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Estimating the randomness of quantum circuit ensembles up to

50 qubits
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Random quantum circuits have been utilized in the contexts of quantum supremacy demonstrations, variational quantum
algorithms for chemistry and machine learning, and blackhole information. The ability of random circuits to approximate any
random unitaries has consequences on their complexity, expressibility, and trainability. To study this property of random circuits,
we develop numerical protocols for estimating the frame potential, the distance between a given ensemble and the exact
randomness. Our tensor-network-based algorithm has polynomial complexity for shallow circuits and is high-performing using CPU
and GPU parallelism. We study 1. local and parallel random circuits to verify the linear growth in complexity as stated by the
Brown-Susskind conjecture, and; 2. hardware-efficient ansatze to shed light on its expressibility and the barren plateau problem in
the context of variational algorithms. Our work shows that large-scale tensor network simulations could provide important hints

toward open problems in quantum information science.
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INTRODUCTION

Quantum computing might provide significant improvement of
computational powers for current information technologies'=. In the
noisy intermediate-scale quantum (NISQ) era, an important question
for near-term quantum computing is whether quantum devices are
able to realize strong computational advantage against existing
classical devices and resolve hard problems that no existing classical
computers can resolve®. Recently, Google and the University of
Science and Technology of China, in experiments involving boson
sampling®®, claimed to have realized quantum advantage using their
quantum devices, disproving the extended Church-Turing thesis.
These experiments are considered milestones toward full-scale
quantum computing. Another recent study suggests the possibility
of achieving quantum advantage in runtime over specialized state-of-
the-art heuristic algorithms to solve the Maximum Independent Set
problem using Rydberg atom arrays’.

Despite the great experimental success in quantum devices,
however, the capability of classical computation is also rapidly
developing. It is interesting and important to think about where
the boundary of classical computation of the same process is and
to understand the underlying physics of the quantum supremacy
experiments through classical simulation®. Tensor network meth-
ods are incredibly useful for simulating quantum circuits®'°,
Originating from approximately solving ground states of quantum
many-body systems, tensor network methods find approximate
solutions when the bond dimension of contracted tensors and the
required entanglement of the system is under control®. Tensor
network methods are also widely used for investigating sampling
experiments with random quantum architectures, which are
helpful for verifying the quantum supremacy experiments'''%,

In this work, we develop tensor network methods and perform
classical random circuit sampling experiments up to 50 qubits.
Random circuit sampling experiments are important components
of near-term characterizations of quantum advantage'®. Ensem-
bles of random circuits could provide implementable

constructions of approximate unitary k-designs'®'8, quantum

information scramblers'®, solvable many-body physics models®°,
predictable variational ansdtze for quantum machine learn-
ing?'=23, good quantum decouplers for quantum channel and
quantum error correction codes®*?%, and efficient representatives
of quantum randomness. To measure how close a given random
circuit ensemble is to Haar-uniform randomness over the unitary
group, we develop algorithms to evaluate the frame potential, the
2-norm distance toward full Haar randomness?®=28, The frame
potential is a user-friendly measure of how random a given
ensemble is in terms of operator norms: the smaller the frame
potential is, the more chaotic and more complicated the
ensembles are, and the more easily we can achieve computational
advantages?®3°, In fact, in certain quantum cryptographic tools,
concepts identical or similar to approximate k-designs are used,
making use of the exponential separation of complexities
between classical and quantum computations3'=38,

It is critical to perform simulations of quantum circuits
efficiently. To achieved this, we developed an efficient tensor
network contraction algorithm is developed in the QTensor
package3~*!. QTensor is optimized to simulate large quantum
circuits on supercomputers. For this project, we implemented a
modified tensor network and fully utilized QTensor’s ability to
simulate quantum circuits efficiently at scale.

