problem, a feasi-
ble solution trivially exists for any k. However, a valid solution for Fmc(χ, k) may
not exist for some or all k even ifχ = 2 and in fact our results (Lemma 1) show that
even deciding if there exists a valid solution isNP-complete. TheNP-completeness
result holds even if f = 1 (i.e., the sets are mutually disjoint); note that if f = 1
then it is trivial to compute an optimal solution to the maximum k-set coverage
problem. That is why for algorithmic purposes we will assume the existence of
at least one feasible solution3 and for showing computational hardness results we
will show the existence of at least one trivial feasible solution.

Number of covered elements: The number of covered elements and the correspond-
ing selected sets in an optimal solution in Fmc can differ vastly from that in the
maximum k-set coverage problem on the same instance. The reason for the dis-
crepancy is because in Fmc one may need to select fewer covered elements to
satisfy the coloring constraints.

Exactly k sets vs. at most k sets: For the maximum k-set coverage problem any
solution trivially can use exactly k sets and therefore there is no change to the
solution space whether the problem formulation requires exactly k sets or at most
k sets. However, the corresponding situation for Fmc is different since it may be
non-trivial to convert a feasible solution containing k′ < k sets to one containing
exactly k sets because of the coloring constraints.

Discrepancyminimization problems

Informally, the discrepancy minimization problem for set systems (Min- disc) is
orthogonal to unweighted Fmc. Often Min- disc is studied in the context of two
colors, say red and blue, and is defined as follows. Like unweighted Fmcwe are given
m sets over n elements. However, unlike Fmc element colors are not given a priori but
the goal is to color every element red or blue to minimize the maximum discrepancy
over all sets, where the discrepancy of a set is the absolute difference of the number
of red and blue elements it contains. The Beck-Fiala theorem [8] shows that the dis-
crepancy of any set system is at most 2 f , Spencer showed in [44] that the discrepancy
of any set system is O(

√
n log(2m/n) ), Bansal provided a randomized polynomial

time algorithm achieving Spencer’s bound in [7], and a deterministic algorithm with
similar bound was provided in [34]. On the lower bound side, it is possible to con-
struct set systems such that the discrepancy is Ω(

√
n ) [12]. For generalization of the

formulation to more than two colors and corresponding results, see for example [14,
15, 47].

3 Actually, our LP-relaxation based algorithms require only the existence of a feasible fractional solution
but we cannot say anything about the approximation ratio in the absence of a feasible integral solution.
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Maximization of non-decreasing submodular set functions with linear inequality
constraints

Kulik et al. [30] provided approximation algorithms for maximizing a non-decreasing
submodular set function subject to multiple linear inequality constraints over the
elements. Unfortunately, because the linear constraints in Segr- fmc are equality
constraints, Segr- fmc cannot be put in the framework of [30] and the approximation
algorithms in [30] do not directly apply to Segr- fmc.

5 Summary of Our Contribution

5.1 Feasibility Hardness Results

Obviously Fmc (resp., Node- fmc) obeys all the inapproximability results for the
maximum k-set coverage (resp., k-node coverage) problem.We show in Lemma 1 that
determining feasibility of Fmc instances is NP-complete even under very restricted
parameter values; the proofs cover (or can be easily modified to cover) all the spe-
cial cases of Fmc investigated in this paper. However, our subsequent algorithmic
results show that even the existence of one feasible solution gives rise to non-trivial
approximation bounds for the objective and the coloring constraints.

5.2 Algorithmic Results

A summary of our algorithmic results is shown in Table 1. Based on the discussion in
the previous section, all of our algorithms assume that at least one feasible solution
for the Fmc instance exists.

6 Organization of the Paper and Proof Structures

The rest of the paper is organized as follows.

• In Sect. 7 we present our result in Lemma 1 on the computational hardness of
finding a feasible solution of Fmc.

• Based on the results in Sect. 7, we need to make some minimal assumptions and
need to consider appropriate approximate variants of the coloring constraints. They
are discussed in Sect. 8 for the purpose of designing (deterministic or randomized)
approximation algorithms.

• In Sect. 9 we design and analyze our LP-relaxation based randomized approxi-
mation algorithms for Fmc. In particular, in Theorem 1 we employ two different
LP-relaxations of Fmc and combine three randomized rounding analyses on them
to get an approximation algorithm whose approximation qualities depend on the
range of relevant parameters.
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• Parts of the algorithm and analysis specific to the three algorithmsAlg-large-
opt#,Alg-medium-opt# andAlg-small-opt# are discussed in Sects. 9.4, 9.5
and 9.6, respectively.

• Proposition 1 in Sect. 9.7 shows that the dependence of the coloring constraint
bounds in Theorem 1(e)(i)–(ii) on f cannot be completely eliminated by better
analysis of our LP-relaxations even for χ = 2.

• In Sect. 10 we provide polynomial-time deterministic approximations of Fmc via
iterated rounding of a new LP-relaxation. Our approximation qualities depend on
the parameters f and χ .

• For better understanding, we first prove our result for the special case Node-
fmc of Fmc in Theorem 2 (Sect. 10.1) and later on describe how to adopt the
same approach for Fmc in Theorem 3 (Sect. 10.2).

• The proofs for both Theorem 2 and Theorem 3 are themselves divided into
two parts depending on whether χ = O(1) or not.

• In Sect. 11 we provide deterministic approximation algorithms for two special
cases of Fmc, namely Segr- fmc and Δ-bal- fmc.

• Sect. 12 provides the deterministic approximation for Geom- fmc.

Our proofs are structured as follows. A complex proof is divided into subsections
corresponding to logical sub-divisions of the proofs and the algorithms therein. Often
we provide some informal intuitions behind the proofs (including some intuition about
why other approaches may not work, if appropriate) before describing the actual
proofs.

7 Computational Hardness of Finding a Feasible Solution of FMC

We show that determining if a given instance of Fmc has even one feasible solution
is NP-complete even in very restricted parameter settings. The relevant parameters of
importance for Fmc is a, f and χ ; Lemma 1 shows that the NP-completeness result
holds even for very small values of these parameters.

Lemma 1 Determining feasibility of an instance of Fmc of n elements is NP-complete
even with the following restrictions:

• the instances correspond to the unweighted version,
• the following combinations of maximum set-size a, frequency f and number of
colors χ are satisfied:

(a) f ∈ {1, 3}, all but one set contains exactly 3 elements and all χ ≥ 2,
(b) the instances correspond to Node- fmc (which implies f = 2), a = O(

√
n ),

and all χ ≥ 2, or
(c) f = 1, a = 3 and χ = n/3.

Moreover, the following assertions also hold:

• The instances of Fmc generated in (a) and (b) actually are instances of Segr- fmc.
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• For the instances of Fmc generated in (c), OPT# = χ = n/3 and, assuming
P �= NP, there is no polynomial time approximation algorithm that has either a
finite approximation ratio or satisfies the coloring constraints in the ε-approximate
sense (cf. Eq. (5)) for any finite ε.

A proof of Lemma 1 appears in the appendix.

Remark 1 It may be tempting to conclude that an approach similar to what is stated
below using the k-set coverage problem as a “black box” may make the claims in
Lemma 1 completely obvious. We simply take any hard instance of k-set coverage
and equi-partition the universe arbitrarily into χ many color classes and let this be the
corresponding instance of Fmc. Using a suitable standard reductions of NP-hardness
the k-set coverage problem, if there is a feasible solution of Fmc then the k sets trivially
cover the entire universe and thus trivially satisfy the color constraints but otherwise
one may (incorrectly) claim that no k sets cover the universe and so the fairness
constraints cannot be satisfied. Additionally, one may be tempted to argue that if one
takes a k-set coverage problem instance with any additional structure (e.g., bounded
occurrence of universe elements) then the coloring does not affect this additional
property at all and hence the property is retained in the k-set coverage problem instance
with color constraints.

However, such a generic reductionwill fail because it is incorrect and because it will
not capture all the special parameter restrictions imposed in Lemma 1. For example:

• Even though the k sets may not cover the entire universe, it is still possible that they
may satisfy the color constraints. For example, consider the following instance of
the k-set coverage problem:

U = {u1, u2, u3, u4, u5, u6}, k = 2, S1 = {u1, u2}, S2

= {u3, u4}, S3 = {u5, u6}

Suppose we select the equi-partition {u1, u3, u5}, {u2, u4, u6}, thus setting
C (u1) = C (u3) = C (u5) = 1 and C (u2) = C (u4) = C (u6) = 2. Then
any two selected sets will satisfy the coloring constraints.

• Consider the requirements of the Fmc instances in part (c). Since f = 1, every
element occurs in exactly one set and thus the set systems for the k-set coverage
problem form a partition of the universe. Such an instance cannot be a hard instance
of k-set coverage since it admits a trivial polynomial time solution: sort the sets in
non-decreasing order of their cardinalities and simply take the first k sets.

8 Relaxing Coloring Constraints for Algorithmic Designs

Based on Lemma 1 we need to make the following minimal assumptions for the
purpose of designing approximation algorithms with finite approximation ratios:

(i) We assume the existence of at least one feasible solution for the given instance of
Fmc.

123



Algorithmica

(ii) We assume that OPT# is sufficiently large compared to χ , e.g., OPT# ≥ cχ for
some large constant c > 1.

Lemma 1 and the example in Fig. 1 also show that satisfying the color constraint
exactly (i.e., requiring pi/p j to be exactly equal to 1 for all i and j) need to be relaxed
for the purpose of designing efficient algorithms since non-exact solutions of Fmc
may not satisfy these constraints exactly. We define an (deterministic) ε-approximate
coloring of Fmc (for some ε ≥ 1) to be a coloring that satisfies the coloring constraints
in the following manner:

Deterministicε−approximatecoloring : ∀ i, j ∈ {1, . . . , χ} : pi ≤ εp j (5)

Note that (5) automatically implies that pi ≥ p j/ε for all i and j . Thus, in our ter-
minology, a 1-approximate coloring corresponds to satisfying the coloring constraints
exactly. Finally, if our algorithm is randomized, then the p j ’s could be a randomvalues,
and then we will assume that the relevant constraints will be satisfied in expectation
or with high probability in an appropriate sense. More precisely, (5) will be modified
as follows:4

Randomized ε-approximate coloring:

∀ i, j ∈ {1, . . . , χ} : E[pi ] ≤ ε E[p j ] (5′)

Randomized strong ε-approximate coloring:
∧

i, j∈{1,...,χ}
(
Pr
[
pi ≤ εp j

] ) ≥ 1 − o(1) (5′′)

Unless otherwise stated explicitly, our algorithms will select exactly k sets.

9 LP-Relaxation Based Randomized Approximation Algorithms for
FMC

If k is a constant then we can solve Fmc(χ, k) exactly in polynomial (i.e., O(nk))
time by exhaustive enumeration, so we assume that k is at least a sufficiently large
constant. In this section we will employ two slightly different LP-relaxations of Fmc
and combine three randomized rounding analyses on them to get an approximation
algorithm whose approximation qualities depend on the range of various relevant
parameters. The combined approximation result is stated in Theorem 1. In the proof
of this theorem no serious attempt was made to optimize most constants since we are
mainly interested in the asymptotic nature of the bounds, and to simplify exposition
constants have been over-estimated to get nice integers. In the statement of Theorem 1
and in its proof we will refer to the three algorithms corresponding to the two LP-
relaxations as Alg-small-opt#, Alg-medium-opt# and Alg-large-opt#.

