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Abstract
This paper investigates a budget allocation problem for optimally running stochastic simu-

lation models with importance sampling in computer experiments. In particular, we consider
a two-level (or nested) simulation to estimate the expectation of simulation output, where the
first-level draws random input samples and the second-level obtains the output given the input
from the first-level. The two-level simulation faces the trade-off in allocating the computational
budgets: exploring more inputs (exploration) or exploiting the stochastic response surface at
a sampled point in more detail (replication). We study an appropriate computational budget
allocation strategy that strikes a balance between exploration and replication to minimize the
variance of the estimator when importance sampling is employed at the first-level simulation.
Our analysis suggests that exploration can be beneficial than replication in many practical sit-
uations. We also conduct numerical experiments in a wide range of settings and wind turbine
case study to investigate the trade-off.

Keywords: Computer experiment; Monte Carlo sampling; Reliability; Variance reduction. format;
Taylor & Francis.

1 Introduction

This paper concerns a simulation budget allocation problem when estimating an expectation of

a random quantity that is a function of random inputs and some unknown random effects. The

unknown random effects make the function generate random outputs, given the realization of ran-

dom inputs. Choe et al. (2015) call such simulation models (or computer models) the stochastic

simulation models, in contrast to the deterministic simulation models where the randomness of the

function only comes from input variables.
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Simulation with stochastic computer models basically takes a two-level procedure; the first-level

(referred to as outer simulation) collects input samples from their distribution, and the second-level

(referred to as inner simulation) conducts simulation runs, given inputs from the first-level. A case

in point of the two-level simulation is the wind turbine simulation. The International Electrotech-

nical Commission (IEC)’s design standard requires to assess the turbine reliability using stochastic

simulations at the design stage (International Electrotechnical Commission, 2005). In response, the

U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) developed aeroelastic

simulators to assist wind turbine manufactures to design a reliable wind turbine operating under

various wind conditions (Jonkman, 2009; Jonkman and Buhl Jr., 2005). In the reliability problem

of wind turbines, input wind condition is sampled at the first-level and then aeroelastic simulators

generate stochastic load responses at the sampled wind condition at the second-level.

The stochastic simulation model is also called nested simulation, and it has been used to obtain

financial portfolio risk measurements such as value-at-risk (VaR) and expected shortfall in the

literature (Gordy and Juneja, 2010; Broadie et al., 2011; Lan et al., 2010). VaR is the quantile

estimation of risk factors given the probability of loss, and the expected shortfall estimates the

tail expectation that quantifies the actual loss amount when the large loss happens so that it

complements VaR that ignores the loss distribution beyond the quantile (Gordy and Juneja (2010)).

The risk factors are drawn in the outer step and the loss is evaluated using the inner step simulation.

When we have a limited budget on the simulation runs, we need to optimize the allocation of the

budget for both levels to accurately estimate the output of interests. Choe et al. (2015) provided

a general framework for resource allocation at both levels when the first-level uses importance

sampling. The objective of importance sampling is to take more samples from the important input

region to reduce estimation variance with limited budgets. Choe et al. (2015) considered the so-called

stochastic black box model, where the second-level simulation purely relies on a complicated black

box computer model, such as a wind turbine simulator. In the two-level simulation framework, they

jointly derived the importance sampling density for the first-level simulation and the optimal budget

allocation for the second-level simulation; the importance sampling density affects the optimal

budget allocation and vice versa. Their approach is called stochastic importance sampling and has

been extensively studied for the wind energy application (Choe et al., 2015, 2016, 2018; Cao and

Choe, 2019; Pan et al., 2020; Pan et al., 2021).
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Specifically, given the sample size M of the input random variable at the first-level simulation

and the total number NT of simulations in the second-level, Choe et al. (2015) derived the optimal

importance sampling density to draw the input Xi, i ∈ {1, . . . ,M}, and the optimal budget allo-

cation Ni in the second-level simulation for each input Xi. However, the trade-off in deciding the

input sample size M has not been studied yet. Large M would provide better exploration of the

response surface over the important input region, while small M would allow better quantification

of the variability of the stochastic response, that is, it provides better exploitation at the sampled

inputs by replication. To be clear, in this paper, exploration implies drawing more inputs with

large M , whereas replication assigns more budgets to replicate the stochastic response at a smaller

number of selected inputs.

In order to best utilize limited computational resources and accurately estimate the output of

interest, it is needed to provide a guideline on how many input samples need to be drawn and

how many replications are needed for each sampled input. We investigate the trade-off between

the exploration and replication and derive the theoretically optimal input sample size M , given the

limited budget NT . Our analysis shows that setting the input sample size the same as the total

budget, that is, M = NT , is optimal when the positive integer restriction is not imposed on the

budget values (Ni’s) in the second-level simulations. This result implies that the exploration is better

than replication. However, as the theoretical results do not account for the integer requirement,

the budget value should be rounded to its nearest positive integer in practice. Therefore, with

M = NT , Ni should be 1 in practical implementation. We theoretically prove that the variance

with the theoretical optimal allocation (that takes real-valued Ni’s without rounding) is smaller

than the variance with the allocation after rounding (i.e., Ni = 1). Our implementation results also

suggest that rounding to Ni = 1 could lead to a non-negligible increase in the variance.

Therefore, with the integer condition on the budgets, the optimal input sample size M should

lie between 1 and NT , balancing exploration and replication. However, optimal M depends on the

problem structure and is hard to obtain analytically or empirically. Having the fact that M = NT

provides the theoretically optimal allocation, we consider another estimator that is designed to

purely explore the input area without replicating the stochastic response. We refer this estimator to

as exploration-only estimator. This estimator allows only one simulation run in the second-level at

each input drawn at the first-level. We prove that the theoretical variance of the exploration-
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only estimator is smaller than that of the original optimal estimator with rounding. We also

empirically show that the exploration-only estimator provides consistently good performance in

numerical examples and wind turbine case study.

Overall the contribution of this paper can be summarized as follows:

• We prove that under the limited budget NT , more first-level simulation runs (i.e., more explo-

ration) theoretically reduce the variance of the estimator when imposing no integer constraints

on the second-level budget values.

• We show that rounding the budget values loses optimality. That is, the resulting allocation is

not optimal anymore when the practical implementation requires us to round the real-valued

theoretically optimal allocation to the nearest natural numbers.

• We analytically prove that the exploration-only estimator has a smaller variance than the

implementable version of the theoretically optimal estimator with rounding.

• Based on the theoretical analysis and empirical results, we show that the full exploration

strategy provides a robust solution for the two-level simulation combined with importance

sampling at the first-level.

The organization of the paper is as follows: Section 2 reviews relevant studies in two-level

simulation and statistical literature. Section 3 describes the problem of interest. Section 4 studies

the optimal resource allocation and its practical issues. Section 5 confirms the theoretical results

using numerical examples and the wind turbine case study. Section 6 makes a concluding remark

and discusses future work.

