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Vari ati o n al q u a nt u m cir c uits ar e us e d i n q u a nt u m  m a c hi n e l e ar ni n g a n d v ari ati o n al q u a nt u m si m ul a-

ti o n t as ks.  D esi g ni n g g o o d v ari ati o n al cir c uits or pr e di cti n g h o w  w ell t h e y p erf or m f or gi v e n l e ar ni n g or

o pti mi z ati o n t as ks is still u n cl e ar.  H er e  w e dis c uss t h es e pr o bl e ms, a n al y zi n g v ari ati o n al q u a nt u m cir c uits

usi n g t h e t h e or y of n e ur al t a n g e nt k er n els.  We d e fi n e q u a nt u m n e ur al t a n g e nt k er n els, a n d d eri v e d y n a m-

i c al e q u ati o ns f or t h eir ass o ci at e d l oss f u n cti o n i n o pti mi z ati o n a n d l e ar ni n g t as ks.  We a n al yti c all y s ol v e

t h e d y n a mi cs i n t h e fr o z e n li mit, or l a z y tr ai ni n g r e gi m e,  w h er e v ari ati o n al a n gl es c h a n g e sl o wl y a n d a

li n e ar p ert ur b ati o n is g o o d e n o u g h.  We e xt e n d t h e a n al ysis t o a d y n a mi c al s etti n g, i n cl u di n g q u a dr ati c

c orr e cti o ns i n t h e v ari ati o n al a n gl es.  We t h e n c o nsi d er a h y bri d q u a nt u m cl assi c al ar c hit e ct ur e a n d d e fi n e

a l ar g e- wi dt h li mit f or h y bri d k er n els, s h o wi n g t h at a h y bri d q u a nt u m cl assi c al n e ur al n et w or k c a n b e

a p pr o xi m at el y  G a ussi a n.  T h e r es ults pr es e nt e d h er e s h o w li mits f or  w hi c h a n al yti c al u n d erst a n di n gs of

t h e tr ai ni n g d y n a mi cs f or v ari ati o n al q u a nt u m cir c uits, us e d f or q u a nt u m  m a c hi n e l e ar ni n g a n d o pti mi z a-

ti o n pr o bl e ms, ar e p ossi bl e.  T h es e a n al yti c al r es ults ar e s u p p ort e d b y n u m eri c al si m ul ati o ns of q u a nt u m

m a c hi n e-l e ar ni n g e x p eri m e nts.

D OI: 1 0. 1 1 0 3/ P R X Q u a nt u m. 3. 0 3 0 3 2 3

I. I N T R O D U C TI O N

T h e i d e a of usi n g q u a nt u m c o m p ut ers f or  m a c hi n e
l e ar ni n g h as r e c e ntl y r e c ei v e d att e nti o n b ot h i n a c a d e mi a
a n d i n d ustr y [ 1 – 1 3 ].  W hil e pr o of- of- pri n ci pl e st u di es
h a v e s h o w n t h at s o m e pr o bl e ms of  m at h e m ati c al i nt er est
q u a nt u m c o m p ut ers ar e us ef ul [ 1 3 ], q u a nt u m a d v a nt a g e
i n  m a c hi n e-l e ar ni n g al g orit h ms f or pr a cti c al a p pli c ati o ns
is still u n cl e ar [1 4 ].  O n cl assi c al ar c hit e ct ur es, a first-
pri n ci pl es t h e or y of  m a c hi n e l e ar ni n g, es p e ci all y t h e s o-
c all e d d e e p l e ar ni n g t h at us es a l ar g e n u m b er of l a y ers, is
still i n d e v el o p m e nt.  E arl y d e v el o p m e nts of t h e st atisti c al
l e ar ni n g t h e or y pr o vi d e ri g or o us g u ar a nt e es o n t h e l e ar ni n g

* C orr es p o n di n g a ut h or. j u n y uli u @ u c hi c a g o. e d u
† ft a @ z uri c h.i b m. c o m
‡ j e n nif er.r. gli c k @i b m. c o m
§ li a n g.ji a n g @ u c hi c a g o. e d u
¶ m e z z a c a p o @i b m. c o m

P u blis h e d b y t h e  A m eri c a n  P h ysi c al S o ci et y u n d er t h e t er ms of
t h e Cr e ati v e  C o m m o ns  Attri b uti o n 4. 0 I nt er n ati o n al li c e ns e.  F ur-
t h er distri b uti o n of t his  w or k  m ust  m ai nt ai n attri b uti o n t o t h e
a ut h or(s) a n d t h e p u blis h e d arti cl e’s titl e, j o ur n al cit ati o n, a n d
D OI.

c a p a bilit y i n g e n eri c l e ar ni n g al g orit h ms, b ut t h e or eti c al
b o u n ds o bt ai n e d fr o m i nf or m ati o n t h e or y ar e s o m eti m es
w e a k i n pr a cti c al s etti n gs.

