
ARTICLE OPEN

Universal interference-based construction of Gaussian
operations in hybrid quantum systems
Mengzhen Zhang 1,2✉, Shoumik Chowdhury 2,3 and Liang Jiang 1✉

Beam-splitter operations are an indispensable resource for processing quantum information encoded in bosonic modes. In hybrid
quantum systems, however, it can be challenging to implement reliable beam-splitters between two distinct modes due to various
experimental imperfections. Without beam-splitters, realizing arbitrary Gaussian operations between bosonic modes can become
highly non-trivial or even infeasible. In this work, we develop interference-based protocols for engineering Gaussian operations in
multi-mode hybrid bosonic systems without requiring beam-splitters. Specifically, for a given generic multi-mode Gaussian unitary
coupler, we demonstrate a universal scheme for constructing Gaussian operations on a desired subset of the modes, requiring only
multiple uses of the given coupler interleaved with single-mode Gaussian unitaries. Our results provide efficient construction of
operations crucial to quantum information science, and are derived from fundamental physical properties of bosonic systems. The
proposed scheme is thus widely applicable to existing platforms and couplers, with the exception of certain edge cases. We
introduce a systematic approach to identify and treat these edge cases by utilizing an intrinsically invariant structure associated
with our interference-based construction.
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INTRODUCTION
Hybrid quantum systems can exploit the complementary advan-
tages of different physical platforms to accomplish various tasks
relevant to quantum information science1,2. The major challenge is
to develop a coherent quantum interface across the different
platforms. Most prior investigations have focused on quantum
state transfer (i.e. SWAP operations) between different hardware
platforms, while information processing tasks are still separated
within the individual sub-systems3–12. To develop a more powerful
and hardware-efficient quantum interface for hybrid systems, it is
thus desirable to have the capability of processing quantum
information directly over multiple physical platforms.
As an essential building block for various information proces-

sing tasks, we focus here on the general construction of multi-
mode Gaussian operations over the relevant modes of a hybrid
quantum system. Existing protocols and theorems for the
construction13,14 and decomposition14,15 of Gaussian operations
crucially require access to exact and reliable beam-splitter
operations — a demanding facility usually only afforded by
pure-bred optical systems (with no frequency mismatches) in
experimental settings16. By contrast, however, hybrid bosonic
systems lack on-demand beam-splitter operations, and thus the
existing protocols are often inapplicable. Indeed, bosonic modes
hosted on disparate physical platforms (e.g., microwave-optical or
microwave-mechanical) have vastly different resonant frequen-
cies, and so cannot easily be coupled without the use of nonlinear
mixing processes. This in turn inevitably leads to the system
modes coupling to unwanted auxiliary modes — for instance, to
stray sidebands caused by the linearization of the intrinsically
nonlinear optomechanical or electro-optical interactions7,8,17,18 —
and thus prohibits us from cleanly realizing beam-splitter
interactions and more general Gaussian operations.

Therefore, in order to construct arbitrary Gaussian operations in
hybrid systems, we would ideally like to have an efficient
hardware-aware protocol that functions without needing exact
on-demand beam-splitter operations between selected modes. To
this end, we consider a theoretical setting in which we instead
have access to only one given multi-mode Gaussian Unitary
Coupler (GUC) involving all participating modes (i.e. system and
auxiliary modes alike), as well as free access to single-mode
Gaussian unitary operations. The multi-mode GUC is an irreducible
resource for making disparate modes interact, and we allow it to
be replicated (i.e. used multiple times). It is, however, immutable
due to the difficulty of changing the intrinsic underlying
experimental parameters. Meanwhile, the single-mode Gaussian
unitaries can be implemented using only phase-shifting and
single-mode squeezing19; this requirement is justified thanks to
inspiring recent development of squeezing techniques in hybrid
bosonic systems16,20–30. We emphasize that our setup here
forgoes the need for infinite squeezing and/or perfect homodyne
detection as is required by certain existing hybrid bosonic control
schemes31.
A similar setup to the one described above was studied in

ref. 32, where the authors introduce the notion of using
interference for hybrid bosonic mode control. They demonstrate
how a sequence of multiple identical copies of a two-mode
Gaussian unitary coupler, interspersed with single-mode opera-
tions, can completely swap quantum information between the
two involved bosonic modes without any additional pre- or post-
processing. However, although this result is powerful, it focuses
only on quantum transduction (i.e. SWAP gates) rather than on
more general Gaussian operations. More importantly, the methods
presented in ref. 32 are specific to two-mode systems and cannot
be directly generalized. This hinders the applicability of the

1Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. 2Department of Physics and Yale Quantum Institute, Yale University, New Haven, CT
06520, USA. 3Present address: Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ✉email: mengzhen@uchicago.edu;
liangjiang@uchicago.edu

www.nature.com/npjqi

Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00581-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00581-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00581-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00581-9&domain=pdf
http://orcid.org/0000-0002-4343-3784
http://orcid.org/0000-0002-4343-3784
http://orcid.org/0000-0002-4343-3784
http://orcid.org/0000-0002-4343-3784
http://orcid.org/0000-0002-4343-3784
http://orcid.org/0000-0002-7703-5856
http://orcid.org/0000-0002-7703-5856
http://orcid.org/0000-0002-7703-5856
http://orcid.org/0000-0002-7703-5856
http://orcid.org/0000-0002-7703-5856
http://orcid.org/0000-0002-0000-9342
http://orcid.org/0000-0002-0000-9342
http://orcid.org/0000-0002-0000-9342
http://orcid.org/0000-0002-0000-9342
http://orcid.org/0000-0002-0000-9342
https://doi.org/10.1038/s41534-022-00581-9
mailto:mengzhen@uchicago.edu
mailto:liangjiang@uchicago.edu
www.nature.com/npjqi


protocol since, in practice, hybrid devices typically involve many
interacting modes.
In this paper, we resolve the aforementioned challenges by

