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ABSTRACT 
 The purpose of a routine bridge inspection is to assess the physical and functional condition 
of a bridge according to a regularly scheduled interval. The Federal Highway Administration 
(FHWA) requires these inspections to be conducted at least every two years. Inspectors use simple 
tools and visual inspection techniques to determine the conditions of both the element of the bridge 
structure and the bridge overall. While in the field the data is collected in the form of images and 
notes, after the field work is complete, inspectors need to generate a report based on these data to 
document their findings. The report generation process includes several tasks: (1) evaluating the 
condition rating of each bridge element according to FHWA Recording and Coding Guide for 
Structure Inventory and Appraisal of the Nation’s Bridges; and (2) updating and organizing the 
bridge inspection images for the report. Both of tasks are time-consuming. This study focuses on 
assisting with the latter task by developing an AI-based method to rapidly organize bridge 
inspection images and generate a report. In this paper, an image organization schema based on the 
FHWA Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation’s 
Bridges and the Manual for Bridge Element Inspection is described, and several convolutional 
neural network-based classifiers are trained with real inspection images collected in the field. 
Additionally, exchangeable image file (EXIF) information is automatically extracted to organize 
inspection images according to their time stamp. Finally, an Automated Bridge Image Reporting 
Tool (ABIRT) is described as a browser-based system built on the trained classifiers. Inspectors 
can directly upload images to this tool and rapidly obtain organized images and associated 
inspection report with the support of a computer which has an internet connection. The authors 
provide recommendations to inspectors for gathering future images to make the best use of this 
tool. 
 
Keywords: Bridge Inspection, Machine Aided Infrastruction Inspection, Convolutional Neural 
Network 
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INTRODUCTION 
The National Bridge Inventory (1) tracks more than 617,000 bridges, and reports that 42% 

of these bridges were constructed more than 50 years ago, with an expected service life of 50-75 
years as per the AASHTO LFRD Design Specifications (2), it would be reasonable to conclude 
that this aging infrastructure has entered the phase of becoming structurally deficient in the next 
20 years. Furthermore, 12% of all bridges were constructed more than 80 years ago, exceeding 
their typical design lifespan. On average, bridges deemed structurally deficient are 69 years old 
(3). These facts follow that closely monitoring this critical infrastructure is an important public 
safety issue, and, as time progresses, an ever-increasing number of bridges will need major 
rehabilitation or replacement. To evaluate the condition and manage further maintenance for 
bridge assets, the Federal Highway Administration (FHWA) requires a routine inspection at least 
every 24 months for public highway bridges exceeding 20 feet in their total span length (4). 
Applying innovative and efficient techniques for bridge inspection is critical to ensuring the safety 
of this aging infrastructure and the public that relies on it. 

While different states may have varying inspection requirements, they all include the basic 
process of tracking defects through a written report and images. Many states require inspectors to 
take certain standard images during one inspection, such as bridge profile images, in addition to 
other images of any damaged elements (5). Post-inspection, these images are stored in bridge 
databases for reference. In a complete inspection process, bridge inspectors visually assess each 
bridge element in detail, noting any defects with a detailed description including, but not limited 
to, the type of defect, geometric information, and the general location. Additionally, the inspector 
takes photographs of these defects (5). Following the field observations, the inspector writes a 
report for each bridge inspected. The images taken are organized and then uploaded into the 
relevant database. A few key photos are typically included in the written report as evidence of the 
state of the bridge.  

The inspector’s basic tasks can be categorized as: image organization, report generation, 
defect detection, defect analysis, and bridge condition evaluation. These tasks make the current 
inspection process time-consuming (6). Additionally, the inspection process is highly reliant on 
the inspector’s subjective decision-making because current rating guides lack clear and 
quantitative condition definitions. Thus, an alternative workflow that teams inspectors with 
artificial intelligence (AI) is desireable to improve both efficiency and consistency in the bridge 
inspection process. 

Researchers have explored the application of artificial intelligence (AI) in different fields. 
At this point in its development, AI is not able to perform most tasks independently, and humans 
still need to participate in the decision-making process (7, 8). In the medical field, doctors use AI 
to assist with interpreting medical images, and making diagnoses with the help of these results (9). 
Economists use AI-based models to predict financial and credit risks (10, 11). In algriculture, 
researchers use automated image processing methods to categorize plants (12). AI- or machine 
learning-supported applications are being successfully applied to reduce the need for repetitive 
tasks to be performed by humans and provide a certain level of consistency through replacing 
human subjective decisions with a computer. 