T h e t h e or y of n e ur al t a n g e nt k er n el ( N T K) h as b e e n
d e e m e d a n i m p ort a nt t o ol t o u n d erst a n d d e e p n e ur al n et-
w or ks [ 1 5 – 2 1 ]. I n t h e l ar g e- wi dt h li mit, a g e n eri c n e ur al
n et w or k b e c o m es n e arl y  G a ussi a n  w h e n a v er a gi n g o v er
t h e i niti al  w ei g hts a n d bi as es, a n d t h e l e ar ni n g c a p a biliti es
b e c o m e pr e di ct a bl e.  T h e  N T K t h e or y all o ws a n a n al yti-
c al u n d erst a n di n g of t h e n e ur al n et w or ks’ d y n a mi cs t o b e
d eri v e d, i m pr o vi n g o n st atisti c al l e ar ni n g t h e or y a n d s h e d-
di n g li g ht o n t h e u n d erl yi n g pri n ci pl e of d e e p l e ar ni n g
[2 2 – 2 6 ]. I n q u a nt u m  m a c hi n e l e ar ni n g, a si mil ar first-
pri n ci pl es t h e or y  w o ul d h el p i n u n d erst a n di n g t h e tr ai ni n g
d y n a mi cs a n d s el e cti n g a p pr o pri at e v ari ati o n al q u a nt u m
cir c uits t o t ar g et s p e ci fi c pr o bl e ms.  A st e p i n t his dir e cti o n
h as b e e n c o nsi d er e d r e c e ntl y, a n d ori gi n all y, f or q u a nt u m
cl assi c al n e ur al n et w or ks [ 2 7 ].  H o w e v er, t h e fr a m e w or k of
R ef. [ 2 7 ] is  m ostl y f o c us e d o n t h e cl assi c al c o n v ol uti o n al
n e ur al n et w or ks c o m bi n e d  wit h q u a nt u m cir c uits, a n d it
d o es n ot a d dr ess t h e q u a nt u m gr a di e nt- d es c e nt d y n a mi cs
of v ari ati o n al cir c uits.

I n t his p a p er,  w e a d dr ess t his pr o bl e m, f o c usi n g o n t h e
li mit  w h er e t h e l e ar ni n g r at e is s u ffi ci e ntl y s m all, i ns pir e d
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b y t h e cl assi c al t h e or y of  N T K. F oll o wi n g t h e fr a m e w or k
a n d r es ults fr o m  R efs. [ 2 4 ,2 5 ,2 8 ],  w e first d e fi n e a q u a n-
t u m a n al o g of a cl assi c al  N T K. I n t h e li mit  w h er e t h e
v ari ati o n al a n gl es d o n ot c h a n g e  m u c h, t h e s o- c all e d l az y
tr ai ni n g [2 9 ], t h e fr oz e n q u a nt u m n e ur al t a n g e nt k er n el
( Q N T K) l e a ds t o a n e x p o n e nti al d e c a yi n g of t h e l oss f u n c-
ti o n us e d o n t h e tr ai ni n g s et.  We f urt h er m or e c o m p ut e t h e
l e a di n g- or d er p ert ur b ati o n a b o v e t h e st ati c li mit,  w h er e  w e
d e fi n e a q u a nt u m v ersi o n of t h e cl assi c al m et a k er n el . We
d eri v e cl os e d-f or m f or m ul as f or t h e d y n a mi cs of t h e tr ai n-
i n g i n t er ms of p ar a m et ers of v ari ati o n al q u a nt u m cir c uits,
s e e Fi g. 1 .