4 We do not provide a bound on E[pi /p j ] since pi /p j = ∞ when p j = 0 and p j may be zero with a
strictly positive probability, and for arbitrary χ selecting a set individually for each to avoid this situation
in our randomized algorithms may select too many sets.
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Theorem 1 Suppose that the instance of Fmc(χ, k) has n elements and m sets. Then,
we can design three randomized polynomial-time algorithmsAlg-small-opt#,Alg-
medium-opt# and Alg-large-opt# with the following properties:

(a) All the three algorithms select k sets (with probability 1).
(b) All the three algorithms are randomized ρ( f )-approximation for Fmc, i.e., the

expected total weight of the selected elements for both algorithms is at least ρ( f ) >

1 − 1/e times OPT.
(c) All the three algorithms satisfy the randomized ε-approximate coloring constraints

(cf. Inequality (5′)) for ε = O( f ), i.e., for all i, j ∈ {1, . . . , χ}, E[pi ]
E[p j ] ≤ 2 f

ρ( f ) <

3.16 f .
(d) The algorithms satisfy the strong randomized ε-approximate coloring constraints

(cf. Eq. (5′′), i.e.,
∧

i, j∈{1,...,χ}
(
Pr
[
pi ≤ εp j

] ) ≥ 1 − o(1)) for the values of ε,
OPT# and χ as shown below:

ε Range of OPT# Range of χ Algorithm

(i) O( f ) Ω(χ
√
n logχ) unrestricted Alg-large-opt#

(ii) O( f 2) Ω(aχ logχ) and O(χ
√
n logχ) unrestricted Alg-medium-opt#

(iii) O( f 2
√
a χOPT# ) unrestricted χ = O(max{1, log n

logm }) Alg-small-opt#

Remark 2 Note that the high-probability ε = O( f ) bound in Theorem 1(d)(i) is
asymptotically the same as the “ratio of expectation” bound in Theorem 1(c).

Remark 3 The dependence on f of the bounds for ε in Theorem 1(d)(i)–(ii) can be
contrasted with the Beck-Fiala theorem in discrepancy minimization that shows that
the discrepancy of any set system is at most 2 f .

Remark 4 Consider the special case Node- fmc with χ = O(1): for this case f =
2 and a is equal to the maximum node-degree degmax in the graph. The bounds
in Theorem 1(d)(i)–(ii) for this special case imply a O(1)-approximation of color
constraints unless OPT# is not sufficiently large compared to degmax. To illustrate the
bound for smaller OPT# in Theorem 1(d)(iii), if OPT# = deg(1/2)−ε

max for some ε > 0
then the approximation bound of the coloring constraints is O(deg1−ε

max).

A proof of Theorem 1 is discussed in the remaining subsections of this section. The
following notations will be used uniformly throughout the proof.

• x1, . . . , xn ∈ {0, 1} and y1, . . . , ym ∈ {0, 1} are the usual indicator variables for
the elements u1, . . . , un and the sets S1, . . . ,Sm , respectively, Their values in
an optimal solution of the LP-relaxation under consideration will be denoted by
x∗
1 , . . . , x

∗
n and y∗

1 , . . . , y
∗
m , respectively.

• C j is the set of all elements colored j for j ∈ {1, . . . , χ} in the given instance of
Fmc.

• OPTfrac is the optimum value of the objective function of the LP-relaxation under
consideration.
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Fig. 2 A well-known LP-relaxation of the element-weighted maximum k-set coverage problem

9.1 An Obvious Generalization of LP-Relaxation of Maximum k-Set Coverage Fails

It is well-known that the LP-relaxation for the element-weighted maximum k-set cov-
erage problem as shown in Fig. 2 followed by a suitable deterministic or randomized
rounding provides an optimal approximation algorithm for the problem (e.g., see
[1, 37]). A straightforward way to extend this LP-relaxation is to add the following
χ(χ − 1)/2 additional constraints, one corresponding to each pair of colors:

∑

u�∈Ci

x� =
∑

u�∈C j

x� for i, j ∈ {1, . . . , χ}, i < j

Unfortunately, this may not lead to a ε-approximate coloring (cf. Eq. (5)) for any
non-trivial ε as the following example shows. Suppose our instance of an unweighted
Fmc(2, 2) has four sets S1 = {u1}, S2 = {u2, . . . , un−2}, S3 = {un−1} and S4 =
{un}with the elements u1 and un−1 having color 1 and all other elements having color
2. Clearly the solution to this instance consists of the sets S3 and S4 with OPT = 2.
On the other hand, the fractional solution y∗

1 = y∗
2 = x∗

1 = x∗
2 = 1 and all remaining

variables being zero is also an optimal solution of the LP-relaxation, but any rounding
approach that does not change the values of zero-valued variables in the fractional
solution must necessarily result in an integral solutions in which p2/p1 = n − 3. The
example is easily generalized for arbitrary k.

9.2 ALG-LARGE-OPT#: Strengthening LP-Relaxation via Additional Inequalities

Oneproblem that the LP-relaxation inFig. 2 faceswhen applied toFmc is the following.
Wewould like each element-indicator variable x j to satisfy x∗

j = min
{
1,

∑
u j∈S�

y∗
�

}

in an optimum solution of the LP, but this may not be true as shown in the simple
example in the previous section. Past researchers have corrected this kind of situation
by introducing extra valid inequalities that hold for any solution to the problem but
restrict the feasible region of the LP. For example, Carnes and Shmoys in [10] and
Carr et al. in [11] introduced a set of additional inequalities, which they called the
KC (Knapsack Cover) inequalities, to strengthen the integrality gaps of certain types
of capacitated covering problems. Following their ideas, we add the extra O( f n)

“covering inequalities” which are satisfied by any integral solution of the LP:

x j ≥ y� for j = 1, . . . , n, � = 1, . . . ,m, and u j ∈ S�
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Fig. 3 A LP-relaxation for Alg-large-opt# with n + m variables and O
(
f n + χ2

)
constraints

In addition, we adjust our LP-relaxation in the following manner. Since OPT# is an
integer from {χ, 2χ, . . . , (�n/χ�)χ}, we can “guess” the correct value of OPT# by
running the algorithm for each of the �n/χ� possible value of OPT#, consider those
solutions that maximized its objective function and select that one among these solu-
tions that has the largest value of OPT#. Thus, we may assume that our LP-relaxation
knows the value of OPT# exactly, and we add the following extra equality:

n∑

i=1

xi = OPT#

The resulting LP-relaxation is shown in its completeness in Fig. 3 for convenience.

9.3 A General Technique for Obtaining Joint High-Probability Statement

Suppose that our randomized LP-relaxation based algorithm guarantees that
Pr
[
pi/p j > ε

]
< 1/(cχ2) for some constant c ≥ 3 independently for all i, j ∈

{1, . . . , χ}. Then
∧

i, j∈{1,...,χ}
Pr
[
pi ≤ ε p j

] = 1 −
∨

i, j∈{1,...,χ}
Pr
[
pi > ε p j

]

≥ 1 −
∑

i, j∈{1,...,χ}
Pr
[
pi ≥ ε p j

]
> 1 − (χ2)

1

cχ2 = 1 − 1

c
= c′

To boost the success probability, we repeat the randomized rounding c′ ln n times,
compute the quantity σ = maxi, j∈{1,...,χ}, p j �=0{pi/p j } in each iteration, and output
the solution in that iteration that resulted in the minimum value of σ . It then fol-
lows that the selected solution satisfies the strong randomized ε-approximate coloring

constraints since
∧

i, j∈{1,...,χ} Pr
[
pi ≤ ε p j

] ≥ 1 − (
1/c′

)c′ ln n
> 1 − 1/n2.

9.4 ALG-LARGE-OPT#: Further Details and Relevant Analysis

For our randomized rounding approach, we recall the following result from [46].
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Fact 1 [46] Given numbers p1, . . . , pr ∈ [0, 1] such that � = ∑r
i=1 pi is an inte-

ger, there exists a polynomial-time algorithm that generates a sequence of integers
X1, . . . , Xr such that (a)

∑r
i=1 Xi with probability 1, (b) Pr [Xi = 1] = pi for all

i ∈ {1, . . . , r}, and (c) for any real numbers α1, . . . , αr ∈ [0, 1] the sum ∑r
i=1 αi Xi

satisfies standard Chernoff bounds.

We round y∗
1 , . . . , y

∗
m to y+

1 , . . . , y+
m using the algorithm mentioned in Fact 1;

this ensures
∑m

�=1 y
+
� = ∑m

�=1 y
∗
� = k resulting in selection of exactly k sets. This

proves the claim in (b). We round x∗
1 , . . . , x

∗
n to x+

1 , . . . , x+
n in the following way: for

j = 1, . . . , n, if u j ∈ S� for some y+
� = 1 then set x+

j = 1.

Proof of (b) Our proof of (c) is similar to that for the maximum k-set coverage and is
included for the sake of completeness. Note that x+

j = 0 if and only if y+
� = 0 for

every setS� containing u j and thus:

E[x+
j ] = Pr[x+

j = 1] = 1 − Pr[x+
j = 0] = 1 −

∏

u j∈S�

Pr[y+
� = 0] = 1 −

∏

u j∈S�

(1 − y∗
� )

≥ 1 −
(∑

u j ∈S �

(
1−y∗

�

)

f j

) f j = 1 −
(
1 −

∑
u j ∈S �

y∗
�

f j

) f j ≥ 1 −
(
1 −

∑
u j ∈S �

y∗
�

f

) f
(6)

where we have used inequality (3). If
∑

u j∈S�
y∗
� ≥ 1 then obviously (6) implies

E[x+
j ] ≥ ρ( f ) ≥ ρ( f )x∗

j . Otherwise, x
∗
j ≤ ∑

u j∈S�
y∗
� < 1 and then by (4) we get

E[x+
j ] ≥ 1 −

(

1 −
∑

u j∈S �
y∗
�

f

) f

> 1 −
(

1 − x∗
j
f

) f

≥ ρ( f )x∗
j (7)

This implies our bound since

E[∑n
i=1 w(ui )x

+
i ] =

n∑

i=1

w(ui )E[x+
i ] ≥

n∑

i=1

w(ui ) ρ( f )x∗
j

= ρ( f )OPTfrac ≥ ρ( f )OPT

��

Proof of (c) Note that inequalities (1) and (2) imply 1 − x ≤ e−x ≤ 1 − x + (x2/2)
for all x ∈ [0, 1]. In particular, the following implication holds:

∀ c > 1 ∀ x ∈ [0, (2/c2)(c − 1)] : 1 − x ≥ 1 − cx + (c2x2/2) ≥ e−cx (8)

We estimate an upper bound on E[x+
j ] in terms of x∗

j in the following manner:

Case 1: ∃ �∃ �∃ � such that u j ∈ S�u j ∈ S�u j ∈ S� and y∗
� > 1/2y∗
� > 1/2y∗
� > 1/2. Thus, x∗

j ≥ y∗
� > 1/2, and E[x+

j ] ≤
1 ≤ 2x∗

j .
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Case 2: y∗
� ≤ 1/2y∗
� ≤ 1/2y∗
� ≤ 1/2 for every index ��� satisfying u j ∈ S�u j ∈ S�u j ∈ S�. Note that x∗

j ≥
(∑

u j∈S�
y∗
�

)
/ f , and setting c = 2 in inequality (8) we get 1 − x ≥ e−2x

for all x ∈ [0, 1/2]. Now, standard calculations show the following:

E[x+
j ] = 1 −

∏

u j∈S�

(1 − y∗
� ) ≤ 1 −

∏

u j∈S�

e−2y∗
� = 1 − e

−2
∑

u j∈S �
y∗
�

= 1 − e−2 f x∗
j ≤ 1 − (1 − 2 f x∗

j ) = 2 f x∗
j

Combining all the cases and using (7), it follows that ρ( f )x∗
j ≤ E[x+

j ] ≤
min

{
1, 2 f x∗

j

}
. Recall that

∑
u�∈C j

x∗
� = OPT#/χ > 0 for every j ∈ {1, . . . , χ}.