In the civil engineering field specifically, researchers are developing machine-aided 
procedures to assist with human work. Gao et al. (13) applied a deep transfer learning technique 
for structural damage recognition. Yang et al. (14) designed a robotic system to detect spalling and 
cracking in a concrete structure. Besides the image classification methods applied in these works, 
more advanced methods like semantic segmentation are being applied in the civil engineering field. 
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Chen et al. (15) utilized deep high-resolution representation learning for automatic crack 
segmentation. Spencer et al. (16) utilized sementic segmentation to assist in vision-based civil 
infrastructure inspection and monitoring. For post-event building reconnaissance, Yeum et al. (17) 
used Alexnet (18) to organize post-hazardous event building images rapidly and automatically for 
assisting structural engineering reconnaissance teams. Lenjani et al. (7) created an AI-based 
method for fully automated post-hurricane data collection and information fusion. Liu et al. (19) 
also developed a method of automating the localization of images collected from structures to 
support building reconnaissance rapidly within a large-scale area, and to support the classification 
of the damage state of a building based on the images (20). For applications in the bridge 
engineering field, Zhang et al. (8) explored the use of convolutional neural networks to rapidly 
extract bridge substructure information for coupling with a typical database to perform an 
automated seismic vulnerability analysis of typical bridge networks in regions with low to medium 
seismicity such as the American midwest (21). Drones and robots are also being used in 
collaboration with AI to aid civil engineering researchers or engineers in their work. Choi et al. 
(22) developed an automated algorithm to localize close-up building façade images. This algorithm 
is able to provide support for the rapid visual inspection of a planar building façade using drone 
images. Perry et al. (23) created a deep convolutional neural network-based automated road 
inspection scheme using unmanned aerial vehicles. Ground-based robots are also being used to 
detect concrete cracks as well to build an automatic inspection system for tunnels (24). Besides 
visual data processing, artificial intelligence methods are also applied to analyze data obtained 
from bridges during non-destructive testing evaluation (25). These research advances aim to assist 
civil engineers with every-day tasks, thereby increasing their work efficiency and allowing them 
to focus on analyzing data rather than collecting and processing it.  

Bridge inspection is an important civil engineering responsibility that may benefit from the 
assistance of AI. In this paper, the focus is on aiding the human inspector to perform image 
organization. Convolutional neural network-based classifiers (26) are trained for this domain-
specific task, and then utilized to efficiently organize bridge inspection images. A schema with 
pre-defined image categories is designed for training the classifiers based on the understanding of 
the requirements and definitions set forth in the inspection manuals and discussions with bridge 
inspectors. A two-level classification workflow is designed and validated. Existing bridge 
databases maintained by state Departments of Transportation (DOTs) contain many inspection 
images, which the authors of this work leveraged in validating the proposed AI-based method. All 
of the images in this work were captured during real-world inspections, reflecting practical bridge 
image organization tasks performed by a human inspector. For the convenience of potential users, 
the trained classifiers are embedded in a web-based online tool. Through this Automated Bridge 
Image Report Tool (ABIRT), users can upload images from any location with cloud access. The 
tool automatically categorizes the bridge inspection image sets and generates an inspection report. 
Exchangeable image file (EXIF) metadata of the images is extracted to sort the inspection images 
by date, so that engineers can readily study the deterioration of a bridge over time.  

In the remaining sections in this paper, the process for machine-supported bridge inspection 
image documentation using AI is presented. First, the routine bridge inspection work is described, 
followed by the topic of convolutional neural networks, and the classification schema developed 
in this paper. Next, using the workflow developed in the previous section a ground-truth dataset 
containing more than 11,000 bridge inspection images is assembled and labeled for training and 
then validation. In the Section ‘Report Generation’, an online tool embedded with trained CNN 
classifiers is described and a sample report with organized inspection images is created. The final 
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section reflects on the key takeaways, problems being solved, and possible future contributions on 
this topic. 

 
TECHNICAL APPROACH 

As described in the previous section, approximately 42% of all bridges were constructed 
more than 50 years ago, including many bridges that are over 80 years old (3). Bridges suffer from 
deterioration while in-service due to a wide range of causes (2). Thus, inspecting a bridge during 
its in-service stage and ensuring the good condition of a bridge are critical to its lifecycle 
performance. In the current National Bridge Inspection Standard (NBIS) manual, bridge inspectors 
are required to evaluate each bridge and its elemental conditions at least every two years (4). While 
different states have their own additional requirements for bridge inspection work, generally 
inspectors complete the following tasks for each bridge: 

 
§ Field Inspection: Inspectors typically walk along the deck of the entire bridge to visually 

inspect the deck, railings, joints, and the wearing surafce. Then, go beneath the bridge to 
inspect visible elements underneath the bridge, including the superstructure, substructure, 
abutments, and channels. When an inspector finds a defect, a note is entered in the report, 
recording the type, location, extent, geometic size, and other relevant information. To better 
document the current state of these defects, photographs are often taken. In addition to the 
defect-specific images, some DOTs require inspectors take elevation and alignment images. 
Based on interviews with inspectors, all of the primary inspection work is exclusively 
conducted through a visual assessment. Few inspections involve equipment or specialized 
tests (27). 

