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Engineering fast bias-preserving gates on stabilized cat qubits

Qian Xu®,! Joseph K. Iverson,” Fernando G. S. L. Brando,>? and Liang Jiang

1,2,%

! Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
2AWS Center for Quantum Computing, Pasadena, California 91125, USA
3IQIM, California Institude of Technology, Pasadena, California 91125, USA

M (Received 18 May 2021; revised 29 November 2021; accepted 5 January 2022; published 2 February 2022)

Stabilized cat codes can provide a biased noise channel with a set of bias-preserving (BP) gates, which can
significantly reduce the resource overhead for fault-tolerant quantum computing. All existing schemes of BP

gates, however, require adiabatic quantum evolution, with performance limited by excitation loss and nonadia-
batic errors during the adiabatic gates. In this paper, we apply a derivative-based leakage-suppression technique
to overcome nonadiabatic errors, so that we can implement fast BP gates on Kerr-cat qubits with improved gate
fidelity while maintaining high noise bias. When applied to concatenated quantum error correction, the fast BP

gates not only can improve the logical error rate but also can reduce resource overhead, which enables more
efficient implementation of fault-tolerant quantum computing.
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I. INTRODUCTION

Quantum error correction (QEC) of generic errors is very
challenging, because of the demanding threshold require-
ments and significant resource overhead. To overcome this
challenge, we may adaptively design the QEC codes targeting
practically relevant errors in a hardware-efficient way. For
example, we can develop various efficient bosonic QEC codes
to correct excitation loss errors [ 1-4], which have been exper-
imentally demonstrated using superconducting circuits [5-9]
and trapped ions [10].

With Hamiltonian protection or reservoir engineering,
some bosonic codes can continuously suppress practically
relevant errors (e.g., excitation loss) and also provide a highly
biased noise channel. For example, stabilized cat qubits can
exponentially suppress bit-flip errors, because of the large sep-
aration of coherent states in the phase space [7,8,11]. Such an
encoding with highly biased noise channel can play a unique
role in fault-tolerant architecture [12,13], as the higher-level
QEC codes can be tailored toward the biased noise to exhibit
significantly improved error threshold and resource overhead.
To get the maximum benefit from biased noise, it is essential
for all gate operations to preserve the noise bias. Recently, a
nontrivial set of bias-preserving (BP) gates have been discov-
ered for stabilized cat qubits [8,14—16], which opens up a new
direction of fault-tolerant architectural design [17-19].

All existing schemes of BP gates, however, require adia-
batic quantum evolution due to the nonadiabatic errors, with

“liang.jiang @uchicago.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2022/4(1)/013082(16) 013082-1

performance limited by excitation loss during the slow gates.
In this paper, we propose fast BP gates on stabilized cat qubits
with unitary control to coherently suppress nonadiabatic er-
rors. We systematically compare the performance of fast BP
gates with existing adiabatic BP gates [15,16] and show that
the fast BP gates can achieve improved gate fidelity while
maintaining high noise bias. We show that by integrating the
quantum control and quantum error correction, we not only
can improve the logical error rate but also can reduce the
resource overhead in the concatenated-code level.

The paper is structured as follows: In Sec. II, we give an
introduction to the Kerr cat and the dissipative cat and to a
set of bias-preserving gates on them. We discuss the error
structure and limitations of the BP gates and compare the Kerr
and dissipative BP gates in terms of the different mechanisms
of their nonadiabatic errors. In Sec. III, we introduce the sys-
tematically designed derivative-based corrections to the Kerr
gate Hamiltonians in Ref. [15] and show that the introduced
corrections significantly suppress the nonadiabatic bit- and
phase-flip errors at the same time. As a result, the fidelity
and the noise bias of the gates in the presence of excitation
loss can be simultaneously improved. These improvements
enable the Kerr gates to outperform the dissipative gates under
excitation loss. In Sec. IV, we apply the improved gates to
a concatenated QEC scheme, where the stabilized cats are
concatenated with a repetition code. Based on a circuit-level
noise model, we show that the use of the Kerr gates with
our improved control leads to lower logical gate failure rates
and/or less resource overhead. In Secs. V and VI, we discuss
the experimental realizations and draw conclusions.

II. BIAS-PRESERVING GATES FOR KERR AND
DISSIPATIVE CAT

The cat qubit spanned by coherent states |«) and |—«) can
be stabilized in a Kerr oscillator with parametric two-photon
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FIG. 1. (a) The semiclassical potential (Hypo) of a Kerr cat in
phase space. (b) The semiclassical dynamics of a dissipative cat
in phase space. (c¢) and (d) Mechanism of the nonadiabatic errors
during the z-axis rotation on (c) Kerr cats and (d) dissipative cats.
|z//0i>, |1//1i) denote the first two pairs of eigenstates of Hypo with
parity &£, and the spacing between states in the vertical axis in (c) and
(d) represents the energy gap and dissipative gap of the Kerr cat and
the dissipative cat, respectively. For Kerr cats in (c), the nonadiabatic
errors induced by the linear drive [Q2(#)a + H.c.] manifest in the form
of off-resonant leakage. For dissipative cats in (d) with a dissipation
gap, the linear drive induces decoherence within the cat-state mani-
fold when combined with the engineered two-photon dissipation.

drive [8,14,15,20]. The Hamiltonian of such a Kerr parametric
oscillator (KPO) in the frame rotating at the oscillator fre-
quency is

Hypo = —K(@' — o?)(@* — o), (1)

where K is the strength of Kerr nonlinearity. We may in-
tuitively view the KPO system as a “double-well” potential
with two extrema, o and —«, in phase space, as shown in
Fig. 1(a). In addition to the degenerate ground states | £ «),
Hxpo supports nearly degenerate pairs of excited states with
eigenenergies A, £6,/2 for n=1,2,..., where & labels
the photon-number parity and §,, denotes the energy splitting
between the members of the nth pair, which is exponentially
suppressed by a? for n < /4 [15]. We denote the subspace
spanned by the nth pair of (quasidegenerate) excited states as
the nth excited subspace. The excitation gap A ~ —4K ||
[21] provides continuous protection of the encoded quantum
information.

Alternatively, the cat qubit can also be stabilized by
engineered two-photon dissipation and two-photon drive
[11,16,17]:

‘é—f = D[a* — olp, ©)
where «; is the two-photon dissipation rate and D[A],@ =
ApAT — L{ATA, p}. We may intuitively understand the stabi-
lization using a semiclassical flow diagram with two stable
steady states | & «) as illustrated in Fig. 1(b). For quantum
evolution, the cat code space is stabilized as an attractive
steady-state subspace protected by a dissipative gap.

By choosing the computational basis of the stabilized cat

qubit as [0),, = :}“/’0 ~|a), 1), = \WJ;ZW/D ~ |

the noise channel is strongly biased toward phase-flip error Z,

—a),

with the noise bias n = P,/P, increasing exponentially with
|Ol|2 [7,8,11]. Here, and in the rest of this paper, we use P, to
denote all the nondephasing-type errors for simplicity.

A set of bias-preserving gates have been proposed sepa-
rately for the Kerr cat [15] and dissipative cat [16], which we
refer to as Kerr gates and dissipative gates, respectively. Under
excitation loss, the total Z and X error probabilities of the BP
gates can be written as the following [15,16,18]:

P, = PMN(T) + Bri|e|’T,
P, = PM(T) + yi ||’ T, 3)

where «; denotes the photon loss rate and 8 is a constant
depending on the gate [ = | for Z rotation and 8 = 2 for
ZZ rotation and the controlled-X (CX) gate]. The first terms,
PZNA and P;‘IA, are the nonadiabatic errors due to finite gate
time and prefer slow gates, while the second terms are photon-
loss-induced errors that increase with gate duration. The
loss-induced bit flip is negligible since the induced bit-flip rate
is suppressed by a factor y = y[|a|?, k1/K(k2)] < 1, which
decreases exponentially for large |«|? [7,16], and thereby P,
is dominantly given by PN*. In this paper, we choose the size
of the cat as o> = 8, which is experimentally feasible [8] and
also provides us sufficient noise bias [15,18]. Due to the large
loss-induced phase-flip rate, fast gates are desirable to obtain
high gate fidelity. However, the exponential noise bias might
break down in the fast-gate regime due to PNA. Therefore
it is important to design fast BP gates with simultaneously
suppressed PN and PNA.