Since E[p j ] = E[∑u�∈C j
x+
� ] = ∑

u�∈C j
E[x+

� ], we get the following bounds for all
j ∈ {1, . . . , χ}:

ρ( f )OPT#
χ

=
∑

u�∈C j

ρ( f )x∗
� ≤ E[p j ]

=
∑

u�∈C j

E[x+
� ] ≤

∑

u�∈C j

(2 f )x∗
� = 2 f

OPT#
χ

(9)

which gives the bound E[ci ]
E[c j ] ≤ 2 f

ρ( f ) for all i, j ∈ {1, . . . , χ}. ��
Proofs of (d)(i) via Doobmartingales Note that the random variables x+

1 , . . . , x+
n may

not be pairwise independent since two distinct elements belonging to the same set
are correlated, and consequently the random variables p1, . . . , pχ also may not be
pairwise independent. Indeed in the worst case an element-selection variable may be
correlated to (a − 1) f other element-selection variables, thereby ruling out straight-
forward use of Chernoff-type tail bounds.

For sufficient large OPT#, this situation can be somewhat remedied by using Doob
martinagales and Azuma’s inequality by finding a suitable ordering of the element-
selection variables conditional on the rounding of the set-selection variables. We
assume that the reader is familiar with basic definitions and results for the theory of
martingales (e.g., see [37, Section 4.4]). Fix an arbitrary ordered sequence y+

1 , . . . , y+
m

of the set-indicator variables. Call an element-indicator variable x+
i “settled” at the t th

step if and only if ∪ui∈S j {y j } � {y+
1 , . . . , y+

t−1} and ∪ui∈S j {y j } ⊆ {y+
1 , . . . , y+

t }.
The elementary event in our underlying sample spaceΩΩΩ are all possible 2n assignments
of 0-1 values to the variables x+

1 , . . . , x+
n . For each t ∈ {1, . . . ,m}, let Vt be the subset

of element-selection variables whose values are settled at the t th step, let πt be an arbi-
trary ordering of the variables in Vt , and let us relabel the element-indicator variable
names so that x+

1 , x+
2 , . . . , x+

n is the ordering of all element-selection variables given
by the ordering π1, . . . , πm . For each t ∈ {0, 1, . . . ,m} and eachw1, . . . , wt ∈ {0, 1},
let Bw1,...,wt denote the event that y

+
j = w j for j ∈ {1, . . . , t}. Let x+

1 , x+
2 , . . . , x+

qt be

the union of set of all qt element-indicator variables that are settled at the i th step over
all i ∈ {1, . . . , t}, and suppose that the event Bw1,...,wt induces the following assign-
ment of values to the element-indicator variables: x+

1 = b1, . . . , x+
qt = bqt for some
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b1, . . . , bqt ∈ {0, 1}. Define the blockB′
w1,...,wt

⊆ ΩΩΩ induced by the eventBw1,...,wt as
B′

w1,...,wt
= {b1, . . . , bqt rqt+1 . . . rn | rqt+1, . . . , rn ∈ {0, 1}}. LettingFFFt be the σ -field

generated by the partition ofΩΩΩ into the blocks B′
w1,...,wt

for eachw1, . . . , wt ∈ {0, 1},
it follows that FFF0,FFF1, . . . ,FFFm form a filter for the σ -field (ΩΩΩ, 2ΩΩΩ). Suppose that
U contains ni > 0 elements of color i , let x+

α1
, . . . , x+

αni
be the ordered sequence

of the element-selection variables for elements of color i determined by the sub-
sequence of these variables in the ordering x+

1 , . . . , x+
n , and suppose that x+

α j
was

settled at the t thα j
step. Let Xi = ∑ni

j=1 x
+
α j
, and define the Doob martingale sequence

X0, X1, . . . , Xni where X0 = E[Xi ] = ∑ni
j=1 E[x+

α j
], and X� = E[Xi | y+

1 , . . . , y+
tα�

]
for all � ∈ {1, . . . , ni }. Since ni < n, Xni = Xi and |X� − X�−1| ≤ 1 for for all
� ∈ {1, . . . , ni }, by Azuma’s inequality (for any Δ > e),

Pr
[ ∣
∣
∣
∑ni

j=1x
+
α j

−∑ni
j=1E[x+

α j
]
∣
∣
∣ ≥ 3

√
lnΔ

√
n
]

≤ Pr
[ ∣
∣
∣
∑ni

j=1x
+
α j

− X0

∣
∣
∣ ≥ 3

√
lnΔ

√
ni
]

= Pr
[
|Xni − X0| ≥ 3

√
lnΔ

√
ni
]

≤ e−4 lnΔ = Δ−4

⇒ Pr
[∑ni

j=1E[x+
α j

] − 3
√
lnΔ

√
n <

∑ni
j=1x

+
α j

<
∑ni

j=1E[x+
α j

] + 3
√
lnΔ

√
n
]

> 1 − Δ−4

Recall from (9) that (1 − 1/e)OPT#
χ

<
∑ni

j=1 E[x+
α j

] ≤ 2 f OPT#
χ

, and the inequal-

ity
∑ni

j=1 E[x+
α j

] ≥ 6
√
lnΔ

√
n is therefore satisfied provided OPT ≥ 6

(
1 −

1/e
)−1

(
√
n lnΔ)χ . Setting Δ = 2χ and remembering that pi = ∑ni

j=1x
+
α j
, we get

the following bound for any i ∈ {1, . . . , χ}:

Pr
[
1−1/e

2

(
OPT#

χ

)
< pi < 3 f

(
OPT#

χ

)]
> 1 − (1/16)χ−4

and therefore Pr
[
pi
p j

≤ 6
1−1/e f

]
> 1 − (1/8)χ−4. Thus, it follows that

∧

i, j∈{1,...,χ}
Pr
[
pi ≤ 6

1−1/e p j

]
= 1 −

∨

i, j∈{1,...,χ}
Pr
[
pi > 6

1−1/e p j

]

≥ 1 −
∑

i, j∈{1,...,χ}
Pr
[
pi ≥ 6

1−1/e p j

]
> 1 − (χ2) 1

8χ4 ≥ 1
32

This implies our claim in (d)(i) using the technique in Sect. 9.3. ��

9.5 ALG-MEDIUM-OPT#: Details and Proofs of Relevant Claims in (a)–(c) and
(d)(ii)

Alg-medium-opt#: idea behind the modified LP-relaxation and approach
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Fig. 4 A modified LP-relaxation for Alg-medium-opt# with with n +m + χ variables and O
(
f n + χ2

)

constraints

A limitation of Alg-large-opt# is that we could not use Fact 1 of Srinivasan
to the fullest extent. Although Fact 1 guaranteed that the set-indicator variables are
negatively correlated and hence Chernoff-type tail bounds can be applied to them due
to the result by Panconesi and Srinivasan [41], our coloring constraints are primarily
indicated by element-indicator variables which depend implicitly on the set-indicator
variables. In fact, it is not difficult to see that the element-indicator variables are not
negatively correlated in the sense of [41, 46]5 even if the set-indicator variables are
negatively correlated.

Our idea is to remedy the situation by expressing the coloring constraints also by
set-indicator variables and use the element-indicator variables to implicitly control the
set-indicator variables in these coloring constraints. This will also necessitate using
additional variables.

A modification of the LP-relaxation in Fig. 3
To begin, we quantify the number of elements of different colors in a setSi using

the following notation: for j ∈ {1, . . . , χ}, let νi, j be the number of elements in
Si of color j . Note that 0 ≤ νi, j ≤ a. Fix an optimal integral solution of Fmc(χ, k)
coveringOPT# elements and a color value j , and consider the following two quantities:
A = ∑

u�∈C j
x� andB = ∑m

i=1 νi, j yi . Note thatA = OPT#
χ

,B ∈ {k, k+1, . . . , ak},
and A ≤ B ≤ fA by definition of f . Thus, B = h jOPT# is satisfied by a h j that
is a rational number from the set

{ 1
χ
, 1

χ
+ 1

OPT#
, 1

χ
+ 2

OPT#
, . . . ,

f
χ

− 1
OPT#

,
f
χ

}
. We

will use the LP-relaxation in Fig. 3 with χ additional variables h1, . . . , hχ and the
following additional constraints

∑m
i=1 νi, j yi = h jOPT# for j ∈ {1, . . . , χ}

1/χ ≤ h j ≤ f /χ for j = 1, . . . , χ

For reader’s convenience, the new LP-relaxation in its entirety is shown in Fig. 4.

5 The binary random variables z1, . . . , zr ∈ {0, 1} are called negatively correlated in [41, 46] if the
following holds: ∀ I ⊆ {1, . . . , r} : Pr

[∧i∈I (zi = 0)
] ≤ ∏

i∈I Pr
[
zi = 0

]
and Pr

[∧i∈I (zi = 1)
] ≤

∏
i∈I Pr

[
zi = 1

]
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Analysis of the modified LP-relaxation
By our assumption on h j ’s, the LP-relaxation has a feasible solution. We use the

same randomized rounding procedure (using Fact 1) as in Sect. 9.4 for Alg-large-
opt#. The proofs for parts (b)–(d) are the same as before since all prior relevant
inequalities are still included. Thus, we concentrate on the proof of (e)(ii). A crucial
thing to note is the following simple observation:

Consider the sum Δ = ∑m
i=1 νi, j yi for any assignment of values y1, . . . , ym ∈

{0, 1}. Then, the number of elements covered by the sets corresponding to those
variables that are set to 1 is between Δ/ f and Δ.

Fix a color j . Let K j = h jOPT#, αi = νi, j
a and consider the summation L j =

∑m
i=1 αi y

+
i . Since αi ∈ [0, 1] for all i , by Fact 1 we can apply standard Chernoff

bounds [37] forL j . Note thatE[L j ] = ∑m
i=1 αi y∗

i = K j
a . AssumingK j ≥ 16a ln χ ,

we get the following for the tail-bounds:

Pr
[∑m

i=1 νi, j y
+
i > 5K j

] = Pr
[
L j > 5(K j/a)

]
< 2−6K j /a ≤ 2−96 ln χ < χ−96

Pr
[∑m

i=1 νi, j y
+
i < K j/2

] = Pr
[
L j <

K j /a
2

]
< e−

K j
8a ≤ e−2 ln χ = χ−2

Remember that p j = ∑
u�∈C j

x+
� is the random variable denoting the number of

elements of color j selected by our randomized algorithm. Since 1
f

∑m
i=1 νi, j y

+
i ≤

c j ≤ ∑m
i=1 νi, j y

+
i we get

Pr
[
p j > 5K j

] ≤ Pr
[∑m

i=1 νi, j y
+
i > 5K j

]
< χ−96,

Pr
[
p j <

K j
2 f

]
≤ Pr

[∑m
i=1 νi, j y

+
i <

K j
2

]
< χ−2

Note that OPT#
χ

≤ K j = h jOPT# ≤ f OPT#
χ

, and therefore 1/ f ≤ Ki
K j

≤ f for any two

i, j ∈ {1, . . . , χ}. Let E j be the event defined as E j
def= K j

2 f ≤ c j ≤ 5K j . Then for
any two i, j ∈ {1, . . . , χ} we get

Pr

[
pi
p j

≤ 10 f 2
]

≥ Pr
[
Ei ∧ E j

] = 1 − Pr
[
Ei ∨ E j

]
≥ 1 − Pr

[
Ei
]
− Pr

[
E j

]

≥ 1 − Pr [pi > 5Ki ] − Pr [pi < Ki/(2 f )] − Pr
[
p j > 5K j

]− Pr
[
p j < K j/(2 f )

]

> 1 − 2
(
χ−96 + χ−2) (10)

The assumption of K j ≥ 16a ln χ , is satisfied provided OPT# ≥ 16aχ ln χ . (10)
implies our claim in (d)(ii) using the technique in Sect. 9.3.
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9.6 ALG-SMALL-OPT#: Details and Proofs of Relevant Claims in (a)–(c) and (d)(iii)

Another modification of the LP-relaxation in Fig. 3
Note that for this case χ = O(1). Fix an optimal solution for our instance of Fmc.