2 Literature review

Estimation and inference of systems with stochastic computer models have gained popularity re-

cently. For computer models whose run-time is not negligible, several studies investigate the resource

allocation problems in different contexts to understand systems better with limited computational

budgets. In statistical literature, adaptive sampling strategies for building accurate surrogate models

that emulate stochastic computer models have been actively studied. The goal of these metamodel-

ing studies is to obtain a high quality metamodels by investigating the trade-off between exploration
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and replication. Sinha and Wiens (2002) develop a sequential design scheme for nonlinear para-

metric regression model as a surrogate, when the fitted model is possibly incorrect. Recently,

several studies develop a Gaussian Process (GP) as a surrogate model of computationally expensive

computer model (Wang et al., 2020) and provide adaptive sampling approaches that sequentially

determine design points in order to build an accurate GP emulator. Based the Bayesian treed GP,

Gramacy and Lee (2009) combine the classic design of experiments with active learning approach

and propose a new adaptive sampling design strategy in supercomputer experiments. Binois et al.

(2019) further generalize the approach and show that replication can be more beneficial, especially

for heteroscedastic systems. They sequentially find a design point that minimizes the predictive

uncertainty measured by the integrated Mean squared error (IMSE).

Ankenman et al. (2010) extend the deterministic kriging method to the stochastic kriging

method. At each design point, they derive the optimal number of replications for minimizing IMSE,

which is proportional to the standard deviation of intrinsic variance (and the square root of a func-

tion of extrinsic covariance). Wang and Haaland (2019) also demonstrate how replication could help

signal isolation in stochastic kriging. Xiong et al. (2013) present a sequential design scheme when

both high-accuracy and low-accuracy computer models are available. In Goetz et al. (2018), active

sampling schemes are presented to build a non-parametric tree-based metamodel. The primary

objective of these surrogate studies is to build a globally accurate emulator over the entire input

space. While some of these studies investigate the trade-off between exploration and replication,

their focus is to estimate the predictive distribution Y |X, where Y denotes the simulation output

and X is a design point (not random variable).

In financial risk analysis, given the portfolio (the first-level), computational budget allocation

(the second-level allocation) to each scenario is the focus of several studies (Broadie et al., 2011;

Gordy and Juneja, 2010). In these studies, the first-level simulation usually assumes a predetermined

distribution (portfolio) and mostly the second-level simulation decides the optimal budget allocation.

Broadie et al. (2011) propose a sequential approach that allocates more simulation budget to the

inner simulation of the outer scenarios located close to the boundary of the tail probability, i.e., close

to c for the estimator of P (L > c), using the optimization problem that maximizes the probability

of a sign change. For the resource allocation at both levels, Gordy and Juneja (2010) formulate

an optimization problem that determines the first and the second-level budgets to minimize the
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mean squared error (MSE) of the estimator of risk measurements. While they investigate the

number of total outer and inner simulation numbers, their analysis focuses on the second-level

budget allocation. They also do not consider the sampling distribution of input variables, such as

importance sampling.

The trade-off between exploration and replication problem has also been studied in the context

of data-driven optimization. Following the increased popularity of GP, Bayesian optimization has

gained attention in the literature as one of the black box optimization techniques, typically when the

objective function is continuous (Snoek et al., 2012; Mockus, 1989). Bayesian optimization consists

of two major components: GP for modeling an objective function over a solution (or design) space

and an acquisition function to choose the next design point (Frazier, 2018). It updates the posterior

probability on the objective function using all available data and chooses the next sample point

that maximizes the acquisition function. Acquisition functions, including the well-known expected

improvement, are designed to explore new design points with high uncertainty while exploiting the

estimated objective value.

Similarly, adaptive learning has been actively studied in multi-armed bandits for solving discrete

sequential optimization problems (Gittins and Jones, 1979). One of the popular algorithms is

Thomson sampling (Thompson, 1933; Chapelle and Li, 2011). Similar to Bayesian optimization,

Thomson sampling updates the posterior and chooses the next action using the posterior. Multi-arm

bandits have been applied in a wide range of online decision problems, such as revenue management,

Internet advertising, recommendation systems, and hyperparameter tuning (Russo et al., 2018).

These optimization studies mainly focus on finding the best solution that optimizes the objective

function, which is different from the problem context considered in this study.

In the aforementioned studies, inputs at the first-level are considered as design points or decision

variables (not random variables), so the first-level budget allocation is not taken into consideration

in general. One of the popular methods for the optimal budget allocation at the first-level is

importance sampling. Most importance sampling studies in the literature consider deterministic

computer models, so it only aims to optimize the first-level simulation. For example, Glynn and

Iglehart (1989) study importance sampling in the simulation of stochastic processes. Glasserman

et al. (2000) apply importance sampling for estimating the VaR in financial risk analysis.

In summary, existing studies, by and large, focus on the resource allocation at either first- or
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second-level simulation. This paper investigates the optimal resource allocation at both levels in

the importance sampling framework.

3 Problem description

The problems involving nested simulation estimate the expectation of a random variable. For

example, estimating a tail probability – one of the popular topics in reliability analysis – can be

regarded as estimating the expectation of an indicator function. In this study, we state the problem

in a general form. Let X and Y denote random variables for the simulation input and output,

respectively. Suppose we want to estimate the expectation of a random variable Z, i.e., E[Z], where

Z is a function of Y . For the estimation of a tail probability, we can set Z = I (Y > l), so that

E[Z] becomes the tail probability P (Y > l). Then we can estimate E[Z] using the law of total

expectation as

E [Z] = E [E [Z|X]] . (3.1)

To estimate E [Z] in the two-level simulation framework, the first-level is to sample the input

data X and given the sampled X, the second-level is to conduct the stochastic simulation and get

Y (or Z). Broadly speaking, there are two major approaches to estimate E [Z]: sampling based

estimation and statistical surrogate based estimation. In this study we take the former approach.

Let s(x) denote the conditional expectation, i.e., s(x) = E [Z|X = x]. Estimating s(x) is important

to determine the quality of the estimator of E [Z] in (3.1). Thus, we would like to estimate s(x)

accurately in an important input region. This is the fundamental idea of importance sampling or

variance reduction in a broader sense.