In particular, we show the following applications of our
computational tools. First, we evaluate the k-design time of the
local and parallel random circuits through the frame potential. A
long-term open problem is to prove the linear scrambling
property of random circuits, where they approach approximate
k-designs at depth O(nk) with n qudits'®18293142-47 " Although
lower and upper bounds are given, there is no known proof of the
k-design time for general local dimension g and k=334
According to Brandao et al.*’, the linear increase of the k-design
time will lead to a proof of the Brown-Susskind conjecture, a
statement where random circuits have linear growth of the circuit
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complexity with insights from black hole physics*®4°. Recently, the
complexity statement was proved in ref. *° for a different
definition of circuit complexity compared with ref. 4. Thus, a
validation of the k-design time measured in the frame potential
will immediately lead to an alternative verification of the
Brown-Susskind conjecture, with the complexity defined in
ref. #7. Using our tools, we verify the linear scaling of the k-design
time up to 50 qubits and g=2. Our research also provides
important data on the prefactors beyond scaling through
numerical simulations, which will be helpful to further the
understanding of theoretical computer scientists.

Moreover, we use our tools to evaluate the frame potential of
randomized hardware-efficient variational ansitze used in ref. 2.
Barren plateau is a term referring to the slowness of the variational
angle updates during the gradient descent dynamics of quantum
machine learning. When the variational ansatze for variational
quantum simulation, variational quantum optimization, and
quantum machine learning®'®* are random enough, the gradient
descent updates of variational angles will be suppressed by the
dimension of Hilbert space, requiring exponential precision to
implement quantum control of variational angles®. The quadratic
fluctuations considered in?" will be suppressed with an assump-
tion of 2-design, which is claimed to be satisfied by their
hardware-efficient variational ansdtze. For higher moments, higher
k-designs are required. A study of how far a given variational
ensemble is to a unitary k-design is important to understanding
how large the barren plateau is and how to mitigate it through
designs of variational circuits. In our work, we verify, upto several
k's, that randomized hardware-efficient ansdtze are efficient
scramblers: the frame potential decays exponentially in the circuit
depth, and non-diagonal entangling gates are more efficient.

To familiarize the reader with the theoretical framework of our
work, we begin with a formal introduction to the frame potential.
Given an ensemble £ of unitaries with a probability measure, we
are interested in its randomness and closeness to the unitary
group. Truly random unitaries from the unitary group have the
Haar measure. Such closeness is measured by how well the
ensemble approximates the first k moments of the unitary group.
To this end, a k-fold twirling channel

o (0) = / ‘gdUU@'Qk(O)U*@" M

is defined for the ensemble. If the unitary ensemble approximates
the kth moment of the unitary group, the distance between the k-
fold channel defined for the ensemble and the Haar unitaries
(measured by the diamond norm) is bounded by e:

k k
[0 — Do, Il <e. P)

Such £ is said to be an e-approximate k-design. The diamond norm
of the channels is not numerically friendly, however. A quantity more
suitable for numerical evaluation, which is also discussed in the
context of k-designs, is the frame potential .F, given by®*

Fh = / duav|Tr(Utv) . 3)
J uve€

Specifically, it relates to the aforementioned definition of -
approximate k-designs as follows'®:
k K k K
10F? — O, 12 < d*(FY - i), )

where d=q" is the Hilbert space dimension, g is the local

dimension of the qudits, and fl(—:(a)ar = k(L)

If we obtain the frame potential ., we are guaranteed to
have at least an emax-approximate k-design, where
]'-(gk) _ g (5)

) _ 4k
€max = d Haar>
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Similarly, we have the following condition for the ensemble to
be an e-approximate k-design:

(k) (k)
Fet) = Fhaar = gak (6)
where the ensemble &(/) depends on the number of layers .

Assuming an exponentially decreasing frame potential approach-
ing the Haar value, we have

F) = Fliow ox A2 )
€

= Ae /€ < P ®)

= /> C(knlogg + logA + log 1/¢). (9)

Under this assumption, A and C could still have n and k
dependence. Therefore, in order for [ to scale linearly in n and k, A
cannot be exponential, and C must be sublinear.