 
§ Bridge Condition Evaluation: There are two manuals defining condition assessment. The 

first is the FHWA Recording and Coding Guide for Structure Inventory and Appraisal of the 
Nation’s Bridges (hereafter Coding Guide) (28). In this guide, the assessment of a bridge is 
assigned a score from 0 to 9. A score of 0 refers to the most extreme condition where the 
bridge is not serviceable, while a score of 9 reflects excellent condition. According to the 
Coding Guide, inspectors also give a condition rating independently to the deck, 
superstructure, and substructure elements. Every state is required to follow the Coding Guide 
at a minimum. However, the Coding Guide provides only a vague description of the 
correlations between defects and condition ratings. Another manual is the Manual for Bridge 
Element Inspection (hereafter MBEI) (29) which has a 4-tiered condition rating scale: good, 
fair, poor, and severe. The manual was first published in 2013. The MBEI provides 
quantitative relationships between defects and condition ratings, and it requires ratings for 
more elements of the bridge. Besides the elements defined in the Coding Guide, the MBEI 
also requires assessments of the railings, bearings, culverts, joints, approach slabs, and 
wearing surfaces. In general, MBEI provides more details than Coding Guide, But due to the 
high cost, department of tranportations in different state have different progress of applying 
MEBI in bridge condition evaluation. 

 
§ Image Documentation: Inspectors take photos documenting the condition of the bridge. 

These images contain information about the bridge, including the material composition, the 
type of construction, the state of any defects, and the state of various bridge elements. 
Inspectors then organize the images by giving them a title and storing them in a database in 
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the order of inspection date. There are no specifications that explain to how to label inspection 
images. Typically, an image name includes the bridge element shown, the position, and, if 
applicable, a description of the defects. Since these images are organized based on the date 
they are taken, they form a historical record that inspectors may trace over time to determine 
the changes in appearance or the development of defects. This progression of deterioration 
can be evidence for determining further maintenance action that must be taken for a given 
bridge. 

 
§ Report Generation: State DOTs typically require inspectors to report after every inspection. 

According to the inspection standards from the Coding Guide of FHWA and the inspection 
manuals of each state, this report shall include both basic and health condition information 
about the bridge. A representative inspection report from the state of Indiana’s Bridge 
Information Application System (BIAS) (30) is described herein to introduce the content 
included in an inspection report. The cover page of an Indiana DOT report shows the bridge 
asset name along with the roadway location, inspection date, inspector name, and inspection 
type. The body of the inspection report includes several sections, including location map; 
executive summary; national bridge inventory; pictures; maintenance – bridge, miscellaneous 
asset data; and, load rating. In the location map section, a satellite image of the bridge is 
shown with the bridge’s geographic coordinates. In the executive summary section, basic 
contract information and the condition states of the bridge will be summarized. For the 
national bridge inventory section, inspectors in Indiana follow the requirement from the 
Coding Guide to record the bridge information. This information includes identifier (e.g., NBI 
item 1 - state code), structure type and material (e.g., NBI item 45 – number of spans in main 
unit), age of service (e.g., NBI item 27 – year built), geometic data (e.g., NBI item 48 – length 
of max span), inspections (e.g., NBI item 90 – Inspection Date), condition and condition 
comments (e.g., NBI item 58 – deck condition), load rating and posting (e.g., NBI item 31 – 
design load), appraisal (e.g., NBI item 67 – structural evaluation), classification (e.g., NBI 
item 20 - toll), navigation data (e.g., NBI item 38 – navigation control), proposed 
improvements (e.g., NBI item 75A – type of work). In the pictures section, select images taken 
during the inspection will be exhibited. These images show an elevation view, an alignment 
view, and potentially other damaged elements, and a simple description is added for each. In 
the maintenance – bridge, miscellaneous asset data and load rating sections, information 
about maintenance action, asset management, and load rating are provided. Though this report 
contains extensive information, most of the items are consistent during routine inspections for 
a given bridge. For instance, the location, structure type and material, geometric information, 
etc. will not change from year to year. Inspectors typically only need to update the national 
bridge inventory section and replace the images in the pictures section. They compile the 
information collected in the first three inspection tasks to update these sections of a report. 
Finally, the report is uploaded into the bridge asset database used by the state. 

 
Inspectors with varying levels of experience may require different amounts of time to 

complete these tasks. The authors of this work interviewed some inspectors in Indiana state. These 
inspectors said that they typically spend 45 to 90 minutes in the field, but large multi-span bridges 
may require additional time. After the field inspection is completed, the inspectors take an 
additional 60 to 90 minutes to complete the bridge condition evaluation, image documentation, 
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and report generation tasks. In this work, our focus is placed on the image documentation and the 
report generation tasks and developing a tool for inspectors to use. 

The automatic classification of inspection images into separate categories has several 
potential advantages. Foremost, it can save inspectors time for current and future inspections. 
Instead of simple and tedious work of labeling and categorizing images, they can focus on tasks 
that require more skills and expertise. The automation of this activity may also enable them to 
capture more images in the field. Collecting more images during inspections would not add any 
additional processing time once they return to the office. This approach can lead to more 
comprehensive image databases for inspectors and researchers alike to study. Furthermore, 
automatic image classification can readily be applied to all past bridge inspection images available 
in the database. This opportunity would organize existing data and allow inspectors to easily 
compare categories of a given bridge from the past to the present. For instance, they could view 
the progression of corrosion across several inspection cycles and use this trajectory to project the 
condition two years into the future, enabling better asset management. This computer-vision and 
perception task is a problem best approached using a deep-learning algorithm. 
 