We t h e n  m o v e t o a h y bri d q u a nt u m cl assi c al n e ur al n et-
w or k fr a m e w or k, a n d fi n d t h at it b e c o m es a p pr o xi m at el y
G a ussi a n, as l o n g as t h e q u a nt u m o ut p uts ar e s u ffi ci e ntl y
ort h o g o n al.  We pr es e nt a n a n al yti c d eri v ati o n of t h e l ar g e-
wi dt h li mit  w h er e t h e n o n- G a ussi a n c o ntri b uti o n t o t h e
n e ur o n c orr el ati o ns is s u p pr ess e d b y l ar g e  wi dt h. I nt er-
esti n gl y,  w e o bs er v e t h at n o w t h e wi dt h is d e fi n e d b y t h e
n u m b er of i n d e p e n d e nt  H er miti a n o p er at ors i n t h e v ari a-
ti o n al a ns at z,  w hi c h is u p p er b o u n d e d b y ( a p ol y n o mi al of)
t h e di m e nsi o n of t h e  Hil b ert s p a c e.  T h us, a l ar g e  Hil b ert-
s p a c e si z e  will n at ur all y bri n g o ur n e ur al n et w or k t o t h e
l ar g e- wi dt h li mit.  M or e o v er, t h e ort h o g o n alit y ass u m pti o n
i n t h e v ari ati o n al a ns at z c o ul d b e a c hi e v e d st atisti c all y
usi n g r a n d o mi z e d ass u m pti o ns. If n ot, t h e h y bri d q u a n-
t u m cl assi c al n e ur al n et w or ks c o ul d still l e ar n f e at ur es
e v e n at t h e l ar g e  wi dt h, i n di c ati n g a si g ni fi c a nt di ff er e n c e
c o m p ar e d t o t h e cl assi c al n e ur al n et w or ks.

We t est t h e a n al yti c al d eri v ati o ns of o ur t h e or y c o m-
p ar e d a g ai nst n u m eri c al e x p eri m e nts  wit h t h e I B M q u a n-
t u m d e vi c e si m ul at or [3 0 ], o n a cl assi fi c ati o n pr o bl e m i n
t h e s u p er vis e d l e ar ni n g s etti n g, fi n di n g g o o d a gr e e m e nt

L o s s

R e pr e s e nt ati o n  L e a r ni n g

I t e r ati o n sQ
N
T
K

Fr o z e n  Q N T K

( a)

( b) ( c)

FI G. 1.  A n ill ustr ati o n of t h e  Q N T K t h e or y. ( a)  T h e  Q N T K
c h ar a ct eri z es t h e gr a di e nt- d es c e nt d y n a mi cs i n t h e v ari ati o n al
q u a nt u m cir c uit.  T h e q u a nt u m st at e  m o di fi es a c c or di n g t o t h e
Q N T K pr e di cti o n. ( b)  Ar o u n d t h e e n d of t h e tr ai ni n g, t h e  Q N T K
is fr oz e n a n d al m ost a c o nst a nt. ( c)  T h e gr a di e nt- d es c e nt d y n a m-
i cs c o ul d b e hi g hl y n o nli n e ar, a n d t h e  Q N T K is r u n ni n g d uri n g
gr a di e nt d es c e nt,  w hi c h is a pr o p ert y of r e pr es e nt ati o n l e ar ni n g.

Q N T K t h e or yCl assi c al N T K t h e or y

H y bri d q u a nt u m cl assi c al n e ur al 
n et w or ks: S e cs. I V a n d S M V, VI. 

L ar g e wi dt h li mit B arr e n pl at e a u pr o bl e m 

O pti mi z ati o n L e ar ni n g

G e n er al Q N T K:  S e cs. II. A, S M II. A        S e cs. III. A, S M III/I V. A 
G e n er al n o nli n e ar d y n a mi cs                         

Fr oz e n Q N T K:    S e cs. II. B, S M II. B         S e cs. III. B, S M III/I V. B 
Fr oz e n Q N T K li mit

D Q N T K:  S e cs. II. C, S M II. C          S e cs. III. C, S M III/I V. C  
Q u a nt u m r e pr es e nt a o n l e ar ni n g