As an example, the exponential decay of F@ for the parallel
random unitary ansatz is given by'®

-1
5 2(1-1)\ M9
}'(2><2(1+(qzz1> ) (10

where ng = [n/2]. This is plotted in Fig. 1. For fixed ¢, this leads to
a linear scaling of /in n, given by

I > C(2nlogq + logn + log 1/¢), (1)
-1
where C = <Iog ‘422—;1) is independent of n. We emphasize that

linear scaling in n is for fixed ¢, not fixed F.

RESULTS

We obtain numerical results for ansatze with local dimension
g = 2. Specifically, the frame potential values up to 50 qubits
and k=5 are evaluated. We compute the frame potentials for
the local random unitary ansdtz, the parallel random unitary
ansatz, and hardware-efficient ansatze, illustrated in Fig. 2,
respectively.

Algorithm description

The unitary ensembles we are interested in are parameterized by a
large number of parameters. Therefore, evaluating the integral is a
high-dimensional integration problem, and a numerical Monte

F%' - Faaar
Paaar
5
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L
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Fig. 1 Theoretical fractional deviation of the k = 2 frame potential
from the Haar value as a function of layers for the parallel random
unitary ansatz. In this plot, the layer required to reach a fixed F
does not scale linearly with n. The linear scaling is only for fixed e.
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lllustration of ansdtzes used in this work. All ansdtzes assumes 1D nearest-neighbor connectivity. a Parallel random unitary ansatze.

Each layer is a wall of two-qudit random unitaries on neighboring qudits, and the next layer is offset by 1 qudit. This creates a brickwork motif,
and the gate count scales as O(/n). b Local random unitary ansatze. Each layer is a single two-qudit random unitary between a pair of randomly
chosen neighboring qudits. The gate count scales as O(/). ¢ Hardware-efficient ansatze. A wall of Ry(r/4) rotations is followed by alternating
layers of random Pauli rotations and controlled-NOT gates, all independently parameterized. Circuits with controlled-phase gates are also

studied.

Fig. 3 Pictorial depiction of the trace evaluation algorithm. a Graphical tensor network of the trace of a quantum circuit, black where nodes
are tensor indices, and cliques are tensors. The i indices correspond to qubit inputs, and the o indices correspond to qubit outputs. The curves
going above the circuit network are identities. The input and output indices can actually be merged together, but this is harder to illustrate.
b Equivalent identity tensor that can be represented by gates, qubit initialization, and measurement. More details at the end of section 2.1.
¢ Graphical tensor network representation of the same quantity using our formulation. d The quantum circuit used to evaluate traces as a

single amplitude.

Carlo approach is suitable. We approximate the frame potential as
the mean value of the trace,
w1 t1 12K
Fy NNZ\Tr(U V)|, U,V e €. (12)
Therefore, we need to evaluate the trace of the sampled
unitaries on n target qudits.
A quantum circuit unitary U= U,U,Us... is a tensor U;’fv
where i, j, k are input qudit indices and aq, 8,y are output qudit
indices. The trace of the unitary is

TrU) = ) U 8iabipbiy -
ijk... aBy...

This is a tensor contraction operation that can be expressed as the
tensor network in Fig. 3a. In this representation, each node is an
index, and edges that form cliques are unitaries. This is different
from tensor network representations that are more familiar in
other works (MPS, MPO, MERA, etc.) For more details on the
representation, see refs. '>495%, The circuit shown here is a parallel
random unitary circuit with 4 qudits. For efficient contraction,
when the number of qudits is large, the contraction order is along

(13)
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the direction indicated in Fig. 3 such that the maximum number of
exposed indices is minimum.

Directly implementing this tensor network requires modifica-
tion of QTensor. We propose an alternative tensor network in Fig.
3c with similar topologies that gives the trace as a single-
probability amplitude in the form of (¢|U|y) for any basis state
|). The quantum circuit to achieve this is illustrated in Fig. 3¢, and
we proceed with a proof.

