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Abstract—Consider a source and multiple users who observe
the independent and identically distributed (i.i.d.) copies of
correlated Gaussian random variables. The source wishes to
compress and store its observation in a public database such
that (i) authorized sets of users can reconstruct the source
with some distortion level, and (ii) information leakage to non-
authorized sets of colluding users is minimized. In other words,
the recovery of the data is restricted to a predefined access
structure of the users. One of the main results of this paper
is a closed-form characterization of the fundamental trade-off
between source coding rate and the information leakage rate
when any authorized set of users has “better” side information
than any set of unauthorized users.

I. INTRODUCTION

A solution for secure data storage resilient to compromised
users is distributed storage via traditional cryptographic solu-
tions, i.e., traditional secret sharing [1], [2]. The idea behind
such a solution is to avoid having a single point of entry that
could compromise the private data in its entirety in the case
of a security breach.

In this paper, we make three main modifications of the
original secret sharing problem. First, we do not assume that
secure channels are available between the users and the source,
because secure channels come with a cost in practice, instead,
we solely rely on public communication via a public database.
Second, we consider that the users have side information about
the source. While this consideration is not relevant in the
original secret sharing problem, it becomes relevant in a data
storage context. Not accounting for the fact that the users
can have side information raises the following two issues that
cannot been addressed with standard results for traditional
secret sharing: (i) it leads to overestimating the security
guarantees of the protocol, and (ii) it leads to inefficiency in
terms of data storage size. Third, in our proposed setting, we
consider a lossy reconstruction constraint, instead of a lossless
reconstruction constraint in traditional secret sharing.

Two distinct bodies of work are related to our model.
The first one is the literature on secret sharing, e.g., [1]-[3],
which addresses the presence of an access structure for secure
distributed data storage, and the second one is the literature on
secure source coding, e.g., [4]-[10], which allows dealing with
the presence of side information at the users. The problem
studied in this paper proposes to simultaneously study the
problems of having an access structure and considering that
side information is available at the users.

Of particular relevance to this paper, [4], [S] have estab-
lished the first characterization of the rate at which an encoder
may compress a source such that an authorized user be able
to recover the source in a lossless manner while guaranteeing
a minimum information leakage from an unauthorized user
who observes the encoded source. This problem is generalized
in [6] to a scenario, in which the authorized user may re-
cover the compressed source with some predefined distortion.
Specifically, [6] characterized the optimal tradeoff between
the rate, the desired distortion, and the information leakage
when both the authorized and unauthorized users observe
different i.i.d. side information sequences that are correlated
with the compressed source. The secure lossy compression of a
vector Gaussian source when both the authorized user and the
unauthorized user have vector Gaussian side information have
been studied in [9] and the authors derived inner and outer
bounds on the optimal trade-off between the rate, the desired
distortion, and the information leakage. [7], [8] extended this
problem to a more general case in which the fidelity of
the communication to the authorized user is measured by a
distortion metric and the secrecy performance of the system is
also evaluated under a distortion metric. Other related works
include [11]-[13], where a function of a source must be
reconstructed in a lossless manner by the authorized sets of
users and must be kept secret from unauthorized sets of users,
who all own side information about the source.

In this paper, we consider an encoder that wants to compress
a source in such a way that (i) only pre-defined sets of
authorized users can reconstruct, up to a prescribed distortion
level, the source by pooling their side information, and (ii) in-
formation leakage about the source to any other sets of col-
luding users is minimized. This problem subsumes the secure
lossy compression of a scalar Gaussian source when both the
authorized user and the unauthorized user have scalar Gaussian
side information as well as the secure lossy compression of a
scalar Gaussian source when both the authorized user and the
unauthorized user have vector Gaussian side information.

The key technical challenge consists in converting the
problem to a scalar problem using sufficient statistics and
dealing with the complexity of the compound structure raised
by the presence of multiple authorized and unauthorized sets
of users.



II. PRELIMINARIES

Define [a:b] = [|a],[b]] N NT. Random variables are
denoted by capital letters and their realizations by lower case
letters. Vectors are denoted by boldface letters, e.g., X denotes
arandom vector and x denotes a realization of a random vector.
X", denotes the vector X™ except X;. Throughout the paper,
log denotes the base 2 logarithm.