An Overview of Convolutional Neural Networks 

Convolutional neural network algorithms (CNNs) can provide a foundation for developing  
an automated capability to classify the visual contents of images (17). This feature makes 
convolutional neural networks a suitable baseline technology to build an automated image 
documentation tool. CNNs involve one or more convolutional layers to extract an image’s features, 
which can then be utilized to classify the images. Typically, there are a tremendous number of 
numerical weights in a CNN which directly influence the results of a classification problem. Thus, 
to obtain a CNN with good classification performance, there is a need to update these weights by 
training the network. This training process requires a large number of images with ground-truth 
labels, so that classification results will be validated through a comparison with the ground-truth. 
The difference between classification results and groundtruth is defined as loss, which is used as 
an index to update the weights toward lower loss. The image set used during the training process 
is referred to as the training set. The trained classifier is then used to classify another set of images, 
called the validation set, used to compare the classification results with the ground-truth labels. 
Classification scores like accuracy can then be calculated to evaluate the performance of this 
trained classifier. Usually, the training and validation sets are randomly split from one dataset, and 
the images in the validation set should be mututally exclusive. A clear definition for each category 
in the training set should be chosen to maximize the differences between the images in each 
category. 

As CNNs have evolved, their structures have become more complex. At their inception, 
the structure of CNNs was simple and shallow. For example, a classic structure VGG 16 (31) only 
contains 16 convolutional layers. By introducing more complex structures like bottleneck, more 
complex and deeper neural networks were created, e.g., ResNet (32). These more complex 
structures involve more weights, and in turn may provide better model performance after training.  
 
Design of the Classification Schema 

To design a practical schema and useful classification categories, a study of the 
requirements from manuals and the practical needs of the inspectors was carried out. As discussed 
in the previous section, there are two manuals defining the bridge elements that inspectors need to 
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evaluate the condition of a bridge. The design of classification categories should first take the 
range of bridge elements into consideration. These bridge elements are listed in Table 1: 
 
Table 1 Bridge element categories defined in manuals 

Categories Included in Coding Guide (28) Included in MBEI (29) 
Deck and Slabs Yes Yes 
Superstructure Yes Yes 
Substructure Yes Yes 
Channel and Channel 
Protection 

Yes No 

Wearing surface Yes Yes 
Railings No Yes 
Bearings No Yes 
Culverts No Yes 
Joints No Yes 
 

From Table 1, it is clear that the MBEI defines a more detailed set of bridge elements. 
Inspectors following the MBEI need to inspect bridge elements which are not defined in the Coding 
Guide (28), e.g., joints. In the Coding Guide, the condition of these more detailed bridge elements 
is considered to be part of larger elements. For example, the joints are considered a part of the 
deck, and the bearings are considered a part of the substructure. Thus, the MBEI categories are 
chosen as the basis for designing the classification schema, as a more detailed classification 
schema will be more flexible for inspectors to follow manual.  

To capture bridge condition information as much as possible, inspectors may take images of 
one bridge element from several perspectives or angles. Thus, hierarchical, perspective-based 
categories are defined to distinguish between these images of the same bridge element. For 
instance, a bridge substructure element can be further categorized as a pier or an abutment. Bridge 
element level categories are considered in the level 1 classification, and perspective-level 
categories are considered in level 2 sub-classification. Clear definitions are needed for successfully 
classifying the images into the selected categories. These definitions are essential as they serve to 
provide guidance to human annotators who seek to establish meaningful and consistent ground-
truth data that are suitable for network training (17). The category definitions chosen for this work 
are outlined below. The level 1 categories are bulleted, and the level two categories are the sub-
bullets of level 1 categories. Image examples of these categories are shown in Figure 1: 
 
n Bridge overview (OV): An image showing an overall bridge profile. Through these images, 

people can see almost every bridge element. See examples in Figure 1 (1). 
 
n Deck: An image showing the bridge deck and its wearing surface. Sometimes the images may 

include both the deck and railings. Images are classified as deck if the deck takes up the center 
of the image and railings (defined later) if the railings take up the center of the image. These 
are the level 2 categories defined for the Deck category: 
l Deck overview (OV): This level 2 subcategory is defined as a deck image showing an 

overall view of the deck. Through these images, people can realize the deck’s overall 
condition. See examples in the top row of Figure 1 (2). 
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l Deck part: This level 2 subcategory is defined as a deck image showing a smaller part of 
the deck. Inspectors cannot realize the overall contition of the deck through images in this 
category, but they can get more detailed information. A typical example is an image 
showing a small section of the deck with cracking present. See examples in the second 
row of Figure 1 (2). 

l Joint: This level 2 subcategory is defined as a deck image showing bridge joints. To 
distinguish from the deck part subcategory, only images showing joints in the center of 
the image are categorized in the joint subcategory. Otherwise, the images are categoriezed 
in the deck part subcategory. See examples in the third row of Figure 1 (2). 

 
n Superstructure: An image showing a bridge superstructure element and/or the deck from the 

underside position of the bridge. There is frequent overlap between the superstructure and the 
substructure. To clearly define the superstructure category in this work, when around 75% or 
more of an image’s content shows the superstructure, then the images will be categorized in 
the superstructure category. Otherwise, they are considered as substructure images. These are 
the level 2 subcategories defined for superstructure: 
l Superstructure overview (OV): This level 2 subcategory is defined as a superstructure 

image showing an overall view of the superstructure. Through these images, inspectors 
can see the overall condition of the superstructure but may not see more detailed 
information. See examples in the first row of Figure 1 (3). 