First, we would like to point out a fundamental difference
in the nonadiabatic errors between Kerr gates and dissipa-
tive gates. For dissipative gates, the nonadiabatic errors are
associated with accumulated dissipation with continuous in-
formation leakage into the environment, which is difficult to
restore. For example, as shown in Fig. 1(d), the linear drive
Q(t)a + Q*(t)a’, which implements the Z rotation, can create
leakage outside the cat subspace, which becomes continu-
ous phase flips [18] when brought back by the engineered
two-photon dissipation. In contrast, for Kerr gates shown in
Fig. 1(c), the nonadiabatic errors are coherent off-resonant
leakage errors to excited states, which might be reliably elimi-
nated using additional leakage-suppression techniques. Hence
the Kerr gates can in principle benefit from quantum coherent
controls, while the dissipative gates cannot.

As shown in Fig. 2, the Kerr gates with hard square pulses
(blue curves, denoted as “hard”) [15] have smaller PZNA but
larger PN than the corresponding dissipative gates (black
dashed curves, denoted as “dissipative”) [16]. The larger PN
error is due to the large leakage induced by the hard pulse,
which leads to coherent tunneling between two wells of the
KPO through high excited levels. These numerical results
manifest the importance of finer control on the Kerr gates
to further suppress the leakage, which motivates our work.
Although the numerical quantum optimal control method [22]
can be applied to optimizing the gates, analytical solutions
that can produce smooth and robust pulses and avoid large-
scale numerical optimizations for large cats are desirable.
We use the derivative-based transition-suppression technique
[23], which is a variant of the derivative removal by adiabatic
gate (DRAG) technique and closely related to the idea of
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FIG. 2. The nonadiabatic Z (PM) and X (PN*) errors of the Z
rotation [(a) and (b)] and the CX gate [(c) and (d)] for dissipative
gates (black dashed curves), Kerr gates with hard square pulses (blue
curves), Kerr gates with truncated Gaussian pulses (orange curves),
and Kerr gates with DBC control (red curves). The gate time is in
units of K (x,) for Kerr (dissipative) gates. The Kerr gates with DBC
control can best suppress the nonadiabatic errors.

shortcut to adiabaticity (STA) [23-27], to suppress the leakage
of the BP Kerr gates so that they can have simultaneous
high gate fidelity and noise bias in the presence of photon
loss. The key idea behind this technique is to use quantum
interference to suppress the occupation of the excited states
by adding corrections to the original Hamiltonian according
to the derivatives of the original driving pulse. Please refer to
Ref. [23] for details of the technique. We also provide a brief
review of the technique in Appendixes B and C. In the rest
of the main text, we only present the results derived from the
derivative-based technique and refer the reader to Appendixes
B and C for more technical details of the derivation.

II1. DERIVATIVE-BASED CONTROL OF BP KERR GATES

To simultaneously suppress the nonadiabatic bit- and
phase-flip errors of the BP Kerr gates, it is important to
identify the associated excited subspace that dominantly con-
tributes to each type of error, respectively. The phase-flip
errors come from parity flips, and the occupation of any
excited subspace with inconsistent parity compared with the
ground subspace leads to phase-flip errors. Therefore, if the
drive invoking the diabatic transitions changes the parity, such
as the linear drive that is commonly used by the gates that
we consider, the dominant error space is the excited subspace
with the largest occupation, which is typically the lowest-
lying excited subspace with the smallest energy gap. The bit-
flip errors, however, come from the tunneling between the
two potential wells of Hxpo [see Fig. 1(a)]. As a result, the
excitation to higher excited subspaces in which the eigenstates
are more delocalized brings more bit-flip errors. In fact, the
excitation to the the characteristic level n, ~ o?/4 typically
leads to most of the bit-flip errors, since 7, is the lowest-lying
level with well-delocalized states just above the potential
barrier [15], below which the states are well localized while
above which the occupation is weaker. For «? = 8 considered
in this paper, n. = 2. With the above understanding of the
error source, we should design the gate controls in a way

that can greatly suppress the leakage to the dominant excited
subspaces for both bit- and phase-flip errors. The tailored
control for each gate is presented in the following section.

A. Gate Hamiltonians

To suppress the diabatic transitions, we first replace the
hard square pulses with a family of truncated Gaussian pulses
because of their favorable frequency selectivity and smooth-
ness [23]:

(- 1/27 /27"
S e S

QG,m(t) = Am{exp |:
4)

where m is chosen such that all of the first m — 1 derivatives
of Q¢ start and end at 0, A,, is a normalization constant, and
o is chosen to be equal to T in this paper. Then, we intro-
duce the systematically designed derivative-based correction
(DBC) Hamiltonian, Apgc, to further suppress the leakage for
each gate.

We summarize our design of corrections as the following
(see Appendix C for details).

1. Z rotation

The Hamiltonian for the Z rotation in Ref. [15] is imple-
mented by applying a linear drive (with hard pulses) to the
KPO:

Hy = —K(@" — )@ — o®) + Qo)a’ + Q§)a,  (5)

where 2¢(¢) is the hard pulse with amplitude determined by
the desired rotation angle. Based on the discussion before, the
nonadiabatic phase-flip errors dominantly come from the first
excited subspace with the gap energy A;, while the nona-
diabatic bit-flip errors mainly come from the second excited
subspace with the gap energy A,. To suppress the first-order
transitions at these two frequencies, we first replace the base
driving pulse Q¢ (¢) with the truncated Gaussian pulse with the
second-order smoothness 25 2(¢) [see Eq. (4)] and then ap-
ply the derivative-based correction, which reshapes the pulse
of the linear drive by adding derivatives of the base pulse,
Hpge = u()a’ + u*(t)a, where

g 11 Q6. Qg (1)
1) =—iQ —+ — ) - . 0.07— . (6
ue) l G’2<A1 +A2> A1A2+ A3 ©)

2. 77 rotation

The ZZ rotation proposed in Ref. [15] is implemented by
applying a beam-splitter interaction (with hard pulses) be-
tween the control mode (with subscript ¢) and the target mode
(with subscript ¢):

Hzz(t) = Hy + V (1),
Hy = —K(&?T — ozz) (a2 — az) — K(Ezf* — 052)(&,2 —a?),
V(t) = Qo(t)a.a + H.e. 7

We find that the two-mode squeezing, which can also generate
the ZZ rotation and has the same order of nonlinearity as the
beam-splitter coupling, invokes fewer diabatic transitions and
is thereby easier to deal with. So we first replace the beam-
splitter term in the Hamiltonian with a two-mode squeezing
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term, i.e., V() > Qo(t)ézjfz,T + H.c. Then we identify the
dominant excited subspaces for phase- and bit-flip errors. We
use the notation (i, j) to label the subspace given by the tensor
product between the ith subspace for the control mode and the
Jjth subspace for the target mode. The excitation to the (1,0)
[(0,1)] subspace dominantly leads to phase flips on the control
(target) mode, the excitation to the (1,1) subspace dominantly
leads to the correlated phase flips, and the excitation to the
(2,0) [(0,2)] subspace dominantly produces the bit flips on the
control (target) mode. Therefore we aim to suppress three sets
of transitions with corresponding gap frequencies A, = A,
Ap=2A1,and A, = Ay + Ay (A; = 2A)) in order to sup-
press the abovementioned bit- and phase-flip errors (and the
tensor product between them). To do this, we first replace the
base driving pulse 2¢(#) with the truncated Gaussian pulse
with the third-order smoothness €2¢ 3(f) and then apply the
derivative-based correction, which further reshapes the driv-
ing pulse of the two-mode squeezing by adding derivatives of
QG”;, HDBC = u(t)&j&f + H.c., where

) e = + 2 4 +'§G’3(Z)
u(t) = —i — 4 — 4+ — —
S VN AyApA,

. 1 1 1 QL)

— Qe st 013937

6,3( )<AaAb+AaAc + AbAc) + A2
(8)
3. cx gate

The original Hamiltonian in Ref. [15] for the CX gate
between two modes reads

HAex(t) = Ay + Ao ) + A,

Higo = —K(a* — o) (2 — &),

At A
0 _ AF2 2 —2ipin) [ ¥ — 4 of @t ac
Hipo(1) = —K[at — gl 20l <T°> — (TL

) o —a oa+a
X |:&[2 - a262’¢(’)<—2 C) — a2<—2 C)]
o o

N 1.Qa—al —a

Aoy =56 ala o) ©)
where nglgo (t) stabilizes the phase of the target mode condi-
tioned on the control mode and H., serves as a compensation
Hamiltonian that partially compensates the nonadiabatic ef-
fects coming from the fast controlled phase rotation. The
phase rotation is set to be linear, i.e., ¢(t) = Qo(¢) with Qy(z)
being some hard pulse.