III. PROBLEM STATEMENT

Consider any zero-mean Gaussian memoryless source (X X
Y., Pxy ﬁ) with non-singular covariance matrix, where £ £
[1:L] and Y; = (Y;)ser. The source generates nm i.i.d.
samples (X;, Y, i)ic[i:n]- Without loss of generality, let Yy ;,
for ¢ € L, have the following form [14, Theorem 3.5.2],

Yy = heX; + Ny, (D

where hy € R\0 and N, for £ € L, are independent zero-
mean Gaussian random variables with variance 022 > (. Then,
by normalizing (1), it is sufficient to consider Yy ;, for £ € L,
to have the following form,

Yy = Xi + Ny, 2

where N ;, for ¢ € L, are independent zero-mean Gaussian
random variables with variance a% > (. Let A be a set of
subsets of £ such that for any S C L, if § includes a set
that belongs to A, then we must have S € A, i.e., A has a
monotone access structure [15]. Also, let B £ 2‘:\A be the
set of all colluding subsets of users for which the information
leakage about the compressed source X™ must be minimized
(see Fig.1). Let d : X x Y 4 — [0: dmax] be a finite distortion
measure, i.e., such that 0 < dp,.x < 00.

Definition 1. A (2" n) source code for the memoryless
source (X X y/;,pxyﬂ) consists of

e An encoding function fg : x™ — m, which assigns an
index m € [1:2"] to each x™ € X™;

o Decoding functions ga : m x y7 — 2" (A) U {e}, where
A € A and 2"(A) € X7, which assign an estimate

&"(A) or an error e to each m € [1:2"7] and y" € Y.

Definition 2. A triple (R, A, D) € R3 is achievable if there
exists a sequence of (2", n) source codes such that,

maxlimsup]E[d(X",X”(A))] <D, (3a)
A€A noco
max lI(X";M7 Y3) < A, (3b)

BeB n

where the distortion between sequences x™ and i"™(A) is
defined by

n

! > d(xi,2:(A)).

n
i=1

d(z",2"(A)) £ (3¢)
The set of all such achievable pairs is denoted by R(A)

and is referred to as the rate-equivocation region. For a fixed
D > 0, we define R(D,A) = {(R,A): (R,A,D) € R(A)}.

R
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Fig. 1. Secure source coding with three users, i.e., £ = {1,2,3}, when
any single user must not learn more than nA bits of information about the
source X", ie., we set A = {{1,2},{1,3},{2,3},{1,2,3}}, and B =

N D
{1}, {2}, {3}}. X"({i,j}) S X7, for i,/ € {1,2,3} and i # j, means
that the distortion between the reconstructed source by the users ¢ and j
together and the source sequence X ™ must be less than D.

Here, the distortion of the reconstructed sequence
(X,» (.A)):;1 defined in Definition 2 is measured by the mean
square error as,

d(Xi, Xi(A) =E[(X; - fQ(A))ﬁ <nD. 4)

2 2 :
Henceforth, we assume 0 < D < TXly where x|y 18

R D
X(2,3) S X7
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the conditional variance of X given Y, 0§(‘Y = E[(X —

E[X \Y])QIY]. Since the minimizer of the mean square er-
ror is the Minimum Mean-Square Error (MMSE) estimator,
which is given by the conditional mean, we assume that the
authorized terminals use this optimal estimator, which means
that the authorized users select their reconstruction function
as X;(A) = E[X;|Y, f(X™)], for any i € [1:n].

IV. MAIN RESULTS

The main result of this paper is a closed-form expression
for the optimal trade-off between the compression rate and the
leakage rate, which is provided in the following theorem.

Theorem 1. For any access (A,B), when

tr (E;&) < tr (Eg}),

structure

where A* € argmin{tr (')}, B* € argmax{tr (£3")}.
A€cA BeB
In Theorem 1, the term %log % is the source cod-
ing capacity in the absence of side information [16, Theo-
r -1
rem 3.6], the term —% log <1 + t(zé*)>

is the gain provided
9x



by the side information at the authorized users, the term

-1
—|—% log [ 1+ tr(azf’;» is the penalty rate coming from the

X
side information at the unauthorized users.

V. CONVERSE PROOF OF THEOREM 1

We first consider the secure source coding problem
as in [6, Section III-B], which consists of a source
((X V1, V2), Pxvy, y2) with three outputs X™ at the encoder,
Y* at the legitimate terminal, and Y3* at the eavesdropper.
The encoder wishes to encode its observed sequence in such
a way that the legitimate receiver can reconstruct the source
sequence X" with distortion D, and the information leakage
about X™ at the eavesdropper is minimized. Here, a (n, R)-
code for source coding is defined by, an encoding function
at the encoder f : X" — [1:2"%]} and a decoding func-
tion g : [1:2"F] x ¥ — X" In this problem, a tuple
(R,A,D) € Ri is achievable if, for any € > 0, there exists a
(n, R+ ¢€) code such that, E[d(z", X (f(X"),Y))] < D +e¢
and 17(X™; f(X"),Y3) < A—e

Now consider the secure source coding problem defined in
Section III and the rate pair (R,A) € R(D,A). We first
provide a general upper bound on the secure rate-distortion
region of the problem defined above, and then show that this
region reduces to the region in Theorem 1.