l Superstructure part: This level 2 subcategory is defined for a Superstructure image 
showing a small area of the superstructure. It is difficult for inspectors to gauge the overall 
condition of the superstructure through images in this category. Most of the superstructure 
area has been excluded in these images. See examples in the second row of Figure 1 (3). 

 
n Substructure: An image showing a bridge substructure element. There is frequently overlap 

between the superstructure and the substructure. To clearly define the substructure category, 
in this work, when around 75% or more of an image’s content shows the substructure, these 
images will be categorized in the substructure category. These are the level 2 subcategories 
defined for substructure images: 
l Bearings: This level 2 subcategory is defined as a substructure image showing the 

bearnings in detail. These images show a close-up view of 1 or 2 bearings where the 
bearing(s) is(are) clearly visible and the focus of the image. This may include front views 
or side views. See examples in the first row of Figure 1 (4). 

l Pier overview (OV): This level 2 subcategory is for high-level images showing all or most 
of a pier structure. This may include rectangular wall piers, flared piers, and capped 
column piers. These images illustrate the overall condition of a pier to the inspector. If an 
image shows most of a pier but is at a low angle capturing the side of the pier, it is not 
included in this category. See examples in the second row of Figure 1 (4). 

l Pier Part: This level 2 subcategory is for images showing a more detailed view of a pier, 
where only a small portion of the pier is visible. This may include a single column or a 
close view of a defect such as spalling. This category also includes images where the side 
of the pier is the focus of the image. Inspectors can use these images to better understand 
smaller defects and how they fit into a pier overall. See examples in the third row of 
Figure 1 (4). 
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l Abutment overview (OV): This level 2 subcategory is for high-level images that show all 
or most of an abutment structure. This may include end-bents, slopes, and mechanically 
stabilized earth walls. The image captures all or most of an abutment structure for one 
end of the bridge. The inspector would be able to gauge the overall condition of an 
abutment from these images. See examples in the fourth row of Figure 1 (4). 

l Abutment part: This level 2 subcategory is for images showing a more detailed view of 
an abutment, where only a small portion of the abutment is visible. This category typically 
includes bearings, but they are not the focus of the image or there are more than two 
bearings visible. Inspectors would use these images to illustrate more detailed damage on 
the bridge that is not evident from images in the overview category. See examples in the 
fifth row of Figure 1 (4). 

 
n Railing: This category is defined as an image showing a bridge railing. As demonstrated in 

the Deck category definition, sometimes railing images contain bridge deck elements. 
However, images in the railing category only contain images showing railings in the center. 
See examples in Figure 1 (5).  
 

n Detail: This category is defined as an image showing a very small part of a bridge element. It 
is difficult for a human to recognize which element this image shows without additional 
context. See examples in Figure 1 (6). 
 

n Other: During a bridge routine inspection, inspectors may take images upstream or 
downstream of the river beneath the bridge. Additionally, some inspectors take images of road 
signs to help them record the bridge’s location. These types of images are categorized into the 
other category because they are not relevant to the condition of the bridge itself but may still 
provide the inspector with useful information. See examples in Figure 1 (7). 

 
This schema is designed using the definitions in both bridge manuals (MBEI and the Coding 

Guide) and with practical input from conversations with inspectors. Several elements defined in 
the manuals are not included due to their lack of relevance to bridge inspection, e.g., culverts and 
channels. Modifications can be made to the categories, as it should consider the needs of the 
application. For instance, higher numerical accuracy can be achieved by combing the “part” and 
“overview” sub-categories of a given element. However, for purposes of inspection it is likely 
more useful to have more categorical resolution. This possibility will be discussed further in the 
experimental validation section of the paper.  
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(1) 

(2) 

(3) 
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(4) 

 
(5) 

(6) 
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(7) 

Figure 1. Image Examples from Indiana for Designed Documentation Categories (30): (1) 
Bridge OV; (2) Deck; (3) Superstructure; (4) Substructure; (5) Railings; (6) Detail; (7) 
Other. All photos provided with permission from INDOT.  

 
Design of CNN-based Classifier Workflow 

According to the categories defined in the ‘Design of Classification Schema’ section, there 
are two levels of classification, which are designated as classifier 1 and classifier 2. The first 
classifier takes in the entire dataset and sorts them into one of the seven level-one categories: 
bridge overview, deck, superstructure, substructure, railings, detail, and other. After the initial 
classification, the deck, superstructure, and substructure categories are split up further into level-
two categories using the level two classifier. The complete workflow is shown in Figure 2. 
 

 
 
Figure 2. CNN-based Classification Workflow Designed for Data Organization 
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EXPERIMENTAL VALIDATION 
In this section, a complex ground-truth dataset containing real-world bridge inspection 

images is built to validate the CNN-based classifiers and the overall automated image organization 
method. 
 
