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Abstract—Consider a source and multiple users who observe
the independent and identically distributed (i.i.d.) copies of
correlated Gaussian random variables. The source wishes to
compress and store its observation in a public database such
that (i) authorized sets of users can reconstruct the source
with some distortion level, and (ii) information leakage to non-
authorized sets of colluding users is minimized. In other words,
the recovery of the data is restricted to a predefined access
structure of the users. One of the main results of this paper
is a closed-form characterization of the fundamental trade-off
between source coding rate and the information leakage rate
when any authorized set of users has “better” side information
than any set of unauthorized users.

I. INTRODUCTION

A solution for secure data storage resilient to compromised

users is distributed storage via traditional cryptographic solu-

tions, i.e., traditional secret sharing [1], [2]. The idea behind

such a solution is to avoid having a single point of entry that

could compromise the private data in its entirety in the case

of a security breach.

In this paper, we make three main modifications of the

original secret sharing problem. First, we do not assume that

secure channels are available between the users and the source,

because secure channels come with a cost in practice, instead,

we solely rely on public communication via a public database.

Second, we consider that the users have side information about

the source. While this consideration is not relevant in the

original secret sharing problem, it becomes relevant in a data

storage context. Not accounting for the fact that the users

can have side information raises the following two issues that

cannot been addressed with standard results for traditional

secret sharing: (i) it leads to overestimating the security

guarantees of the protocol, and (ii) it leads to inefficiency in

terms of data storage size. Third, in our proposed setting, we

consider a lossy reconstruction constraint, instead of a lossless

reconstruction constraint in traditional secret sharing.

Two distinct bodies of work are related to our model.

The first one is the literature on secret sharing, e.g., [1]–[3],

which addresses the presence of an access structure for secure

distributed data storage, and the second one is the literature on

secure source coding, e.g., [4]–[10], which allows dealing with

the presence of side information at the users. The problem

studied in this paper proposes to simultaneously study the

problems of having an access structure and considering that

side information is available at the users.

Of particular relevance to this paper, [4], [5] have estab-

lished the first characterization of the rate at which an encoder

may compress a source such that an authorized user be able

to recover the source in a lossless manner while guaranteeing

a minimum information leakage from an unauthorized user

who observes the encoded source. This problem is generalized

in [6] to a scenario, in which the authorized user may re-

cover the compressed source with some predefined distortion.

Specifically, [6] characterized the optimal tradeoff between

the rate, the desired distortion, and the information leakage

when both the authorized and unauthorized users observe

different i.i.d. side information sequences that are correlated

with the compressed source. The secure lossy compression of a

vector Gaussian source when both the authorized user and the

unauthorized user have vector Gaussian side information have

been studied in [9] and the authors derived inner and outer

bounds on the optimal trade-off between the rate, the desired

distortion, and the information leakage. [7], [8] extended this

problem to a more general case in which the fidelity of

the communication to the authorized user is measured by a

distortion metric and the secrecy performance of the system is

also evaluated under a distortion metric. Other related works

include [11]–[13], where a function of a source must be

reconstructed in a lossless manner by the authorized sets of

users and must be kept secret from unauthorized sets of users,

who all own side information about the source.

In this paper, we consider an encoder that wants to compress

a source in such a way that (i) only pre-defined sets of

authorized users can reconstruct, up to a prescribed distortion

level, the source by pooling their side information, and (ii) in-

formation leakage about the source to any other sets of col-

luding users is minimized. This problem subsumes the secure

lossy compression of a scalar Gaussian source when both the

authorized user and the unauthorized user have scalar Gaussian

side information as well as the secure lossy compression of a

scalar Gaussian source when both the authorized user and the

unauthorized user have vector Gaussian side information.

The key technical challenge consists in converting the

problem to a scalar problem using sufficient statistics and

dealing with the complexity of the compound structure raised

by the presence of multiple authorized and unauthorized sets

of users.