In the adiabatic frame (in which the cat states with
time-dependent phase s?an the ground subspace) that block-
diagonalizes A, + ) (1), the term H,, invokes diabatic
transitions that lead to leakage outside the cat-state manifold.
In contrast to the Z and ZZ rotation, the correction to the CX
gate is more complicated and requires adding more physical
correction terms to Hpgc, because of the the nontrivial dy-
namics in the excited subspaces. We design the corrections
to suppress the leakage to the (1,0), (0,1), and (1,1) excited
levels, which is the dominant process for nonadiabatic phase-
and bit-flip errors (the complicated structure of I-?]glzo leads
to the fact that the leakage to the abovementioned subspaces

also contributes greatly to the bit-flip errors). To realize this,
we first replace the linear phase rotation with a more smooth
rotation with a first-order Gaussian derivative, i.e., (ﬁ(t) —
Q¢.1(t), and then apply the following derivative-based cor-
rection Hppc:

Hpgc = Hpac,o + Hpgc,1 + Hpec,1 + Hpac,3,

Q A9 (Al oy
=i— — x (ala;, —a”),

PRCO= 0 AL () 4a o

. (1 — cos2¢) .
A =c——— (@ ,

DBC,1 = €1 A (a+a')

A . ¢')sin2¢ A2 A2
Hppc, = ic (a; —a;"),

DBC,2 2 All(t)

b (1)

[(€2i¢(t) _ 1)at2T + (672i¢(t) _ l)atZ]’

(10)

HDBC,3 =3
A (1)

where Ajp(¢) is the time-dependent energy gap of the (1,1)
subspace in the adiabatic frame that approximately diagonal-
izes ﬁggo(t) and ¢y, ¢, and c3 are constants depending on the
representation of the & operator in the Kerr-cat eigenbasis. See
Appendix C for detailed expressions for A (), c1, ¢2, and c3.
The correction terms HDBC, i»i=0,1,2,3,are designed to ad-
dress different diabatic transitions accordingly. The maximum
order of nonlinearity required to implement these corrections
is the same as the original Hamiltonian equation (9). We note
that due to the high complexity of the cx Hamiltonian, we
only derive corrections to suppress the leakage to low-lying
excited subspaces, while in principle, similar to the Z and
ZZ rotations, further corrections can be added to suppress the
leakage to higher-lying subspaces, e.g., (0,2), (2,0), (1,2), or
(2,1) subspaces, which may further suppress the nonadiabatic
errors, especially the bit-flip errors.

B. Nonadiabatic errors

To illustrate the improvement from the DBC control, we
numerically compare the nonadiabatic Z (PN*) and X (PM*)
errors among different BP control schemes for the quantum
operations of the Z rotation and the CX gate in Fig. 2. (The
nonadiabatic errors of the ZZ rotation are similar to those of
the Z rotation; see Fig. 8 in Appendix D.) Both the nonadia-
batic Z and X errors of the Kerr gates with DBC control are
significantly reduced.

We explicitly provide the scaling of PZNA with the gate
time below. For dissipative gates, PN o< 1/i,T is given by
the integration the induced phase-flip rate over gate time
[18]. For Kerr gates with hard or Gaussian control, PZNA x

| fOT Qo(t)e~"Adt|? is dominated by the first-order diabatic
excitation associated with an energy gap A, which is pro-
portional to the Fourier component of the driving pulse at
A (for the Z rotation, A = A, while for the CX gate A =
2A1). As such, PN* o 1/(KT)* for hard pulses, while for
truncated Gaussian pulses PzNA first scales exponentially for
small KT and then polynomially for large KT due to the side-
band excitation [23]. By adding derivative-based corrections
to the bare Gaussian pulses we can dramatically suppress the
excitation at A to the second order and maintain the exponen-
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FIG. 3. The total Z and X error probabilities for the CX gate
using different control schemes (same color scheme as Fig. 2) in the
presence of photon loss. (a) and (b) «;/K(x2) =5 x 1073, (c) and
(d) k1 /K(k2) = 5 x 107*. The gate time is in units of K (k) for Kerr
(dissipative) gates.

tial error scaling in the regime of gate time of interest (see
Appendixes B and C).

We note that since the bit-flip errors mostly come from
the nonadiabatic effects of the gates even in the presence of
photon loss (which will be discussed in the next section), it
is especially important to suppress the nonadiabatic bit flips
so that the gates can be implemented fast while preserving
high noise bias, which is the prominent feature that makes
the biased-noise qubits stand out. For the Kerr CX gate, the
hard pulses lead to significant nonadiabatic bit-flip errors due
to the large excitation to high excited states, therefore almost
destroying the noise bias (for fast gates). Using Gaussian
pulses can noticeably reduce the nonadiabatic bit flips since
high excitations are suppressed due to the limited bandwidth.
By adding the derivative-based corrections the excitations are
further suppressed, and as a result, the Kerr CX gate can have
large noise bias (even larger than the dissipative gates) with
fast implementation (7 ~ 1/K). To achieve the same level
of bit-flip error, the DBC control can be much faster than
the Gaussian control and consequently has lower loss-induced
dephasing errors—which is crucial to reduce the resource
overhead for concatenated QEC (see Sec. IV).

C. Gate performance in the presence of photon loss

In the presence of photon loss, the total Z error probability
[Eq. (3)] will have a significant new contribution (~k loe|?T),
associated with the loss-induced parity change. In contrast,
the total X error probability is still dominated by the nona-
diabatic error PM*. In Fig. 3, we numerically obtain Z and
X error probability of CX gates at different gate times with
ki/K(>)=5x 107> and 5 x 107%.

The total Z error probability P, determines the gate fidelity.
According to Eq. (3), the gate time can be optimized to
minimize the total Z error probability. The Kerr gate can be
implemented faster with higher gate fidelity than the dissipa-
tive gate, and compared with using hard or Gaussian control,
using DBC control can further speed up the gate and improve
the gate fidelity. Plugging in the scaling of Pf’A with 7', we

. B
» .

Encoding
UorIALI0))

’ Syndromes 4>‘ MWPM decoder

FIG. 4. The QEC circuit of the repetition cat. The potential faulty
operations are the state preparation (blue), idling (green), CX gate
(red), and measurement (orange). The measured syndromes are fed
into the minimum weight perfect matching (MWPM) decoder to
determine the errors.

can obtain the scaling of the minimal Z error probability P}
with i1 /K (k). For dissipative gates, Prp o (4)!/2. For
K(;rr gates With hard control, P}y, 4 & (%)2/ 3. For Kerr gates
with Gaussian or DBC control, P/, ... and P/ppe can ap-
o X

K

proach the most favorable linear scaling, i.e., P g qsian

and P’ppe oc ¢, with Ppyp. being smaller. We obtain con-
sistent scaling between P} and «1/K (k) based on numerical
fits for the cX gates (see Table III). Given the same small
parameter x;/K (k;), our fine control scheme can provide a
smaller Z error probability and thus a more favorable optimal
gate fidelity.

The total X error probability P, limits the noise bias of the
gates. Compared with the dissipative gate, the P, of the Kerr
gate with hard control is too high (at reasonable gate time). In
contrast, the Kerr CX gate with Gaussian or DBC control can
have P, comparable to or even below that of the dissipative
gate. In terms of gate time, the (counteradiabatic) DBC control
significantly outperforms the Gaussian control (limited by the
adiabatic requirement). Hence the DBC control can achieve a
faster gate with favorable noise bias.