developing an interference-based framework for realizing general
multi-mode Gaussian operations in hybrid quantum systems. We
consider the theoretical setting described above in which we have
free access to single-mode Gaussian control operations, but only
one immutable multi-mode GUC that can be replicated (i.e.,
applied repeatedly). Within this setting, we demonstrate how
interference may be used to construct arbitrary multi-mode
Gaussian operations between a selected subset of the system
modes, while simultaneously isolating this interaction from any
unwanted auxiliary modes. The basis for our results is an
observation that the coupling between a pair of quadratures
can be removed via interference — i.e., implementing the given
GUC twice, interspersed with single-mode operations. By con-
structing an inductive multi-pass sequence of this form, we can
then successively remove all unwanted coupling terms
quadrature-by-quadrature. With slight modification, this ‘mode-
decoupling’ scheme can then be applied recursively with finitely-
many identical copies of the GUC in order to realize our central
goal — a universal framework for constructing arbitrary Gaussian
operations in hybrid systems.
The results presented here are a direct consequence of the

fundamental commutation relations for bosonic systems, and thus
our work is generically applicable to most current hybrid bosonic
quantum information platforms. There are, however, certain types
of edge cases: i.e. certain initial types of GUC for which additional
processing is required to apply our protocol. It turns out that the
investigation of these edge cases not only leads to a compre-
hensive understanding of the power and limitations of
interference-based protocols, but also reveals an obscure invariant
structure that is intrinsic to Gaussian unitary operations, and that
can be identified using an efficient graph algorithm.

RESULTS
Overview of general scheme
Gaussian unitary operations involving linearly-coupled bosonic
modes are completely determined by their action on the
expectation values of the quadrature operators fq̂k ; p̂kg. Consider
an N-mode system described by a vector of quadrature operators
x̂ :¼ ðq̂1; p̂1; ¼ ; q̂N; p̂NÞT . In the Heisenberg picture, any Gaussian

unitary transformation ÛS mapping x̂k ! ÛSx̂kÛ
y
S can be equiva-

lently characterized by a 2N × 2N real symplectic matrix Smapping
x̂ ! Sx̂19 (see Methods for details). Without loss of generality, we
can work entirely in terms of these symplectic scattering matrices:
given two Gaussian unitaries ÛR and ÛS , we have ÛRS ¼ ÛRÛS.
Therefore, instead of using infinite-dimensional unitary operators,
it suffices to track the matrix product of the (2N × 2N)-dimensional
symplectic matrices to capture the effects of the entire process.
In this work, we will consider Gaussian interactions between the

modes of a hybrid quantum system. As stated in the Introduction,
our starting assumption is that we have access to only one given
multi-mode Gaussian unitary operation, characterized by its
scattering matrix S. We refer to this as a Gaussian Unitary Coupler
(GUC), as it couples all modes of the system. In our setting, the
GUC is fixed by the system parameters and is thus immutable. For
instance, we could consider the GUC to be the ‘bare’ unitary
process induced by the multi-mode system Hamiltonian33. Now,
for GUCs typically available in hybrid systems, the associated
symplectic matrices usually lack clear structure, and cannot be
utilized to implement useful Gaussian controls. For example, in a
hybrid system consisting of mutually interacting optical, mechan-
ical, and microwave modes, we cannot obtain a simple beam-
splitting operation between any two of the modes due to stray
coupling to sidebands and other auxiliary modes7,8,17,18. However,

as noted above, clean and on-demand Gaussian controls are
useful technological tools for many quantum information
applications. It is therefore an intriguing question as to whether
we can convert a complicated Gaussian unitary process (i.e.
available GUC) into some desired Gaussian operation, by making
use of only the mathematical properties of symplectic matrices.
In pursuit of an answer to this question, we discover the

following solution which is also the main message of this work.
Suppose we can repeatedly apply the same GUC, and have access
to arbitrary single-mode Gaussian unitary controls on every
bosonic mode involved in the process; then, a sequential
combination of these two types of Gaussian operations can be
constructed to produce any other desired Gaussian operation on
any subset of the involved modes, using a finite number of steps.
For example, with identical copies of a generic GUC as elementary
operations, our scheme could be used to generate a beam-splitter
or a SWAP operation on any two of the involved modes. This result
is most succinctly described using the mathematical language of
symplectic matrices. Let S represent the symplectic matrix
associated with a given generic GUC, and let L(i) [1 ≤ i ≤ 4ℓ] be
the symplectic matrices associated with 4ℓ local Gaussian
operations (here “local” means each of the L(i) consists of
individual single-mode operations). If we carefully engineer the
L(i) according to our knowledge of the matrix S, then we claim that
any ℓ-mode Gaussian operation on ℓ of the involved bosonic
modes can be obtained generically as the symplectic matrix Seff of
the following interference-based sequence:

Seff ¼ Lð4
ℓÞSLð4

ℓ�1ÞS � � � SLð1ÞS: (1)

The specific choice of local operations L(i) needed to realize this
result is discussed in the Methods section.

Mode-decoupling protocol
The general-purpose protocol shown in Eq. (1) for constructing
Gaussian operations is itself the logical derivative of another
intermediate universal protocol. Given four arbitrary but generic
symplectic matrices S(1), S(2), S(3), and S(4), we can construct an
interference-based sequence by interspersing these matrices with
carefully chosen local Gaussian operations L(1), L(2), and L(3) such
that the resulting Gaussian operation S(4)L(3)S3L(2)S(2)L(1)S(1) oper-
ates separately on a selected mode and the rest of the system. We
refer to this as ‘mode-decoupling’ since the resulting operation
induces no coupling between the selected mode and remaining
modes. As shown in Fig. 1, the protocol takes two recursive steps:
(i) The construction of sub-sequences T(1)= S(2)L(1)S(1) and T(2)=
S(4)L(3)S(3) formed by ‘sandwiching’ local operations in between
the multi-mode S(j) matrices. These are chosen to decouple a
quadrature of the selected from the system; (ii) The concatenation
of the sub-sequences to form another ‘sandwich’ R= T(2)L(2)T(1).
This step decouples the conjugate quadrature to the selected
mode, thus isolating the entire selected mode from the remaining
system. During this process, we utilize the defining mathematical
properties of symplectic matrices (i.e. the canonical commutation
relations) in order to construct the local control operations L(i). This
is discussed in detail in the Methods section. As an aside, we
highlight here that this universal mode-decoupling protocol does
not require the matrices S(j) to be identical. Consequently, our
main result in Eq. (1) could also be realized mathematically using
4ℓ distinct GUC’s. However, in keeping with constraints discussed
in the Introduction for hybrid systems, we limit ourselves to only
one available GUC S in our main result.
The mode-decoupling process takes 4 symplectic matrices S(j) to