Let Ẑ denote an estimator of E[Z] and ŝ(x) be an unbiased estimator of s(x). Note that in

the surrogate based approach, biased estimators can be considered for ŝ(x) and a good estimator is

chosen with measures such as MSE or IMSE (Gordy and Juneja, 2010; Lan et al., 2010; Broadie et al.,

2011; Binois et al., 2019). However, when the estimation is made with the sampling based procedure,

unbiased estimators are typically employed. In particular, in the importance sampling literature,

most studies limit their analysis to unbiased estimators (Glynn and Iglehart, 1989; Glasserman

et al., 1999). For example, to obtain ŝ(·), we can use the sample average of multiple replicates.
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Importance sampling draws an input random sample of size M , i.e. X1, . . . , XM , from a biased

density q, instead of drawing inputs from their original distribution F (with density f). At each

sampled Xi, we run simulator Ni times. With the limited total simulation budget of NT , we define

an estimator Ẑ as follows. For given M > 0 and NT > 0,

Ẑ ≡ 1

M

M∑
i=1

1

Ni

Ni∑
j=1

ŝj(Xi)
f(Xi)

q(Xi)
, (3.2)

NT =
M∑
i=1

Ni,

where ŝj(·) is the jth replication of ŝ(·), q(·) is an importance sampling density, NT is the total

simulation budget, and Ni is the allocated second-level simulation budget for Xi. We assume that

q(x) = 0 implies ŝ(x)f(x) = 0 for all x so that Ẑ becomes an unbiased estimator of E[Z]. The

proof of the unbiasedness of Ẑ is available in the online supplement.

In many applications, the first-level simulation is cheap or negligible, while the second-level

simulation cost is expensive (Sun et al., 2011; Choe et al., 2015). To put this in our problem

context, drawing Xi from q(·) (the first-level simulation) is negligible, but running the black box

computer model to obtain ŝj(·) (the second-level simulation) is computationally intensive. The

simulation budget, therefore, applies to the second-level simulation; the total budget NT is the sum

of Ni for i ∈ {1, . . . ,M}.

When designing an estimator with a budget constraint, the performance of an estimator is

measured by minimizing the MSE (Gordy and Juneja, 2010; Lan et al., 2010; Broadie et al., 2011)

or variance (Glasserman et al., 2000; Choe et al., 2015, 2016; Pan et al., 2020; Pan et al., 2021).

In this study, we assume the unbiasedness of ŝ(x). Then, minimizing variance becomes the same

as minimizing the MSE. Given the limited budget NT , we study the optimal balance between

exploration and replication. With larger M , we sample more inputs, allowing more exploration. On

the other hand, smaller M , which leads to larger Ni’s, puts more efforts for exploitation. We derive

the theoretically optimal sample size M and budget allocation Ni for i ∈ {1, . . . ,M} that can strike

a balance to minimize the variance.
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4 Optimal Budget allocation

In Section 4.1 we revisit and generalize the method in Choe et al. (2015) for the optimal allocation

when M and NT are both given. Then, the optimal M , given NT , are derived in Section 4.2. Sec-

tion 4.3 explains the rounding issue of the budget allocation Ni for i ∈ {1, . . . ,M} and investigates

its effects on the optimality.

4.1 Theoretically optimal budget allocation given M

This section derives the optimal budget allocation for Ni for i ∈ {1, . . . ,M}, when the input sample

sizeM is given. Built upon the results in this section, we derive the optimalM and Ni in Section 4.2.

We first review the results in Choe et al. (2015), where the two-level simulation is used for reliability

analysis. Then we generalize the results to estimate an expectation of a random quantity in (3.2).

Choe et al. (2015) derived the theoretically optimal importance sampling density and the bud-

get allocation for the estimation of the tail probability when M is given. They considered a tail

probability estimator, called P̂SIS1, as follows:

P̂SIS1 =
1

M

M∑
i=1

P̂ (Y > l|Xi)
f(Xi)

q(Xi)
(4.1)

=
1

M

M∑
i=1

1

Ni

Ni∑
j=1

I
(
Y

(i)
j > l

) f(Xi)

q(Xi)
,

where I(·) denotes an indicator function and Y
(i)
j is the jth replication of the simulation output,

given Xi.

Given the importance sampling density q(·), Lemma 4.1 derives the optimal budget allocation

Ni in terms of q(·) that minimizes V ar[P̂SIS1] in (4.1):

Lemma 4.1 (Choe et al. (2015)). For a given q(·) in (4.1), the optimal budget allocation Ni for

i ∈ {1, . . . ,M} for minimizing V ar[P̂SIS1] is given by

Ni = NT ·
√
s(xi)(1− s(xi))f(xi)/q(xi)∑M

j=1

√
s(xj)(1− s(xj))f(xj)/q(xj)

,

where s(x) denote the conditional tail probability, that is, s(x) = P (Y > l|X = x).
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Using the result of Lemma 4.1, Theorem 4.2 jointly optimizes the importance sampling density

and the budget allocation for minimizing V ar[P̂SIS1]:

Theorem 4.2 (Choe et al. (2015)). Given the estimator P̂SIS1, the optimal importance sampling

density qSIS1(·) and budget allocation Ni for i ∈ {1, . . . ,M} for minimizing V ar[P̂SIS1] are

qSIS1(x) =
1

Cq1
f(x)

√
1

NT
s(x)(1− s(x)) + s(x)2,

Ni = NT

√
NT (1−s(xi))

1+(NT−1)s(xi)∑M
j=1

√
NT (1−s(xj))

1+(NT−1)s(xj)

, for i ∈ {1, . . . ,M},

where Cq1 is a normalizing constant and s(x) = P (Y > l|X = x).

We can generalize the result of Choe et al. (2015) to the estimation of the expectation of a

random variable Ẑ in (3.2). Lemma 4.3 and Theorem 4.4 provide the extension of Lemma 4.1 and

Theorem 4.2 respectively. We omit the proofs of Lemma 4.3 and Theorem 4.4, because they can be

easily obtained by extending the proofs of Lemma 4.1 and Theorem 4.2.

Lemma 4.3. For the estimator Ẑ of E[Z] in (3.2), given an importance sampling density q(·), the

optimal budget allocation Ni for i ∈ {1, . . . ,M} for minimizing V ar[Ẑ] is

Ni = NT ·
√
V ar [ŝ(xi)]f(xi)/q(xi)∑M

j=1

√
V ar [ŝ(xj)]f(xj)/q(xj)

. (4.2)

Theorem 4.4. Provided the estimator Ẑ of E[Z] in (3.2), the optimal importance sampling density

q∗(·) and the budget allocation Ni for i ∈ {1, . . . ,M} for minimizing V ar[Ẑ] are given by

q∗(x) =
1

Cq∗
f(x)

√
1

NT
V ar[ŝ(x)] + E[ŝ(x)]2, (4.3)

Ni = NT ·
√
V ar [ŝ(xi)]f(xi)/q

∗(xi)∑M
j=1

√
V ar [ŝ(xj)]f(xj)/q∗(xj)

= NT

√
NTV ar[ŝ(xi)]

V ar[ŝ(xi)]+NTE[ŝ(xi)]2∑M
j=1

√
NTV ar[ŝ(xj)]

V ar[ŝ(xj)]+NTE[ŝ(xj)]2

, (4.4)

where Cq∗ is a normalizing constant.