Theorem 2. For every (A, B), the region R(D, A) is included

in N Ra(Ya,Ys), where
(A,B)e(A,B)
(R,A):
R>I(V;X|Y4)
R (Ya,Yg) 2 U A>I(V;X)
vy Xt |1V YA)
R I v

The proof is similar to [6, Theorem 3] and is omitted for
the sake of brevity.

In [6, Theorem 3], the equivocation is used as a measure
of leakage but, since we consider continuous sources in our
setting, to avoid a negative equivocation, we replace the equiv-
ocation with mutual information leakage (see Definition 2).

A. Conversion to a Scalar Problem

For every (A,B) € (A,B), the problem defined above
can be seen as a secure source coding problem in which
the encoder encodes the scalar Gaussian source X while
the authorized and the unauthorized users observe a vector
Gaussian source Y 4 and Y, respectively. Hence, the problem
in (2) can be rewritten as follows,

Y =14X+Ny, Yp=15X + Ng, (6)

where N 4 and Np are independent zero-mean Gaussian ran-
dom vectors with covariance matrices X 4 > 0 and ¥z > 0,
respectively, and 1 4 is the all-ones vector with size |.A|. Also,
(N4, Np) is independent of X. To prove the converse part of
Theorem 1, we use the following lemma from [17] to reduce

the setting to a problem in which the encoder, the authorized
users, and the unauthorized users observe a scalar Gaussian
source.

Lemma 1. ([17, Lemma 3.1]) Consider the channel
Y=hX+N, @)

where N is a Gaussian noise with zero mean and covariance
matrix X and h € R™. A sufficient statistic to correctly
determine X from Y is the following scalar

Y =h"S"ly. (8)

According to Lemma 1 the sufficient statistics to correctly
determine X from Y 4 and Y in (6) are the following scalars,

Va=113,'Ys, Yp=1}3;'Ys 9)

Therefore, the channel described in (6) is equivalent to the
following scalar Gaussian channel,

Yi=haX +Ns, Yg=hgX+ Npg, (10a)

where
ha=1T2"14 =tr (23", (10b)
hg =1535' 15 = tr (T5'), (10c)
Na=172,"Ny, (10d)
Np =1L2;'Ng, (10e)

where (10b) and (10c) follow since X 4 and ¥ are diagonal
matrices. Now we have,

Vo XYY YR V- X Y Y,
Vn—Xn—YTé—YBn, Vn_Xn_i}Bn_ %7

(11a)
(11b)

where
o the Markov chains in (11) follow since V' is a function
of X™;
o the Markov chain in (11a) follows since V" is a function
of X" and from X — YA —Y 4 [18, Section 2.9];
« the Markov chain in (11b) follow by the same argument
as the arguments for (11a).
Using (12) and the Markov chains in (11) one can show that
the sufficient statistics in (10) preserve the distortion constraint
and the leakage constraint in Definition 2, i.e.,

E[d(X", X"(M,Y%))] <D <«
E[d(X™, X% (M,Y}))] < D, (12a)
I(X"™ M)YR) <A s (X", M, Y} <A. (12b)
The proof of (12) follows from the Markov chains in (11) and

the definition of the rate distortion which can be expressed as
follows,

1 — 2
D> E[(XZ——IEXZ- V",Y”) } 13
>~ ; RAER (13)
Note that, we can write,
Vo= "By, 4 N, (14)

ha



where N ~ N (O,tr(Egl) (1 - Eﬁi’ii)) Therefore, when
&g

tr(X5") < tr(X "), without loss of generality we can convert
the problem to the case where the unauthorized users side

information is stochastically degraded with respect to the
authorized users side information, i.e., X — Y4 — Y5.