decouple a single mode from the system. This can be
straightforwardly generalized: given 4ℓ arbitrary symplectic
matrices and 4ℓ− 1 local Gaussian unitaries, we can isolate ℓ
modes from the N mode system. This is done by repeating the
single mode-decoupling sequence recursively to 4ℓ−1 groups of
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four S(j) matrices. This inductive approach is feasible as the above
result is independent of N. Finally, as an important clarification, we
stress here that mode-decoupling should not be taken to mean
directly removing certain entanglement in a quantum state.
Instead, in this work, we are focused on operations rather than the
quantum states, and we suggest the readers to stick to the
Heisenberg picture throughout the text.

On-demand construction of Gaussian operations
We now discuss our central protocol and main results. For
simplicity, however, we will only demonstrate the construction of
2-mode Gaussian operations here, and save the construction of
more general ℓ-mode Gaussian operations for the Methods section.
Suppose that we wish to generate a desired target operation S⊙ on
the first two modes of the N-mode system. We can do so using 16
copies of the generic N-mode GUC S arranged in an interference-
based sequence. Our strategy requires a fictitious decomposition of
one of the copies of S into S ¼ S0 S� � IN�2ð Þ, where IN−2 is the
(N− 2)-mode identity matrix and S0 is another N-mode operation.
This decomposition is purely mathematical. As shown in Fig. 2b, we
then apply the mode-decoupling protocol to the interference-type
sequence of 15 copies of S and one copy of S0 (interspersed with 15
local operations L(i)) in order to yield a two-mode decoupled
intermediate operation as shown in Fig. 2c. After that, one
additional set of local Gaussian “recovery” operations LðrÞk is applied

in order to cancel the resulting single-mode operations L1 and L2
from the mode-decoupling. This is done by choosing LðrÞ1 ¼ ðL1Þ�1

and LðrÞ2 ¼ ðL2Þ�1. The resulting sequence in Fig. 2d is then left only
with the desired target operation S⊙ acting on the first two modes.
This operation is isolated from the remaining N− 2 modes, which
evolve separately according to some arbitrary S*. Since no specific
constraint was imposed on the initial choice of S⊙, we can thus
realize any arbitrary target Gaussian operation on the first 2 modes.
Using 4ℓ copies of S and a multi-mode-decoupling sequence, we
can also generalize this to realize arbitrary ℓ-mode Gaussian
unitaries. As with the mode-decoupling protocol, our result here
works for arbitrary initial choice of GUC S, provided that S is generic
— terminology that will be made precise shortly. For such S, both
decoupling and the above fictitious decomposition can be carried
out as guaranteed by the properties of symplectic matrices.

Dealing with the edge cases
As we discuss in more detail later, Eqs. (14)–(17) provide an explicit
construction of the local Gaussian operations for the mode-
decoupling protocol. However, given a GUC S and a certain mode
m, these equations may become undefined (i.e. not applicable) if
both Sk,2m−1 and Sk,2m (or both S2m−1,k and S2m,k) are zero for any
quadrature k that we hope to engineer. Although this is a rare
situation in practical settings, it calls for a more careful look into
the applicability of the general scheme. First of all, given the

Fig. 1 Universal interference-based mode-decoupling protocol. a We consider a sequence of 4 multi-mode symplectic matrices S (j) (blue)
interspersed with local operations LðiÞ ¼ diagðLðiÞ1 ; ¼ ; LðiÞN Þ, where the LðiÞk (yellow) are single-mode Gaussian unitaries calculated based on the
S (j) matrices. Each solid black arrow, from right to left, represents the evolution of a bosonic mode under the whole sequence of Gaussian
operations, where we use âink and âoutk to denote the input and output mode operators in the Heisenberg picture. The full sequence has a
double-layer structure, containing two sub-sequences T (1) and T (2). b As an example, we demonstrate the decoupling of mode 1. In the first
layer, T (1) is constructed using carefully chosen local Gaussian operations in order to remove all coupling terms between one quadrature of
mode 1 and the remaining modes k ≠ 1. This results in a matrix T (1) of the specified form, where * denotes an arbitrary matrix element or sub-
block. Note T (2) has the same structure. c The second recursive layer of the sequence involves sandwiching another set of local operations
between T (1) and T (2) (purple) in order to further remove the remaining correlations between the selected mode (1) and the rest of the system.
The resulting Gaussian operation R has the first mode decoupled (i.e. isolated from the remaining N− 1 modes), and is depicted as two
disjoint blocks.
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constraints are imposed by the several formulae for calculating
the local Gaussian operations, any randomly sampled multi-mode
symplectic matrix, which almost always contains no vanishing
elements, should be a valid input. If not, this issue may be resolved
via randomization and saturation, i.e., simply replacing the given

GUC S with eLð2ÞSeLð1Þ where eLð1Þ and eLð2Þ are randomly sampled
local Gaussian operations, such that the vanishing elements
disappear.
However, there do exist certain exceptional situations, which we

refer to as the edge cases, where the vanishing elements
cannot be removed in a similar manner as above using randomized

interference-based sequences of the form eLðkÞSeLðk�1Þ
S � � � SeLð2ÞSeLð1Þ

— that is, using multiple copies of S interspersed with randomly-

sampled local Gaussian operations eLðiÞ . The simplest example of

such an edge case is the permutation of modes up to additional
single-mode Gaussian operations, which can be realized physically
using circulators. Clearly no Gaussian operation besides a permuta-
tion can be obtained via any interference-based sequences
generated from such an edge case; this is because the local
Gaussian operations, which themselves may be interpreted as trivial
permutations here, cannot introduce more complicated couplings
between modes. Therefore, general-purpose Gaussian operations
involving more than one mode are not obtainable if the given GUC
is a permutation.
It turns out that the permutation structure of a symplectic

matrix S plays a crucial role even when S is not just a simple
permutation of individual modes. As we will show later, symplectic
matrices can always be thought of as permutations acting on
groups of modes. In order to formalize this idea, and demonstrate
such a grouping in an unambiguous manner, it will prove useful to