Description of the Ground-truth Dataset 

A real-world bridge inspection image dataset containing approximately 11,000 bridge 
images is established for the training and validation of the method. These images are from more 
than 100 bridges and were taken by inspectors during routine bridge inspections. Only bridges 
with concrete or steel beams and concrete decks are chosen for this application, as this represents 
the majority of bridges in the United States. Other less common bridge types, e.g., bridges with 
steel decks or truss bridges are not included in the dataset. If needed in the future and with enough 
image data for training, extra categories can be designed for these less common bridges in the 
classification schema. To prevent bias caused by regional construction differences, about 2,000 
images in the dataset are from Texas (provided by Texas inspectors) and the remaining 9,000 are 
from Indiana (30). The image capture dates also range from the year 2000 to year 2020 to eliminate 
potential bias of images taken in a single year. For establish the ground truth dataset and train 
classifiers, the authors first manually labeled all of the images in the dataset into the level 1 
categories discussed in ‘TECHNICAL APPROACH.’ Table 2 shows the level 1 category 
distribution included in the dataset. 
 
Table 2. Level 1 category distribution 

 Bridge 
OV 

Deck Superstructure Substructure Railings Detail Other Total 

No. of 
Images 

1412 3692 1930 2841 394 234 619 11122 

 
According to the classification schema, the images in the deck, superstructure, and 

substructure categories are further labelled according to the definitions for the level 2 categories. 
The level 2 category distribution information has been shown in Table 3. 
 
Table 3. Level 2 category distribution 

Level 1 Category Level 2 Category No. of Images 

Deck 
Deck OV 1291 
Joints 1170 
Deck Part 1231 

Superstructure Superstructure OV 1234 
Superstructure Part 696 

Substructure 

Pier OV 927 
Pier Part 442 
Abutment OV 282 
Abutment Part 691 
Bearing 499 
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Tyically, researchers find that using low-resolution images will not influence the feature 
extraction process using CNNs (33). Additionally, smaller images are processed faster and 
reducing the image resolution reduces the time needed to train the networks. Past researchers have 
studied the impact of resizing images on classification performance and concluded that resizing 
the images within a proper range will not strongly influence classification accuracy [34]. Therefore, 
all of the RGB images utilized for training in this work are resized to be 512 (height) x 512 (width) 
x 3 (color channels) pixels.  

 
 

 
Configuration of Convolutional Neural Network 

The authors make use of an existing CNN structure, ResNet50, as the basic network 
structure. The choice of ResNet50 for this demonstration is somewhat arbitrary and used to 
demonstrate the method. Other models may be explored in the future and may yield slightly 
different results. To conduct the classification work, a SoftMax layer is added as the output layer 
of the CNN model. The SoftMax layer generalizes logistic functions into multiple dimensions, 
which can be used to normalize the output of a network to a probability distribution over a 
predicted output category. The dimensions of probability output from the Softmax layer are equal 
to the number of categories set for that classifier. In this work, the number of dimensions set for 
level 1 classifier, level 2 classifier for deck, level 2 classifier for superstructure, and level 2 
classifier for substructure are seven, three, two, and five, respectively. As explained in the previous 
section, all of the images are resized into 512 x 512 x 3 pixels, and thus the input size of the CNN 
model is set as (512, 512, 3). The dataset is then split into training and validation sets using ratio 
of 4:1. It follows that the level 1 classification work uses around 9,000 images for training, and it 
uses the remainder for model validation. To eliminate potential bias caused by splitting the dataset, 
five random splits are created for training five different models. Since the number of each category 
is not balanced and thus class weights were added to eliminate such imbalance. Data augmentation 
by rotating, shifting, zooming and flipping images in current training set to make more images has 
been used during training process to improve the robustness (35). The initial weights in ResNet 50 
are the pretrained weights but then all of these weights will be updated during training process. 
The learning rate for each classifier is set to 10-6. The loss function used for training is cross 
entropy. A computer equipped with an NVIDIA Titan X GPU was used for training and testing 
the model. Accuracy, precision and recall are calculated to present the performance of the trained 
classifiers. 
 
Classification Results 

As demonstrated in the previous section, for each classification, there are five different 
training and validation splits and thus there are five different training results. One of the training 
processes is shown in Figure 3 (a) and (b). Figure 3 (a) exhibits the convergence of loss during 
training process while Figure 3 (b) exhibits the change of accuracy during the training process. 
By using the hardware introduced in last section, the overall training time for level 1 classifier 
(around 9000 images are used in level 1 classifier training process) is around 6-8 hours and after 
the trained model is obtained, it takes less than 1 second to label each image. The results for the 
five different training process of level 1 classification have been summarized in Table 4: 
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(a)                                                                             (b) 

Figure 3. Representative results of the training process from level 1 organization. 