Qi s kit si m ul ati o ns
S e c s. V, S M VII

FI G. 2. Str u ct ur e of o ur p a p er. I n S e c. II w e est a blis h t h e t h e-
or y of  Q N T K i n t h e c o nt e xt of o pti mi z ati o n  wit h o ut d at a f or
g e n eri c v ari ati o n al q u a nt u m a ns at z,  w hi c h is t h e t y pi c al t as k i n
q u a nt u m si m ul ati o n. I n S e c. III,  w e est a blis h t h e t h e or y of q u a n-
t u m  m a c hi n e l e ar ni n g  wit h t h e h el p of  Q N T K. I n S e c. I V, w e
d e fi n e t h e h y bri d q u a nt u m cl assi c al n e ur al n et w or k  m o d el, a n d
w e pr o v e t h at i n t h e l ar g e- wi dt h li mit, t h e  m o d el is a p pr o xi m at e d
b y t h e  G a ussi a n pr o c ess. I n S e c. V ,  w e gi v e n u m eri c al e x a m pl es
t o d e m o nstr at e o ur q u a nt u m r e pr es e nt ati o n t h e or y. I n S e c. VI , w e
dis c uss t h e i m pli c ati o n of t his  w or k, a n d o utli n e o p e n pr o bl e ms
f or f ut ur e  w or ks. I n t h e  m ai n t e xt,  w e  m ostl y hi g hli g ht o ur t h e o-
r eti c al fr a m e w or ks a n d i m p ort a nt t h e or e ms.  T e c h ni c al d et ails ar e
gi v e n i n t h e S u p pl e m e nt al  M at eri al ( S M) [ 3 1 ].

wit h t h e t h e or y.  T h e str u ct ur e of t his p a p er a n d t h e i d e as
pr es e nt e d ar e s u m m ari z e d i n Fi g. 2 .

II.  T H E O R Y  O F  Q U A N T U M  O P TI MI Z A TI O N

A.  Q N T K f o r o pti mi z ati o n

We st art fr o m a r el ati v el y si m pl e e x a m pl e a b o ut t h e o pti-
mi z ati o n of a q u a nt u m c ost f u n cti o n,  wit h o ut a  m o d el t o b e
l e ar n e d fr o m s o m e d at a ass o ci at e d t o it.  L et a v ari ati o n al
q u a nt u m  w a v e f u n cti o n [ 3 2 – 3 7 ] b e gi v e n as

|φ ( θ ) = U ( θ ) | 0 =

L

= 1

W e x p (iθ X ) | 0 . ( 1)

H er e  w e d e fi n e L u nit ar y o p er at ors of t h e t y p e U ( θ ) =
e x p (iθ X ),  wit h a v ari ati o n al p ar a m et er θ , a n d a  H er mi-
ti a n o p er at or X ass o ci at e d t o t h e m.  We d e n ot e t h e v e ct or
v ersi o n of all v ari ati o n al p ar a m et ers as θ = { θ } a n d t h e
i niti al st at e as | 0 .  O ur a ns at z als o i n cl u d es c o nst a nt g at es
W s t h at d o n ot d e p e n d o n t h e v ari ati o n al a n gl es.  H er e,  w e
writ e U ( θ ) as U , b ut U s ar e θ d e p e n d e nt.

We i ntr o d u c e t h e f oll o wi n g  m e a n-s q u ar e d- err or ( M S E)
l oss f u n cti o n  w h e n  w e  wis h t o o pti mi z e t h e e x p e ct ati o n
v al u e of a  H er miti a n o p er at or O t o its  mi ni m al ei g e n v al u e
O 0 ,  w hi c h is ass u m e d t o b e k n o w n h er e, o v er t h e cl ass of
st at es |φ ( θ )

L ( θ ) =
1

2
0 U † ( θ )O U ( θ ) 0 − O 0

2
≡

1

2
ε 2 . ( 2)

H er e  w e d e fi n e t h e r esi d u al o pti miz ati o n err or ε ≡

0 U † ( θ )O U ( θ ) 0 − O 0 .  W h e n usi n g gr a di e nt d es c e nt

0 3 0 3 2 3- 2
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t o o pti mi z e  E q. ( 2), t h e di ff er e n c e e q u ati o n f or t h e d y n a m-
i cs of t h e tr ai ni n g p ar a m et er is gi v e n b y

d¯θ = − η
d L ( θ )

d θ
= − η ε

d ε

d θ
. ( 3)

We us e t h e n ot ati o n d¯o t o d e n ot e t h e di ff er e n c e b et w e e n
t h e st e p t + 1 a n d t h e st e p t d uri n g gr a di e nt d es c e nt f or t h e
q u a ntit y o , d¯o = o (t + 1 ) − o (t), ass o ci at e d t o a l e ar ni n g
r at e η .  T h e n  w e h a v e als o, t o t h e li n e ar or d er i n θ ,

d¯ε =
d ε

d θ
d¯θ = − η

d ε

d θ

d ε

d θ
ε . ( 4)