For simplicity, we describe the algorithm for g =2 qubits. We
assign an ancillary qubit to each target qubit. The quantum state
of the n ancillary and n target qubits is initialized to the state

|¥), = [00---0), ®]00---0),. (14)

After a layer of Hadamard on the ancillary qubits, we get

n 1 2"

19) = @) Ho00-+-0)y 100--0)c = 3 1), ©100---0),.
J H

(15)

where |u) is the n ancillary qubit basis state in the computational
basis. Applying a CNOT gate on all target qubits controlled by
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their respective ancillary qubits yields
® ol \/Z—HZ ) @100---0), 16
\/z_"z® UML), ©100---0), (17)
1 &
:WZ“J)"@ 1) 5 (18)

where UM is a CNOT gate with the jth ancillary qubit as control
and the _/t target qubit as target. For simplicity, we can combine
the aforementioned Hadamard layer and the CNOT layer as a
single operator

n
M = Q) Vel Hasy (19)
J
|¥) = M|¥)o. (20)
Consider the following probability amplitude:
(WIUTV|W) = (W]|,MUTVM|W),. 21

This is simply the probability amplitude of measuring the |¥),
state after applying the unitary MU'VM to the initialized |¥),
state. Moreover, this probability amplitude is actually the trace
of UV

WiutviY) = o (Z (ol u|r> u*v(Dv )alv) ) (2)

on

1
(Ul UV |u), = ?Tr(ufv). (23)

-

u
Therefore, evaluating the trace becomes evaluating the prob-
ability amplitude of obtaining the |¥), state, which QTensor is
able to simulate with complexity proportional to the number of
qubits and exponential to the circuit depth. This is helpful for
evaluating the trace of unitaries that can be efficiently represented
by shallow circuits, especially those with limited qubit connectivity
such as hardware-efficient ansatze.

For qudits with general local dimensions g, the generalization is
straightforward. We need to replace the Hadamard gate H with
the generalized Hadamard gate H,, and the CNOT gate with the
SUM, gate®®

q—1
i = % > e (24)
i=0

SUMgli,j) = |i,i + j(modq)). (25)

Similar to the qubit case, applying the generalized gates to |®),
yields an entangled uniform superposition |®) of all basis states.
The expectation value of any target qudit unitary with respect to
this state is the trace.

Graphically, this can be understood by the tensor equivalence
shown in Fig. 3b. The gates are

1

Hj = ﬁ [6io + 611 (8j0 — 6j1)] (26)
U%'\‘OT = k08 + 61 (81061 + 61 6p0), (27)
where for Ugi©", k is the control qubit index (CNOT does not
change the control qubit in the computational basis and therefore
has only one index for the control qubit), and i,j are the target
qubit output and input indices. The bottom tensor of Fig. 3b
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evaluates to

oo U535 US Hom = 3 (6m0 + 6 (50 — 1) 28)
x [6m0Sio + Om1(8j0001 + 6i1600)] (29)
X [8mo0oj + Om1(G008j1 + 8016j0)] (30)

7 [600 + 601(8mo — 6m1)] = 8. 31

Verifying the Brown-Susskind conjecture

Local and parallel random unitaries are commonly discussed in
the context of quantum circuit complexity and the
Brown-Susskind conjecture. For both ansdtzes, the composing
random unitaries are drawn from the Haar measure on U(d?).
Results for parallel random unitaries are presented in Figs. 4 and 5.
In Fig. 4, The frame potential shows a super-exponential decay in
the regime of a few layers and converges to exponential decay as

100 4
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o
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-®- n=36
-®- n=40
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-®- n=48
-®- n=50

2 4 6 8 10 12 14

Layers
Fig. 4 Fractional deviation of the k = 3 frame potential from the
Haar value as a function of layers for the parallel random unitary
ansatz. As shown in Fig. 1, we do not expect linear scaling of / in n
with fixed F. Error bars show one standard error.
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Fig. 5 Layer scaling as a function of the number of qubits for the
parallel random unitary ans&tz on a violin plot. Solid points are
medians of the bootstrap sample, and the vertical shadows
represent the sample distribution where the width corresponds to
the density. Missing data points are due to insufficient data (see the
Supplementary Discussions 3.1 for more details). Dashed lines are
linear fits. The inset shows the fitted slopes for different k values.
Error bars show one standard deviation.
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the number of layers increases, just like the theoretical prediction
in Fig. 1.