It should be noted that in this importance sampling scheme, inputs with larger E[ŝ(x)] and

V ar[ŝ(x)] are sampled from q∗(x) in (4.3). Furthermore, more budgets are allotted to the inputs
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with larger variance in (4.4), if E[ŝ(x)] is the same. Now we have the optimal importance sampling

density q∗(·) and the corresponding budget allocation Ni for i ∈ {1, . . . ,M} when the sample sizeM

is given. We, however, still need to find the optimal M for minimizing V ar[Ẑ]. Choe et al. (2015)

provided numerical results for choosingM using differentM/NT ratios and discussed that the result

is not sensitive to the ratio. The following section will theoretically investigate how different M

values affect V ar[Ẑ].

4.2 Optimal sample size determination

In this section, we derive the optimal sample size M when the positive integer constraint is not

imposed on the budget allocation. Note that the variance of Ẑ can be expressed as follows:

V ar[Ẑ] = V ar

 1

M

M∑
i=1

1

Ni

Ni∑
j=1

ŝj(Xi)
f(Xi)

q(Xi)


=

1

M2

V arq
E

 M∑
i=1

1

Ni

Ni∑
j=1

ŝj(Xi)
f(Xi)

q(Xi)

∣∣∣∣X
+ Eq

V ar
 M∑

i=1

1

Ni

Ni∑
j=1

ŝj(Xi)
f(Xi)

q(Xi)

∣∣∣∣X


=
1

M
V arq

[
E [ŝ(X1)|X]

f(X1)

q(X1)

]
+

1

M2
Eq

[
M∑
i=1

1

Ni
V ar [ŝ(Xi)|X]

f(Xi)
2

q(Xi)2

]
. (4.5)

We plug the optimal budget allocation in (4.2), given M , into (4.5) to obtain

V ar[Ẑ] =
1

MNT

[
Ef

[
V ar[ŝ(X)|X]

f(X)

q(X)

]
+ (M − 1)Ef

[√
V ar[ŝ(X)|X]

]2]
+

1

M
V arq

[
E [ŝ(X)|X]

f(X)

q(X)

]
=

1

MNT
[κ1 + (M − 1)κ2] +

1

M
κ3, (4.6)

where we define

κ1 ≡ Ef

[
V ar [ŝ(X)|X]

f(X)

q(X)

]
, κ2 ≡ Ef

[√
V ar [ŝ(X)|X]

]2
, κ3 ≡ V arq

[
E [ŝ(X)|X]

f(X)

q(X)

]
.

The detailed derivation of (4.6) is available in the online supplement. We note that κ1, κ2, and κ3

are strictly positive constants due to the randomness of X and the unknown randomness in ŝ(·).

Theorem 4.5 shows that V ar[Ẑ] is decreasing over M for a sufficiently large NT .
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Theorem 4.5. There exists N∗T ∈ N such that for all NT ≥ N∗T , V ar[Ẑ] decreases in M ; M = NT

is the optimal sample size for NT ≥ N∗T . Furthermore, if f(x) = q(x), V ar[Ẑ] decreases in M for

all NT ∈ N.

Proof. Taking the derivative of V ar[Ẑ] in (4.6) with respect to M , we get

d

dM
V ar[Ẑ] =

κ2 − κ1 −NTκ3
M2NT

. (4.7)

Since κ1, κ2, and κ3 are positive constants, the derivative is either positive or negative for a given

NT . Then, we can find N∗T = min{NT : d
M V ar[Ẑ] < 0} and d

dM V ar[Ẑ] < 0 for NT ≥ N∗T .

If f(x) = q(x), we obtain κ2 ≤ κ1 by Jensen’s inequality. Therefore, d
dM V ar[Ẑ] < 0 holds for

all NT ∈ N.

The results in Theorem 4.5 states that M = NT is optimal, when NT is sufficiently large. Since

M ≤ NT , we know that NT → ∞ as M → ∞. Hence, V ar[Ẑ] decreases to zero eventually as NT

increases. It, however, is not mathematically clear that V ar[Ẑ] is decreasing over M for any fixed

NT . We prove that V ar[Ẑ] is a decreasing function of M for any fixed NT ∈ N when f(x) = q(x).

We conjecture that V ar[Ẑ] also decreases for practically almost all NT ∈ N even if f(x) 6= q(x).

This is because the derivative of V ar[Ẑ] in (4.7) is either positive or negative, implying that V ar[Ẑ]

is either increasing or decreasing inM . If NT is sufficiently large such that the numerator in (4.7) is

negative, the derivative becomes negative. Otherwise, suppose that the derivative is positive. Then

M = 1 becomes optimal, implying that we only need to take one input sample X1 at the first-level

simulation and assign all simulation budget NT to X1, which seems unreasonable. Therefore, we

believe the derivative is negative and thus, M = NT is optimal in most cases.

Theorem 3.5 can be interpreted as the optimality at the full exploration. However, the resulting

optimal Ni’s likely take real values. A problem, hence, arises when we actually implement the

simulation with M = NT . To maintain the unbiasedness of Ẑ, each Xi for i ∈ {1, . . . ,M} should

have at least one instance of the second-level simulation (Choe et al. (2015)). In other words, we

should have Ni ≥ 1. It implies that with M = NT , we have to assign Ni = 1 budget to each Xi

in the second-level simulation. To illustrate, Figure 4.1 depicts the optimal allocation (see the red

circles) under M = NT using the numerical example in Section 5.1. In this specific example, |xi|’s

around |x| = 2 are mostly sampled from q∗(x) in (4.3). On the other hand, the optimal allocation
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Ni for each sampled xi assigns more budgets to small |xi|. This may look counter-intuitive, but it

is not. Large second-level budget allocation around |x| = 0 is due to small E[ŝ(xi)], increasing Ni

in (4.4). Furthermore, the budget allocation is jointly determined by importance sampling density

and the second-level allocation. That is, as seen in Figure 4.1, importance sampling takes more

samples in regions having large E[ŝ(x)] and V ar[ŝ(x)] around |X| = 2. So, the sum of Ni’s in

those regions is larger than that in regions with few xi’s (around |X| = 0). Here, the key point is

that theoretically optimal Ni’s are different among sampled inputs under M = NT . However, the

implementable version of the theoretically optimal allocation assigns only one replication for each

input (i.e., Ni = 1) (see the blue dots in Figure 4.1). Doing so loses the optimality. The following

section shows that such rounding affects the optimality.
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Figure 4.1: Example of Ni over Xi with NT =M = 1000

4.3 Comparison of different exploration-only strategies

The fact that the theoretical optimality is achieved at M = NT leads us to additionally consider

an alternative estimator, denoted by Ẑ2, which is intentionally designed to explore the input area

without exploitation. Hence, before investigating how rounding of the real-valued optimal Ni’s

affects the optimality in Ẑ, we investigate the exploration-only estimator Ẑ2 (Choe et al., 2015):

Ẑ2 ≡
1

NT

NT∑
i=1

ŝ(Xi)
f(Xi)

q(Xi)
. (4.8)
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This estimator runs the simulator once at each sampled Xi, that is, no replication at Xi. Thus, it

does not exploit the stochastic response surface, rather it permits exploration only.