II. PRELIMINARIES

Define Ja : bK ≜ [⌊a⌋, ⌈b⌉] ∩ N
+. Random variables are

denoted by capital letters and their realizations by lower case

letters. Vectors are denoted by boldface letters, e.g., X denotes

a random vector and x denotes a realization of a random vector.

Xn
∼i denotes the vector Xn except Xi. Throughout the paper,

log denotes the base 2 logarithm.

III. PROBLEM STATEMENT

Consider any zero-mean Gaussian memoryless source
(

X ×
YL, PXYL

)

with non-singular covariance matrix, where L ≜
J1 :LK and YL ≜ (Yℓ)ℓ∈L. The source generates n i.i.d.

samples (Xi,YL,i)i∈J1 :nK. Without loss of generality, let Yℓ,i,

for ℓ ∈ L, have the following form [14, Theorem 3.5.2],

Yℓ,i = hℓXi +Nℓ,i, (1)

where hℓ ∈ R\0 and Nℓ,i, for ℓ ∈ L, are independent zero-

mean Gaussian random variables with variance σ′2
ℓ ≥ 0. Then,

by normalizing (1), it is sufficient to consider Yℓ,i, for ℓ ∈ L,

to have the following form,

Yℓ,i = Xi +Nℓ,i, (2)

where Nℓ,i, for ℓ ∈ L, are independent zero-mean Gaussian

random variables with variance σ2
ℓ ≥ 0. Let A be a set of

subsets of L such that for any S ⊆ L, if S includes a set

that belongs to A, then we must have S ∈ A, i.e., A has a

monotone access structure [15]. Also, let B ≜ 2L\A be the

set of all colluding subsets of users for which the information

leakage about the compressed source Xn must be minimized

(see Fig.1). Let d : X ×YA → J0 : dmaxK be a finite distortion

measure, i.e., such that 0 ≤ dmax < ∞.

Definition 1. A (2nR, n) source code for the memoryless

source
(

X ×YL, pXYL

)

consists of

• An encoding function fE : xn 7→ m, which assigns an

index m ∈ J1 : 2nRK to each xn ∈ Xn;

• Decoding functions gA : m× ynA 7→ x̂n(A) ∪ {e}, where

A ∈ A and x̂n(A) ∈ Xn
A, which assign an estimate

x̂n(A) or an error e to each m ∈ J1 : 2nRK and ynA ∈ Y
n
A.

Definition 2. A triple (R,∆, D) ∈ R
3
+ is achievable if there

exists a sequence of (2nR, n) source codes such that,

max
A∈A

lim sup
n→∞

E
[

d
(

Xn, X̂n(A)
)]

≤ D, (3a)

max
B∈B

1

n
I(Xn;M,Yn

B) ≤ ∆, (3b)

where the distortion between sequences xn and x̂n(A) is

defined by

d
(

xn, x̂n(A)
)

≜
1

n

n
∑

i=1

d
(

xi, x̂i(A)
)

. (3c)

The set of all such achievable pairs is denoted by R(A)
and is referred to as the rate-equivocation region. For a fixed

D > 0, we define R(D,A) ≜ {(R,∆) : (R,∆, D) ∈ R(A)}.
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Fig. 1. Secure source coding with three users, i.e., L = {1, 2, 3}, when
any single user must not learn more than n∆ bits of information about the
source Xn, i.e., we set A = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, and B =

{{1}, {2}, {3}}. X̂n({i, j})
D

≲Xn, for i, j ∈ {1, 2, 3} and i ̸= j, means
that the distortion between the reconstructed source by the users i and j

together and the source sequence Xn must be less than D.