T h e o bj e ct d ε / d θ d ε / d θ s er v es t o c o nstr u ct a t o y v er-
si o n of t h e  N T K i n t h e q u a nt u m s et u p, i n t h e s e ns e t h at
it c a n b e s e e n as a o n e- di m e nsi o n al k er n el  m atri x  wit h
tr ai ni n g d at a  O0 .  We c a n  m a k e o ur d e fi niti o n of a  Q N T K
ass o ci at e d t o a n o pti mi z ati o n pr o bl e m  m or e pr e cis e as
f oll o ws:

D e fi niti o n 1 ( Q N T K f or o pti mi z ati o n). T h e  Q N T K ass o-
ci at e d t o t h e o pti miz ati o n pr o bl e m of  E q. ( 2) is gi v e n
b y

K =
d ε

d θ

d ε

d θ

= − 0 U
†
+ , X , U

†
W

†
U

†
− , O U − , W U U + , 0

2

,

( 5)

w h er e

U − , ≡

− 1

= 1

W U , U + , ≡

L

= + 1

W U . ( 6)

It is e as y t o s h o w t h at t h e q u a ntit y s q u ar e d i n  E q ( 5)
is i m a gi n ar y, h e n c e K is al w a ys n o n- n e g ati v e, K ≥ 0.  A
d eri v ati o n of  E q. ( 5) c a n b e f o u n d  wit hi n t h e S u p pl e m e nt al
M at eri al [ 3 1 ].

B.  F r o z e n  Q N T K li mit f o r o pti mi z ati o n

A n a n al yti c t h e or y of t h e  N T K is est a blis h e d  w h e n t h e
l e ar ni n g r at e is s u ffi ci e ntl y s m all. It is d e fi n e d b y s ol vi n g
t h e c o u pl e d di ff er e n c e e q u ati o ns,  E qs. ( 3), ( 4),  w hi c h  w e
r e p ort h er e

d¯θ = − η ε
d ε

d θ
,

d¯ε = − η
d ε

d θ

d ε

d θ
ε = − η K ε .

( 7)

I n t h e c o nti n u u m l e ar ni n g r at e li mit η → 0,  E qs. ( 7)
b e c o m e c o u pl e d n o nli n e ar or di n ar y di ff er e nti al e q u ati o ns,

w hi c h ar e h ar d t o s ol v e i n g e n er al.  N ot e t h at t his s yst e m of
e q u ati o ns st e ms fr o m a q u a nt u m o pti mi z ati o n pr o bl e m a n d
i n g e n er al it is cl assi c all y h ar d t o e v e n i nst a nti at e.

N e v ert h el ess, i n t h e f oll o wi n g  w e b uil d a n a n al yti c
m o d el f or a q u a nt u m v ersi o n of t h e fr oz e n  N T K (fr o z e n
Q N T K) i n t h e r e gi m e of l az y tr ai ni n g,  w h er e v ari ati o n al
a n gl es d o n ot c h a n g e t o o  m u c h.  T o b e  m or e pr e cis e,  w e
ass u m e t h at at a c ert ai n v al u e θ ∗ o ur v ari ati o n al a n gl es θ
c h a n g e b y a s m all a m o u nt, θ ∗ + δ ϕ .  A t y pi c al s c e n ari o is t o
d o t h e  T a yl or e x p a nsi o n ar o u n d s u c h v al u es θ ∗ d uri n g t h e
c o n v er g e n c e r e gi m e f or i nst a n c e.  H er e δ is a s m all s c ali n g
p ar a m et er a n d  w e d e fi n e δ t o g et h er  wit h ϕ t o d e n ot e s m all
p ert ur b ati o ns.  We c all t h e li mit δ → 0 + t h e fr oz e n  Q N T K
li mit.

I n t his li mit, o n e c a n  writ e W U = W e x p
(iθ ∗ X ) e x p (iδ ϕ X ), s o t h at t h e θ ∗ d e p e n d e n c e is a bs or b e d
i nt o t h e n o n v ari ati o n al p art of t h e u nit ar y b y d e fi n-
i n g W ( θ ∗ ) ≡ W e x p (iθ ∗ X ), a n d  w e h a v e W U →
W ( θ ∗ ) e x p (iδ ϕ X ). I n  w h at f oll o ws,  w e dr o p t h e θ ∗

n ot ati o n a n d u n d erst a n d t h e v ari ati o n al a n gl es as s m all
p ar a m et ers t h at c h a n g e b y δ ar o u n d a v al u e θ ∗ .  T h e n,
e x p a n di n g li n e arl y f or s m all δ w e c a n d e fi n e t h e
f oll o wi n g.