One might think that the estimator Ẑ2 in (4.8) can be regarded as a special case of the original

estimator Ẑ when M = NT and Ni = 1 for all i ∈ {1, . . . , NT }. It, however, is not true because

the optimal importance sampling density for Ẑ and that for Ẑ2 are different. Let q∗2(·) denote the

optimal importance sampling density that minimizes V ar[Ẑ2]. Chen and Choe (2019) derived the

optimal q∗2(·) as follows.

Theorem 4.6 (Chen and Choe (2019)). For the estimator Ẑ2 in (4.8), the optimal importance

sampling density q∗2(·) that minimizes V ar[Ẑ2] is given by

q∗2(x) =
1

Cq∗2

f(x)
√
E [ŝ(x)2], (4.9)

where Cq∗2
is a normalizing constant. Let Ẑ∗2 be Ẑ2 with the optimal importance sampling density

q∗2(·). Then, V ar[Ẑ∗2 ] is as follows:

V ar[Ẑ∗2 ] =
1

M

[
Ef

[√
E [ŝ(X)2|X]

]2
− Ef [E [ŝ(X)|X]]2

]
.

We can easily notice the difference between q∗(·) in (4.3) and q∗2(·) in (4.9). Therefore, the

exploration-only estimator Ẑ2 in (4.8) cannot be viewed as a special case of the original estimator

Ẑ when M = NT . Moreover, we would like to point out that, while Ẑ2 does not allow replication at

each sampled Xi, it naturally accounts for heterogeneous noise over the input space. Considering

that E
[
ŝ(x)2

]
= V ar [ŝ(x)] + E [ŝ(x)]2, q∗2(·) samples more inputs in regions with greater variance

and expectation, striking a balance between exploration and exploitation.

Noting that both the original estimator Ẑ with theoretically optimal input size M = NT and

the exploration-only estimator Ẑ2 suggest the full exploration strategy, we compare their variances.

Further, we also consider the implementable version of the original optimal estimator by setting

Ni = 1. Specifically, let us consider three different cases as follows:

• Case 1 represents the theoretically optimal solution. It uses the original estimator Ẑ with

M = NT and employs the optimal importance sampling density q∗(·) in (4.3). The optimal

Ni values are obtained from (4.4). Let Ẑ∗1 denote the resulting theoretically optimal estimator.
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• Case 2 employs the optimal exploration-only estimator Ẑ∗2 with the optimal importance sam-

pling density q∗2(·).

• Case 3 uses Ẑ with q∗(·) when M = NT . The difference with Case 1 is to set Ni = 1, because

Ni ≥ 1 for all i ∈ {1, . . . ,M} is needed for actual implementation as mentioned at the end of

Section 4.2. Let Ẑ∗3 denote the implementable version of Ẑ∗1 .

Mathematically, we can write the estimators for three cases as follows:

Ẑ∗1 ≡
1

NT

NT∑
i=1

1

N∗i

N∗
i∑

j=1

ŝj(Xi)
f(Xi)

q∗(Xi)
, Ẑ∗2 ≡

1

NT

NT∑
i=1

ŝ(Xi)
f(Xi)

q∗2(Xi)
, Ẑ∗3 ≡

1

NT

NT∑
i=1

ŝ(Xi)
f(Xi)

q∗(Xi)
,

where Ẑ∗j is the estimator of Case j for j ∈ {1, 2, 3} and N∗i in Ẑ∗1 is the theoretically optimal

budget allocation in (4.4) for i ∈ {1, . . . , NT }. Note that Ẑ∗1 is the same as Ẑ with M = NT . We

summarize the estimators in Table 4.1.

Table 4.1: Summary of different estimators

Ẑ original estimator with the input sample size M
Ẑ∗1 Ẑ with q∗ and N∗i for i ∈ {1, . . . , NT }
Ẑ∗2 Ẑ2 with q∗2
Ẑ∗3 Ẑ with q∗ and Ni = 1 for i ∈ {1, . . . , NT }

In Case 1, the resulting Ni values are likely real-valued numbers, so we cannot conduct actual ex-

periments. We can, however, still obtain the theoretically optimal variance using (4.6). Theorem 4.7

compares the variance of Ẑ∗1 , Ẑ∗2 , and Ẑ∗3 .

Theorem 4.7.

V ar[Ẑ∗1 ] ≤ V ar[Ẑ∗2 ] ≤ V ar[Ẑ∗3 ].

Proof. The proof is available in the online supplement.

Theorem 4.7 provides important implications. First, given NT , the variance (V ar[Ẑ∗3 ]) of Case

3, which is Case 1’s implementable version, is larger than Case 1’s variance. The gap between

V ar[Ẑ∗1 ] and V ar[Ẑ∗3 ] comes from the rounding error of Ni’s to make them be integers and keep

the unbiasedness of the estimator. Second, the theoretically optimal variance (V ar[Ẑ∗1 ]) in Case
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1 is smaller than the optimal variance (V ar[Ẑ∗2 ]) in Case 2. However, the variance (V ar[Ẑ∗3 ]) of

Case 3 is larger than Case 2’s variance. In summary, while Case 1 with the original estimator Ẑ∗1

theoretically provides better performance than the estimator Ẑ∗2 , Case 1’s implementable version

(Case 3) performs worse than Case 2.

Note that all three cases take the exploration-only strategy, and there is no exploitation. The-

orem 4.7 indicates that among the exploration-only options, Ẑ∗2 , which is intentionally designed to

explore only, is better than the original estimator that implements the exploration with rounding.

On the other hand, because we lose optimality due to rounding when the original estimator Ẑ

is used, the optimal M that considers rounding could lie between 1 and NT . If we can find such

an optimal M , Ẑ could outperform Ẑ∗2 . In our implementation in Section 5, we actually observe

that Ẑ with M < NT generates smaller variance than Ẑ∗2 in some cases. However, the optimal M

depends on a problem structure, and finding optimal M , either analytically or empirically, is not

straightforward. In Section 5, we empirically study when the exploration-replication is better than

the exploration-only strategy.

Before moving to the numerical studies, it is worthwhile to look into the effect of rounding to

determine Ni. AsM gets closer to NT , we sample more inputs and thus, each input gets less budgets

so the rounding error becomes larger. To illustrate, Figure 4.2 depicts the optimal allocations of

NT = 1000 without integer constraints in red circles and the rounded integer allocation in blue

circles in the 1-dimensional example in Section 5.1. When M is 100, the difference is insignificant.