Fig. 2 Universal construction of a general two-mode Gaussian operation. a The generic interference-based sequence for constructing an
ℓ-mode target Gaussian operation S⊙ (green), shown for ℓ= 2. This consists of 4ℓ= 16 copies of the given GUC S (blue) interspersed with local
operations LðjÞk and LðrÞk (yellow). The first copy of S (i.e. on the input side) in the sequence is fictitiously decomposed into a product of two
consecutive symplectic matrices S ¼ S0 S� � IN�ℓð Þ, where IN−ℓ is the (N− ℓ)-mode identity matrix and S0 (red) is another N-mode operation.
b Recursive layers of the universal sequence. We organize the 16 multi-mode operations (either S0 or S) into groups of four, and apply the
decoupling protocol to each group to yield four matrices R(i) with the first mode decoupled. We then apply the decoupling protocol again
using R(i) in order to additionally decouple the second mode. c The recursive step results in a matrix of the form L1⊕ L2⊕ S*, where L1, L2
(brown) are single-mode operations, and S* (gray) is an arbitrary (N− ℓ)-mode operation on the remaining modes. Finally, we apply local
“recovery” operations LðrÞ1 ¼ ðL1Þ�1 and LðrÞ2 ¼ ðL2Þ�1 in order to cancel out the Lk matrices. d We are then left with the desired effective
operation of the form S⊙⊕ S*.
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introduce the notion of a graph representation of a symplectic
matrix. Specifically, we define the graph GS associated with the
symplectic matrix S via the following construction: (1) for each
bosonic mode âi in the system, we assign to it a vertex i in the
graph; (2) any pair of vertices i, j are linked by an arrow i→ j if and
only if the sub-block

S2j�1;2i�1 S2j�1;2i

S2j;2i�1 S2j;2i

� �
≠ 02 ´ 2;

i.e., it is not equal to the 2 × 2 zero matrix. Clearly, a (2N × 2N)
symplectic matrix will result in a graph GS that contains N vertices.
Furthermore, we note that such graphs are directional, meaning
the presence of an arrow i→ j does not imply j→ i. We present an
example of this graph construction process in Fig. 3, where the
symplectic matrix of the form shown in Fig. 3a yields a two-vertex
and two-arrow graph as shown in the left panel of Fig. 3c.
Once the graph has been set up for a given input S, we can

infer the permutation structure by further grouping the vertices
together via a set of graph contraction rules listed in the
Methods. We refer to this vertex contraction process as
“coloring,” and to the resulting groups as color sets. Following
this procedure, we find that each color set is uniquely identified
by a vertex in the contracted graph; moreover, the arrows
connecting these vertices precisely reflect the permutation
structure associated with S. As an example, in Fig. 3c, each of the

two colored vertices in the contracted graph is a color set
containing two bosonic modes (1, 4 and 2, 3 respectively), with
the arrows connecting them indicating how they are permuted
by the given S.
With the graph-theoretic formulation in hand, we now turn to

the main result of this section. Given that a symplectic matrix S
induces a permutation on the collection of color sets, any
interference-based sequence generated from S will remain a
permutation. This implies that interference-based sequences of
different lengths form a cyclic group with the generating
element being the permutation induced by a single copy of S.
As a result, with a sufficiently long randomized interference-
based sequence, we can always generate the identity element of
this group acting trivially on the color sets. This corresponds to a
new symplectic matrix

S0 ¼
Mγ GSð Þ�1

c¼0

S0c: (2)

Here, the color sets are indexed by a set of colors c ∈ {0, 1,…, γ
(GS)− 1}, where γ(GS) is the total number of colors associated
with the graph GS (see Supplementary Methods); each S0c
represents a fully-randomized symplectic matrix with no vanish-
ing elements. As an example of the idea above, in Fig. 3d, the
permutation (denoted as σ) induced by S generates a group {e, σ}
with e being the identity element; moreover, e is generated by

Fig. 3 Example edge case and resulting graph contraction algorithm to identify color sets. a A 16 × 16 edge case symplectic matrix S
acting on four modes. The white 2 × 2 sub-blocks are zero rank, while the gray sub-blocks have non-zero rank. The zero blocks prevent the
straightforward application of our interference protocols. b Schematic of a possible physical device realizing the matrix S. The four input
modes âink (blue arrows) are first injected into a four-port circulator. Then from the outputs âoutk (red arrows), those of mode 2 and 3 are routed
into a 50:50 beam-splitter. The resulting outputs, labeled âout2 and âout3 , are the final outputs of the whole scattering process for mode 2 and 3.
c Identifying color sets through vertex contraction. We can easily construct the graph GS corresponding to S. To perform contraction, we
choose a vertex ν (e.g., vertex 1 in the left panel) and merge all of its immediately successors {μi} (highlighted vertices 2 and 3 on the left),
while removing any redundant edges. Successors are vertices directly connected to ν (via edges ν→ μi highlighted in black). We repeat until all
possible contractions are exhausted, resulting in a final graph where each vertex represents a unique color set (e.g., yellow or green in the
right panel). d Interference-based sequences permute the color sets. It is easy to check that each panel will yield the same color sets through
the vertex contraction process in c. Since a single use of S simply swaps the two color sets (left panel), a double use of S will lead to a trivial
permutation removing any interference across the two color sets (middle panel). Then, a triple use of S should once again swap the two color

sets (right panel). This demonstrates the invariant grouping behavior of the modes of same colors. Here, the eLðiÞ matrices are randomly-
sampled local Gaussian operations.
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the sequence SeLð1ÞS which has the form of S0 above (i.e., acting
separately on the two color sets).
In light of the mathematical structure above, we can construct

any arbitrary Gaussian operation acting on bosonic modes inside a
same color set by applying our general scheme to the correspond-
ing component of S0; however, universal Gaussian operations cannot
be constructed for modes belonging to different color sets, since
this is incompatible with the permutation structure.
As a final remark, we note that the graph contraction procedure

introduced above for identifying the color sets can be efficiently
executed on a classical computer. The overall time complexity of
this algorithm depends polynomially on the number of modes
involved. More notably, the physical overhead required to
randomize and saturate a given Gaussian interaction S in order
to make it suitable for the general scheme will not exceed 2N2,
with N being the total number of involved bosonic modes. For
more details on these procedures and on the categorization of
edge cases, we refer the reader to the Supplementary Methods.