To obtain the layer scaling for reaching e-approximate

designs, we fit 7' — 7 to an exponential function accord-

gns, £ Haar p

ing to Eq. (7), and | is estimated using Eqg. (9). Note that our
numerical results are in the regime of large ¢, but we are
extrapolating to small ¢ values, the validity of which depends on
a strictly exponentially decaying F. For robust error analysis, we
use bootstrapping to quantify the uncertainties. We randomly
sample a subset of computed frame potentials and perform
curve fitting to obtain the calculate the number of layers needed
to reach €<0.1. This is repeated multiple times to obtain a
distribution of layer values. More details on the bootstrapping
technique can be found in Supplementary Methods 1.2.

Assuming the validity of extrapolation, the results for e = 0.1 are
shown in Fig. 5. Brandao et al."” established upper bounds on the
number of layers needed to approximate k-designs for local and
parallel random unitaries, which are quadratic and linear in n,
respectively. They further proved that this bound could not be
improved by more than polynomial factors as long as €< 1/4.
Therefore, to verify linear growth in n, we need to reach below
€ < 1/4, which informed our choice of the ¢ =0.1 threshold. We
observe a linear scaling of the number of needed layers in n,
which agrees with the theoretical prediction and non-trivially
restricts the F scale factor A and decay rate C as discussed before.

Further, we compare the theoretical predictions in Eq. (11)
against our numerical findings. Figure 5 shows the experimental
and fitted k-design layer scaling as a function of the number of
qubits. Specifically, we fit a linear curve through the medians of
the estimated layers ignoring the logn and the constant log 1/e
terms. We find a slope of 4.38 in the case of k = 2, which is lower
than the theoretical value 6.2 as predicted by Eq. (10). We note,
however, that the theoretical value gives an upper bound of the
frame potential since there is overcounting in the contributing
domain walls'®. Therefore, the analytical expression predicts a
larger number of layers needed to approximate 2-designs than
necessary. This is apparent in the n =2 case, where 16 layers are
needed in Eq. (11) but a single layer is already sampling from the
Haar measure. This accounts for the discrepancy between the
theoretical values and the experimental values.

In the inset of Fig. 5, we show the slopes of the scaling curves
with different k values. It is predicted that there is a linear O(nk)
scaling in k for the number of layers /| (or O(n?k) scaling for the
circuit size T) needed to approach k-designs'®, and a linear
relationship between k and complexity is established in ref. 47,
Together, these findings imply that complexity grows linearly in
the circuit size*”->°, Our results support the linear scaling of T in k,
which predicts that the slope grows linearly in k.

Results for local random unitaries are presented in Figs. 6 and 7.
Since each layer in the local random circuit has only one gate, we
simulate layers proportional to the number of qubits and plot
layers/qubits on the x-axis to maintain a linear scaling. We observe
that this layer/qubits ratio scales linearly with the number of
qubits. This is the same gate count scaling as the parallel random
unitary ansatz, both quadratic in n. The scaling in k is close to
linear, but the confidence is lower due to a lack of data points for
k=4,5 at large n. Explanations for missing data points are
provided in the Supplementary Discussions 3.1.

Hardware-efficient ansdtze as approximate k-designs

Originally proposed for variational quantum eigensolvers®,
hardware-efficient ansatze utilize gates and connectivity readily
available on the quantum hardware®”=%°. In addition, a hardware-
efficient ansdtz is simulated in the context of the barren plateau
problem?!, where the variance of gradients vanish exponentially
with the number of qubits in sufficiently deep circuits. In fact, the
proof of the barren plateau problem assumes that circuits before

Published in partnership with The University of New South Wales
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Fig. 6 Fractional deviation of the k = 3 frame potential from the
Haar value as a function of layers over the number of qubits for

the local random unitary ansédtz. Error bars show one
standard error.
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Fig. 7 Layer/qubits scaling as a function of the number of qubits
for the local random unitary ansatz. Missing data points are due to
insufficient data (see the Supplementary Discussions 3.1 for more
details). The inset shows the fitted slopes for different k values. Error
bars show one standard deviation.