Here, the distortion of the reconstructed sequence
(

X̂i(A)
)n

i=1
defined in Definition 2 is measured by the mean

square error as,

d
(

Xi, X̂i(A)
)

= E
[(

Xi − X̂i(A)
)2]

≤ nD. (4)

Henceforth, we assume 0 ≤ D ≤ σ2
X|Y where σ2

X|Y is

the conditional variance of X given Y , σ2
X|Y = E

[(

X −

E[X|Y ]
)2∣
∣Y

]

. Since the minimizer of the mean square er-

ror is the Minimum Mean-Square Error (MMSE) estimator,

which is given by the conditional mean, we assume that the

authorized terminals use this optimal estimator, which means

that the authorized users select their reconstruction function

as X̂i(A) = E
[

Xi|Y
n
A, f(X

n)
]

, for any i ∈ J1 :nK.

IV. MAIN RESULTS

The main result of this paper is a closed-form expression

for the optimal trade-off between the compression rate and the

leakage rate, which is provided in the following theorem.

Theorem 1. For any access structure (A,B), when

tr
(

Σ
−1
A⋆

)

≤ tr
(

Σ
−1
B⋆

)

,

R(D,A) =











































(R,∆) :

R ≥

[

1
2 log

σ2

X

D
− 1

2 log

(

1 +
tr(Σ−1

A⋆)
σ
−2

X

)]+

∆ ≥

[

1
2 log

σ2

X

D
− 1

2 log

(

1 +
tr(Σ−1

A⋆)
σ
−2

X

)]+

+ 1
2 log

(

1 +
tr(Σ−1

B⋆)
σ
−2

X

)











































,

where A⋆ ∈ argmin
A∈A

{tr
(

Σ
−1
A

)

}, B⋆ ∈ argmax
B∈B

{tr
(

Σ
−1
B

)

}.

In Theorem 1, the term 1
2 log

σ2

X

D
is the source cod-

ing capacity in the absence of side information [16, Theo-

rem 3.6], the term − 1
2 log

(

1 +
tr(Σ−1

A⋆)
σ
−2

X

)

is the gain provided



by the side information at the authorized users, the term

+ 1
2 log

(

1 +
tr(Σ−1

B⋆)
σ
−2

X

)

is the penalty rate coming from the

side information at the unauthorized users.

V. CONVERSE PROOF OF THEOREM 1

We first consider the secure source coding problem

as in [6, Section III-B], which consists of a source
(

(X ,Y1,Y2), PXY1Y2

)

with three outputs Xn at the encoder,

Y n
1 at the legitimate terminal, and Y n

2 at the eavesdropper.

The encoder wishes to encode its observed sequence in such

a way that the legitimate receiver can reconstruct the source

sequence Xn with distortion D, and the information leakage

about Xn at the eavesdropper is minimized. Here, a (n,R)-
code for source coding is defined by, an encoding function

at the encoder f : Xn → J1 : 2nRK} and a decoding func-

tion g : J1 : 2nRK × Yn
1 → Xn. In this problem, a tuple

(R,∆, D) ∈ R
3
+ is achievable if, for any ϵ > 0, there exists a

(n,R+ ϵ) code such that, E[d(xn, X̂(f(Xn), Y n
1 ))] ≤ D + ϵ

and 1
n
I(Xn; f(Xn), Y n

2 ) ≤ ∆− ϵ.

Now consider the secure source coding problem defined in

Section III and the rate pair (R,∆) ∈ R(D,A). We first

provide a general upper bound on the secure rate-distortion

region of the problem defined above, and then show that this

region reduces to the region in Theorem 1.

Theorem 2. For every (A,B), the region R(D,A) is included

in
⋂

(A,B)∈(A,B)

RG(YA,YB), where

RG(YA,YB) ≜
⋃

U−V−X−(YA,YB)

E[σ2

X|YA,V ]≤D































(R,∆) :

R > I(V ;X|YA)

∆ > I(V ;X)

−I(V ;YA|U)

+I(X;YB|U)































.

The proof is similar to [6, Theorem 3] and is omitted for

the sake of brevity.

In [6, Theorem 3], the equivocation is used as a measure

of leakage but, since we consider continuous sources in our

setting, to avoid a negative equivocation, we replace the equiv-

ocation with mutual information leakage (see Definition 2).