DISCUSSION
Due to the recursive structure of our scheme, it is difficult to
analyze the impact that noise and other experimental imperfec-
tions may have in practical implementations of this work. Indeed,
the complicated dependence of the form of the local operations
on that of the given GUC makes it challenging to track the
propagation of physical errors through the nested sequence of
operations. While a comprehensive theoretical framework is still
elusive, we expect that the impact of simple noise mechanisms
(e.g., Gaussian error channels) will be independent of the total
number of modes, given the constant overhead of our scheme for
a generic GUC. That is, if we focus on constructing two-mode
Gaussian operations, the length of the sequence needed to
generate any target unitary S⊙ will be fixed (cf. Fig. 2), requiring at
most sixteen copies of S. We also remark that the closer a GUC is
to an edge case, the larger the amount of squeezing will be
required the construct the local operations, and thus the more
errors will be amplified during the whole process; an example of
this can be found in the Supplementary Discussion.
Beyond noise considerations, we note that the precision of the

GUC may also be an important factor in the practical deployment of
our scheme. Specifically, if the elements of the scattering matrix can
only be measured to finite precision in an experiment, the resulting
imprecise mathematical description of the GUC may cause
deviations in our calculation of the local Gaussian operations. Here,
however, the recursive pattern of our scheme may help mitigate
the issue. The sequence can be decomposed into smaller mode-
decoupling sequences consisting of a few local operations, and we
can take advantage of the predictable form of these smaller
sequences to calibrate and/or optimize the local operations. In
doing so, it may be possible to mitigate the effects of an imprecise
GUC specification, and achieve the desired target operation.
In comparison to other existing ideas for Gaussian control in

hybrid bosonic systems, our current results present several manifest
upsides. Unlike ref. 32, we are able to synthesize general multi-mode
Gaussian unitaries, rather than being limited to the two-mode
situation. Furthermore, our investigation of the edge cases provides
a more systematic categorization of symplectic matrices. Besides
ref. 32, another relevant result is that presented in ref. 31. This
scheme is compatible with multi-mode couplers, and can yield a
variety of Gaussian operations by tuning only locally accessible
parameters. However, it requires overly demanding resources such
as infinite squeezing and perfect homodyne measurement;
additionally, it is not as yet known whether the protocol in ref. 31

can be used to construct any arbitrary Gaussian operation. Such
concerns are overcome by our current scheme, which requires only
finite squeezing and no homodyne measurements.

Beyond Gaussian operations, our scheme bears similarity to the
quantum approximate optimization algorithm (QAOA)34 — in
particular, the use of single-mode unitaries modifying a given
quantum interaction in order to yield on-demand quantum opera-
tions. Due to the correspondence between Gaussian operations and
Clifford gates19,33, our scheme can also be extended to (discrete)
qubit-based systems in order to provide a universal method to
generate Clifford gates. While QAOA has the advantage of utilizing
and generating non-Clifford operations, our scheme offers the benefit
of providing deterministic solutions for the local operations in the
Clifford case (which would only be approximate with QAOA).
In summary, in this work we demonstrate interference-based

protocols for the universal construction of Gaussian operations in
a multi-mode hybrid bosonic system. Our results are hardware-
aware and highly compatible with a variety of hybrid platforms
with complicated interactions between the constituent bosonic
modes. We also discovered an invariant structure intrinsic to
Gaussian operations which can be useful for characterization and
classification of the Gaussian operations. This characteristic
structure is discussed in the Supplementary Methods.

METHODS
In this section, we present mathematical details of the key steps of our
general protocols for isolating bosonic modes and constructing universal
Gaussian operations.

Conventions
The conventions and notation used in this work closely follow the standard
definitions for continuous-variable quantum information19. Nevertheless,
for the sake of completeness, we review the salient details below.
We consider multi-mode systems comprised of N coupled bosonic

modes, which correspond to N pairs of bosonic field operators

ðâ1; ây1; ¼ ; âN; â
y
NÞ

T � â. Here, ½âj ; âyk � ¼ δjk . We can equivalently describe

the system using quadrature operators q̂k � ðâk þ âykÞ=
ffiffiffi
2

p
and

p̂k � iðâyk � âkÞ=
ffiffiffi
2

p
, which satisfy the canonical commutation relations.

We also define the quadrature vector x̂ � ðq̂1; p̂1; ¼ ; q̂N; p̂NÞT .
In this work, we study Gaussian unitary operations of the

form Û ¼ expð�iĤtÞ where Ĥ is bilinear in the field operators. In the
Heisenberg picture, such operations will realize the transformation

â ! Û
y
âÛ. This is equivalently characterized by the scattering matrix

transforming the quadrature operators x̂ ! Sx̂. In order to respect the
canonical commutation relations, this real 2N × 2N matrix S must be
symplectic: SΩST=Ω, where the symplectic form Ω is block diagonal:

Ω¼
MN

i¼1
ω ¼ diagðω; ¼ ;ωÞ; with ω ¼ 0 1

�1 0

� �
: (3)

We refer to single-mode transformations as “local” since they do not
induce coupling between the modes; these operations are represented by
2 × 2 symplectic matrices. We also use the label “local” to denote the direct
sum of N single-mode operations, e.g., L= diag(L1,…, LN). Note: the matrix
Ω can be considered a local operation, as defined: it simply corresponds to
a π/2 phase shift (ω) on each mode.
We now demonstrate two examples of local symplectic matrices. First,

the transformation corresponding to phase-space rotation (i.e., phase
shifting) given by R̂ðθÞ ¼ exp½�iθâyâ� is represented in the quadrature
basis by the symplectic matrix