LetAi be the collection of those sets that contain at least one element of color i and let
Zi = ∑

S�∈Ai
y� indicate the number of sets fromAi selected in an integral solution

of the LP; obviously Zi ≥ 1. We consider two cases for Zi depending on whether it is
at most 5 ln χ or not. We cannot know a priori whether Zi ≤ 5 ln χ or not. However,
for our analysis it suffices if we can guess just one set belonging to Zi correctly. We
can do this by trying out all relevant possibilities exhaustively in the followingmanner.
Let Ψ = {1, . . . , χ} be the set of indices of all colors. For each of the 2Ψ − 1 subsets
Ψ ′ of Ψ , we “guess” that Zi ≤ 5 ln χ if and only if i ∈ Ψ ′. Of course, we still do
not know one set among these 5 ln χ subset for each such i , so we will exhaustively
try out each of the at most |Ai | ≤ m sets for each i . For every such choice of Ψ ′ and
every such choice of a setSiΨ ′ ∈ Ai for each i ∈ Ψ ′, we perform the following steps:

• Select the sets SiΨ ′ and their elements for each i ∈ Ψ ′ Set the variables corre-
sponding to these sets and elements to 1 in the LP-relaxation in Fig. 3, i.e., set
yiΨ ′ = 1 and x j = 1 for every i ∈ Ψ ′SiΨ ′ and j ∈. Remove any constraint that is
already satisfied after the above step.

• Add the following (at most χ ) constraints to the LP-relaxation:

∑
(u�∈Ci )∧(u�∈S j )

y j > 5 ln χ fori /∈ Ψ ′

Note that the total number of iterations that is needed is at most O((2m)χ ), which is
polynomial provided χ = O

(
max

{
1, log n

logm

})
.

Analysis of the modified LP-relaxation
We now analyze that iteration of the LP-relaxation that correctly guesses the value

of OPT#, the subset Ψ ′ ⊆ Ψ and the sets SiΨ ′ ∈ Ai for each i ∈ Ψ ′. As already
mentioned elsewhere, the random variables x+

1 , . . . , x+
n may not be pairwise inde-

pendent since two distinct elements belonging to the same set are correlated, and
consequently the random variables p1, . . . , pχ also may not be pairwise indepen-
dent. For convenience, let μi = E[x+

i ] and Ei denote the event Ei ≡ x+
i = 1; note

that (1 − e−1)x∗
i < Pr [Ei ] = μi ≤ min{1, 2 f x∗

i }. We first calculate a bound on
cov(x+

i , x+
j ) for all i �= j as follows. If x+

i and x+
j are independent then of course

cov(x+
i , x+

j ) = 0, otherwise

− min
{
μi , μ j

} ≤ − Pr [Ei ] Pr
[
E j
] ≤ Pr

[
Ei ∧ E j

]− Pr [Ei ] Pr
[
E j
] = E[x+

i x+
j ] − μiμ j

= cov(x+
i , x+

j ) ≤ Pr
[
Ei ∧ E j

]− μiμ j ≤ min
{
μi , μ j

}− μiμ j < min
{
μi , μ j

}

giving the following bounds:

− min
{
ρ( f )x∗

i , ρ( f )x∗
j

}
≤ cov(x+

i , x+
j ) ≤ min

{
2 f x∗

i , 2 f x∗
j , 1

}
(11)
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For notational convenience, let Di, j = {� | ui , u j ∈ S�, j �= i} be the indices of
those sets in which both the elements ui and u j appear, and let Di = ∪n

j=1Di, j . Note

that |Di, j | ≤ f , |Di | ≤ (a − 1) f , and the random variable x+
i is independent of all

x+
j satisfying j /∈ Di . Using this observation and (11), for any i ∈ {1, . . . , n} we get

n∑

j=1

cov(x+
i , x+

j ) ≤
∑

j∈Di

(
min

{
μi , μ j

} ) ≤ |Di |μi ≤ a f μi ≤ min
{
2a f 2x∗

i , a f
}

n∑

j=1

cov(x+
i , x+

j ) ≥ −
∑

j∈Di

min
{
μi , μ j

} ≥ −min
{
|Di |μi , ρ( f )

∑

j∈Di

x∗
j

}
(12)

≥ −min
{
(a − 1) f μi , ρ( f )

∑

j∈Di

x∗
j

}
> −a f x∗

i (13)

The above bounds can be used to bound the total pairwise co-variance between ele-
ments in two same or different color classes as follows. Consider two color classes Ci

and C j (i = j is allowed). Then,

∑

ur∈Ci

∑

us∈C j

cov(x+
r , x+

s ) ≤
∑

ur∈Ci

n∑

j=1

cov(x+
r , x+

j ) ≤
∑

ur∈Ci

min
{
2a f 2x∗

r , a f
}

= min
{
2a f 2

∑
ur∈Ci

x∗
r , a f |Ci |

}
≤ min

{
2a f 2 OPT#

χ
, a f n

}
(14)

∑

ur∈Ci

∑

us∈C j

cov(x+
r , x+

s ) ≥ −
∑

ur∈Ci

∑

j∈Dr

min{μr , μ j } > −
∑

ur∈Ci

a f x∗
r = −a f OPT#

χ

(15)

For calculations of probabilities of events of the form “pi > Δp j”, we first need
to bound the probability of events “p j = 0” for j ∈ {1, . . . , χ}. If j ∈ Ψ ′ then
Pr
[
p j = 0

] = 0 since at least one set containing an element of color j is always
selected. Otherwise,

∑
S�∈A j

y∗
� > 5 ln χ , and p j = 0 if and only if y+

� = 0 for every

S� ∈ A j . This gives us the following bound for j /∈ Ψ ′:

Pr
[
p j = 0

] =
∏

S�∈A j

Pr
[
y+
� = 0

] =
∏

S�∈A j

(1 − y∗
� ) ≤

∏

S�∈A j

e−y∗
�

= e
−∑

S �∈A j
y∗
� ≤ e−5 ln χ = χ−5

Combining both cases, we have Pr
[
p j = 0

] ≤ 1/χ5 for all j .
We now can calculate the probabilities of events of the form “pi > Δp j” for

Δ = Δ1 + Δ2 ≥ 1, Δ1,Δ2 ≥ 0 and i, j ∈ {1, . . . , χ} as follows:
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Pr
[
pi ≥ Δp j

] ≤ Pr
[
p j = 0

]+ Pr
[
pi ≥ Δp j | p j ≥ 1

]

≤ χ−5 + Pr
[
pi ≥ Δ1 p j + Δ2 | p j ≥ 1

]

= χ−5 + Pr
[
(pi ≥ Δ1 p j + Δ2) ∧ (p j ≥ 1)

]

Pr
[
p j ≥ 1

] < χ−5 + Pr
[
pi ≥ Δ1 p j + Δ2

]

1 − Pr
[
p j = 0

]

< χ−5 + Pr
[
pi ≥ Δ1 p j + Δ2

]

1 − χ−5
(16)

For a real number ζ > 0, let δi, j = pi − ζ p j . We have the following bound on E[δi, j ]
for all ζ ≥ 3 f :

E[δi, j ] = E[pi ] − ζ E[p j ] ≤ 2 f
OPT#

χ
− ζ ρ( f )

OPT#
χ

< 0

Therefore, using Chebyshev’s inequality we get (for all ζ ≥ 3 f and λ > 1):

Pr
[
pi ≥ ζ p j + λ

√
var(δi, j )

]
= Pr

[
δi, j ≥ λ

√
var(δi, j )

]

< Pr
[∣
∣ δi, j − E[δi, j ]

∣
∣ > λ

√
var(δi, j )

]
≤ 1/λ2 (17)

Using (17) in (16) with Δ1 = ζ , Δ2 = λ
√
var(δi, j ) and λ = 10χ we get

Pr
[
pi <

(
ζ + 10χ

√
var(δi, j )

)
p j
] = 1 − Pr

[
pi ≥ (

ζ + 10χ
√
var(δi, j )

)
p j
]

> 1 − χ−5 − χ−100

1−χ−5 > 1 − χ−4 (18)

We now calculate a bound on var(δi, j ) using (14) and (15) as follows:

var(δi, j ) = var(pi − ζ p j ) = var
( ∑

u�∈Ci

x+
� +

∑

u�∈C j

(−ζ x+
� )
)

=
∑

u�∈Ci

var
(
x+
�

)+ ζ 2
∑

u�∈C j

var
(
x+
�

)+
∑

ur ,us∈Ci ,r �=s

cov(x+
r , x+

s ) +
∑

ur ,us∈C j ,r �=s

cov(−ζ x+
r ,−ζ x+

s )

+
∑

ur∈Ci ,us∈C j

cov(x+
r ,−ζ x+

s )

≤
∑

u�∈Ci

μ� + ζ 2
∑

u�∈C j

μ� + 2a f 2 OPT#
χ

+ ζ 2
∑

ur ,us∈C j ,r �=s

cov(x+
r , x+

s ) − ζ
∑

ur∈Ci ,us∈C j

cov(x+
r , x+

s )

≤ E[ci ] + ζ 2
E[c j ] + 2a f 2 OPT#

χ
+ 2ζ 2a f 2 OPT#

χ
+ ζa f OPT#

χ

≤ 2 f OPT#
χ

+ ζ 22 f OPT#
χ

+ 2a f 2 OPT#
χ

+ ζ 22a f 2 OPT#
χ

+ ζa f OPT#
χ

≤ 4ζ 2a f 2 OPT#
χ

⇒
√
var(δi, j ) ≤ 2ζ

√
a f

√
OPT#/χ (19)

Setting ζ = 3 f andusing (19) in (18)weget Pr
[
ci <

(
3 f + 60

√
a f 2

√
OPT#χ

)
c j
]

>

1 − χ−4. This implies our claim in (d)(iii) using the technique in Sect. 9.3.
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9.7 Limitations of Our LP-Relaxation: “A Gap of Factor f” for Coloring Constraints

The coloring constraint bounds in Theorem 1(e)(i)–(ii) depend on f or f 2 only. It is
natural to ask as a possible first direction of improvement whether this dependence
can be eliminated or improved by better analysis of our LP-relaxations. Proposition 1
shows that this may not be possible even for χ = 2 unless one uses a significantly
different LP-relaxation for Fmc(χ, k).

Proposition 1 There exists optimal non-integral solutions of Fmc with the following
property: any rounding approach that does not change the values of zero-valued vari-
ables in the fractional solution must necessarily result in an integral solutions in which
the color constraints differ by at least a factor of f .