B. When Authorized Users Have Better Side Information

We study the case in which, for any access structure
(A,B) € (A,B), tr(25") < tr(X3"), so that the unautho-
rized users side information is stochastically degraded with
respect to the side information of the authorized users. As
discussed, by preserving the marginal distributions PY/AI  and

Py |, we can transform the problem to a problem such that
Bl1X

U—V—X—}N/A—Y/B,hence

I(V;X) — I(V;Ya|U) + I(X; Y5|U)
W1V X) = I(V;Y) + I(U; V) + 1(X; Vi) — I(U; Vi)
(Z)I(V; X)—I(V;Y4) + I(X;Yp)

IV XIVa) + 1(X; Vi), (1)
where (a), (b), and (c) follow since U —V — X — Y4 — Y.
This implies that the region in Theorem 2 is included in the
following region

(R,A) :
N U R>I(V; X|Y,4)
(ABEME) Vox—TaTs |A > I(V;X[V4)+ [(X;Vp)
]E[UX\YA V]SD

(16)

Since the source is Gaussian the term I(X;Yp) is fixed,
and we know that the term I(V;X|Y4) = h(X|V4) —
h(X|Y,4, V) is minimized by joint Gaussian (V, X, Y,). Also,
optimizing the rate and the leakage constraints in (16) sepa-
rately results in a larger region, i.e., an outer bound. As a
result, the region in (16) is included in the following region,

(R,A):
2 ~
R > min %logﬁL
Uiq'{fA,v— XIYav
2 9 17
ﬂ A > min llog% 17
(A7B)E(A7B) o2 _ <D 2 O-X\Y/A,V
X[V 4,V
+ 5 log =% }
X|Yp

From the monotonicity of the log function the region above is
included in,

(R,A):
o2 -
ﬂ R > {log =4 (18)
(A,B)e(A,B) A > 1 log X|Y4 + 1 log
X\YB
Now, we have
2
2 _ oo x4 @ o haok

O =0y — =0y —
X|Y. X 2 X 2 -1
Y N hho% +tr (25)

®) ok

= 19
tr (221)J§(+1’ (199)

: 2 2 )
where (a) follows by calculating 0%y, and of from (10);
(b) follows since from (10) we have h4 = tr (2;‘1). Simi-
larly, we have

2
Ox

tr (') ok +1°
Substituting (19) in (18) and since the arguments of the
log functions are decreasing in tr (£7') and increasing in
tr (Egl) we can compute the intersection in (18) and rewrite
the region in (18) as follows,

(R, A)
R>

2 _
5 = (19b)

tr A* aX+1
(20)
A>1 5 log

2
UX+

® b )

D 1)
+1log (tr ( Hok +1)

argmin{tr (2")}

where ~ A* € min{tr and B* €
argmax{tr (Egl) }.
BeB

VI. ACHIEVABILITY PROOF OF THEOREM 1
A. Discrete Alphabet

To prove the achievability of Theorem 1 we first provide
an achievable rate region for the discrete alphabet and then
extend this region to the continuous alphabet.

Theorem 3. For any access structure A and B, triple
(R,A,D) € Ri is achievable if,
R I(V; XY
> max{I(V; X[Ya)}
A> max {I(V;X)
U (A,B)e(A,B) 1)

U—V-X-Y¢ —1(V; YA|U)ﬂ'I(X§YB|U)}
D > Eld(X, X4(V,Y
max E[d(X, Xa(V, V)]
The proof of Theorem 3 is similar to the Proof of [6,
Theorem 3] and is omitted for the sake of brevity.

B. Continuous Alphabet

Now, we show that the region in Theorem 3 reduces to
the region in Theorem 1 when the sources are Gaussian,
as described in Section III, by quantizing the output of the
Gaussian source Pyy .. The main problem of the quantization
is that it can result in underestimating the information that the
unauthorized users sets can learn about the source. However,
we will show that we can overcome this problem if the
quantization is fine enough. We now present the following
lemma, which helps to extend the region in Theorem 3 to the
continuous case by using quantization.

Lemma 2 ([18]-[20]). Let X and Y be two real-valued
random variables with distributions Px and Py, respectively.
Let Co, = {Ci}ier and Ko, = {K,};cg be two partitions
of the real line for X and Y, respectively, such that for any



i € I, Px[C;] = ®1 and for any j € J, Py [K;] = ®o, where
P, > 0 and Oy > 0. We denote the quantized versions of X
and Y with respect to the partitions Co, and Ks, by X, and
Ys,, respectively. Then, we have

I(X;Y)= lim I(X¢;Yas,)

By, P50 22)

Note that, a quantization Yz, B € B can lead to underes-
timation of I(X™; M,Y}). Next, we show that quantization
does not affect the security constraint in Definition 2.