RðθÞ ¼ cos θ sin θ

� sin θ cos θ

� �
: (4)

For single-mode squeezing ẐðrÞ ¼ exp½rðâ2 � ây2Þ=2�, the associated
symplectic matrix representation is given in the quadrature basis by

ZðrÞ ¼ e�r 0

0 er

� �
: (5)

Any 2 × 2 (local) symplectic matrix can be decomposed into two phase
rotations and single-mode squeezing19. We will later exploit this fact in
order to demonstrate the existence of local operations needed for our
protocol.
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Decoupling a single bosonic mode
The sequence S(4)L(3)S(3)L(2)S(2)L(1)S(1) used for decoupling relies on several
properties that can be derived directly from the definition of symplectic
matrices. We start with four multi-mode symplectic matrices S(1), S(2), S(3),
and S(4) that are generic — i.e., as mentioned above in our discussion of
the edge cases, fulfilling the constraints on the feasible form of the given
symplectic matrices imposed by the ensuing discussion in this section. One
can assume randomly sampled symplectic matrices are generic, since the
probability of failure is statistically trivial.
Our claim is that carefully engineered local Gaussian operations L(1), L(2),

and L(3) can be used to construct the following symplectic matrices of the
form

TðkÞ ¼ Sð2kÞLð2k�1ÞSð2k�1Þ

¼

0 1 0 ¼ 0

�1 T ðkÞ22 T ðkÞ23 ¼ T ðkÞ2;2N

0 T ðkÞ32 T ðkÞ33 ¼ T ðkÞ3;2N

..

. ..
. ..

. . .
. ..

.

0 T ðkÞ2N;2 T ðkÞ2N;3 ¼ T ðkÞ2N;2N

0BBBBBBBB@

1CCCCCCCCA
;

(6)

with k∈ {1, 2}. The matrices T(k) correlate the output Q-quadrature of the
first mode to its input P-quadrature only. By constructing T(1) and T(2) via
the above “sandwiching” of GUCs and local operations, a resultant
symplectic matrix R can be obtained from the whole sequence

ð7Þ

which is also depicted graphically in Fig. 1. The resulting R consists of a
single-mode Gaussian operation on mode 1 (upper diagonal block), and a
multi-mode Gaussian operation on the remaining N− 1 modes (lower
diagonal block). Effectively, R decouples mode 1: i.e., it induces no
interactions between this mode and the rest of the system.
To demonstrate the mechanism behind Eqs. (6)–(7), we can introduce a

helpful geometric interpretation. The following simple fact reflects the
definition of symplectic matrices: the rows (or columns) of a symplectic
matrix form an orthonormal symplectic basis14. Specifically, for an arbitrary
2N × 2N symplectic matrix S, we can denote its rows by S ¼
ðu1; v1; ¼ ;uN; vNÞT and its columns by S= ( x1, y1,…, xN, yN), where uk,
vk, xk and yk are 2N-dimensional column vectors, with 1 ≤ k ≤ N. Since the
matrix S describes a physical unitary process that preserves the canonical
commutation relations, it must satisfy the matrix equation SΩST=Ω. This
results in an explicit set of orthogonality relations between the rows of S:
uT
i Ωuj ¼ vTi Ωvj ¼ 0 and uT

i Ωvj ¼ δij , where i, j∈ {1, 2,…, N}. Additionally,
the columns satisfy xTi Ω xj ¼ yTi Ωyj ¼ 0 and xTi Ωyj ¼ δij . Comparing these
two sets of relations to the similar properties of orthogonal matrices, one

can then think of symplectic matrices as geometric transformations on the
spaces spanned by the row (or column) vectors.
With this in mind, we can interpret the general idea of decoupling an

individual mode from the others as building up a certain destructive
interference between the quadratures (via the geometric orthogonality
relations above). The first step, where we construct T(1), is understood as
finding the suitable local operation L(1) such that

Tð1Þ ¼ Sð2ÞLð1ÞSð1Þ

¼

� uT
1 �

� vT1 �
..
. ..

. ..
.

� uT
N �

� vTN �

0BBBBBBB@

1CCCCCCCALð1Þ
j j � � � j j
x1 y1 � � � xN yN
j j � � � j j

0B@
1CA (8)

is of the form shown in Eq. (6). Note: we have expressed S(1)= ( x1, y1,…,
xN, yN) in terms of its column vectors, and Sð2Þ ¼ ðu1; v1; ¼ ;uN; vNÞT in
terms of its row vectors.
Now, suppose there exists an L(1) that transforms the first column of S(1)

such that L(1) x1=Ωu1. Then, we claim that Eq. (8) indeed takes the form of
Eq. (6) as desired (the existence of such an operation will be discussed
later). The reason for this claim is as follows: by the geometric properties
above, x1 is naturally orthogonal to each of the other columns except y1,
and thus L(1) x1 will be orthogonal to each of the modified columns except
for L(1)y1. Furthermore, since L(1) x1=Ωu1 by construction, it will also be
orthogonal to each of the rows of S(2) except for v1. Thus T(1)= S(2)L(1)S(1)

will be of the expected form. By an almost identical calculation, we can
show that a suitable choice of L(3) will result in T(2)= S(4)L(3)S(3) having the
desired form of Eq. (6); we simply use the row and column symplectic
bases of S(4) and S(3) respectively.
With the matrices T(1) and T(2) constructed, we now proceed to the

second step of our protocol to fully isolate the first mode from the others.
Simply speaking, we repeat the construction above, only replacing S(1)/(2)

with T(1)/(2) and slightly modifying the form of the local operation L(2). As
before, let us start by expressing Tð2Þ ¼ ðα1; β1; ¼ ;αN;βNÞT in terms of its
row vectors, and T(1)= (χ1, γ1,…, χN, γN) in terms of its column vectors.
We now construct a “sandwich” R= T(2)L(2)T(1) by choosing L(2) in such a way