Proof Wewill show our result for the LP-relaxation in Fig. 3; proofs for other modified
versions of this LP-relaxation are similar. Consider α � 1 disjoint collections of sets
and elements of the following type: for j ∈ {1, . . . , α}, the j th collection consists
of a set of α + 1 elements U j = {u j

1, . . . , u
j
α+1} with C (u j

1) = 1 and C (u j
2) =

· · · = C (u j
α+1) = 2, and the α + 1 sets S

j
1 , . . . ,S

j
α+1 where S

j
i = U j\{u j

i }
for i ∈ {1, . . . , α + 1} (note that each element u j

i is in exactly α sets). Add to these
collections the additional 2α+2 elements u�

1, u
�
2 withC (u�

1) = 1 andC (u�
2) = 2, and

the α + 1 sets S � = {u�
1, u

�
2} for � ∈ {α + 1, . . . , 2α + 1}. Note that for our created

instance f = α. Consider the following two different solutions of the LP-relaxation:

(1) For a non-integral solution, let y j
1 = · · · = y j

α+1 = 1/α, let x j
1 = 1 and let

x j
2 = · · · = x j

α+1 = 1/α for j ∈ {1, . . . , α}, and set all other variables to zero.
This results in a solution with summation of set variables being α + 1 (i.e., α + 1
sets are selected non-integrally), and summation of element variables being 2α+2
(i.e., 2α + 2 elements are selected non-integrally). Moreover, the summation of
element variables with the color value of 1 is precisely the same as summation of
element variables with the color value of 2 since both are equal to α + 1.

(2) For an integral solution, let y� = x�
1 = x�

2 = 1 for � ∈ {α + 1, . . . , 2α + 1}. This
also results in a solution in which α + 1 sets are selected, the number of elements
covered is 2α + 2 and the number of elements of each color is α + 1.

The crucial things to note here is that the two above solutions are disjoint (i.e., non-zero
variables in one solution are zero in the other and vice versa), and thus any rounding
approach for the solution in (1) that does not change values of the zero-valued variables
results in an integral solution in which the number of elements of color 2 is f times
the number of elements of color 1. ��

10 A Tale of Fewer Colors: Deterministic Approximation for FMC
When � is “not too large”

In this section we provide polynomial-time deterministic approximations of Fmc via
the iterated rounding technique for LP-relaxations. We assume that the reader is famil-
iar with the basic concepts related to this approach as described, for example, in [32].
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Our approximation qualities will depend on the parameters f and χ and the coloring
constraint bounds are interesting only if χ is not too large, e.g., no more than, say,
poly-logarithmic in n. For better understanding of the idea, we will first consider the
special case Node- fmc of Fmc for which f = 2, and later on describe how to adopt
the same approach for arbitrary f . As per the proof of Theorem 1 (see Sect. 9.2) we
may assume we know the value of OPT# exactly. A main ingredient of the iterated
rounding approach is the following “rank lemma”.

Fact 2 (Rank lemma)[32, Lemma 2.1.4] Consider any convex polytope P
def= {x ∈

R
n |A jx ≥ b j for j ∈ {1, . . . ,m}, x ≥ 0} for some A1, . . . ,Am ∈ R

n and
(b1, . . . , bm)T ∈ R

m. Then the following property holds for every extreme-point for
P: the number of any maximal set of linearly independent tight constraints (i.e., con-
straints satisfyingA jx = b j for some j) in this solution equals the number of non-zero
variables.

10.1 ApproximatingNODE-FMC

Theorem 2 We can design a deterministic polynomial-time approximation algorithm
Alg-iter-round for Node- fmc with the following properties:

(a) The algorithm selects τ nodes where τ ≤
{
k + χ−1

2 , if χ = O(1)

k + χ − 1, otherwise

(b) The algorithm is a 1
2 -approximation for Node- fmc, i.e., the total weight of the

selected elements is at least OPT/2.
(c) The algorithm satisfies the ε-approximate coloring constraints (cf. Inequality (5))

as follows:

for all i, j ∈ {1, . . . , χ}, pi
p j

<

{
4 + 4χ, if χ = O(1)

4 + 2χ + 4χ2, otherwise

We discuss the proof in the rest of this section. Let G = (V , E) be the given graph,
and let deg(v) denote the degree of node v. Assume that G has no isolated nodes.

10.1.1 The Case of � = O(1)

Since the problem can be exactly solved in polynomial time by exhaustive enumeration
if k is a constant, we can assume k is at least a sufficiently large integer, e.g., assume
that k > 10χ .

Initial preprocessing
To begin, we “guess” χ + 1 nodes, say v1, . . . , vχ+1 ∈ V with deg(v1) ≤

deg(v2) ≤ · · · ≤ deg(vχ+1) such that there exists an optimal solution contains
these χ + 1 nodes with the following property: “the remaining k − (χ + 1) nodes
in the solution have degree at most deg(v1)”. Since there are at most

( n
χ+1

) = nO(1)

choices for such χ + 1 nodes, we can try them out in an exhaustive fashion. Thus, we
only need to analyze that run of our algorithm where the our guess is correct. Once
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these χ +1 nodes have been selected, we will use the following sets of nodes in V̂ and

”incidence-indexed” edges Ê as input to our algorithm (note that an edge e
def= {u, v}

may appear as two members (e, u) and (e, v) in Ê if both u and v are in V̂ ):

V̂ = V \ ( {v1, . . . , vχ+1} ∪ {v | degree of v in G is strictly larger than deg(v1)}
)

Ê = { (e, u) | (e def= {u, v} ∈ E
)∧(

v /∈ {v1, . . . , vχ+1}
)∧(

u ∈ V̂
) }

Fix an optimal solution Vopt ⊆ V that includes the nodes v1, . . . , vχ+1. We next make
the following parameter adjustments:

• We update an estimate for p j (the number of edges of color j covered by the
optimal solution) from its initial value of OPT#/χ in the following manner. Let
μ j be the number of edges of color j incident on at least one of the nodes in

{v1, . . . , vχ+1}. Consider the quantity q̂ j = ∑
u∈Vopt\{v1,...,vχ+1}

∣
∣
{
e

def= {u, v} ∈
E | (v /∈ {v1, . . . , vχ+1}) ∧ (C (e) = j)

} ∣
∣. Note that

∑χ+1
i=1 deg(vi ) ≤ 2OPT#

and q̂ j is an integer in the set
{
OPT#

χ
− μ j ,

OPT#
χ

− μ j + 1, . . . , 2
(OPT#

χ
− μ j

)} ⊆
{0, 1, 2, . . . , n} since any edge can be covered by either one or two nodes. Note that
there are at most OPT#

χ
− μ j + 1 ≤ OPT#

χ
≤ n

χ
possible number of integers values

that each q̂ j may take. Since χ = O(1), we can try out all possible combinations
of q̂ j values over all colors in polynomial time since (n/χ)χ = nO(1). Thus, we
henceforth assume that we know the correct value of q̂ j for each j ∈ {1, . . . , χ}.
Note that q̂ j ≥ 0 since our guess is correct.

• Update k (the number of nodes to be selected) by subtracting χ + 1 from it, and
call the new value k̂.

• Update Ci (the set of edges of color i) to be the set of edges in Ê that are of color
i .

Yet another LP-relaxation
Let |V̂ | = n̂ and |Ê | = m̂. We will start with an initial LP-relaxation of Node- fmc

on Ĝ which will be iteratively modified by our rounding approach. Our LP-relaxation
is the following modified version of the LP-relaxation in Fig. 3.

• There is a node indicator variable yv for every node v ∈ V̂ and an edge indicator
variable xe,u for every edge (e, u) ∈ Ê ; thus we have n̂ + m̂ variables in total.

• Constraints of the form “x j ≥ y�” and “x j ≤ ∑
u j∈S�

y�” in Fig. 3 are removed

now and instead replaced by at most two constraints xe,u = yu if yu ∈ V̂ and
xe,v = yv if yv ∈ V̂ . This is done so that we can apply the rank lemma in a
meaningful way.

• Note that the quantity
∑

u∈V̂
∑

e
def={u,v}∈Ci

xe,u for each color i is the integer q̂i
mentioned before.

• To maximize the parameter ranges over which our algorithm can be applied, we
replace the

(
χ
2

)
constraints in Fig. 3 of the form “

∑
u�∈Ci

x� = ∑
u�∈C j

x� for

i, j ∈ {1, . . . , χ}, i < j” by the χ constraints
∑

u∈V̂
∑

e
def={u,v}∈Ci

xe,u = q ′
i for

i ∈ {1, . . . , χ}.
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Fig. 5 The initial LP-relaxation L = L (0) for the graph Ĝ used in Theorem 2. The iterated rounding
approach will successively modify the LP to create a sequence L (1),L (2), . . . of LP’s

The entire initial LP-relaxationL for Ĝ is shown in Fig. 5 for convenience. Note that
the number of constraints in lines (1)–(3) of Fig. 5 is exactly m̂ + χ + 1.
Details of iterated rounding

We will use the variable t ∈ {0, 1, 2, . . . , n} to denote the iteration number of our
rounding, with t = 0 being the situation before any rounding has been performed, and
we will use a “superscript (t)” for the relevant quantities to indicate their values or
status after the t th iteration of the rounding, e.g., n̂(0) = n̂ and n̂(1) is the value of n̂
after the first iteration of rounding. Our iterated rounding algorithm Alg-iter-round
in high level details is shown in Fig. 6, where the following notation is used for brevity
for a node u ∈ V̂ :

Zvariables
u = {yu}

⋃ {
xe,u | (e, u) ∈ Ê

}

For concise analysis of our algorithm, we will use the following notations:

• Wχ+1 is the sum of weights of all the edges incident to one or more nodes from
the set of nodes {v1, . . . , vχ+1}.

• w(X) = ∑
xu,e∈X w(e) for a subset of variable X ⊆ {xe,u | (e, u) ∈ Ê}.

• W (t)
Alg = w(X̂ (t)

sol) is the sum of weights of the edges whose variables are in X̂ (t)
sol

(thus, for example, W (0)
Alg = 0).

• OPT(t)
frac is the optimum value of the objective function of the LP-relaxation L (t)

during the t th iteration of rounding.
• p̂(t)

i is the number of edges of color i selected by Alg-iter-round up to and
including the t th iteration of rounding.

• tfinal is the value of t in the last iteration of rounding.

Lemma 2 Alg-iter-round terminates after at most n iterations and selects at most
k + χ−1

2 nodes.

Proof For finite termination, it suffices to show that at least one of the three cases in
Alg-iter-round always applies. Consider the first iteration, say when t = α, when
neither Case 1 nor Case 2 applies. Note that this also implies that xe,u /∈ {0, 1} for
any variable xe,u in LP(α) since otherwise the variable yu in LP(α) will be either 0 or
1 via the equality constraint yu = xe,u and one of Case 1 or Case 2 will apply. Thus
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Fig. 6 Pseudo-code of the iterated rounding algorithm Alg-iter-round used in Theorem 2. V̂ (tfinal)
sol is the

set of nodes selected in our solution

the total number of non-zero variables is n̂(α) + r̂ (α). Since the constraints in lines
(4)–(5) of Fig. 5 are not strict constraints now (i.e., not satisfied with equalities), the
total number of any maximal set of strict constraints is at most the total number of
constraints in lines (1)–(3) of Fig. 5, i.e., at most r̂ (α) + χ + 1. By the rank lemma
(Fact 2) r̂ (α) + χ + 1 ≥ n̂(α) + r̂ (α) ≡ n̂(α) ≤ χ + 1, which implies Case 3 applies
and the algorithm terminates.