A. Conversion to a Scalar Problem

For every (A,B) ∈ (A,B), the problem defined above

can be seen as a secure source coding problem in which

the encoder encodes the scalar Gaussian source X while

the authorized and the unauthorized users observe a vector

Gaussian source YA and YB, respectively. Hence, the problem

in (2) can be rewritten as follows,

YA = 1AX + NA, YB = 1BX + NB, (6)

where NA and NB are independent zero-mean Gaussian ran-

dom vectors with covariance matrices ΣA ≻ 0 and ΣB ≻ 0,

respectively, and 1A is the all-ones vector with size |A|. Also,

(NA,NB) is independent of X . To prove the converse part of

Theorem 1, we use the following lemma from [17] to reduce

the setting to a problem in which the encoder, the authorized

users, and the unauthorized users observe a scalar Gaussian

source.

Lemma 1. ([17, Lemma 3.1]) Consider the channel

Y = hX + N, (7)

where N is a Gaussian noise with zero mean and covariance

matrix Σ and h ∈ R
n. A sufficient statistic to correctly

determine X from Y is the following scalar

Ỹ = h⊺
Σ

−1Y. (8)

According to Lemma 1 the sufficient statistics to correctly

determine X from YA and YB in (6) are the following scalars,

ỸA = 1
⊺

AΣ
−1
A YA, ỸB = 1

⊺

BΣ
−1
B YB. (9)

Therefore, the channel described in (6) is equivalent to the

following scalar Gaussian channel,

ỸA = hAX + ÑA, ỸB = hBX + ÑB, (10a)

where

hA = 1
⊺

AΣ
−1
A 1A = tr

(

Σ
−1
A

)

, (10b)

hB = 1
⊺

BΣ
−1
B 1B = tr

(

Σ
−1
B

)

, (10c)

ÑA = 1
⊺

AΣ
−1
A NA, (10d)

ÑB = 1
⊺

BΣ
−1
B NB, (10e)

where (10b) and (10c) follow since ΣA and ΣB are diagonal

matrices. Now we have,

V n −Xn − Yn
A − Ỹ n

A , V n −Xn − Ỹ n
A − Yn

A, (11a)

V n −Xn − Yn
B − Ỹ n

B , V n −Xn − Ỹ n
B − Yn

B, (11b)

where

• the Markov chains in (11) follow since V n is a function

of Xn;

• the Markov chain in (11a) follows since V n is a function

of Xn and from X − ỸA − YA [18, Section 2.9];

• the Markov chain in (11b) follow by the same argument

as the arguments for (11a).

Using (12) and the Markov chains in (11) one can show that

the sufficient statistics in (10) preserve the distortion constraint

and the leakage constraint in Definition 2, i.e.,

E
[

d
(

Xn, X̂n(M,Yn
A)

)]

≤ D ⇔

E
[

d
(

Xn, X̌n
A(M, Ỹ n

A )
)]

≤ D, (12a)

I(Xn;M,Yn
B) ≤ ∆ ⇔ I(Xn;M, Ỹ n

B ) ≤ ∆. (12b)

The proof of (12) follows from the Markov chains in (11) and

the definition of the rate distortion which can be expressed as

follows,

D ≥
1

n

n
∑

i=1

E

[(

Xi − E[Xi|V
n,Yn

A]
)2]

. (13)

Note that, we can write,

ỸB =
hB

hA
ỸA +N ′, (14)



where N ′ ∼ N
(

0, tr(Σ−1
B )

(

1−
tr(Σ−1

B )

tr(Σ−1

A )

))

. Therefore, when

tr(Σ−1
B ) ≤ tr(Σ−1

A ), without loss of generality we can convert

the problem to the case where the unauthorized users side

information is stochastically degraded with respect to the

authorized users side information, i.e., X − ỸA − ỸB.