 
Table 4. Level 1 classification results 

 Accuracy Recall Precision 
Dataset Split 1 0.9357 0.9092 0.8701 
Dataset Split 2 0.9415 0.9091 0.8856 
Dataset Split 3 0.9464 0.9169 0.9002 
Dataset Split 4 0.9415 0.9115 0.8935 
Dataset Split 5 0.9393 0.8997 0.8842 
Average 0.9409 0.9093 0.8867 
 

According to the results shown in Table 4, the average accuracy that level 1 classification 
achieves is around 94.1% and the variability is neglible between data sets. Further, the recall of 
each classifier is above 90% and the precision of each classifier is above 88%. A representative 
confusion matrix for the level 1 classification is shown in Table 5: 

 
Table 5. Level 1 classification confusion matrix 

Level 1 
Classification 

Prediction 

Bridge 
OV Deck Superstructure Substructure Railings Detail Other 

T
ru
e  

Bridge Ov 220 0 1 8 0 0 2 
Deck 3 765 0 0 13 0 0 

Superstructure 5 0 366 20 3 2 0 

Substructure 4 0 22 551 2 1 0 
Railings 0 9 1 0 75 0 2 
Detail 0 3 4 3 0 30 2 
Other 0 1 0 3 6 0 113 



18 
 

Level 2 classifiers are also trained and validated under five different dataset splits. The 
same process is carried out for level 2 classifications to evaluate the performance of the level 2 
classifier. The accuracy of the level 2 deck, superstructure, and substructure classifiers range from 
89.0% to 93.1%, 94.8% to 96.9% and 84.2% to 87.7%, respectively. The recall of level 2 deck 
classifier, superstructure classifier and substructure classifier ranges from 90.2% to 93.6%, 93.1% 
to 96.6% and 82.1% to 86.5%, respectively. The precision of level 2 deck classifier, superstructure 
classifier and substructure classifier range from 89.1% to 93.1%, 92.6% to 96.6% and 82.0% to 
86.3%, respectively.  

The substructure classification has the poorest results, with an average accuracy of 85.6% 
and an average precision of 83.8%. This error occurs primarily in delineating the ‘part’ images 
from the ‘overview’ images, for both the abutments and the piers. For example, the model is 
accurate when deciding whether an image is a pier, however it is less accurate when deciding if 
the image belongs to the pier part or pier overview categories. To illustrate this point, an alternative 
classifier is trained for the substructure level 2 categories. For this classifier the part and overview 
perspectives are combined, leaving three categories: bearing, pier, and abutment images. The 
accuracy for this alternative classifier ranges from 92.1% to 94.1%, with an average of 93.3%. 
These results are improved over the previous version with five categories, however, there exists a 
tradeoff between numerical performance and utility. As inspectors do not follow particular 
guidelines when taking photographs, the differences between the part and overview categories can 
be ambiguous, even to a human organizing the images. More importantly, errors between the two 
categories do not impact the ability to interpret the results. Therefore, 86% accuracy is deemed 
acceptable and preferrable to the case with 93% accuracy, due to the low-consequence nature of 
the errors and the usefulness of the further-classified results. 
 
REPORT GENERATION 

As introduced in the ‘TECHNICAL APPROACH’ section, one of the main tasks that 
bridge inspectors perform is generating the bridge inspection report. Thus, in this section, the 
authors describe the design and development of a web based Automate Bridge Inspection 
Reporting Tool (ABIRT), to assist inspectors in generating a general inspection report. The 
classifiers developed in the ‘EXPERIMENTAL VALIDATION’ section are embedded into this 
tool to automatically classify the pictures in the report. 
 
Design of the Bridge Inspection Report Generated  

The items contained in a bridge inspection report can separated into ‘invariant’ information 
that is always the same for a given bridge and ‘variant’ information that changes with each 
inspection. Reports created using ABIRT will also include these two types of information. The 
‘invariant’ information is entered once, and the tool stores this information for a given bridge. 
Then, each time an inspection is performed, inspectors may upload inspection images into the tool, 
and the tool automatically labels and organizes them using the CNN-based classifiers described 
earlier. Later, the inspectors can use these images to write bridge condition comments and evaluate 
the bridge’s condition rating. For each bridge, all the relevant images are stored in the system, and 
ABIRT automatically generates different reports of the same bridge based on the bridge inspection 
years. Users can access these reports on the same webpage by switching the “Inspection Year” in 
the "Report Information" section (shown in Figure 4) for easy reference. 

Another capability built into ABIRT is the ability to track the history of a bridge element 
over time based on inspection images collected. According to our discussions with bridge 
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inspectors, the ability to track bridge defects is vital which can be used to determine future 
inspection periods and maintenance actions. However, bridge inspectors currently need to spend 
significant time finding previous reports and images if they wish to view it and compare it to the 
current state of the bridge. ABIRT is designed to extract the EXIF data of bridges and 
automatically store the images according to their inspection date. Further, we included a function 
where inspectors can select a single level 1 image category and compare the images in this category 
between inspections across different past years. For instance, one can select the deck category and 
see the propagation of deck cracking over time, in side-by-side images. The location information 
in the EXIF data is also extracted from the images to show the bridge location on a map such as 
Google Map (the red pin on the map is shown in Figure 6). Thus, ABIRT is able to generate a 
detailed and organized image-based report with the aid of our trained CNNs in dozens of seconds. 
The introduction of the tool and a sample report are demonstrated in the following ‘Sample Report’ 
section. 
 