However, asM gets larger, the difference becomes obvious. WhenM = 1000, the practical allocation

NT = 1 is substantially different from the optimal allocation.
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Figure 4.2: Ni over Xi with different M values, NT = 1000

Finally, as a remark, our importance sampling scheme is different from an importance sampling
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procedure used in the Bayesian inference or Monte Carlo integration. We derive the optimal im-

portance sampling density q(·) that can minimize the estimation variance. The density q(·) with

a stochastic computer model is oftentimes complicated, so one cannot directly draw samples from

q(·). Thus, we employ the rejection sampling to get independent and identically distributed samples

in our implementation.

5 Numerical experiments

We conduct experiments with a 1-dimensional numerical example for estimating the tail probability

P (Y > l) in Section 5.1. Section 5.2 estimates E[Y 2] to confirm our findings in general settings other

than the tail probability. In Section 5.3, a case study for a wind turbine simulator in Choe et al.

(2015) is presented in our analysis framework. Based on these experiment, Section 5.4 discusses our

findings. We note that more numerical experiments—the tail probability with 3-dimensional inputs

and the expected shortfall E[Y I{Y >l}]—are available in the online supplement.

5.1 1-dimensional example for estimating P (Y > l)

We first use the following example that estimates the tail probability of a random variable, P (Y > l)

(Choe et al., 2015).

X ∼ N(0, 1), Y |X = x ∼ N
(
µ(x), σ2(x)

)
, (5.1)

where µ(x) and σ(x) denote the true mean and standard deviation of Y |X = x, respectively, given

by

µ(x) = 0.95x2 (1 + 0.5 cos(10x) + 0.5 cos(20x)) ,

σ(x) = 1 + 0.7|x|+ 0.4 cos(x) + 0.3 cos(14x).
(5.2)

The total simulation budget NT is 1,000. We consider α = P (Y > l) = 0.05.

Note that µ(x) and σ(x) are used to find E[ŝ(x)] and V ar[ŝ(x)] in the importance sampling

densities. In practice, when the second-level simulation uses a black box computer model, µ(x) and

σ(x) are unknown (and thus, E[ŝ(x)] and V ar[ŝ(x)] are unknown). This problem commonly arises
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in the nested simulation literature. So, the analysis assumes pre-experiments to build a (rough)

surrogate model estimating the response surface from existing data or a small pilot sample (Choe

et al., 2015). To see the effect of inaccurate surrogate, we consider the following estimates of µ(x)

and σ(x), which multiply cosine terms in (5.2) by a constant ρ, as in Choe et al. (2015).

µ̂(x) = 0.95x2 (1 + 0.5ρ cos(10x) + 0.5ρ cos(20x)) ,

σ̂(x) = 1 + 0.7|x|+ 0.4ρ cos(x) + 0.3ρ cos(14x).
(5.3)

We will investigate how the performance of the estimators changes when we vary ρ from one to zero.

Please note that using a single parameter ρ is just one way of controlling the surrogate accuracy in

this example.

First, we compare the variance of the three estimators, Ẑ∗1 , Ẑ∗2 , and Ẑ∗3 , when the estimation of

µ(x) and σ(x) is exact (ρ = 1.0) in Figure 5.1. Here, σ[Ẑ∗1 ] is the theoretical standard deviation,

and σ[Ẑ∗2 ] and σ[Ẑ∗3 ] are the sample standard deviations, each obtained from 1,000 experiments.

The results agree with Theorem 4.7, i.e., V ar[Ẑ∗1 ] = σ2[Ẑ∗1 ] ≤ V ar[Ẑ∗2 ] ≤ V ar[Ẑ∗3 ]. Moreover, the

performance of Ẑ∗2 is comparable to the theoretically optimal estimator Ẑ∗1 ; σ[Ẑ∗1 ] is close to σ[Ẑ∗2 ].

On the other hand, the difference between σ[Ẑ∗1 ] and σ[Ẑ∗3 ] is not negligible, demonstrating that

the rounding could affect the optimality significantly when M = NT .

Figure 5.1: Comparison of σ[Ẑ∗1 ], σ[Ẑ∗2 ] and σ[Ẑ∗1 ] with ρ = 1.0, α = 0.05, and NT = 1000

We further investigate how the performance of Ẑ changes with differentM . Figure 5.2 illustrates

σ[Ẑ] over M . The dotted line denotes the theoretical standard deviation of Ẑ over M . The solid

line represents the sample standard deviation of Ẑ with 1,000 experiments for each M , where each
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real-valued Ni is rounded to its nearest natural number. We also include σ[Ẑ∗1 ], σ[Ẑ∗2 ], and σ[Ẑ∗3 ] in

the right-most vertical line atM = 1000; The diamond and star markers indicate the theoretical and

sample standard deviation σ[Ẑ∗2 ], respectively; because Ẑ2 does not involve the rounding issue, the

sample standard deviation is very close to its corresponding theoretical sample standard deviation,

unlike Ẑ∗1 .

In Figure 5.2, we observe that theoretical standard deviation of Ẑ decreases over M , as shown

in Theorem 4.5. The actual sample standard deviation decreases in the beginning, but it starts to

increase because the rounding error becomes exacerbated as M gets close to NT , i.e., as we assign

less budget to each Xi. In the end, σ[Ẑ∗3 ] is much larger than σ[Ẑ∗1 ]. The detailed values of standard

deviations are summarized in Table 5.1.
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Figure 5.2: σ[Ẑ] over M and σ[Ẑ∗2 ] with ρ = 1.0, α = 0.05, and NT = 1000

Table 5.1: σ[Ẑ] over M and σ[Ẑ∗2 ] with exact estimation of E[ŝ(x)] and V ar[ŝ(x)]

NT = 1, 000, ρ = 1.0, and α = 0.05

σ[Ẑ]
σ[Ẑ∗2 ]

M 1 50 100 300 500 700 1000

Sample 0.0055 0.0035 0.0036 0.0038 0.0038 0.0041 0.0058 (σ[Ẑ∗3 ]) 0.0038

Theoretical 0.0064 0.0036 0.0036 0.0036 0.0035 0.0035 0.0035 (σ[Ẑ∗1 ]) 0.0039

One interesting aspect is that the decreasing rate of σ[Ẑ] over M is quite fast. It is because the

derivative of V ar[Ẑ] in (4.7) decays at a rate of 1/M2, given NT . Similarly, σ[Ẑ∗3 ] also decreases

fast when M is small. Considering that the theoretical standard deviation decreases fast while the
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rounding error increases along with M , we may consider choosing small M . For example, from

Figure 5.2 and Table 5.1, we get the smallest sample standard deviation for Ẑ when M is around

50. We observe similar patterns with different NT and α values. And, σ[Ẑ] with M = 50 is slightly

smaller than σ[Ẑ∗3 ].

Then, can we conclude that exploration-exploitation with a small sample size M is more ben-

eficial than the exploration-only strategy? Note that the optimal importance sampling density

functions, q∗(·) and q∗2(·), for the original and exploration-only estimators include the mean and

variance of ŝ(x) which we assume to know so far with ρ = 1.0 in (5.3), but they should be estimated

in reality (Chen and Choe, 2019). The estimation of the mean and variance of ŝ(x) definitely affects

the quality of the importance sampling density. We look into this issue in detail with different ρ

values.