B. When Authorized Users Have Better Side Information

We study the case in which, for any access structure

(A,B) ∈ (A,B), tr(Σ−1
B ) ≤ tr(Σ−1

A ), so that the unautho-

rized users side information is stochastically degraded with

respect to the side information of the authorized users. As

discussed, by preserving the marginal distributions PỸA|X and

PỸB|X , we can transform the problem to a problem such that

U − V −X − ỸA − ỸB, hence

I(V ;X)− I(V ; ỸA|U) + I(X; ỸB|U)

(a)
= I(V ;X)− I(V ; ỸA) + I(U ; ỸA) + I(X; ỸB)− I(U ; ỸB)

(b)

≥ I(V ;X)− I(V ; ỸA) + I(X; ỸB)

(c)
= I(V ;X|ỸA) + I(X; ỸB), (15)

where (a), (b), and (c) follow since U − V −X − ỸA − ỸB.

This implies that the region in Theorem 2 is included in the

following region

⋂

(A,B)∈(A,B)

⋃

V−X−ỸA−ỸB

E

[

σ2

X|ỸA,V

]

≤D











(R,∆) :

R > I(V ;X|ỸA)

∆ > I(V ;X|ỸA) + I(X; ỸB)











.

(16)

Since the source is Gaussian the term I(X; ỸB) is fixed,

and we know that the term I(V ;X|ỸA) = h(X|ỸA) −
h(X|ỸA, V ) is minimized by joint Gaussian (V,X, ỸA). Also,

optimizing the rate and the leakage constraints in (16) sepa-

rately results in a larger region, i.e., an outer bound. As a

result, the region in (16) is included in the following region,

⋂

(A,B)∈(A,B)











































(R,∆) :

R > min
σ2

X|ỸA,V
≤D

1
2 log

σ2

X|ỸA

σ2

X|ỸA,V

∆ > min
σ2

X|ỸA,V
≤D

[

1
2 log

σ2

X|ỸA

σ2

X|ỸA,V

+ 1
2 log

σ2

X

σ2

X|ỸB

]











































. (17)

From the monotonicity of the log function the region above is

included in,

⋂

(A,B)∈(A,B)



















(R,∆) :

R > 1
2 log

σ2

X|ỸA

D

∆ > 1
2 log

σ2

X|ỸA

D
+ 1

2 log
σ2

X

σ2

X|ỸB



















. (18)

Now, we have

σ2
X|ỸA

= σ2
X −

σ2
X,ỸA

σ2
ỸA

(a)
= σ2

X −
h2
Aσ

4
X

h2
Aσ

2
X + tr

(

Σ
−1
A

)

(b)
=

σ2
X

tr
(

Σ
−1
A

)

σ2
X + 1

, (19a)

where (a) follows by calculating σ2
X,ỸA

and σ2
ỸA

from (10);

(b) follows since from (10) we have hA = tr
(

Σ
−1
A

)

. Simi-

larly, we have

σ2
X|ỸB

=
σ2
X

tr
(

Σ
−1
B

)

σ2
X + 1

. (19b)

Substituting (19) in (18) and since the arguments of the

log functions are decreasing in tr
(

Σ
−1
A

)

and increasing in

tr
(

Σ
−1
B

)

we can compute the intersection in (18) and rewrite

the region in (18) as follows,






























(R,∆) :

R > 1
2 log

σ2

X

D

(

tr(Σ−1

A⋆)σ2

X
+1

)

∆ > 1
2 log

σ2

X

D

(

tr(Σ−1

A⋆)σ2

X
+1

)

+ 1
2 log

(

tr
(

Σ
−1
B⋆

)

σ2
X + 1

)































, (20)

where A⋆ ∈ argmin
A∈A

{tr
(

Σ
−1
A

)

} and B⋆ ∈

argmax
B∈B

{tr
(

Σ
−1
B

)

}.

VI. ACHIEVABILITY PROOF OF THEOREM 1

A. Discrete Alphabet

To prove the achievability of Theorem 1 we first provide

an achievable rate region for the discrete alphabet and then

extend this region to the continuous alphabet.