IV. CONCATENATED QUANTUM ERROR CORRECTION

We now compare the performance of different schemes of
BP gates in terms of the logical gate failure rates in concate-
nated QEC. We consider the concatenation of the stabilized
cats with a repetition code and simulate the logical gate failure
rate using a circuit-level noise model, which includes state
preparation errors, idling errors, CX gate errors, and measure-
ment errors. The faulty operations are marked by stars with
different colors in the QEC circuit shown in Fig. 4. The phys-
ical Z and X error rates of these operations are summarized
in Table 1. The Z errors of the CX gate comprise three parts:
the Z error on the control mode which results from both nona-
diabaticity and photon loss, the Z error on the target mode,
and correlated Z errors which are induced only by photon
loss. po = || Tey is the characteristic photon-loss-induced
Z error probability. For a distance-d repetition code we repeat
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TABLE I. The physical error rates of different operations in our
error model. py = k|a|*Tex is the characteristic Z error rate. The
state preparation and measurement in the X basis do not produce
bit-flip errors, and the bit-flip error generated during the idling is
negligible compared with that generated during the CX gate.

Operation Idle Py My CcX
P, Do Do Po Z. : pMM(Tx) + po
Z, = 3po
Z.Z, = 3 po
P, ~0 0 0 Pk, Tex)

the syndrome extraction d times followed by one round of
perfect syndrome extraction (assuming no ancilla errors), de-
code the full error syndromes using a minimum weight perfect
matching (MWPM) decoder for our noise-biased system, and
correct the errors by simply updating the Pauli frame.

We consider the total logical error rate of a transversal
logical cX gate, which is a function of dimensionless param-
eters of the photon loss rate KI((I]Q)’ the CX gate time K (k;)Tcx,
and the repetition-code distance d. Given k|, we can obtain
the minimum logical CX gate error rate achievable by the
repetition cat by optimizing T-x and d (see Appendix F for
details of the optimization):

1

ok K1 — mi K_
£ (Km)) _%{BPL(K<K2)’K(K”TC""1)' (o

In Fig. 5, we plot P/* and the corresponding optimal code
distance d** and gate time 775" as a function of photon loss
rate when different physical CX gates are used.

Using the Kerr cx gates with DBC control can lead to
the lowest logical gate error for k1 /K < 1073, which outper-
forms all other schemes. The optimized P;* with dissipative
gate is mostly limited by the large P, and the limited Py in
the low-loss regime [see Figs. 3(a)-3(c)], the P* based on
hard control is limited by the large nonadiabatic P, error [see
Figs. 3(b) and 3(d)], and the P;* based on Gaussian con-
trol has to follow the adiabatic requirement with the longest

1072 /)//

1074

* ok

-

a
1076

103 1074 1073
K1/K(K3)

10~4
K1/K(K2)

—-- Dissipative

K1/K(K2)

—— Hard Gaussian —— DBC

FIG. 5. (a). The minimal gate error P;* of the logical CX gate
using physical BP cx gates with different controls. (b) and (c) The
optimal choice of repetition-code distance (b) and the BP CcXx gate
time (c) that minimizes the logical gate error.

gate time [see Fig. 5(c)], which leads to extra overhead in
the size of repetition-code d**, especially for the practically
relevant intermediate-loss regime (x1/K ~ 107%) in Fig. 5(b).
As expected, the Gaussian control should be comparable for
the DBC control for the extremely low loss regime (k) /K ~
1073), which is compatible with slower adiabatic gates to
maintain high gate performance. The reason is that the slower
Gaussian gates mainly result in larger Z errors, while the
moderate increase of Z errors (with X errors being similar)
in the far-below-threshold regime does not affect the logical
performance of the repetition code too much in terms of both
the optimized logical error rate and the associated resource
overhead.

In the above we optimize the logical error rates since the
repetition cat cannot arbitrarily suppress logical errors in the
regime of finite noise bias. However, we should instead op-
timize the resource overhead required for reaching a target
logical error rate when we consider other concatenation QEC
schemes that can arbitrarily suppress logical errors, such as
the surface cat considered in Refs. [18,19]. In this case, using
the fast Kerr gates presented in this paper can reduce the
resource overhead towards fault tolerance since the dominant
phase-flip errors are suppressed to be far below the threshold.

V. DISCUSSION

So far, the experimental Kerr parametric nonlinear os-
cillator can achieve x;/K ~ 1073 (with «;/27 ~ 10 kHz,
K/2m ~ 6.7 MHz) [8], which is slightly more favorable than
the engineered two-photon dissipation with «/ky ~ 1072
(with /27 ~ 1.7 kHz, k,/2m ~ 170 kHz) [28], partly be-
cause Kerr nonlinearity is less complicated to implement
than the two-photon dissipation. Note that the single-photon
loss rate is fairly high in all these experiments [7,8,28],
to be further reduced in future devices. We expect that
k1/K () < 107 (e.g., k1/2m ~ 1 kHz, K/27 ~ 10 MHz)
can be achieved [15,18], which will enable us to achieve
high-fidelity logical gates. We note that the presented control
technique could potentially be also applied to other codes that
require the implementation of bias-preserving gates, e.g., the
pair-cat code [29].

VI. CONCLUSION

We use a derivative-based transition-suppression technique
to suppress the leakage of the BP gates on the Kerr cat so
that both the nonadiabatic phase-flip and nonadiabatic bit-flip
errors can be reduced dramatically. In the presence of photon
loss, we show that the Kerr gates with our designed DBC con-
trol can have higher gate fidelity while maintaining high noise
bias. The improved gates, when applied in concatenated QEC,
can lead to lower logical error rates and/or lower resource
overhead.
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APPENDIX A: THE SHIFTED FOCK BASIS AND THE
KERR-CAT EIGENBASIS

Simulating a large cat qubit using the usual Fock basis is
inefficient due to the wide photon-number distribution of a
large coherent state. In contrast, one can work with the so-
called shifted Fock basis, as proposed in Ref. [18], to simplify
the analysis since typically only the first few excited states are
populated. The shifted basis is defined as

|Pn, £)

where ﬁ(a) is the displacement operator and NV, L is the nor-
malization constant. In this basis, the Hilbert space is split into
two subspaces, labeled by the photon-number parity + (even)
and — (odd), respectively. Thus we can effectively represent
each shifted Fock state as a tensor product of a “parity qubit”
labeling the parity and a Fock state labeling the excitation
level:

= N, silD(@) £ (=1)"D(=a)]|n), (AD)

Ip) ® ') = |¢n. p). (A2)
Since the logical information of the cat qubit is encoded in
the parity, this “parity qubit” can also be viewed as a “logical
qubit” carrying one bit of logical information of the cat qubit
with Z-basis states |0) = —= (|+) +|—))and [1) = f(l—i—)
|—=)). We note that these shlfted Fock states are not exactly
mutually orthogonal. However, they are nearly orthogonal for
n < |a|?/4. We neglect the nonorthogonality for now when
analyzing the low excited states. In this shifted Fock basis, the
annihilation operator can be expressed as

a=2Q @ +a), (A3)

where Z flips the phase of the “loglcal qublt (or ﬂlpS the
parity of the “parity qubit”) and &’ = Zn 'l = 1] is
the bosonic annihilation operator defined on the exc1tat10n
level of the shifted Fock states. Based on this representation
of & we can write the Hamiltonian of a Kerr-cat qubit (Kerr
parametric oscillator):

)@ — o)
= —KI @ [4a”d" "0/ + 20 (2™ 0 +

Hypo = —K (@' —

In the large-« limit, Hypo is dominant by —4a’KI ® a''d’,
which is diagonal in the shifted Fock basis. However, the off—
diagonal elements cannot be neglected in this paper, and they
have perturbative effects on the eigenvalues with respect to
1/«. Since the Kerr Hamiltonian preserves the photon-number
parity, we can express its eigenstates as |, p) = |p) ® |n”).
We can perturbatively calculate |n”) in the basis of {|n’)} to

the first order of l:

"o a(n — l)\/_ 1/ /
n") = N — l)n ) +|n’)
SRt L hoeR). (AS)
2 +n
where n > 1 and |0”) = |0').