D e fi niti o n 2 ( Fr o z e n  Q N T K f or q u a nt u m o pti mi z ati o n). I n
t h e o pti miz ati o n pr o bl e m,  E q. ( 2), t h e fr oz e n  Q N T K li mit
is

K = − δ 2

× 0 W
†
+ , X , W

†
W

†
− , O W − , W W + , 0

2

,

( 8)

wit h

W − , ≡

− 1

= 1

W , W + , ≡

L

= + 1

W . ( 9)

I n t h e fr o z e n k er n el li mit,  w e c a n st at e t h e f oll o wi n g
r es ult a b o ut t h e d e p e n d e n c y of t h e r esi d u al err or , s ol vi n g
E q. ( 7) li n e arl y f or s m all δ .

T h e o r e m 1 ( P erf or m a n c e g u ar a nt e e of o pti mi z ati o n  wit hi n
t h e fr o z e n  Q N T K a p pr o xi m ati o n). W h e n usi n g st a n d ar d
gr a di e nt d es c e nt f or t h e o pti miz ati o n pr o bl e m,  E q. ( 2),
wit hi n t h e fr oz e n  Q N T K li mit, t h e r esi d u al o pti miz ati o n
err or ε d e c a ys e x p o n e nti all y as

ε ( t) = (1 − η K )tε ( 0 ) = ε ( 0 ) × 1 + η δ 2

× 0 W
†
+ , X , W

†
W

†
− , O W − , W W + , 0

2 t

,

( 1 0)
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wit h a c o n v er g e n c e r at e d e fi n e d as

τ c = − l o g(1 − η K ) ≈ η K

= η δ 2
0 W

†
+ , X , W

†
W

†
− , O W − , W W + , 0

2

≤ 2 η δ 2 L O 2 m a x X 2 , ( 1 1)

wit h t h e L 2 n or m.

T h e d eri v ati o n is gi v e n  wit hi n t h e S u p pl e m e nt al  M at eri al [ 3 1 ].  A n i m m e di at e c o ns e q u e n c e is t h at t h e r esi d u al err or
will c o n v er g e t o z er o,

ε ( ∞ ) = 0. ( 1 2)

C.  Di ff e r e nti al of  Q N T K ( D Q N T K)

T h e fr o z e n  Q N T K li mit d es cri b es t h e r e gi m e of t h e li n e ar a p pr o xi m ati o n of n o nli n e ariti es.  T h er ef or e, t h e fr o z e n  Q N T K
c a n n ot r e fl e ct t h e n o nli n e ar n at ur e of t h e v ari ati o n al q u a nt u m al g orit h ms. I n or d er t o f or m ul at e a n a n al yti c al  m o d el of t h e
n o nli n e ariti es,  w e n o w a n al y z e t h e l e a di n g- or d er c orr e cti o n i n t er ms of t h e e x p a nsi o n of t h e l e ar ni n g r at e η a n d t h e si z e
of t h e v ari ati o n al a n gl e δ .  We f or m ul at e t h e e x p a nsi o n of d¯ε t o t h e s e c o n d or d er i n d¯ϕ ,

d¯ε =
d ε

d ϕ
d¯ϕ +

1

2
1 , 2

d 2 ε

d ϕ
1
d ϕ

2

d¯ϕ
1
d¯ϕ

2
. ( 1 3)

T his ti m e d¯ε d uri n g gr a di e nt d es c e nt  will f oll o w t h e e q u ati o n [ 2 5 ]:

d¯ε = − η
d ε

d ϕ

d ε

d ϕ
ε +

1

2
η 2 ε 2

1 , 2

d 2 ε

d ϕ
1
d ϕ

2

d ε

d ϕ
1

d ε

d ϕ
2

. ( 1 4)

Wit h t his e x p a nsi o n at s e c o n d or d er,  w e h a v e t w o c o ntri b uti n g t er ms i n  E q. ( 1 3).  We l a b el t h e first t er m of  E q. ( 1 3)
q u a nt u m e ff e cti v e k er n el, K E . We us e K E t o disti n g uis h it fr o m K ,  w h e n o nl y a first- or d er e x p a nsi o n is c o nsi d er e d i n t h e
d es cri pti o n of t h e d y n a mi cs. It is d y n a mi c al i n t h e s e ns e t h at it d e p e n ds o n t h e v al u e of t h e tr ai ni n g p ar a m et er ϕ d uri n g t h e
d y n a mi cs r e g ul at e d b y a gr a di e nt d es c e nt.  We l a b el t h e v ari a bl e p art of t h e s e c o n d t er m i n  E q. ( 1 4) q u a nt u m m et a k er n el
or  D Q N T K.