Figure 5.3 shows σ[Ẑ] over M and σ[Ẑ∗2 ] with inexact estimation of E[ŝ(x)] and V ar[ŝ(x)]

(ρ = 0.5 and ρ = 0.0). The detailed values are also reported in Table 5.2. We notice that unlike the

previous result with ρ = 1, the best M value becomes larger as the estimation gets less accurate

– smaller ρ values. It is around 300 and 500 when ρ is 0.5, whereas M = 600 to 700 yields

small σ[Ẑ] for ρ = 0.0. Recall that the optimal M was around 50 when ρ = 1.0. When the

estimation is inaccurate, the importance sampler draws inputs from the unimportant input area.

With smallM , Ẑ unnecessarily exploits response surface at unimportant Xi’s. Therefore, inaccurate

estimation of E[ŝ(x)] and V ar[ŝ(x)] requires more exploration (largeM) than exploitation to reduce

the variance, but doing so inevitably increases rounding error in Ẑ. Without the quantitative

measure for evaluating the estimation accuracy, it is not straightforward to find the optimal M

value in Ẑ.

Table 5.2: σ[Ẑ] over M and σ[Ẑ∗2 ] with inexact estimation of E[ŝ(x)] and V ar[ŝ(x)]

NT = 1, 000 and α = 0.05

σ[Ẑ]
σ[Ẑ∗2 ]

M 1 50 100 300 500 700 1000 (σ[Ẑ∗3 ])

ρ = 0.5 0.0225 0.0049 0.0044 0.0041 0.0041 0.0044 0.0070 0.0042

ρ = 0.0 0.0552 0.0098 0.0070 0.0053 0.0083 0.0051 0.0122 0.0048

Notably, we observe that σ[Ẑ∗2 ] is robust to the estimation quality. Let us compare σ[Ẑ∗2 ] in the
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Figure 5.3: σ[Ẑ] over M and σ[Ẑ∗2 ] with ρ ∈ {0.0, 0.5}

last column of Tables 5.1 and 5.2. With different values of ρ, we obtain similar results in Ẑ∗2 . On

the contrary, the performance of Ẑ and Ẑ∗3 appears to be substantially affected by the estimation

accuracy. Moreover, when ρ = 0.5, σ[Ẑ∗2 ] (0.0042) is close to the smallest value (0.0041) of σ[Ẑ].

Interestingly, when ρ = 0.0, σ[Ẑ∗2 ] is smaller than σ[Ẑ] for any M , demonstrating that Ẑ∗2 is more

robust to the estimation accuracy.

In summary, the exploration-only estimator Ẑ∗2 with the importance sampling density q∗2 attracts

our attention. This estimator is free from the rounding error, and thus, the sample standard

deviation nearly coincides with the theoretical standard deviation. Its resulting standard deviation

is close to the optimal one in Ẑ that considers both exploration and exploitation. Furthermore,

Figure 5.3 and Table 5.2 show that it performs well, even when the estimation of E[ŝ(x)] and

V ar[ŝ(x)] is inaccurate. We conduct additional experiments with a wide range of parameters (α

and NT ) and observe similar results.

5.2 Expectation of Z = Y 2

Importance sampling can be more effective for problems where important input regions are narrow.

The expectation involving tail regions, such as tail probability (the expectation of an indicator

function) in the previous section and the expected shortfall available in the online supplement, are

such examples for effectively applying the importance sampling scheme. Theoretically, however, our

approach should work in general cases, for example, the expectation of a polynomial function of a

random variable. This section conducts an experiment when the random variable Z is the square
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of Y , i.e., Z = Y 2.

Figure 5.4 plots the standard deviation over M with the same distributions of X and Y |X = x

presented in Section 5.3. In this example, the effects of rounding errors are not as obvious as in the

previous examples. This is because the importance sampling density covers the whole input region,

and thus, we may not take a full advantage of the importance sampling principal. However, we still

obtain consistent results as in the previous examples. That is, the estimator Ẑ∗2 performs excellently

and its standard deviation is close to the theoretically optimal standard deviation in both cases.

The results demonstrate the general applicability of our approach.
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Figure 5.4: Z = Y 2 example

5.3 Case study

We employ the NREL wind turbine simulator (Jonkman, 2009; Jonkman and Buhl Jr., 2005). The

NREL wind turbine simulator generates various load responses as simulation outputs. Among

the load responses, we consider two load types – edgewise and flapwise bending moments which

represent parallel and perpendicular load responses to the blade rotor plane, respectively (Byon

et al., 2016; Ding, 2019). These two bending moments are important load responses in wind turbine

reliability (Moriarty, 2008).

Specifically, the IEC design standard, IEC 61400-1 (International Electrotechnical Commission,

2005), specify several design load cases (DLCs). Among them, estimating POE with Y being

the maximum load response during a specific interval (e.g., 10 minutes) is required in DLC 1.1.

Following the design standard, we consider a maximum response (flapwise and edgewise moments)
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during 10 minute turbine operation as the response variable, and 10 minute average wind speed as

the input variable. In this case study, we employ the truncated Rayleigh distribution between 3

m/s and 25 m/s as the wind speed density, as in Moriarty (2008).

In our analysis, l = 8600 kNm and 13,800 kNm are used as resistance levels for edgewise

and flapwise moments, respectively. With these resistance levels, the estimated failure probability

P (Y > l) is around 0.05 in both load types. To estimate P (Y > l), one can use the crude Monte

carlo (CMC) sampling that samples wind speed from its original density function. However, to

estimate the POE with high accuracy, CMC requires large computational budgets. The importance

sampling scheme discussed in our study allows us to improve the estimation accuracy with limited

budgets by reweighting the sampling efforts to observe exceedance events more frequently.

To implement the importance sampling, E[ŝ(x)] and V ar[ŝ(x)] are approximated with the non-

homogeneous generalized extreme value (GEV) distribution where the location and scale parameters

are formulated as spline functions of wind speeds (Lee et al., 2013; You et al., 2017). To fit the

GEV distribution, a pilot sample that consists of 600 observations of (X,Y ) is used. The detailed

simulation setting can be found in Choe et al. (2015).

Table 5.3 summarizes the sample standard deviations reported in Choe et al. (2015), obtained

from 50 experiments for each case. For the total simulation budget, NT = 1000 and 2000 are,

respectively, used for the edgewise and flapwise bending moment in each experiment. The results

include the sample standard deviations of the original estimator Ẑ with four different M/NT ratios

(M/NT =10%, 30%, 50%, and 80%) and of the exploration-only estimator Ẑ∗2 . Among the four dif-

ferent values,M/NT = 10% generates the smallest sample standard deviation for edgewise moments,

whereas 30% appears to perform best for flapwise moments. As M increases, the performance of Ẑ

gets deteriorated.