If we only consider the first three pairs of eigenstates, i.e.,
n’ < 2, we can express & as

a =oy, +¢§a[2—k1H1 — Ml + 1m0 5. (A6)

where Ay, Ao, = 20‘2‘11, 211, Z{J‘fl + 0(( )?), with re-
duced Pauli operators and projectors in the Kerr-cat eigenba-
sis:

o =1,

I, = |iI")({). (A7)

M1, A2,  can be calculated more accurately by adding higher-
order corrections. For o = \/§ used in this paper, we can
numerically obtain

A =04, i=108 n=0256. (A8)
APPENDIX B: ESTIMATION OF OFF-RESONANT
EXCITATION IN THE ASYMPTOTIC LIMIT VIA

FOURIER ANALYSIS

In this Appendix, following Ref. [23] we provide the
estimation of off-resonant excitations in the asymptotic weak-
drive limit, based on which we define the order of different
transition elements in a Hamiltonian. In the case of constant
energy gap, an off-resonant excitation can be estimated via
the Fourier spectrum of its driving pulse in the asymptotic
weak-drive limit. Only considering a single transition element
hy = 1) (1//,fr°m| associated with constant energy gap Ay that
is driven by (¢), the propagator in the interaction picture is
given by

Uy(t) = T expl—i f dr' () hge™ +H.c)l, (Bl
0

where 7T is the time-ordering operator. In the weak-drive limit,
U, (¢) is dominantly given by the first-order Dyson expansion

t
00y = —i f dr'[Q)e™ +Hel; (B2
0

then at certain time 7 the off-resonant transition strength is
given by the finite-time Fourier transform of €(¢):

T
(|0 ()| yEm) = F(, Ax, T)E/ Q(t)e M dt,
0
(B3)

and the population in the excited state is given by
|F(S2, Ay, t)|?. This finite-time Fourier transform can be con-
nected to the standard Fourier transform by assuming that
Q(t) is truncated outside the [0, 7] time window or (t)
smoothly vanishes outside [0, 7T'], which is usually the case
for a gate pulse that starts and ends at 0.
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For a pulse whose time derivatives also start and end at 0
up to order m, its Fourier spectrum has the property that

o 3R
F(Q,AT)=(=i)'F ) (B4)
forn=1,2,...,m+ 1. Moreover, the Fourier spectrum of

the product of derivatives of €2 can be converted to the Fourier
spectrum of polynomials of €2:

1 d*Q "
F(@u)™", a, T>=®(f(ﬂ (3 ”) T))
k

(B5)

To facilitate the perturbative analysis used throughout this
paper, we define the order of the off-resonant transition el-
ements with respect to the driving pulse €2(¢) and the energy
gap A in the following way. We define the nth-order transition
elements as those which will create nth-order excitation ¢
after gate time T':

Qr
o ‘]—'(— A T>
An—l

2
. (B6)

Based on this definition the nth-order elements have a coeffi-
cient of % or a product of time derivatives of 2 according
to Eq. (BS). We note that the definition of e coincides with
the more conventional definition e™ o (%)" if Q(z) is a hard
(square) pulse that has the amplitude £2.

We use Eq. (B6) to estimate the nonadiabatic errors of the
gates using different control schemes in the main text. We
consider two types of driving pulses in this paper; one is the
hard (square) pulse 2,,(¢) = %, and the other is the truncated
Gaussian pulses:

—T/2)? /227"
RS T
B7)

where o is setto be T'.
For gates using hard pulses, the leakage is given by the
first-order excitation:

sin® AT

(1) 2 _
e, (T) o< | F (2, A, T) _4(A—T)2’

(B3)
which scales quadratically with 1/AT.

If we simply replace the base driving pulse with truncated
Gaussian pulses, the leakage is then eg,)m; if we add derivative-
based corrections to suppress the first-order excitation (which
will be discussed in Appendix C), the residual leakage is given
by the second-order excitation e(Gz_)m. e(Gly)m and e(Gz,)m are defined
as

g (T) o< | F(Qm A, THI, (BY)
QZ 2
2uno (% ar)[. o

Their analytical expressions are lengthy, so we instead nu-
merically plot them in Fig. 6. Compared with the first-order
excitation of the hard pulse [Eq. (B8)], shown by the green
curve, the first-order excitation of the truncated Gaussian
pulse [Eq. (B9)], shown by the red curve, is more narrow-
band and has a faster-decaying envelope as AT. Going to the

10!

— (1)
— Qg,2(t)

10-1 Q% ,(t)

[F(Q. A, T)|?

1077

10 [\

0 10 20 30 40 50
AT

FIG. 6. The off-resonant excitation of different pulses, which
is estimated by their finite-time Fourier spectrum. Red curve: the
first-order excitation of the hard pulse [Eq. (B8)]. Green curve: the
first-order excitation of the truncated Gaussian pulse [Eq. (B9)]. Blue
curve: the second-order excitation of the truncated Gaussian pulse
[Eq. (B10)].

second order [Eq. (B10), blue curve] gives further dramatic
improvement.

In addition to facilitating the order counting and scaling
analysis, the Fourier analysis also gives us a classical picture
of how derivative-based transition suppression works. Using
Eq. (B4), for an arbitrarily smooth driving pulse €2(¢), one
can add its higher-order derivatives {%Q(I)} to create a set
of “spectral holes” at one or more gap frequencies. In general,
to create N holes at frequencies A, A,, ..., Ay, one can
modify Q(r) as [23]

0,2 32Q (—iNoNQ
Q’ZQ_'§ __2 E ! I S B
: — A AkAj+ * AiAy--- Ay

(B11)

provided that the first N — 1 derivatives of €2(¢) start and end
at 0.

APPENDIX C: DERIVATIVE-BASED CORRECTIONS TO
THE BP GATES

In this Appendix we present the details of our designed
derivative-based corrections to each BP gate. The corrections
are derived using the derivative-based transition-suppression
technique [23,25].

We first derive the corrections to the Z rotation and ZZ
rotation as the corrections to these two gates are simpler and
illustrate the core idea. The system Hilbert space can be split
in the following form: H = Hiogicas ® Hicak» Where Higgical 18
the logical subspace (cat subspace) inside which we would
like our system to stay while Hjea is the subspace which
we prevent our system from leaking into. We define P as the
projector onto Hiegical, Whereas we define Q as the comple-
mentary projector onto Hje,x. The original Hamiltonian we
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apply to generate the desired dynamics is typically in the form
Hosigina = Ho(t) +V (1), (€D

where Ay =0® A > %Hk is diagonal and only has sup-
port on the leakage subspace. V(t) = QO(I)VO+ + H.c. is the
control Hamiltonian whose projected part PV (t)P generates
the desired logical operation while the block off-diagonal part
PV )0 + OV ()P causes leakage. Specifically, QVJ’[A’ =
» " Akfzk contains diabatic transitions to different leakage lev-
els |k) with transition strength A;. These diabatic transitions
are off-resonant since Hieak is gapped from Higgicar by a set
of energy gaps {A;} in Hy. The leaked population can be esti-
mated by the finite-time Fourier spectrum of € (#) at different
gap energies in the asymptotic limit (see Appendix B).