We now prove the bound on the number of selected sets. The value of k̂ decreases
by 1 every time a new node is selected in Case 2 and remains unchanged in Case 1
where no node is selected. In the very last iteration involving Case 3, since G has no
isolated nodes the number of node indicator variables is at least the number of edge
indicator variables, implying n̂′ ≤ n̂/2 ≤ χ+1

2 . Since k̂(tfinal−1) ≥ 1, the total number

of nodes selected is at most k + (̂n′ − 1) ≤ k + χ−1
2 . ��

Lemma 3 The sum of weights Γ of the edges selected by Alg-iter-round is at least
OPT/2.

Proof Let W (t)
Alg−W = W (t)

Alg − Wχ+1, and OPT−W = OPT − Wχ+1. The proof of

Lemma 2 shows that Case 3 of Alg-iter-round is executed only when t = tfinal.
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Thus, the details of Alg-iter-round in Fig. 6 imply the following sequence of asser-
tions:

(i) OPT(0)
frac ≥ OPT−W and OPT(t)

frac = OPT(t−1)
frac − (

w(X̂ (t)
sol) − w(X̂ (t−1)

sol )
)
for t ∈

{1, . . . , tfinal − 1}. Since the variables xeu, j ∈ X̂ (tfinal)
sol \X̂ (tfinal−1)

sol are at most 1, we
have

OPT(tfinal)
frac = OPT(tfinal−1)

frac −
∑

xeu, j ∈X̂ (tfinal)
sol \X̂ (tfinal−1)

sol

w(e)xeu, j ≥ OPT(tfinal−1)
frac

−
∑

xeu, j ∈X̂ (tfinal)
sol \X̂ (tfinal−1)

sol

w(e)

= OPT(tfinal−1)
frac − (

w(X̂ (tfinal)
sol ) − w(X̂ (tfinal−1)

sol )
)

Using the fact that OPT(tfinal)
frac = 0, we can therefore unravel the recurrence to get

OPT(tfinal)
frac ≥ OPT(0)

frac − w(X̂ (tfinal)
sol ) ⇒ w(X̂ (tfinal)

sol ) ≥ OPT(0)
frac ≥ OPT−W (20)

(ii) W (0)
Alg−W = 0 and W (t)

Alg−W = W (t−1)
Alg−W + (

w(X̂ (t)
sol) − w(X̂ (t−1)

sol )
)
for t ∈

{1, . . . , tfinal}. Using (20) we can unravel the recurrence we get

W (tfinal)
Alg−W = w(X̂ (tfinal)

sol ) ≥ OPT(0)
frac ≥ OPT−W

Noting that an edge e
def= {u, v} can contribute the value of w(e) twice in W (tfinal)

Alg
corresponding to the two variables xe,u and xe,v , the total weight Γ of selected edges
in our solution is at least

Γ ≥ Wχ+1 + 1

2
W (tfinal)
Alg ≥ Wχ+1 + W (tfinal)

Alg

2
≥ Wχ+1 + OPT−W

2
= OPT

2
��

��

Our proof of Theorem 2 is therefore completed oncewe prove the following lemma.

Lemma 4 For all i, j ∈ {1, . . . , χ} p̂(tfinal)
i

p̂(tfinal)
j

≤ 4 + 4χ .

Proof When t = tfinal Case 3 applies and, since the variables xeu, j ∈ X̂ (tfinal)
sol \X̂ (tfinal−1)

sol

are at most 1, q̂(tfinal)
i ≤ 0 and consequently q̂(tfinal−1)

i − q̂(tfinal)
i ≥ q̂(tfinal−1)

i . Noting

that an edge e
def= {u, v} can contribute twice in the various q̂(t)

i ’s corresponding to the
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two variables xe,u and xe,v and remembering that q̂(0)
i = q̂i , we get

p̂(tfinal)
i ≥ 1

2

( tfinal∑

t=1

(
q̂(t−1)
i − q̂(t)

i

))+ μi ≥ 1

2

( tfinal−1∑

t=1

(
q̂(t−1)
i − q̂(t)

i

)+ q̂(tfinal−1)
i

)

+ μi = q̂(0)
i

2
+ μi

= q̂i
2

+ μi ≥ OPT#
2χ

− μi

2
+ μi = OPT#

2χ
+ μi

2

We can get an upper bound on p̂(tfinal)
i by getting an upper bound on q̂(tfinal−1)

i − q̂(tfinal)
i

in the followingmanner. Consider the n̂(tfinal)′ < n̂(tfinal) ≤ χ+1 nodes u1, . . . , un̂(tfinal)′
in Case 3. By choice of the nodes v1, . . . , vχ+1 of degrees deg(v1), . . . ,deg(vχ+1),
respectively, the number of edges incident on ui is at most deg(vi ) for all i ∈
{1, . . . , n̂(tfinal)′ }. Thus, we get q̂(tfinal−1)

i − q̂(tfinal)
i ≤ ∑χ+1

j=1 deg(v j ) ≤ 2OPT#, and
consequently

p̂(tfinal)
i ≤

tfinal∑

t=1

(
q̂(t−1)
i − q̂(t)

i

) ≤
tfinal−1∑

t=1

(
q̂(t−1)
i − q̂(t)

i

)+ 2OPT# = q̂i + 2OPT#

≤ 2
(
OPT#

χ
− μi

)
+ 2OPT# = (2 + 2χ)OPT#

χ

Thus, for all i, j ∈ {1, . . . , χ} we have

p̂(tfinal)
i

p̂(tfinal)
j

≤ (2 + 2χ)OPT#
χ

OPT#
2χ + μ j

2

< 4 + 4χ��

��

10.1.2 The Case of Arbitrary �

As stated below, there are two steps in the previous algorithm that cannot be executed
in polynomial time when χ is not a constant:

(1) We cannot guess the χ + 1 nodes v1, . . . , vχ+1 in polynomial time. Instead, we
guess only one node v1 such that there exists an optimal solution contains v1 with
the following property: “the remaining k − 1 nodes in the solution have degree at
most deg(v1)”.

(2) We cannot guess the exact value of q̂i by exhaustive enumeration and therefore
we cannot use the χ constraints “

∑
u∈V̂

∑

e
def={u,v}∈Ci

xe,u = q̂i” in line (3) of

the LP-relaxation in Fig. 5 anymore. However, note that it still holds that q̂i is an
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integer in the set
{OPT#

χ
− μi ,

OPT#
χ

− μi + 1, . . . , 2
(OPT#

χ
− μi

)}
. Thus, instead

we use the 2χ constraints

(3) OPT#
χ

− μi ≤
∑

u∈V̂

∑

e
def={u,v}∈Ci

xe,u = q̂i ≤ 2
(OPT#

χ
− μi

)
for all i ∈ {1, . . . , χ}

We need modifications of the bounds in the previous proof to reflect these changes as
follows:

• We make some obvious parameter value adjustments such as: V̂ = V \{v1}, Ê =
E\{{u, v1} | {u, v1} ∈ E}, k̂(0) = k − 1, μi ≤ deg(v1) for all i .

• The number of constraints in lines (1)–(3) of Fig. 5 is now m̂ + 2χ + 1.
• The condition in Case 3 of Fig. 6 is now 1 ≤ n̂ ≤ 2χ + 1.
• In Lemma 2, we select at most

⌊
k + 2χ−1

2

⌋ = k + χ − 1 nodes.

• The calculations for the upper bound for p̂(tfinal)
i in Lemma 4 change as follows.

By choice of the node v1 of degree deg(v1), the number of edges incident on ui is

at most deg(v1) for all i ∈ {1, . . . , n̂(tfinal)′ }. This now gives q̂(tfinal−1)
i − q̂(tfinal)

i ≤
(2χ + 1)deg(v1) ≤ (2χ + 1)OPT#, and therefore p̂(tfinal)

i ≤ q̂i + (2χ + 1)OPT# ≤
2
(
OPT#

χ
− μi

)
+(2χ +1)OPT# < (2+χ +2χ2)OPT#

χ
. This gives us the following

updated bound:

p̂(tfinal)
i

p̂(tfinal)
j

≤ (2 + χ + 2χ2)OPT#
χ

OPT#
2χ + μ j

2

< 4 + 2χ + 4χ2

10.2 The General Case: Approximating FMC

Theorem 3 (generalizing Theorem 2 for Fmc) We can design a deterministic
polynomial-time approximation algorithm for Fmc with the following properties:

(a) The algorithm selects τ sets where τ ≤
{
k + χ−1

2 , if χ = O(1)

k + χ − 1, otherwise
(b) The algorithm is a 1/ f -approximation for Node- fmc, i.e., the total weight of the

selected elements is at least OPT/ f .
(c) The algorithm satisfies the ε-approximate coloring constraints (cf. Inequality (5))

as follows:

for all i, j ∈ {1, . . . , χ}, pi
p j

<

{
O(min{χ2 f , χ f 2}), if χ = O(1)

O( f 2 + χ2 f ), otherwise

The proof of Theorem 3 is a suitable modified version of the proof of Theorem 2.
We point out the important alterations that are needed.
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General Modifications

• Nodes and edges now correspond to sets and elements, respectively, incidence of
an edge on a node corresponds to membership of an element in a set, and degree
of a node corresponds to number of elements in a set.

• There is a set indicator variable y j for every element S j ∈ V̂ . For every element
(ui ,S j ) ∈ Ê , there is an element indicator variable xi, j and a constraint xi, j = y j .

• Now
∑χ+1

i=1 |Si | ≤ min{χ, f }OPT# since any element in any one of the sets from
S1, . . . ,Sχ+1 can appear in at most min{χ, f } other sets in the collection of

sets S1, . . . ,Sχ+1. Also, q̂ j is an integer in the set
{
OPT#

χ
− μ j ,

OPT#
χ

− μ j +
1, . . . , f

(OPT#
χ

−μ j
)} ⊆ {0, 1, 2, . . . , n} since any element can appear in at most

f sets.
• An element ui appearing in fi ≤ f sets, say setsS1, . . . ,S fi , can now contribute

the value ofw(ui ) atmost fi ≤ f times inW (tfinal)
Alg corresponding to the fi variables

xi,1, . . . , xi, fi . Thus, we get a 1/ f -approximation to the objective function.

Modifications Related to � = O(1) case

• An element ui appearing in fi ≤ f sets, say setsS1, . . . ,S fi , can now contribute

at most fi ≤ f times in the various q̂(t)
i ’s corresponding to the fi variables

xi,1, . . . , xi, fi . This modifies the relevant inequality for p̂(tfinal)
i as follows:

p̂(tfinal)
i ≥ q̂(0)

i

f
+ μi ≥ OPT#

f χ
− μi

f
+ μi >

OPT#
f χ

p̂(tfinal)
i ≤ q̂i +

χ+1∑

i=1

|Si | ≤ f
(OPT#

χ
− μi

)+ min{χ, f }OPT# < min{χ2 + f , 2χ f }OPT#
χ

p̂(tfinal)
i

p̂(tfinal)
j

≤ min{χ2 + f , 2χ f }OPT#
χ

OPT#
f χ

≤ min{χ2 f + f 2, 2χ f 2} = O(min{χ2 f , χ f 2})

Modifications related to the arbitrary � case

• The calculations for the upper bound for p̂(tfinal)
i in Lemma 4 change as follows.

f
(OPT#

χ
− μi

)+ (2χ + 1)OPT# <
(
f + χ + 2χ2

)OPT#
χ

<
(
f + 3χ2

)OPT#
χ

This gives the final bound of
p̂(tfinal)
i

p̂(tfinal)
j

≤ f 2 + 3χ2 f = O( f 2 + χ2 f ).