and after the gate whose derivative we are computing are
approximate 2-designs, which is especially suitable for hardware-
efficient ansdtze because they are believed to be efficient at
scrambling. We simulated these circuits with controlled-phase
gates and controlled-NOT gates as two-qubit gates, respectively.
Figure 8 shows that the controlled-NOT gate-based ansdtz
approaches the Haar measure sooner, and therefore further
analysis is conducted on the CNOT-based ansatz only. Figure 9
shows a linear dependence on the number of qubits, as well as a
positive dependence on k.

We note that the CNOT-based hardware-efficient ansatz reaches
lower frame potential values with much fewer layers than the
parallel random unitary ansatz, albeit having much fewer
parameters per layer. This result is partially explainable through
the observation that each layer in the hardware-efficient ansatz
contains two layers of two-qubit gate walls, whereas each layer in
the parallel random unitary ansatz contains only one wall. Further,
random unitaries from U(d?) are not all maximally entangling. The
hardware-efficient anséatz can therefore generate highly entangled
stages much more efficiently, exploring a much larger space with
fewer parameters.

Further, unlike the previously discussed ansdtze where the
frame potential decay rate is constant, the hardware-efficient
ansétz decay rate increases with n as shown in the inset of Fig. 8.
This does not contradict the observed linear scaling as long as the
decay rate scaling is sublinear.

This observation confirms that hardware-efficient ansatze are
highly expressive, a concept that is crucial to the utility of
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Fig. 8 Fractional deviation of the k = 3 frame potential from the
Haar value as a function of layers for hardware-efficient ansitze.
Colorful traces are for the CNOT gate-based ansatz, and gray traces
are for the CZ gate-based ansatz. Error bars show one standard error.
The inset shows the CNOT ansétz decay rate scaling of F in the
number of qubits n. Error bars show one standard deviation.

variational quantum algorithms. Ansdtze with higher expressibility
are able to better represent the Haar distribution, approximate the
target unitary, and minimize the objective. This links the
expressibility to the frame potential’®. The high expressibility of
hardware-efficient ansatze and their close relatives, in additional
to the desirable noise properties due to their shallow depths, are
precisely the argument in favor of these ansatze over their deeper
and more complex problem-aware counterparts’’. With the recent
discovery of the relation between expressibility and gradient
variance’?, the analysis of frame potentials can play an important
role in theoretically and empirically determining the usefulness of
various ansatze for variational algorithms.

DISCUSSION

Evaluating the distance from a given random circuit ensemble to
the exact Haar randomness is important for understanding several
perspectives in quantum information science, including recent
experiments on the near-term quantum advantage. Explicitly
constructing the unitaries requires memory complexity of O(4"). A
more efficient classical algorithm decomposes a unitary into gates
in a universal set (H, T, and CNOT), which allows us to estimate the
normalized trace by sampling allowed Feynman paths’3. Exact
evaluation using this method is NP-complete, and approximation
to fixed precision requires a number of Feynman path samples
that are exponentially large in the number of Hadamard gates in
the circuit. Fortunately, for shallow circuits, tensor-network-based
algorithms can obtain the exact trace with linear complexity in n.

In our paper, we simulate large-scale random circuit sampling
experiments classically up to 50 qubits, the number of noisy
physical qubits we are able to control in the NISQ era, using the
QTensor package. As examples, we provide two applications of
our computational tools: a numerical verification of the
Brown-Susskind conjecture and a numerical estimation relating
to barren plateaus in quantum machine learning and randomized
hardware-efficient variational ansatze.