Lemma 3. If the quantization Xg of X" and Yg ¢, of Y},
for every B € B, is fine enough, then for every ¢ > 0,

max I(X™; M, Yg) < max I(Xg,; M, Y5 ,) +6.  (23)
Proof. For any € > 0, and for any B € B, we have
I(X™ M, Yg) < [I(X™ M, Y5) — I(Xg,; M, Y5 5,)|
+1(Xg,; M, Y5.9,) (24)

< max |I(X"; M, Y) = I(Xg,; M, Y0,

+max](Xg; M, Ygq,) 25)
(a) .
< 5+%12§I(X¢1;M,Y37¢2), (26)

where (a) follows from Lemma 2 when the quantization Yj; 4,
is fine enough, for any B € B. Note that (26) is valid for any
B € B, therefore (26) results to the bound in Lemma 3. [

Considering Lemma 3 and choosing the quantization pa-
rameter ¢ small enough one can show that the constraints in
Theorem 3 for the continuous case reduces to,

R > max {I(V;X|YA)},
{I(V;X) = I(V;YA|U) + I(X;Yg|U)}.
(27b)

(27a)

A > max
(A,B)e(A,B)

Next, similar to what we have done in Section V-A, we convert

the problem to a scalar problem by using sufficient statistics

described in (10). When tr (X7,}) < tr (25.), where A* €

argmin{tr (2;‘1)}, B* € argmax{tr (Egl)}, we choose the
Aeh BeB

auxiliary random variable U = ) and choose the auxiliary
random variable V' to be jointly Gaussian random variable.

1) Conversion to a Scalar Problem via Sufficient Statistics:
Since the side information Y 4 and Yz are vectors and we
aim to find the relationship between J§(|V and J§(|YA’V, it is
easier to work with scalar random variables and use sufficient
statistics to evaluate the mutual information expressions in the
achievable rate region provided in (27). When tr (¥7}) <
tr (2;3 ), we choose the auxiliary random variable U = ()
and choose the auxiliary random variable V' to be a jointly
Gaussian random variable with X. Next, we show that using
the sufficient statistics does not change the achievable rate
region in Theorem 3. Similar to [18, Section 2.9] one can
show that we have,

U-V—-X-Y1—-Y4, U-V—-X-Y4—Y4 (282

U-V-X-Ys-Yg, U-V—-X—-Yg—Ysz. (28b)
where Y’A and Y’B are defined in (10a). Hence,
a ~ b ~
IV XIYO) L1V X Y4, V) LIV X V), (29)

where (a) follows from (28a) and (b) follows from (28a).
Similarly, one can also show that

I(V;YAlU) = I(V;Ya|U), 1(V;Y5|U) = 1(V; Y5|U).

Since, when the source is Gaussian, we use the mean square
error to measure the distortion of the reconstructed sequence
and MMSE as the estimator, the distortion constraint in Theo-
rem 3 reduces to UE{WA’V < D. Considering the Markov chain
VXY ha=5%=tr (X)), and hg =53 = tr (X3")
as showed in (10), we rewrite the achievable rate region in
Theorem 3 as the union over the random variables V' such
that V — X — Y, of

(R,A):
1 ai(tr(E;\l)agﬂv—kl) }
R> r}llgf&( { 2 log Jgﬂv(tr(z;ll)diqu)

A > max 1o o tr(zf_‘l)ai‘vﬂ)
(ABe(AaB) | 2" 0%y (tr(221)0%+1)

+1 log (tr (Zgl) o% + 1)}

(30)

D > max
AcA

0,2
x|V
tr(E;l)agﬂerl }
Next, since the argument of the log functions in the region
above is decreasing in tr (2;‘1) and increasing in tr (Egl)
we can solve the maximization over (A, B) in the above region
with A* € argmin{tr (X,")} and B* € argmax{tr (Z5")}.
AeA BeB

2

X|T eV and consid-

Therefore, choosing V' such that D = o
ering (19), we can rewrite (30) as,
(R,A):
1 o5
R> 3log tr(z;‘i)ig(DJrD
2
+ 1log (tr (Eg}) ok +1)
(3D

1 - ox
A > 5log (2,1 )o% D+D

VII. CONCLUSION

We studied Gaussian secure lossy source coding in the pres-
ence of an access structure. When any authorized set of users
has “better” side information than any set of unauthorized
users, we derived the optimal trade-off between the source
coding rate and the information leakage rate. When this is not
the case, we also derived the optimal trade-off between the
rate and the leakage, but this result is not reported here due
to space constraint [21].
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