123



Algorithmica

11 Approximation Algorithms for Two Special Cases of FMC

For approximating these special cases of Fmc, which are stillNP-complete, we will be
specific about the various constants and will try to provide approximation algorithms
with as tight a constant as we can. For this section, let ρ = max{ρ( f ), ρ(k)}. Note
that ρ > 1 − 1/e.

11.1 SEGR-FMC: Almost Optimal Deterministic Approximation with“at most” k
Sets

Note that Lemma 1 shows that finding a feasible solution is NP-complete even for
unweighted Segr- fmc with χ = 2. Further inapproximability results for Segr- fmc
are stated in Remark 5.

Theorem 4 There exists a polynomial-time deterministic algorithm Alg-greed-plus
that, given an instance of unweighted Segr- fmc (χ, k) outputs a solution with the
following properties:

(a) The number of selected sets is at most k.
(b) The approximation ratio is at least ρ > 1 − 1/e.
(c) The coloring constraints are 2-approximately satisfied (cf. (5)), i.e.,

∀ i, j ∈ {1, . . . , χ} : pi ≤ 2 p j

Remark 5 Based on the (1−1/e)-inapproximability result of Feige in [16] for themax-
imum k-set coverage problem, it is not difficult to see the two constants in Theorem 4,
namelyρ and2, cannot be improvedbeyond1−1/e+ε and (1 − 1/e)−1+ε ≈ 1.58+ε,
respectively, for any ε > 0 and all χ ≥ 2 assuming P �= NP.

Remark 6 The “at most k sets” part of the proof arises in the following steps of the
algorithm. Since we cannot know kr exactly, we can only assume k̂r ≤ kr since it is
possible that the algorithm for the maximum k-set coverage also covers at least ρ OPT#

χ
elements for some k < kr . Secondly, even if we have the guessed the correct value
of kr , the algorithm for the maximum kr -set coverage may cover more than 2ρ OPT#

χ
elements, and thus we have to “un-select” some of the selected sets to get the desired
bounds (the proof shows that sometimes we may have to un-select all but one set). The
following example shows that a solution that insists on selecting exactly k sets may
need to select sets all of which are not in our solution. Consider the following instance
of unweighted Fmc(1, �): U = {u1, . . . , un}, � = n/2, S1 = {u1, . . . , un/2}, and
S j+1 = {u(n/2)+ j } for j = 1, . . . , n/2. Our algorithm will select the setS1 whereas
any solution that selects exactly � sets must select the setsS2, . . . ,S(n/2)+1.

Proof We reuse the notations, terminologies and bounds shown in the proof of Theo-
rem 1 as needed. Let U1, . . . ,Uχ be the partition of the universe based on the color
of the elements, i.e., Ur = {u� |C (u�) = r} for r ∈ {1, . . . , χ}. By the definition of
Segr- fmc every set contains elements from exactly one such partition and thus, after
renaming the sets and elements for notational convenience, we may set assume that
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our collection S1, . . . ,Sm of m sets is partitioned into χ collection of sets, where
the r th collection (for r ∈ {1, . . . , χ}) contains the sets S r

1 , . . . ,S r
mr

over the uni-
verseUr = {u1, . . . , unr } of nr elements such that

∑χ
r=1 mr = m and

∑χ
r=1 nr = n.

For r ∈ {1, . . . , χ} and any � let Fmcr (1, �) be the unweighted Fmc(1, �) problem
defined over the universe Ur and the collection of sets S r

1 , . . . ,S r
mr
. The following

observation holds trivially.

Unweighted Segr- fmc (χ, k) has a valid solution covering � ∈ {χ, 2χ, . . . ,

�n/χ�χ} elements if and only if (i) for each r ∈ {1, . . . , χ}, Fmcr (1, kr ) has a
valid solution covering �/χ elements for some kr > 0, and (ii)

∑χ
r=1 kr = k.

The above observation suggests that we can guess the value of OPT# by trying
out all possible values of � just like the algorithms in Theorem 1, and for each such
value of � we can solve χ independent Fmc instances and combine them to get a
solution of the original Segr- fmc instance. Although we cannot possibly solve the
Fmcr (1, kr ) problems exactly, appropriate approximate solutions of these problems
do correspond to a similar approximate solution of Segr- fmc (χ, k) as stated in the
following observation:

Suppose that for each r ∈ {1, . . . , χ} we have a solution S r
i1
, . . . ,S r

ik̂r
⊆ Ur

of Fmc r (1, kr ) with the following properties (for some η1 ≤ 1 and η2 ≥ 1):

(i) η1(�/χ) ≤ | ∪k̂r
p=1 S

r
i p
| ≤ η2(�/χ), and (ii) k̂r ≤ kr . Then, the collection

of sets
{
S r

i�r
| �r ∈ {1, . . . , k̂r }, r ∈ {1, . . . , χ}} outputs a solution of Segr-

fmc (χ, k) with the following properties: (a) the number of selected sets is at
most k, (b) the number of elements covered is at least η1�, and (c) for any pair
i, j ∈ {1, . . . , χ}, pi/p j ≤ η2/η1.

By the above observation, to prove our claim it suffices if we can find a solution
for Fmc r (1, kr ) for any r with � = OPT#, η1 = ρ and η2 = 2 ρ. For convenience,
we will omit the superscript r from the set labels while dealing with Fmc r (1, kr ).
Remove from consideration any sets fromS1, . . . ,Smr that contains more than �/χ

elements, and consider the standard (unweighted) maximum k-set coverage problem,
that ignores constraint (i) of the above observation, on these remaining collection of
sets T over the universe Ur . Since we have guessed the correct value of �, there is at
least one valid solution and thus the following assertions hold: (I) there exists a set of
kr sets that covers

OPT#
χ

elements, and (II) |T | ≥ kr .
Let νk denote the maximum number of elements that can be covered by selecting k

sets fromT . There are the following two well-known algorithms for the maximum k-
set coverage problem both of which select exactly k sets: the greedy algorithm covers
at least ρ(k)νk elements [16, Proposition 5.1], where the pipage-rounding algorithm
(based on the LP-relaxation in Fig. 2) covers at least ρ( f )νk elements [1]. Note that we
do not know the exact value of kr and we cannot guess by enumerating every possible
kr values for every r ∈ {1, . . . , χ} in polynomial time. To overcome this obstacle, we
use the following steps.
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• We run both the algorithms for maximum k-set coverage for k = 1, 2, . . . until
we find the first (smallest) index k̂r ≤ kr such that the better of the two algorithms
cover at least max{ρ(k̂r ), ρ( f )}OPT#

χ
≥ ρ OPT#

χ
elements.

• Suppose that this algorithm selects the k̂r sets (after possible re-numbering of
set indices) S1, . . . ,Sk̂r , where we have ordered the sets such that for every
j ∈ {2, 3, . . . , k̂r } the number of elements covered by S j and not covered by
any of the sets S1, . . . ,S j−1 is at least as many as the number of elements
covered by S� and not covered by any of the sets S1, . . . ,S j−1 for any � > j .
Remember that max j∈{1,...,k̂r }{|S j |} ≤ OPT#/χ . Let j be the smallest index such

| ∪ j−1
�=1 S j | < ρ OPT#

χ
but | ∪ j

�=1 S j | ≥ ρ OPT#
χ

. We have the following cases.

– If |S j | ≥ ρ OPT#
χ

then we select S j as our solution since ρ OPT#
χ

≤ |S j | ≤
OPT#

χ
< 2 ρ OPT#

χ
.

– Otherwise |S j | < ρ OPT#
χ

and in this case we select the j ≤ k̂r ≤ kr sets

S1, . . . ,S j in our solution since ρ OPT#
χ

≤ | ∪ j
�=1 S j | ≤ 2 ρ OPT#

χ
. ��

11.2 1-BAL-FMC: Improved Deterministic Approximation

Proposition 2 There exists a polynomial-time deterministic algorithm Alg-greedy
that, given an instance of unweighted Δ-bal- fmc(χ, k) outputs a solution with the
following properties:

(a) The number of selected sets is (exactly) k.
(b) The approximation ratio is at least ρ > 1 − 1/e.
(c) The coloring constraints are O(Δ f )-approximately satisfied (cf. (5)), i.e., ∀ i, j ∈

{1, . . . , χ} : pi/p j ≤ (2 + 2Δ) f .

Proof As already mentioned in the proof of Theorem 4 and elsewhere, there is a
deterministic polynomial-time algorithm for the maximum k-set coverage problem
with an approximation ratio of ρ. For the given instance of Δ-bal- fmc(χ, k), we run
this algorithm (ignoring element colors) selecting k sets, sayS1, . . . ,Sk . Obviously,
the total weight of all the elements covered in the selected solution is at least ρ OPT.
Let α+ = ∑k

i=1�|Si |/χ y� + Δ and α− = ∑k
i=1 max

{
1, �|Si |/χ� − Δ

}
. Note that

k ≤ α− ≤ α+ ≤ α− + (2Δ + 1)k. Since each of the sets in the solution is balanced,
an upper bound for the number pi of elements of color i in the solution is given by
pi ≤ α+. Also note that by definition of f we have pi ≥ α−

f . It thus follows that for

any i and j we have pi/p j ≤ f × α+
α− ≤ (2 + 2Δ) f . ��

12 ApproximatingGEOM-FMC via Randomized Shifting

We refer the reader to textbooks such as [48] for a general overview of the randomized
shifting technique (textbook [48] illustrates the technique in the context of Euclidean
travelling salesperson problem).
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Theorem 5 For any constant 0 < ε < 1, we can design a randomized algorithm
Alg-geom for Geom- fmc with the following properties:

(a) Alg-geom runs in O((Δ/d)d2(Cd/ε)O(d)
kd) time.

(b) Alg-geom satisfies the following properties with probability 1−o(1) (cf. Inequal-
ity (5′)–(5′′)):

• The algorithm covers at least (1 − O(ε))(OPT − εχ) points.
• The algorithm satisfies the (1 + ε)-approximate coloring constraints (cf.
Inequality (5′′)), i.e., for all i, j ∈ {1, . . . , χ}, pi ≤ (1 + ε)p j .

Remark 7 In many geometric applications, the dimension parameter d is a fixed con-
stant. For this case, Alg-geom runs in polynomial time, and moreover, under the
mild assumption of OPT

χ
≥ η for some constant η > 1, Alg-geom covers at least

(1−O(ε))OPT points, i.e., under these conditionsAlg-geom behaves like a random-
ized polynomial-time approximation scheme.