that it transforms the first two columns χ1, γ1 of T(1) respectively to L(2)χ1=Ωα1
and Lð2Þγ1 ¼ α1 � β1 � γ1 � χ1ð ÞΩα1 � Ωβ1, which can be satisfied simulta-
neously simply by letting Lð2Þ1 be the symplectic form ω. Since L(2)χ1 and L(2)γ1
are linearly independent, the two-dimensional plane spanned by the pair of
vectors Ωα1, Ωβ1 is identical to that spanned by the vectors L(2)χ1, L(2)γ1.
Consequently, this plane is orthogonal to every other row vector Ωαj, Ωβj, and
column vector L(2)χj, L(2)γj for j≥ 2, as guaranteed by the geometrical
orthogonality relations. Putting these together, we find the resulting R indeed
takes the form shown in Eq. (7)– thus decoupling the first mode as desired.
It remains to be shown that the appropriate local operations L(1), L(2),

and L(3) can in fact be constructed. By definition, each of these operations
is the direct sum of N individual single-mode Gaussian operations: i.e.,
LðiÞ ¼ diagðLðiÞ1 ; ¼ ; LðiÞN Þ, where the LðiÞk are 2 × 2 symplectic matrices. Thus,
in order to transform one 2N-dimensional vector (e.g., x1) to another (e.g.,
Ωu1) using N single-mode operations (e.g., L(1)), it suffices to show that
we can transform any generic 2-dimensional vector to another using one
single-mode operation (e.g., Lð1Þ1 ). As demonstrated in Fig. 4, this can be
satisfied generically – that is, for any pair of vectors ðqi ; piÞ≠ð0; 0Þ. The

Fig. 4 Geometric argument for the existence of local operations. Given any non-zero single-mode quadrature vector (q1, p1), it is possible to
transform to another non-zero quadrature vector (q2, p2) using only phase-space rotations and finite squeezing. This local transformation is
constructed (in the Heisenberg picture) via Li= R(−θ)Z(r)R(φ) with θ, φ∈ [0, 2π) and r a non-negative real number.
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required single-mode operation is realized using a sequence of three
elementary operations: (i) rotation to the Q–axis, (ii) dilation, and (iii) rotation
to the final direction. In the language of quantum optics, rotation and dilation
correspond to phase-shifting and finite squeezing, respectively. Thus, the
existence of L(1), L(2), and L(3) is always guaranteed, unless for the initial
quadrature u and the final quadrature v, there exists a mode i such that
u22i�1 þ u22i
� �

v22i�1 þ v22i
� � ¼ 0 and u22i�1 þ u22i þ v22i�1 þ v22i ≠ 0.

The entire decoupling procedure above can be easily generalized. For
example, we could apply the same protocol to 16 randomly-sampled
symplectic matrices in order to isolate the first two modes from the rest of
the system. In particular, if we have four R-type matrices of the form given in
Eq. (7), we can apply the decoupling protocol on the (N− 1)-mode sub-
matrices, while leaving the first mode intact up to local operations. This will
result in a new symplectic matrix with the first and second modes decoupled.
Since each of the R-type matrices are themselves constructed using 4
randomly-sampled symplectic matrices, we are effectively performing a
sequence S(16)L(15)⋯ S(2)L(1)S(1) to isolate the 2 modes. At this point, we can

proceed inductively in order to sequentially decouple any ℓ modes from the
N-mode system. We do so by using 4ℓ multi-mode symplectic matrices
interspersed with 4ℓ− 1 carefully engineered local Gaussian operations.
Note: although we demonstrated here how to decouple the first mode,

this choice was for convenience only. Different sets of local operations will
allow us to decouple any mode from the system (by transforming the
appropriate column vectors into the appropriate row vectors); equivalently,
we are free to re-label the modes arbitrarily. Finally, we highlight this
decoupling scheme can be applied inductively because our results are
independent of the total number of modes N.

Structure of the general protocol
Let us now discuss how we arrive at our main result. Suppose we wish to
construct a specific ℓ-mode target Gaussian operation S⊙. Without loss of
generality, we may assume this acts on the first ℓ modes of the N mode
system, so that the desired Gaussian operation is of the block diagonal form
S⊙⊕ S*. Here S⊙ is the 2ℓ × 2ℓ target symplectic matrix, and S* is a 2(N
− ℓ) × 2(N− ℓ) symplectic matrix, representing some arbitrary operation on
the remaining N− ℓ modes (which we are not concerned with).
We can engineer this interaction using an interference-based sequence

consisting of 4ℓ copies of a given GUC S. We start by fictitiously decomposing
the first copy of S in the sequence into the product of two matrices:

S ¼ S0
S� 0

0 I2ðN�ℓÞ

 !
; (9)

where I2(N−ℓ) represents a 2(N− ℓ) × 2(N− ℓ) identity matrix. We then
apply our decoupling protocol on 4ℓ− 1 copies of S and one copy of S0 (as
before, interspersed with 4ℓ− 1 local operations Lð1Þ; Lð2Þ; ¼ ; Lð4

ℓ�1Þ). This
results in a Gaussian operation that isolates the first ℓ modes, i.e., a
symplectic matrix of the form

lllllL1 0 � � � 0 0

0 L2 0 � � � 0

..

.
0 . .

. . .
. ..

.

0 ..
. . .

.
Lℓ 0

0 0 � � � 0 S�

0BBBBBBB@

1CCCCCCCA
(10)

with Lk, for 1 ≤ k ≤ ℓ, the 2 × 2 symplectic matrices corresponding to the
ℓ single-mode local operations on the isolated ℓ bosonic modes. At last,
we just need to apply one final local Gaussian “recovery” operation L(r)

of the form

LðrÞ ¼

ðL1Þ�1 0 � � � 0 0

0 ðL2Þ�1 0 � � � 0

..

.
0 . .

. . .
. ..

.

0 ..
. . .