To suppress the leakage, we aim to find a frame trans-
formation, the so-called DRAG frame defined by D(t), that
can block-diagonalize the original Hamiltonian I-Lriginal(t) and
obtain the effective Hamiltonian in this DRAG frame:

ﬁeff = D(t )ﬁoriginalDAT @)+ lD(t )DAT @), (C2)

where DA(l‘)l'?originalDMr (t) = ﬁb(t )ﬂorigina]D+(t)IS +
OD(t)Horigina D' (1)Q is block diagonal and iD()D(t) in
general contains the block off-diagonal part. If we are able
to remove the diabatic term iﬁ(t)DAT(t) by adding some
corrections, we can remove all the leakage in this DRAG
frame. If we further ensure that the DRAG frame coincides
with the laboratory frame at the beginning and the end
of the gate, i.e., D) = D(T) =0, where T is the gate
time, we then successfully remove all the leakage by the
end of the gate in the laboratory frame. This correction
corresponds to modifying the original Hamiltonian by adding
a derivative-based correction:

Hunodified = Horigina + Hppc(t), (C3)

where Hpgc = —iDT(1)D(r). However, in practice we can nei-
ther perfectly block-diagonalize Horiginal (t) nor perfectly apply
the desired corrections. So we have to perturbatively obtain
both the frame transformation ﬁ(r) and the correction Hppc.
We define the adiabatic parameter as € = |2p/A|, upon
which we perform the perturbation expansion. Specifically,
we define D(r) = exp[iS(t)], where S(r) = >int SU) is ex-
panded to different orders in €. Similarly, Apgc = Y f I-?lng)C
is also expanded to different orders in €. We note the order
in which the derivatives of 2y(¢) should be counted by the

rule A’ff? = O(¢). The effective Hamiltonian in this DRAG
frame can also be expanded to different orders in € using the
time-dependent Schrieffer-Wolff (SW) expansion:

Her = D(t)HpmodiiecaD’ (1) + iﬁ(l YD (1)
1 . o AA
= Z —H, =i, + (=) Z S Sh
=Y HJ O, (C4)
j=0

where [A, B],, = [[A, Bl,—1, B] and [A, B], = A. We note that
Hj is of order 0 and V (¢) is of order 1. We explicitly list Heg

up to the second order below:

AL =V + 8, Aol + Al + 5O,
AR =i[8®, Hyl +i[8D.V + Ay |
isM, §My,
(C5)
In this paper, we only correct the leakage error to the first
few excited states to the first order, i.e., Tr[I:Iéflf> fzk] =0 for

k=1,2,..., N, which can be satisfied simply by shaping the
control pulse:

— 318D, 18D, Holl + Al + 52 —

A1) = u(t)Vy” +He., (C6)

where u(¢) is the classical solution that corresponds to creating
N “spectral holes” at N different gap energies {A;}[23],

B 3, d? QO (—i) N Qo
- Z Z; ArA; AlAz N
(C7)

and the corresponding first-order DRAG frame transformation
is given by

S0 =i e DT

k j#k AjA
8 Qo -~
DRI

k  j#k i#)k

n Z (= 1)(—1)N3N 'Qo

h H.c. C8
AA, +H.c (C8)

We note that thls frame transformation can be linked to
the superadiabatic expansion by ag)plying successive frame
transformation defined by exp[zS ], where [ labels the /th
superadiabatic transformation and Sl(” contains the term in
Eq. (C8) with the /th-order derivative of €2(t).

By adding 1"71()113)c the leakage errors are then suppressed to

the second order, i.e., 0(|]—"(%‘2), A, T)|2). However, although
the leakage error brought by the higher-order expansions in
Eqg. (C5) is smaller than the original first-order leakage, there
will be phase or rotation errors acting on the logical sub-
space directly resulting from those higher-order expansions.
As these terms are not associated with any energy gap, their
contribution can be comparable to or even larger than the
residual leakage error. To deal with these errors, we need to
calculate A e(tzf) (or higher-order Eerms) given §1 and H](DIB)C and
add high-order corrections to Hppc.

Now we apply the derived correction strategy to the Z
rotation and ZZ rotation, respectively.

1. Z rotation

The original Hamiltonian implementing a Z rotation on a
single cat in Ref. [15] is

Horiginal =Hy+V

= K, (&% —a?) @ — a®) + Q)" + Q()a,
(C9)
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TABLE II. The dominant diabatic transitions of the ZZ gate and their associated energy gaps. Here, we use the fact that A, ~ 2A;.

Transition 2.2, ® (647, 6,7 2.2, ® (643, 655 6op11 2.2: ® (645 12- 60p21)
Energy gap A, = A Ay =2A1(Ay) A=A+ A,
where Hy = —K, (22" — a?)(@* — a?) and V = Qy()a + We find that it is hard to apply the derivative-based

Qg(1)a’. Qo is areal hard pulse.

Working in the eigenbasis of the Kerr-cat Hamiltonian and
only considering the first three pairs of eigenstates, we can
express Hy and V as

Hy =1® (A1) 4 AsTTy),
V =2aQ0()Z & [Ty + (1 — AT 4+ (1 — Ax)I15]
+[Q0()Z ® (64, + V26,1, +né,) + Hel. (C10)

In the second term of V(¢) there are two diabatic transi-
tions Z ® Uo 1 Z® 6., associated with two gap frequencies
A1, A controlled by the same driving pulse. Then to suppress
the first-order leakage, we first replace the base driving pulse
as the Gaussian pulse with second-order smoothness 2(7) =
Q¢.2(t) and then add Hppc by shaping the base driving pulse,
i.e., Hppc = u(t)a’ + u*(t)a. According to Eq. (C7) the first-
order correction pulse is

4 1 1 Qo
(t) = —if% +— )=
Al As ANy
and the corresponding first-order DRAG transformation [ac-
cording to Eq. (C8)] is
& 67 Q
SV =iQZ _+1_2+ 202 0 5
) =iQZL® Al A Az +A1A2
® (657 + 61, +n6y",) + Hee. (C12)

(C11)

Then we can block-diagonalize A ff , l.e., ISI-AIéflf)[A’ =
20Q,(1)Z ® I, QHéff)P =0 (only to the first three pairs
of eigenstates). The residual error is then of order
O(|F (%‘2), A, T)|?), which comes from ﬁéfzf) and higher-order
expansions. In addition to the leakage error, however, there
will be terms from I-?;?f) (and higher-order expansions) that
cause over—rotation (Z ® I1p). The over-rotation angle is given
by §0 o F ( A
ing the rotation angle or adding an additional term to u:

o()
A?

1
Instead of doing lengthy calculations we simply numerically
optimize ¢y and obtain ¢y & 0.07.

0, T'), which can be corrected by renormaliz-

u(t) = u )+ co

(C13)

2. ZZ rotation

The original Hamiltonian implementing a ZZ rotation on
two cats in Ref. [15] is

ﬁoriginal(t) = ﬁo + V(t)
Hy= —K( a*t —azbzg)(&g )
— Kblg(A2T )( -« )
V(t) = Q(t)a.a +He.,
where €2((¢) is again a real hard pulse.

(C14)

transition-suppression technique with this original Hamilto-
nian since there are too many transition elements with distinct
gap frequencies to be suppressed. Instead, it will be easier
if we replace the beam-splitter interaction with two-mode
squeezing V (1) = Qo(t)ala] + H.c.

Again, working in the Kerr-cat eigenbasis and only consid-
ering the first three pairs of eigenstates for each mode, we can
express Hy and V as

Hy = A (15 + I1)) + Ap(T15 + I15),
PV ()P =20*Q02.7, ® I,
PV(1)0 + OV ()P = Qo(1)Z:Z, & [(6¢h 10 + 60.01)
+ ’7“(6015,20 + 5(;5,02) + a(;(_),n

+ 160512 + 605.01) + 17605201 + Hec,
(C15)
where alj'l,j, = |i')¢]j"): (il {j;- Here, we only show the pro-
jection of V(t) in Hjogical and its block off-diagonal part for
simplicity.

Among all the diabatic transitions in the block off-diagonal
part of V we consider suppressing three groups of them
associated with three energy gaps, A,, Ap, and A, listed
in Table II. Similar to the Z rotation, to suppress the first-
order leakage, we first replace the base driving pulse as the
Gaussian pulse with third-order smoothness Q2(f) = Q¢.3(f)
and then add Hppc by shaping the base driving pulse, i.e.,
Hppe = u(t)izj&,T + H.c. According to Eq. (C7) the first-order
correction pulse is

ul(t) = —zQO(z)(i P i)

A Ap A,
. 1 1 Qo(t)
— Qo1 s
of )<AaAb A T AhAc) WY
(C16)

and the corresponding first-order DRAG transformation is

R he  hy b [1 /1 1\,
S<‘>(t)=iszo<—+—"+—)+Qo[—(—+ )h

A A, A, A \Dpy A
N 1 1 n 1 . 1 1 . 1 i
MA\A, AT A NN T A
_— h h h H. C17
o AbA (ha + hp + h.) + Hec., (C17)
where
i’\l ZZZt ® [a(UO() 10 + 0() 10)"—\/_“(0—()1 02 +010 2())]

hy =naZ.Z, ® ["00,11 + ’70‘("00,02 + Goo,zo]v
h,

=nZ.2; @ (655,15 + Gopa1)- (C18)
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Then the diabatic transitions are suppressed to the second-
2
order, 0(|.7-'(%, A, T))?). Similar to the Z rotation, there

will be an over-rotation Z.Z, ® f[gf[{) coming from the
higher-order DRAG expansion, which can be compensated by
rescaling the rotation angle or adding an additional term to u:

(1)
A2

u®) = uV + ¢ (C19)

J

Hongmdl(t) - po + H]g}lo(t) + ﬂcp,

; 1. Qa—al
A,y = 220G

B ac) (&T ~
2 2a

2
Lag — o).

g ~12
Hypo = _K(“c

.
AY (1) = _K[&fz _ aze—zup(z)(o‘ - ac) _ a2<
kpo\l) = t 0w

where we also numerically optimize ¢y and obtain ¢y =~
0.13.