Theorem 3. For any access structure A and B, triple

(R,∆, D) ∈ R
3
+ is achievable if,

⋃

U−V−X−YL























R > max
A∈A

{I(V ;X|YA)}

∆ > max
(A,B)∈(A,B)

{

I(V ;X)

−I(V ;YA|U) + I(X;YB|U)
}

D > max
A∈A

E
[

d
(

X, X̂A(V,YA)
)]

(21)

The proof of Theorem 3 is similar to the Proof of [6,

Theorem 3] and is omitted for the sake of brevity.

B. Continuous Alphabet

Now, we show that the region in Theorem 3 reduces to

the region in Theorem 1 when the sources are Gaussian,

as described in Section III, by quantizing the output of the

Gaussian source PXYL
. The main problem of the quantization

is that it can result in underestimating the information that the

unauthorized users sets can learn about the source. However,

we will show that we can overcome this problem if the

quantization is fine enough. We now present the following

lemma, which helps to extend the region in Theorem 3 to the

continuous case by using quantization.

Lemma 2 ([18]–[20]). Let X and Y be two real-valued

random variables with distributions PX and PY , respectively.

Let CΦ1
= {Ci}i∈I and KΦ2

= {Kj}j∈J be two partitions

of the real line for X and Y , respectively, such that for any



i ∈ I, PX [Ci] = Φ1 and for any j ∈ J , PY [Kj ] = Φ2, where

Φ1 > 0 and Φ2 > 0. We denote the quantized versions of X

and Y with respect to the partitions CΦ1
and KΦ2

by XΦ1
and

YΦ2
, respectively. Then, we have

I(X;Y ) = lim
Φ1,Φ2→0

I(XΦ1
;YΦ2

). (22)

Note that, a quantization Yn
B, B ∈ B can lead to underes-

timation of I(Xn;M,Yn
B). Next, we show that quantization

does not affect the security constraint in Definition 2.

Lemma 3. If the quantization Xn
Φ1

of Xn and Yn
B,Φ2

of Yn
B,

for every B ∈ B, is fine enough, then for every ϵ > 0,

max
B∈B

I(Xn;M,Yn
B) ≤ max

B∈B

I(Xn
Φ1

;M,Yn
B,Φ2

) + δ. (23)

Proof. For any ϵ > 0, and for any B ∈ B, we have

I(Xn;M,Yn
B) ≤

∣

∣I(Xn;M,Yn
B)− I(Xn

Φ1
;M,Yn

B,Φ2
)
∣

∣

+ I(Xn
Φ1

;M,Yn
B,Φ2

) (24)

≤ max
B∈B

∣

∣I(Xn;M,Yn
B)− I(Xn

Φ1
;M,Yn

B,Φ2
)
∣

∣

+max
B∈B

I(Xn
Φ1

;M,Yn
B,Φ2

) (25)

(a)

≤ δ +max
B∈B

I(Xn
Φ1

;M,Yn
B,Φ2

), (26)

where (a) follows from Lemma 2 when the quantization Yn
B,Φ2

is fine enough, for any B ∈ B. Note that (26) is valid for any

B ∈ B, therefore (26) results to the bound in Lemma 3.

Considering Lemma 3 and choosing the quantization pa-

rameter Φ small enough one can show that the constraints in

Theorem 3 for the continuous case reduces to,

R > max
A∈A

{

I(V ;X|YA)
}

, (27a)

∆ > max
(A,B)∈(A,B)

{

I(V ;X)− I(V ;YA|U) + I(X;YB|U)
}

.

(27b)

Next, similar to what we have done in Section V-A, we convert

the problem to a scalar problem by using sufficient statistics

described in (10). When tr
(

Σ
−1
A⋆

)

≤ tr
(

Σ
−1
B⋆

)

, where A⋆ ∈
argmin
A∈A

{tr
(

Σ
−1
A

)

}, B⋆ ∈ argmax
B∈B

{tr
(

Σ
−1
B

)

}, we choose the

auxiliary random variable U = ∅ and choose the auxiliary

random variable V to be jointly Gaussian random variable.