Through our examples, we show that classical tensor network
simulations are useful for our understanding of open problems in
theoretical computer science and numerical examinations of
quantum neural network properties for quantum computing
applications. We believe that tensor networks and other cutting-
edge tools are useful for probing the boundary of classical
simulation and improving the understanding of quantum
advantage in several subjects of quantum physics, for instance,
quantum simulation”#7>. Moreover, it will be interesting to
connect our algorithms to the current research on classical
simulation of boson sampling experiments.

npj Quantum Information (2022) 137

4 ’ e
140 4 e rie
4 //
o3 e e
120 48 - -
52 ¢ e ,,’
td 7’
100 L L7
.
3 3 70 % 4
£ 80 ko7 g
= T e /’/
- 04
i v ¢
60 ,,.'},/
/’./.
4 b d
40 4 2 k=2
,':”* k=3
20 - ® k=4
® k=5
01 . . . : .
0 10 20 30 40 50
Qubits

Fig. 9 Layer scaling as a function of the number of qubits for the
hardware-efficient ansdtz. Missing data points are due to insuffi-
cient data (see Supplementary Discussions 3.1 for more details). The
inset shows the fitted slopes for different k values. Error bars show
one standard deviation.

METHODS
Tensor network simulator

For all the trace evaluations, we use the QTensorAl library’s,
originally developed to simulate quantum machine learning with
parameterized circuits. This library allows quantum circuits to be
simulated in parallel on CPUs and GPUs, which is a highly
desirable property for sampling a large number of circuits. The
library is based on the QTensor simulator®*=*!, a tensor network-
based quantum simulator that represents the network as an
undirected graph.

In this method of simulation, the computation is memory
bound, and the memory complexity is exponential in the
“treewidth,” the largest rank of tensor that needs to be stored
during computation. The graphical formalism utilized by QTensor
allows the tensor contraction order to be optimized to minimize
the treewidth. For shallow quantum circuits, the treewidth is
determined mainly by the number of layers in the quantum
circuit, and therefore QTensor is particularly well suited for
simulating shallow circuits such as those used in the Quantum
Approximate Optimization Algorithm (QAOA).

Sampling U(d?)

The simulation of both parallel and local random unitary circuits
requires the use of random two-qubit random unitary gates. We
implement these gates and sample Haar unitaries according to the
scheme proposed for unitary neural networks”’, using a PyTorch
implementation’, The universality of this decomposition scheme
is first proved in the context of optical interferometers’®°, This
implementation parameterizes two-qubit unitaries using 16 phase
parameters, and uniformly sampling these parameters leads to
uniform sampling on the Haar measure. Further, it is fully
differentiable, although we do not care about this property in
this work.

High-performance computing

For hardware-efficient and parallel random unitary ansdtze, once
the number of qubits and the number of layers are chosen, the
circuit topology will remain the same throughout the ensemble.
This is in contrast to the local random unitary ansatz, where a two-
qubit gate is applied to random neighboring qubits in each layer,
which means that the circuit topologies are very different within
an ensemble. For fixed-topology ensembles, the algorithm can
optimize the contraction order for all circuits at once. This
optimization significantly reduces the computational complexity,
and the optimization time is on the order of minutes depending
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on the circuit size. However, local random unitary circuits cannot
benefit from circuit optimizations since we would need to do that
for each sample, whereas the actual simulation time is usually
much shorter.

Further, for fixed topology circuits, the tensor contraction
operations are identical, which is very suitable for single-
instruction multi-data parallel executions on GPUs. For ensembles
with the smallest tree widths, we can compute the trace values of
millions of circuits in parallel on a single GPU. However, local
random unitary circuits are not compatible with single-instruction
parallel computation and must be simulated in parallel using a
CPU cluster.

DATA AVAILABILITY

Data containing the bootstrap frame potential values used to generate the figures are
available in the GitHub repository https://github.com/sss441803/Frame_Potential,
and data for the calculated trace values of sampled random circuits is available upon
request from the authors.

CODE AVAILABILITY

The code used to generate the data and figures is available in the GitHub repository
https://github.com/sss441803/Frame_Potential. The tensor network quantum simu-
lator QTensor and QTensorAl are open source, and available at https://github.com/
danlkv/QTensor and https://github.com/sss441803/QTensorAl.
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