3. CX gate

The correction to the CX gate is more complicated and re-
quires adding more physical correction terms to Hppc instead
of merely pulse shaping.

The original Hamiltonian for the CX gate in Ref. [15] is

— o) (@ — ),

a—i—aT

@ +a at — a? e @ —de) o2 (4 fe .
20 2a 2a

(C20)

We first represent the operators on the control mode in the shifted Fock basis and express H, )o and A. p as

5 A N 1 i6 o N ) .
ADo = —K[a?T — o?e 2P — o?PF + Ecx(e -DZ.®a ][ —a?PP — P + Ea(ez’¢ -2, ® a;},
| A— 1, PYINI PPN 2
Hep = —p| Pe — @, +al) |(@fa, — o), (C21)
where P+ = L ZZ‘ and P~ = L ZZ
We deﬁne the followmg adiabatic frame transformation:
t
U(t) = exp [—i / dt'd(tHP- ® (a4, — oﬁ} = P” ®exp[—ip(t)(@la, — a®)] + PF (C22)
0
and obtain the Hamiltonian in the adiabatic frame as
goriginal(t) = (jl_,ioriginal(j}L + ZUUT = I:IO + ﬁv + ‘7,
fo = —K (@' — o) (@ - a?) — K(@Z' - o) @2 — o).
2 1 . . 1
H, = —EKoe[i sin2¢Z, — (1 — cos2¢) 1 ® a.(a;" — o) + H.c. — EKozz(l — cos2p)l.alal,
5 .. N AlT Ata 2
V= 4—¢ZC ®@.+a')x@a —a). (C23)
o

Only considering the first two pairs of eigenstates and expressing the annihilation operator in the Kerr-cat eigenbasis as
ey =Z2Zey @ (@ + 6(; 1“ — A Hi” ), we can write the Hamiltonian equation (C23) as

o=A ®IT + [Ar —

s~ K (1 — cos 20011, ® (63, 10 — 1 (1158571 + 63111

1Ka*(1 — cos2¢)]le ® IT¢ + 2Ka®Af(1 — cos 2¢)I.1; ® TI{TT},

— KO[2 sin 2(1)201:‘ &® [68)1_]0 - )\' (U() 1 Ht 6—311)]

(C24)

In this laboratory frame, the dominant leakage transition is Z.[;, ® o511 Via V, and its associated time-dependent energy

gapis Ay (t) = 2A, — —Ka2(1
transition,

3)»%)[1 — cos 2¢(t)]. We can define the first-order DRAG transformation with respect to this

(R p— 74 ® 6 ., C25
4 A1) +® o011 (€25)
and obtain the first-order effective Hamiltonian in this DRAG frame:
1-— 20) 5 » A .
AL =V +i8Y, Ayl + i3V, A,] = —Koz(ot - —A1>k 9(1 — cos 2¢) - CE’:) Psie (63¢ L + F156:)
11

1 $sin2¢ . . I N 1d é PN ,
— -K ——X A 1.1, 56" — 6211L) — — — Z @6 .. C26
4 “(0‘ ) l) 1 At 1 ®( 090,1 0,1 0) 4dt| ML) ® G40, 11 (C26)
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To eliminate the Z.J, ® 64, transition, we can add

iug(t)=<

.
the standard derivative correction HDBCO ac X

(at a — o )’ where uo(1) = [A”(t)]

Since H, is not Qiagonal in the Kerr-cat eigenbasis and is
of order €°, i[S?, H,] adds new diabatic transitions to He(flf),
which do not exist in the laboratory frame. So we need to add
additional terms to Hpgc to suppress these transitions.

To suppress Z.J, ® 651 ‘T, we can add

d(1 — cos2¢)

AY . =G, +ah),
DBC, 1 1 Ap() c

IK 1)» A (C27)

ci=-Kala — = )

1=y Fh )

To suppress [/, ® 6771 I1), we can add

N ¢ sin2¢ 1

A, = —a%), = _Kar;. (C28
DBC,2 = €2 A ——(@-a), o gkar (C28)

cAaXx,dt

Finally, we can simultaneously suppress Z./, ® HOUO 1 and
1., ® T156)"] by adding

: DO (o i a1
Apes = ery s (@00 = DA + @200 — a7,
1
3= gKoc)q. (C29)

So, in total, we agply four derivative-based corrections
(1) (1) (1) (1)
Hppe = Hppe o + Hppe + Hpge, t Hyype 5 to suppress the
first-order leakage to the first pair of excited states of each
mode.
; (1) (1) :
However, by adding HDBC] and Hpg. , we also induce

extra unitary Z rotation on the control mode, which can be

compensated by applying an additional Z rotation Z(86) on
the control mode after the CX gate, which has negligible error
compared with the CX gate. §6 can be calculated as

T i _
86 = %Ka%@a - Al)/ gy @OLL — cos2¢(1)]
0

. (C30
A (t) (G30)

APPENDIX D: DETAILS OF THE NUMERICAL
SIMULATIONS

All simulations in this paper use the Kerr-cat eigenbasis
{h[/j[}} with n=0,1,...,d — 1, where d is the truncation
number and the dimension of the truncated Hilbert space for
each mode is 2 x d. The simulations of Z and ZZ rotation
are in the laboratory frame. However, to simulate the CX gate
using the Kerr-cat basis we need to move to the adiabatic
frame defined in Eq. (C22). The projector ISC‘ is obtained
approximately by

d—1

Z LW + DI+ =1 D

d—

._.

1), ® |n"),
=0

D)

=

where the second line uses the subsystem decomposition.

To numerically extract the gate errors shown in the main
text (Figs. 2 and 3), we initialize the cats to certain initial
states, simulate the gate dynamics, apply a strong two-photon
dissipation (D[a®> — «?]) at the end of each gate, and calculate
the final state fidelity with target states. The application of the
two-photon dissipation, which is a mathematical completely
positive trace-preserving (CPTP) map that preserves the parity
and locality in phase space, thus preserving the logical infor-
mation, pushes all the leakage back into the cat-state manifold

2.0 2.0
@) I ©) . ©
1.5 X X 1.5/ X
Y ‘4\37 N
210 2 — S o N —
I} \// Q21 q
0.5 1 0.5
. 0 .
0.073 3 4 5 6 4 5 6 7 0073 3 4 5
d d d
2.0 2.0
(b) 7 4 (d) Z () 2
1.5 X 5 X 1.5] X
Y Y N
Q40 Q L0
Q 21 Q
0.5 1] 0.5
0.0 .
2 3 4 5 6 973 5 6 37 0073 3 4 5
d d d

FIG. 7. Convergency of the numerical simulation using the Kerr-cat eigenbasis for « = /8. (a), (c), and (e) show the results when there is

no photon loss. (b), (d), and (f) show the results when there is photon loss with k; /K =

of gatesis T, = Tz = 0.2/K, Tex = 1/K.

10~*. The choice of the gate time for these three types
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0.5 1.0 1.5
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0.5 1.0 1.5 2.0 0.5

---- Dissipative

—— Hard

-9
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10-°
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K(k2)T
Gaussian —— DBC

FIG. 8. The nonadiabatic errors of all three gates considered in this paper including the ZZ rotation, which is not included in the main text.