1) Conversion to a Scalar Problem via Sufficient Statistics:

Since the side information YA and YB are vectors and we

aim to find the relationship between σ2
X|V and σ2

X|YA,V
, it is

easier to work with scalar random variables and use sufficient

statistics to evaluate the mutual information expressions in the

achievable rate region provided in (27). When tr
(

Σ
−1
A⋆

)

≤
tr
(

Σ
−1
B⋆

)

, we choose the auxiliary random variable U = ∅
and choose the auxiliary random variable V to be a jointly

Gaussian random variable with X . Next, we show that using

the sufficient statistics does not change the achievable rate

region in Theorem 3. Similar to [18, Section 2.9] one can

show that we have,

U − V −X − ỸA − YA, U − V −X − YA − ỸA, (28a)

U − V −X − ỸB − YB, U − V −X − YB − ỸB. (28b)

where ỸA and ỸB are defined in (10a). Hence,

I(V ;X|YA)
(a)
= I(V ;X|YA, ỸA)

(b)
= I(V ;X|ỸA), (29)

where (a) follows from (28a) and (b) follows from (28a).

Similarly, one can also show that

I(V ;YA|U) = I(V ; ỸA|U), I(V ;YB|U) = I(V ; ỸB|U).

Since, when the source is Gaussian, we use the mean square

error to measure the distortion of the reconstructed sequence

and MMSE as the estimator, the distortion constraint in Theo-

rem 3 reduces to σ2
X|YA,V

≤ D. Considering the Markov chain

V −X−ỸA, hA = σ̃2
A = tr

(

Σ
−1
A

)

, and hB = σ̃2
B = tr

(

Σ
−1
B

)

as showed in (10), we rewrite the achievable rate region in

Theorem 3 as the union over the random variables V such

that V −X −YL of






















































(R,∆) :

R > max
A∈A

{

1
2 log

σ2

X

(

tr(Σ−1

A )σ2

X|V +1
)

σ2

X|V

(

tr(Σ−1

A )σ2

X
+1

)

}

∆ > max
(A,B∈(A,B)

{

1
2 log

σ2

X

(

tr(Σ−1

A )σ2

X|V +1
)

σ2

X|V

(

tr(Σ−1

A )σ2

X
+1

)

+ 1
2 log

(

tr
(

Σ
−1
B

)

σ2
X + 1

)}

D ≥ max
A∈A

{

σ2

X|V

tr(Σ−1

A )σ2

X|V
+1

}























































. (30)

Next, since the argument of the log functions in the region

above is decreasing in tr
(

Σ
−1
A

)

and increasing in tr
(

Σ
−1
B

)

we can solve the maximization over (A,B) in the above region

with A⋆ ∈ argmin
A∈A

{tr
(

Σ
−1
A

)

} and B⋆ ∈ argmax
B∈B

{tr
(

Σ
−1
B

)

}.

Therefore, choosing V such that D = σ2
X|ỸA⋆ ,V

, and consid-

ering (19), we can rewrite (30) as,


















(R,∆) :

R > 1
2 log

σ2

X

tr(Σ−1

A⋆)σ2

X
D+D

∆ > 1
2 log

σ2

X

tr(Σ−1

A⋆)σ2

X
D+D

+ 1
2 log

(

tr
(

Σ
−1
B⋆

)

σ2
X + 1

)



















.

(31)

VII. CONCLUSION

We studied Gaussian secure lossy source coding in the pres-

ence of an access structure. When any authorized set of users

has “better” side information than any set of unauthorized

users, we derived the optimal trade-off between the source

coding rate and the information leakage rate. When this is not

the case, we also derived the optimal trade-off between the

rate and the leakage, but this result is not reported here due

to space constraint [21].
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