. ðLℓÞ�1 0

0 0 � � � 0 I2ðN�ℓÞ

0BBBBBBBB@

1CCCCCCCCA
(11)

to finish the construction of the whole sequence. Putting the above
steps all together, the process for constructing a desired ℓ-mode
Gaussian operation (isolated from the remaining N− ℓ modes of the N
mode system) can be summarized using the following equations:

Clearly any arbitrary Gaussian operation on the first ℓ modes can be
constructed, since there is no constraint on the form of the target
symplectic matrix S⊙ in the above calculation.

Explicit formulae for the local Gaussian operations
As we have seen, the local Gaussian operations L(k) for k ≥ 2 are
determined by the mode-decoupling protocol. It is notable that the
values of each element of these local symplectic matrices can be
calculated explicitly using the given multi-mode symplectic matrices
S(k). As a matter of fact, there exist closed-form expressions for the
single-mode-decoupling local operations, given four randomly-
sampled symplectic matrices. We provide an example of these
formulae below, but stress that this is not the unique solution.
Let SðkÞ ¼ SðkÞij

� �
for k ∈ {1, 2, 3, 4} be four 2N × 2N randomly-sampled

symplectic matrices. To isolate the first mode from the system, we need
to construct the sequence S(4)L(3)S(3)L(2)S(2)L(1)S(1) with L(k) the local
Gaussian operations. We first decompose each of the local operations
into N single-mode Gaussian operations matrices:

LðkÞ ¼

LðkÞ1 0 � � � 0

0 LðkÞ2
. .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 LðkÞN

0BBBBBB@

1CCCCCCA: (13)

where LðkÞm are 2 × 2 symplectic matrices. Then according to the
aforementioned geometric interpretation, to transform an arbitrary
random vector u to Ωv with v another arbitrary random vector, we can
simply let

LðkÞm

� �
ij
¼

ð�1Þjþ1viuj

ðv2mÞ2 þ ðv2m�1Þ2
þ ð�1Þiviuj
ðu2mÞ2 þ ðu2m�1Þ2

; (14)

with 1 ≤m ≤ N and i, j ∈ {1, 2}. Here, if i= 1, then i ¼ 2m� 1, i ¼ 2m.
Meanwhile if i= 2, then i ¼ 2m, i ¼ 2m� 1. Note that when both
denominators are zero (and thus both numerators also zero), the formula
above should be calculated by taking the limit. Since L(1) is meant to
transform the first column of S(1) into the first row of S(2) multiplied by

Seff ¼ LðrÞSLð4
ℓ�1ÞS � � � SLð1ÞS

¼ LðrÞ SLð4
ℓ�1ÞS � � � SLð1ÞS0

h i S� 0

0 I2ðN�ℓÞ

 !

¼

ðL1Þ�1 0 � � � 0 0

0 ðL2Þ�1 0 � � � 0

..

.
0 . .

. . .
. ..

.

0 ..
. . .

. ðLℓÞ�1 0

0 0 � � � 0 I2ðN�ℓÞ

0BBBBBBBB@

1CCCCCCCCA

L1 0 � � � 0 0

0 L2 0 � � � 0

..

.
0 . .

. . .
. ..

.

0 ..
. . .

.
Lℓ 0

0 0 � � � 0 S�

266666664

377777775
S� 0

0 I2ðN�ℓÞ

 !
¼ S� 0

0 S�

� � (12)

M. Zhang et al.

8

npj Quantum Information (2022) 71 Published in partnership with The University of New South Wales



the symplectic form Ω, we let

Lð1Þm

� �
ij
¼

ð�1Þj Sð2Þ
1;i

Sð1Þj;1

ðSð2Þ1;2mÞ
2þðSð2Þ1;2m�1Þ

2 þ
ð�1Þiþ1Sð2Þ1;i S

ð1Þ
j;1

ðSð1Þ2m;1Þ
2þðSð1Þ2m�1;1Þ

2 (15)

For the same reason, the elements of L(3) are thus given by:

Lð3Þm

� �
ij
¼ ð�1Þj Sð4Þ

1;i
Sð3Þj;1

ðSð4Þ1;2mÞ
2þðSð4Þ1;2m�1Þ

2 þ
ð�1Þiþ1Sð4Þ1;i S

ð3Þ
j;1

ðSð3Þ2m;1Þ
2þðSð3Þ2m�1;1Þ

2 (16)

With these formulae, we can carry out the matrix multiplications in order to
calculate T(1)= S(2)L(1)S(1) and T(2)= S(4)L(3)S(3). Therefore, according to the
protocol, we only need to set

uk ¼ T ð1Þk;2; vk ¼ T ð2Þ2;k þ
X2N
k¼1

T ð1Þk;1T
ð1Þ
k;2 � T ð2Þ1;kT

ð2Þ
2;k

� �
T ð2Þ1;k ; (17)

for 1 ≤ k ≤ 2N, and use Eq. (14) to obtain the remaining local operation L(2).

General mechanism of identifying the color sets
The graph-theory inspired language makes it possible for us to come up
with the following mechanism to properly color the bosonic modes
involved in an arbitrary multi-mode Gaussian interaction:

1. Set up the graph (GS) corresponding to the given Gaussian
interaction (S)

2. Pick a vertex (e.g., ν) that is the starting point of at least two
distinctive arrows.

3. Find all the immediate successors of this vertex ν, i.e., those vertices
{μi} that are linked with ν by arrows (from ν→ μi). Then, contract all
of these successors {μi} into a single vertex, while removing any
redundant arrows from the graph. (That is to say, if we have two
arrows starting and ending with the same pair of vertices, only one
of the arrows will be kept.)

4. Repeat the above two steps, if possible, until no further contractions
can be made (i.e., there is no vertex in the resulting graph with at
least two distinctive outgoing arrows).

5. The total number of colors γ GSð Þ is equal to the number of the
vertices in the final resultant graph, after all possible contractions
have been performed. Each vertex k of this resultant graph
represents a color set (consisting of all the vertices in the original
graph GS contracted to form k). Universal interference-based
Gaussian operations can then be constructed between any subset
of vertices within the same resultant color set; but not between
vertices that end up in different color sets.
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