(a) and (b) Z rotation. (c) and (d) ZZ rotation. (e) and (f) CX gate.

in which we evaluate the logical information. We note that
alternatively, we can directly evaluate the logical information
by measuring the logical sector while tracing out the gauge
sector in the subsystem decomposition shown in Appendix A.
In principle, the later measurement can be done by measuring
the photon-number parity for the (logical) z-axis measure-
ment and doing the homodyne measurement (to distinguish
between |«) and | — «)) for the (logical) x-axis measurement.
For simplicity, we choose |+), or | + +), as initial states to
extract Z errors, whereas we choose |0); or |00), to extract
X errors. The choice of the above states for error extraction
is justified in Appendix E, where we provide the full error
channel of the gates.

The extracted gate errors using the Kerr-cat eigenbasis
converge to those using the standard Fock basis as d increases.
In Fig. 7 we plot the ratio 1% for different gates as a function

of d, where P is the total Z or X error probability obtained
using the Kerr-cat eigenbasis and P is the corresponding error
probability obtained using the Fock basis. Based on Fig. 7, the
values of d we choose to simulate Z rotation, ZZ rotation, and
the CX gate are 5, 6, and 4, respectively

In Fig. 8 we show the numerically extracted nonadiabatic
errors of all three types of gates considered in this paper, in-
cluding the ZZ rotation, which is not covered in the main text.
In Fig. 9 we plot PN versus 1/K(x>)T in a log-log scale for
gates with dissipative (black dashed curves) and hard control
(blue solid curves), which highlights that PN* oc 1/k,T for
dissipative gates while PN* oc 1/(KT)? for Kerr gates with
hard control, which supports the scaling analysis in the main
text. In Table III we show the numerically fitted scalings of
the minimal Z error probability of the CX gates with photon
loss rate «1, which are in good agreement with the analysis in
the main text.

APPENDIX E: ERROR CHANNEL OF THE cx GATE

Here, we present the numerically extracted error channel of
the Kerr CX gate in the presence of photon loss. In Figs. 10(a)
and 10(b) we plot the real part and imaginary part of the er-
ror matrix x°" obtained from numerical process tomography,
which describes the CPTP map:

E(p) = mZ Xom PP}, (E1)
Lo-2. 1071
10741 1073
107 100 101! 107 100 10! 107 100 101!
1/K(k2)T 1/K(k2)T 1/K(k2)T

FIG. 9. Plots of PZNA vs 1/K (k)T in a log-log scale for gates with dissipative (black dashed curves) and hard control (blue solid curves),
which highlight that PN o 1/k,T for dissipative gates while PN oc 1/(KT)* for Kerr gates with hard control. (a) Z rotation. (b) ZZ rotation.

(c) CX gate.
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TABLE III. The numerically fitted k; dependence of the minimal
Z error probability P;" of CX gates with different control schemes.

Control scheme  Dissipative Hard Gaussian DBC
P (K’(‘;z) 4 p=049 p=068 p=081 p=0.84

where p = CX pCX is the image of p by an ideal CX gate and
P, (n =0, 1, 2, 3) denotes the Pauli operators. The parameters
used for the presented numeric result are k;/K =5 x 1073
and KT = 1. The dominant errors are Z-type errors Zc, Z;,
and Z.Z,, while all non-Z-type errors are much smaller. We
define the total Z error probability pif™ as the sum of diagonal
coefficients of x®" corresponding to Z., Z;, and Z.Z;, whereas
we define the total X error probability p™® as the sum of
the rest of the diagonal error coefficients. We compare py™°
(pP™°) with the total error probability pz (px) extracted by
calculating the target state infidelity with initial states | + +)
(100)): pi™ = 0.0008, pz = 0.0008; pio™ = 1.71 x 1075,
px = 1.41 x 1073, So the gate errors extracted using the cho-
sen initial states well capture the error channel of the CX gate,
and the numerical results presented in this paper are well
justified.

APPENDIX F: DETAILS OF THE CONCATENATED QEC

In this Appendix we provide the details of the concatenated
QEC considered in this paper, including the detailed error
model and how we obtain the logical Z error rate and the final
optimal logical gate error rate.

Using our model defined in Table I, the logical Z error
probability PZ of the logical CX gate will in general be a func-
tion of the photon loss rate i, the repetition-code distance
d, and the physical cX gate time T¢x. In the following we
will show how we estimate PL in the low-loss regime while
avoiding large Monte Carlo (MC) simulations.

107!
_*____—'F“‘F—_‘F 'i,’
o F AT
_ At gt it
10 2 AL. _‘+—_‘_+____+ +/_+/ j’"::""
- +- BTk
a'1073y AT +++ T+ 4=
T d=5
10-41" ’ + d=7
+ d=9
+ d=11
107>
10~4 1073
Ki/K3

FIG. 11. Logical Z error probability of the logical CX gate en-
coded in a repetition cat using dissipative CX gates. The pluses are
the MC simulation results, while the dashed lines are the fitting
results PZL = A[B%]%. For this plot, nr is set to 1, and the fitted
coefficients are A = 0.16, B = 352.1.

We define a dimensionless parameter 1 = % as the ratio
between the chosen physical CX gate time Tx and the gate
time 7* that maximizes the physical CX gate fidelity.

b

Using the dissipative CX gate, T* = o [18] and both
the nonadiabatic error probability PZNA and the characteristic
Z error probability pg in Table III will be proportional to \/g

for a given 7. Therefore we expect an empirical scaling of P%:

d+1
P

PL(ky., . d) =A(n)[B(n)Z—j (F1)

This is numerically verified using the MC simulation, and
the coefficients A(n) and B(n) are fitted. As an example, the
numerically obtained and fitted P for n =1 is shown in
Fig. 11. The fitted coefficients A(n) and B(n) are shown in
Figs. 12(a) and 12(b). By interpolating A(n) and B(n) using
the numerically fitted data in Figs. 12(a) and 12(b) we can

(@) Ide  IZe  Xde Y Xe o Yl YYe XZe ZY, (b) I 1Ze X YXe Yo YYe XZe ZcY:

Icle Il [ | 10°
Zl Zly

1Z¢ 1Z¢

ZZ; ZZ: .. 1072
Xcly Xclt

XX XcXc

YX¢ YX¢ 1074
IeXe Xl

Yl Yelt

ZX¢ ZX¢ t10-6
YV YVt

YcZ¢ YZy

X Z¢ XcZ¢ t10-8
XcYe XcYe

ZYe ZcYt

IcYe AN L L19-10

FIG. 10. Numerically extracted error channel of the CX gate. The real part |Re(x®")| (a) and the imaginary part [Im(x*")| (b) of the error

process matrix are plotted separately.
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FIG. 12. (a) and (b) The fitted coefficients A and B in Eq. (F1) as
functions of 7. (c) and (d) The fitted coefficients A and B in Eq. (F2)
as functions of 7.

then use Eq. (F1) to estimate the logical Z error probability PZ
when choosing different dissipative CX gate times.
Using the physical cX gate on the Kerr cat with hard

control, T* = (W)l/ 3 and both the nonadiabatic error
probability PN* and the characteristic Z error probability po

in Table III will be proportional to (’%)% for a given 7. So,
similarly, we can fit the logical Z error probability as

d+1
3

Pk, n.d) =A(n)[B(n)%] . (F2)

The fitted coefficients A(n) and B(n) are shown in Figs. 12(c)
and 12(d).

When using the physical CX gate on the Kerr cat with
Gaussian or DBC control, we notice that for the range of gate
times of interest, the nonadiabatic Z error probability PZNA is
negligible compared with the characteristic Z error probability
po- So PL is only a function of py and the code distance d,
which can be numerically fitted as

PZL(KI, Tex, d) = PZL(po(IQ, T..), d) ~ 0.086 (454p0)"—§‘7
(F3)

where py = k102 Tey.

In the end, we can obtain the minimal total logical error
probability of the logical cX gate for given «; by optimizing
over d and T«:

P (r) = min PGy, Tex, )
= min PL(ky, Tex, d) + PR(k1, Tex, d),  (F4)

where PZL(Kl, Tex, d) is calculated using Eqgs. (F1)—(F3).
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