From these results, we can conclude that it is not straightforward to determine the practically

optimal M before trying different M values. But the exhaustive search for M adds significant

computational burden, which contrasts the fundamental goal of importance sampling to expedite

the simulation process. On the other hand, the exploration-only estimator in the last column in

Table 5.3 provides reasonably good results in both output types.
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Table 5.3: σ[Ẑ] over M and σ[Ẑ∗2 ] for the wind turbine case study (Choe et al., 2015)

σ[Ẑ]
σ[Ẑ∗2 ]

M/NT 10% 30% 50% 80%

Edgewise 0.0016 0.0018 0.0022 0.0022 0.0020

Flapwise 0.0034 0.0028 0.0032 0.0033 0.0032

5.4 Observations and discussion

Recall that the two-level simulation with stochastic response faces the trade-off in estimating a ran-

dom quantity: whether to explore more inputs or exploits the response surface at sampled points

in more detail through replication. Based on the theoretical analysis in Section 4 and empirical

studies in this section, we summarize our observations as follows: (i) When E[ŝ(x)] and V ar[ŝ(x)]

are well-estimated, the original estimator Ẑ with relatively small M and the exploration-only esti-

mator Ẑ∗2 provide comparably good performance.; (ii) However, when the estimation of E[ŝ(x)] and

V ar[ŝ(x)] is inaccurate, Ẑ∗2 provides more robust and better performance than Ẑ.

Recall that the goal of importance sampling is to focus the efforts on narrow input regions what

really matter. With inaccurate estimates of E[ŝ(x)] and V ar[ŝ(x)], importance sampling miss-guides

sampling efforts in less important regions. More worse, the original estimator Ẑ replicates in those

regions. This is why the exploration-only estimator performs better with an inaccurate surrogate.

In nested simulation, a surrogate model is typically assumed to exist or it is constructed from a

small-scale pilot experiment. As such, surrogate models are likely inaccurate. Although the sampling

based importance sampling approach provides an unbiased estimator under certain conditions even

with an inaccurate surrogate, the surrogate quality affects the estimation performance. In practice, it

is not straightforward to determine the surrogate accuracy. As such, the exploration-only strategy

with Ẑ∗2 , which provides consistently reliable performance, appears to be an adequate choice in

most cases. This implication is also supported by the fact that the theoretical optimality suggests

M = NT when Ẑ is used as the estimator. We note that our analysis has been conducted in a

general setting without restrictive assumptions, except the continuous sample space of the input

X, as explained in Section 4.2. Thus, we believe our conclusion can be applied to a wide range of

applications.

As a final remark, our advocate for the exploration-only estimator may sound contradictory to
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the recommendations from the literature, but it is not. For example, in the study by Binois et al.

(2019), which aims to build a globally accurate GP emulator, replication turns out to be a better

choice, when the variance of response surface is high. Recall that the optimal importance sampling

density q∗2(x) in (4.9) of the exploration-only estimator draws more inputs in regions with greater

variance and expectation. Therefore, even without replication, it considers the second-level variance

to balance the trade-off between exploration and exploitation, which aligns with the result in Binois

et al. (2019). Further, we would like to point out that the fundamental idea of importance sampling

is to focus on the narrow important input region of X. So, the underlying premise is that the

first-level stochasticity is larger than the second-level noise. Thus, exploration over the important

input region, characterized by the importance sampling density, has merits.

6 Conclusion

This paper studies a simulation budget allocation problem under a two-level simulation framework

when importance sampling is employed at the first-level. Importance sampling has been widely

used in rare event analysis such as reliability problems and financial risk analysis. Most importance

sampling studies consider deterministic computer models where the optimal allocation does not

need replication and thus, they aim to optimize the first-level simulation only. With the increased

popularity of stochastic computer models, how to balance the trade-off of exploration vs. replication

at both levels becomes an important problem. Although importance sampling schemes for stochastic

computer models have been studied in the literature (Choe et al., 2015), no guidelines are provided

to address such trade-off. This study provides theoretical justification and practical guidelines on

how to allocate sampling budgets, gain insights on the stochastic importance sampling schemes, and

suggest an effective sampling strategy. To the best of our knowledge, our paper is the first study to

optimize the resource allocation at both levels in the importance sampling framework.

We plan to make several extensions for our future work. First, we assume that the random

input vector of the first-level simulation has a continuous density function. The nested simulation

literature in financial engineering often concerns discrete portfolios for the first-level simulation. We

will extend our analysis in the discrete setting at the first-level simulation. Second, we observe that

the estimation accuracy of E[ŝ(x)] and V ar[ŝ(x)] plays an important role in the two-level simulation.

In the future, we plan to employ the adaptive surrogate modeling strategy (Binois et al., 2019) to

25



estimate them and incorporate it into the importance sampling framework, so that the estimation

accuracy and computational efficiency can be further improved in practical implementation.

Next, it has been known that the importance sampling is not effective for high-dimensional

problems in general due to several challenges. The importance sampling density q(·) involves a

normalizing constant that requires integration over input variables. When the input dimension is

high, integration over multiple variables causes a critical computational issue. To avoid this issue,

one can use a self-normalized estimator that does not require a normalizing constant (Owen, 2013).

The self-normalized estimator, however, is biased with a small-size sample while it is a consistent

estimator. Furthermore, we assume that the cost of sampling input variables is negligible relative

to that of a target variable. For the high-dimensional problems where the cost of sampling input

variables is considerable, one can consider a Markov chain Monte Carlo as an alternative to the

rejection sampling, however, theoretical properties need to be re-investigated due to the dependency

of sampled points. On the other hand, we believe the importance sampling scheme studied in this

paper has a potential to handle high-dimensional problems. Due to the parsimonious principal

in typical engineering systems, not all input variables are equally important. Instead, a small

number of selected input variables mainly affect the system response. Therefore, we can regard

those important variables as main inputs and apply the importance sampling principal to them

only, while treating others as stochastic noise. The extension of this work for high-dimensional

problems remains a subject for future study.

Lastly, for real-world applications, a guideline to select the total budget NT would be beneficial

and important for practitioners. We plan to adaptively increase the sample size until some criterion

is satisfied. One such criterion could be a coefficient of variation (COV). For example, if COV is

smaller than a pre-specified threshold, we can sequentially add more samples. We would like to

mention that the exploration-only estimator provides better platform for adaptively deciding NT .

The original estimator allocates budgets to all sampled inputs at once and thus, it is less appropriate

in this sequential sampling. Although we can add a batch of samples and allocate budgets in each

batch with the allocation rule in (4.4), rounding error would be exacerbated when the batch size is

small. The exploration-only estimator does not face such issue, since it does not permit replication.

We hope to extend our framework for further improving the budget determination and analyzing

theoretical and practical properties with adaptive sample sizes in our future study.
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