Proof Fix an optimal solution having k unit balls B∗
1 , . . . ,B

∗
k ⊂ R

d , such that for

all i, j ∈ {1, . . . , χ}, μi (B∗) = μ j (B∗), where B∗ = ⋃k
i=1B

∗
i . Thus, we need to

show that our algorithm Alg-geom computes in (Δ/d)d2(Cd/ε)O(d)
kd time a set of

unit balls B1, . . . , Bk ⊂ R
d such that the following assertions hold with probability

1 − o(1) (where B = ⋃k
i=1 Bi ):

χ∑

i=1

μi (B) > (1 − O(ε))

χ∑

i=1

(μi (B
∗) − ε)

∀ i, j ∈ {1, . . . , χ} : μi (B) ≤ (1 + ε)μ j (B)

Set L = 8d/ε. Let G ⊂ R
d be an axis-parallel grid such that every connected

component of R
d \ G is an open d-dimensional hypercube isometric to (0, L)d . In

other words, G is the union of d infinite families of axis-parallel (d − 1)-dimensional
hyperplanes, spaced apart by L in each orthonormal direction. Let α ∈ [0, L) be
chosen uniformly at random, and let G ′ = G + α be the random translation of G by
α, i.e.,

(p1 + α, . . . , pd + α) ∈ G ′ ≡ (p1, . . . , pd) ∈ G

Let F is the set of indices of all balls B∗
i that has a non-empty intersection with the

randomly shifted grid G ′, i.e.,

F = {i ∈ {1, . . . , k} : B∗
i ∩ G ′ �= ∅}

LetB∗,F = ⋃
i∈F B∗

i . Any point p ∈ R
d is contained inB∗,F only if it is contained

in some unit ball intersecting G ′. Therefore, p ∈ B∗,F only if it is at distance at
most 2 from G ′ (in other words, B∗,F is contained in the 2-neighborhood of G ′).
The probability that any particular point p is at distance at most 2 from any family of
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parallel randomly shifted hyperplanes in G ′ is exactly 4/L . By the union bound over
all dimensions, Pr[p ∈ B∗,F ] ≤ 4d/L . Therefore, by the linearity of expectation,

E[μi (B
∗,F )] =

∑

p∈∪k
i=1B

∗
i

Pr
[
p ∈ B∗,F

]
μi (p) ≤ 4d

L
μi (B

∗)

Consequently, by Markov’s inequality, we get

Pr
[
μi (B∗,F ) ≥ 8d

R μi (B∗)
] ≤ 1/2

Set δ = 2−Θ(d)ε/C . Let B∗∗
1 , . . . , B∗∗

k be the collection of unit balls inR
d obtained as

follows. For each i ∈ {1, . . . , k}\F , obtain a unit ball by translating B∗
i such that its

center has coordinates that are integer multiples of δ, i.e., it is an element of the dilated
integer lattice δ · Z

d . For every i ∈ F , we obtain a unit ball by picking an arbitrary
ball obtained for some j ∈ {1, . . . , k} \ F as described above. Essentially, the new
solution B∗∗

1 , . . . , B∗∗
k is missing all the balls that intersect G ′, and rounds every other

ball so that its center is contained in some integer lattice. In this construction, each
ball B∗

i , with i /∈ F , gets translated by at most some distance
√
dδ. Since for all

j ∈ {1, . . . , χ}, μ j is C-Lipschitz, it follows that

|μ j (B
∗
i ) − μ j (B

∗∗
i )| ≤ vol(B∗

i )
√
d δ C ≤ 2Θ(d)δC

Letting B∗∗ = ⋃k
i=1 B

∗∗
i , we get that for all i ∈ {1, . . . , χ},

|μ j (B
∗) − μ j (B

∗∗)| ≤ k2Θ(d)δC

Let I be the set of connected components of [0,Δ]d \ G ′. We refer to the elements
ofI as cells. For each A ∈ I , we enumerate the set,SA, of all possible subsets of at
most k unit balls with centers in A∩ (δ ·Zd). There are at most (L/δ)d lattice points in
A, and thus there are at most 2(L/δ)d such subsets of unit balls. Since |I | ≤ (�Δ/L�)d ,
it follows that this enumeration takes O((Δ/L)d 2(L/δ)d ) time.

For each enumerated subset J ∈ SA of unit balls, we record the vector

(

|J |, ε

k

⌊

μ1(X)
k

ε

⌋

, . . . ,
ε

k

⌊

μk(X)
k

ε

⌋)

where X = ⋃
Y∈J Y . There are at most (2O(d)k/ε)d such vectors for each cell in I .

Via standard dynamic programming, we can inductively compute all possible sums
of vectors such that we pick at most one vector from each cell, and the total sum of
the first coordinate, i.e., the number of unit balls, is at most k. This can be done in
O((Δ/L)d2(L/δ)d (2O(d)k/ε)d) time. For the correct choice of vectors that corresponds
to the solution B∗∗, the sum of the vectors we compute is correct up to an additive
factor of ε on each coordinate. This means that we compute a solution B1, . . . , Bk ,
with the following property:
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k∑

i=1

μi (B) ≥ (1 − ε)

χ∑

i=1

μi (B
∗∗) ≥ (1 − ε)

[ χ∑

i=1

(
μi (B

∗) − 2Θ(d)δC − μi (B
∗,F )

)]

≥ (
1 − ε − (8d/L)

)[
χ∑

i=1

(
μi (B

∗) − 2Θ(d)δC
)] = (

1 − 2ε
)[

χ∑

i=1

(
μi (B

∗) − ε
)]

with probability at least 1/2. Repeating the algorithm O(log n) times and returning
the best solution found, results in the high-probability assertion, which concludes the
proof. ��

13 Conclusion and Open Problems

In this paper we formulated a natural combinatorial optimization framework for incor-
porating fairness issues in coverage problems and provided a set of approximation
algorithms for the general version of the problem as well as its special cases. Of
course, it is possible to design other optimization frameworks depending on the par-
ticular application in hand, and we encourage researchers to do that. Below we list
some future research questions related to our framework:

Eliminating the gap of factor f in LP-relaxation: As noted in Sect. 9.7, all of our
LP-relaxations incur a gap of factor f in the coloring constraints while rounding.
It seems non-trivial to close the gap using additional linear inequalities while
preserving the same approximation ratio. However, it may be possible to improve
the gap using SDP-relaxations.

Primal-dual schema: Another line of attack for the Fmc problems is via the primal-
dual approach [48]. For example, can the primal-dual approach for partial coverage
problem by Gandhi, Khuller and Srinivasan [18] be extended to Fmc? A key
technical obstacle seems to center around effective interpretation of the dual of the
coloring constraints. Our iterated rounding approach was able to go around this
obstacle but the case when χ = ω(1) may be improvable.

Fixed parameter tractability: Asmentioned in Sect. 4 fixed-parameter tractability
issues for k-node coverage have been investigated by prior researchers such as
Marx [36] and Gupta, Lee and Li in [21, 22]. It would be interesting to extend
these results to Node- fmc.

Generalizing to non-decreasing submodular set objective functions: The proofs
and proof techniques in this paper do not generalize to the case when the objective
function for our Fmc problems is a (more general) non-decreasing submodular set
function. It would be interesting to devise new algorithmic techniques and proofs
for this more general case. Approximation algorithms for such generalizations for
the standard maximum k-set coverage problem (see Sect. 4) were provided in [30].

Acknowledgements We thank the editor and reviewers for their helpful comments.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

123



Algorithmica

Appendix

Proof of Lemma 1

(a)We describe the proof for χ = 2; generalization to χ > 2 is obvious. The reduction
is from the Exact Cover by 3-sets (X3C) problem which is defined as follows. We are
given an universe U ′ = {u1, . . . , un′ } of n′ elements for some n′ that is a multiple of
3, and a collection of n′ subsets S1, . . . ,Sn′ of U such that

⋃n′
j=1S j = U , every

element of U ′ occurs in exactly 3 sets and |S j | = 3 for j = 1, . . . , n′. The goal is
to decide if there exists a collection of n′/3 (disjoint) sets whose union is U ′. X3C
is known to be NP-complete [19]. Given an instance 〈U ′,S1, . . . ,Sn′ 〉 of X3C as
described, we create the following instance 〈U ,S1, . . . ,Sn′+1, k〉 of Fmc(2, k):
(i) The universe is U = {u1, . . . , un′ } ∪ {un′+1, . . . , u2n′ } (and thus n = 2n′),
(ii) w(u j ) = 1 for j = 1, . . . , 2n′,
(iii) the sets areS1, . . . ,Sn′ and a new setSn′+1 = {un′+1, . . . , u2n′ },
(iv) the coloring function is given by C (u j ) =

{
1, if 1 ≤ j ≤ n′
2, otherwise

, and

(v) k = n′
3 + 1 = n

6 + 1.

Clearly, every element of U occurs in no more than 3 sets and all but the set Sn′+1
contains exactly 3 elements. The proof is completed once the following is shown:

(∗) the given instance of X3Chas a solution if and only if the transformed instance
of Fmc(2, 1 + n/6) has a solution.

A proof of (∗) is easy: since the setSn′+1 must appear in any valid solution of Fmc, a
solution Si1 , . . . ,Sin′/3 of X3C corresponds to a solution Si1 , . . . ,Sin′/3 ,Sn′+1 of
Fmc(2, k) and vice versa.
(b) The proof is similar to that in (a) but now instead of X3C we reduce the node cover
problem for cubic (i.e., 3-regular) graphs (VC3) which is defined as follows: given a
cubic graph G = (V , E) of n′ nodes and 3n′/2 edges and an integer k′, determine if
there is a set of k′ nodes that cover all the edges. VC3 is known to be NP-complete
even if G is planar [19]. For the translation to an instance of Fmc(2, k), edges of G
are colored with color 1, we add a new connected component K(3n′/2)+1 to G that
is a complete graph of (3n′/2) + 1 nodes with every edge having color 2, transform
this to the set-theoretic version of Fmc using the standard transformation from node
cover to set cover and set k = k′ + 1; note that n = 3n′/2 + (

(3n′/2)+1
2

) = Θ((n′)2)
and a = 3n′/2 = O(

√
n ). To complete the proof, note that any feasible solution for

the Fmc(2, k) instance must contain exactly one node fromK(3n′/2)+1 covering 3n′/2
edges and therefore the solution for the edges with color 1 must correspond to a node
cover in G (and vice versa).
(c) We given a different reduction from X3C. Given an instance 〈U ′,S1, . . . ,Sn′ 〉
of X3C as in (a), we create the following instance 〈U ,T1, . . . ,Tn′ , k〉 of Fmc(n′, k):

(i) For every set Si = {
ui1 , ui2 , ui3

}
of X3C we have three elements uii1 , u

i
i2
, uii3

and a set Ti = {
uii1 , u

i
i2
, uii3

}
in Fmc (and thus n = 3n′, a = 3 and f = 1),
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(ii) w(uii j ) = 1 and C (uii j ) = i j for i ∈ {1, . . . , n′}, j ∈ {1, 2, 3} (and thus χ =
n′ = n/3),

(iii) k = n′/3 = n/9.

The proof is completed by showing the given instance of X3C has a solution if and
only if the transformed instance of Fmc(n/3, n/9) has a solution. This can be shown as
follows. We include the setTi in the solution for Fmc if and only if the setSi is in the
solution for X3C. For any valid solution of X3C and every j ∈ {1, . . . , n′} the element
u j ∈ U ′ appears in exactly one set, say S� = {

u�1 , u�2 , u�3

}
, of X3C where one of

the elements, say u�1 , is u j . Then, the solution of Fmc contains exactly one element,
namely the element u�

�1
, of color �1 = j . Conversely, given a feasible solution of Fmc

with at most k ≤ n/9 sets, first note that if k < n/9 then the total number of colors
of various elements in the solution is 3k < n′ and thus the given solution is not valid.
Thus, k = n/9 and therefore the solution of X3C contains n/9 = n′/3 sets. Now, for
every color j the solution of Fmc contains a set, sayT� = {

u�
�1

, u�
�2

, u�
�3

}
, containing

an element of color j , say the element u�
�1
. Then �1 = j and the element u j appears

in a set in the solution of X3C. To see that remaining claims about the reduction, there
is no solution of Fmc that includes at least one element of every color and that is not
a solution of X3C.
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