D e fi niti o n 3 ( Q u a nt u m  m et a k er n el f or o pti mi z ati o n). T h e q u a nt u m  m et a k er n el ass o ci at e d  wit h t h e o pti miz ati o n pr o bl e m
i n  E q. ( 2) is d e fi n e d vi a

μ =

1 , 2

d 2 ε

d ϕ
1
d ϕ

2

d ε

d ϕ
1

d ε

d ϕ
2

. ( 1 5)

I n t h e li mit of s m all c h a n g es i n θ = θ ∗ + δ ϕ , o pti mi z ati o n pr o bl e m,  E q. ( 2), t h e q u a nt u m  m et a k er n el is gi v e n at t h e
l e a di n g- or d er p ert ur b ati o n t h e or y i n δ as

μ = δ 4

1 , 2

0 W
†
+ , 1

X
1
, W

†

1
W

†
− , 1

O W − , 1
W

1
W + , 1 0

0 W
†
+ , 2

X
2
, W

†

2
W

†
− , 2

O W − , 2
W

2
W + , 2 0 ×

⎛

⎝
0 W

†
+ , 1

X
1
, Q

†

1 , 2
X

2
, W

†

2
W

†
− , 2

O W − , 2
W

2
Q

2 , 1
W + , 1 0 : 1 ≥ 2

0 W
†
+ , 2

X
2
, Q

†

2 , 1
X

1
, W

†

1
W

†
− , 1

O W − , 1
W

1
Q

1 , 2
W + , 2 0 : 1 < 2

⎞

⎠ . ( 1 6)

w h er e

W
1 , 2

≡
2 − 1

= 1 + 1

W ,

Q
1 , 2

=
W

1 , 2
W

2
: 1 < 2

1 : 1 = 2 .

( 1 7)
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T h e r esi d u al err or ε i n t h e o pti mi z ati o n pr o bl e m of  E q. ( 2), c a n t h e n b e c o m p ut e d as

ε = 0

1

= L
W

†
O

L

= 1
W 0 − O 0 − iδ ϕ 0 W

†
+ , X , W

†
W

†
− , O W − , W W + , 0

−
δ 2

2
1 , 2

ϕ
1
ϕ

2
×

⎧
⎨

⎩

0 W
†
+ , 1

X
1
, Q

†

1 , 2
X

2
, W

†

2
W

†
− , 2

O W − , 2
W

2
Q

2 , 1
W + , 1 0 : 1 ≥ 2

0 W
†
+ , 2

X
2
, Q

†

2 , 1
X

1
, W

†

1
W

†
− , 1

O W − , 1
W

1
Q

1 , 2
W + , 2 0 : 1 < 2

. ( 1 8)

We ar e n o w r e a d y t o  m a k e a st at e m e nt a b o ut t h e r esi d u al
err or i n t h e li mit of t h e  D Q N T K

T h e o r e m 2 ( P erf or m a n c e g u ar a nt e e of o pti mi z ati o n fr o m
D Q N T K) . I n t h e o pti miz ati o n pr o bl e m,  E q. ( 2), at t h e
D Q N T K or d er,  w e s plit t h e r esi d u al o pti miz ati o n err or i nt o
t w o pi e c es, t h e fr e e p art, a n d t h e i nt er a cti n g p art,

ε = ε F + ε I . ( 1 9)

T h e fr e e p art f oll o ws t h e e x p o n e nti all y d e c a yi n g d y n a mi cs

ε F = (1 − η K )tε ( 0 ), ( 2 0)

a n d t h e i nt er a cti n g p art is gi v e n b y

ε I (t) = − η t(1 − η K )t− 1 K ε ( 0 ). ( 2 1)