Sample Report 

In this section, the authors share how this research comes together to realize the ABIRT 
interface. Figure 4 shows the primary page of the tool where a user enters the bridge information, 
and then can upload each set of bridge inspection images. Figure 5 shows the interface for 
uploading the images. In this step, a user can review and choose the images to upload. Figure 6 
shows the sample report after uploading the inspection images. These images are then 
automatically organized. The location of the inspection is also shown on the embedded Google 
map. Figure 7 shows the details of some classified and organized images. Both level 1 and level 
2 labels are assigned to these images, as applicable. Figure 8 shows the comparison of the bridge’s 
deck category images over time, so that the inspectors can compare the condition of the deck in 
different inspection years side by side. Other categories can be selected for comparison as well. 

 
Figure 4. The main/home page of the ABIRT tool. 
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Figure 5. Selecting bridge inspection images to upload to the report generation tool. 
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Figure 6. Sample report with organized images (30) of bridge with ID 004640 in Indiana. 

 

 
Figure 7. Image documentation details after one inspection. 

 
 
Figure 8. Chronological comparison capability of ABIRT for Deck category  
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Recommendations and Future Work 
ABIRT is able to organize typical images collected during routine inspections, as the 

embedded classifiers are designed and trained using realistic field images. However, several 
recommendations are discussed to make optimal use of this system. Following these 
recommendations can improve the processes related to image classification and organization, and 
ultimately the quality and thoroughness of bridge inspection reports. 

The first suggestion is to consider the categorical definitions when capturing images. This 
slight adjustment will enable the best organization results. Although the categories defined in this 
work can be changed according to the preference of the manuals and the inspectors in the future, 
once they are determined, the inspector’s workload will be reduced if they consider the categories 
defined for the categories when performing image acquisition. This guideline is helpful in any 
application of scene classification, and in some cases an adjustment is possible. Certain 
standardized bridge image contents and locations would likely lead to highly consistent 
classification with few if any errors. The second recommendation is related, and is to suggest to 
users to avoid taking images that result in high overlap between two categories. For instance, they 
should focus on the substructure only or the superstructure only. This strategy can help the tool to 
organize the images with high accuracy, precision, and recall indexes. The third suggestion is that 
inspectors use cameras with the capability to store location and date information via EXIF 
metadata, so that the mapping and time comparison functions can be readily utilized. Finally, it is 
recommended that inspectors take advantage of the automated image processing of this tool by 
taking more images than they do currently. This step will ensure that all elements of the bridge 
have a steady historical record, and it will increase the amount of data available have for expanding 
the capabilities of this tool and other machine learning-based tools.  

ABIRT is also extensible as new capabilities of AI are developed. Currently, the tool is 
useful for performing the image documentation and report generation tasks. As introduced earlier 
in this paper, inspection reports also require damage analysis and condition evaluations. In the 
future, automated damage analysis can be added to further help inspectors in their daily work. For 
example, civil engineering researchers have shown success with AI-based crack detection in 
different types of crack images (see, for instance: 36, 37). Once these methods are validated and 
can detect and quantify cracks in real inspection images, e.g., cracking on decks with tiny present, 
those abilities can be implemented in ABIRT. As depth cameras become more affordable, it may 
also be possible to collect measurements of damage. For instance, a depth image could help to 
predict the length and spacing of deck cracking. This quantitative measure would allow researchers 
to evaluate the overall condition of each element using the MBEI, and perhaps propose a condition 
rating for the whole bridge. A final possible expansion of the tool is to leverage EXIF information 
further to locate individual images with respect to the bridge. In this way, inspectors could have 
precise location context for all of the images in the database, leading to a better historical damage 
trace. Further research in these areas, in close collaboration with professional inspectors, could 
lead to a more useful tool for inspecting and managing more than 617,000 bridges in the United 
States. 
 
CONCLUSIONS 

This study utilizes the recent advances in machine learning, namely CNNs, to establish and 
validate novel image classifiers tailored specifically to the bridge inspection industry. We first 
designed a two-level classification schema for bridge inspection tasks based on existing inspection 
rating manuals and discussions with bridge engineers. Next, we trained and validated several 
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classifiers with the schema using training and validation set that randomly splited from the real-
world bridge inspection image dataset we gathered. Then the validated classifiers are integrated 
into a web-based tool ABIRT, which we designed and developed, to demonstrate the usability and 
efficiency of our method. This tool allows inspectors to upload images from the field or office and 
supports the inspectors by automatically generating a report with the categorized images. Images 
are organized into separate report entries automatically based on their inspection year, allowing 
inspectors to isolate categories and track the damage status across several inspections. This 
historical comparison may be used to quantify damage development and inform better 
maintenance actions. ABIRT also enables inspectors to collect more data without the spending 
extra time for manual processing. Ultimately, this machine-supported inspection tool can save 
inspectors valuable time and provide them with more comprehensive data to base their decisions 
on. The time saved allows the inspectors to focus more on the skilled engineering tasks using this 
evidence, such as damage analysis and condition evaluation. In the future, automatic bridge 
damage analysis can be developed and embedded in this tool. This functionality would assist the 
inspectors with making a condition decision, enable further research on the reliability of bridge 
inspections.  
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