H er e  w e h a v e

K ≡ K E (0 ) − K =
d ε

d θ

d ε

d θ
(0 ) −

d ε F

d θ

d ε F

d θ

= 2 iδ 3
0 W

†
+ , X , W

†
W

†
− , O W − , W W + , 0

0 W
†
+ , X , Q

†
, X , W

†
W

†
− , O W − , W W , W W + , 0 : ≥

0 W
†
+ , X , Q

†
, X , W

†
W

†
− , O W − , W W , W W + , 0 : <

ϕ (0 ). ( 2 2)

T h us, t h e r esi d u al o pti miz ati o n err or ε will al w a ys
fi n all y a p pr o a c h z er o,

ε ( ∞ ) = 0. ( 2 3)

T h us, t h e l e a di n g- or d er p ert ur b ati v e c orr e cti o n gi v es t h e
c o ntri b uti o n O ( δ 3 ).

M or e o v er,  w e n oti c e t h at  D Q N T K l e a ds t o i nt er esti n g
p h ysi c al c o ns e q u e n c es.  M or e pr e cis el y, t h e n e xt l e a di n g
c orr e cti o n a b o v e t h e p ert ur b ati v e li mit  will c a us e t h e s o-
c all e d c at a p ult e ff e ct ,  w h er e t h er e ar e s m all b u m ps a p p e ar-
i n g b ef or e a n e x p o n e nti al d e c a y [3 8 ].  T h e r e as o n is r at h er
si m pl e a n d pr o b a bl y  m ost cl e arl y e x pl ai n e d i n o ur dr aft
wit hi n t h e S u p pl e m e nt al  M at eri al [ 3 1 ].  We k n o w t h at t h e
l e a di n g or d er gi v es s c h e m ati c all y t h e t er m a p pr o xi m at el y
e x p (− η Kt ) f or t h e r esi d u al tr ai ni n g err or,  w h er e η is t h e
s m all l e ar ni n g r at e, K is t h e q u a nt u m n e ur al t a n g e nt k er n el,
a n d t is t h e n u m b er of it er ati o ns.  M or e o v er,  w e d eri v e t h e
c orr e cti o n t o w ar ds t h e r esi d u al tr ai ni n g err or,  w hi c h s c al es
as a p pr o xi m at el y t e x p (− η Kt ). I n g e n er al, i n hi g h er- or d er

c orr e cti o ns,  w e g et s c h e m ati c all y t h e c orr e cti o n a p pr o xi-
m at el y tp e x p (− η Kt ) f or a  m or e g e n er al p ol y n o mi al tp i n
t h e pr ef a ct or of t h e e x p o n e nti al d e c a y.  T his t y p e of c or-
r e cti o n f or ms a first- pri n ci pl es e x pl a n ati o n of t h e c at a p ult
e ff e ct,  w h er e a si mil ar r el at e d  m o d el is dis c uss e d.  A f ull
c h ar a ct eri z ati o n of t h e c at a p ult e ff e ct i n cl assi c al a n d q u a n-
t u m c as es is b e y o n d t h e s c o p e of t his p a p er, a n d  w e l e a v e
it f or f ut ur e r es e ar c h [3 9 ].

III.  T H E O R Y  O F  L E A R NI N G

A.  G e n e r al t h e o r y

T h e r es ults o utli n e d i n S e c. II c a n b e e xt e n d e d i n t h e
c o nt e xt of s u p er vis e d l e ar ni n g fr o m a d at a s p a c e D . I n
p arti c ul ar,  w e ar e gi v e n a tr ai ni n g s et c o nt ai n e d i n t h e
d at as p a c e A ⊂ D .  T h e d at a c a n b e l o a d e d i nt o q u a nt u m
st at es t hr o u g h a q u a nt u m f e at ur e  m a p [ 9 ,1 1 ].  We d e fi n e t h e
v ari ati o n al q u a nt u m a ns at z  wit h a si n gl e l a y er b y r e g ar d-
i n g t h e o ut p ut of a q u a nt u m n e ur al n et w or k  wit h t h e d at a

0 3 0 3 2 3- 5



J U N Y U  LI U et al. P R X  Q U A N T U M 3, 0 3 0 3 2 3 ( 2 0 2 2)

p oi nt x δ a s

z i;δ ≡ z i (θ , x δ ) = φ (x δ )| U † O iU |φ (x δ ) . ( 2 4)

H er e,  w e ass u m e t h at O i i s t a k e n fr o m O (H ), a s u bs et of
t h e s p a c e of  H er miti a n o p er at ors of t h e  Hil b ert s p a c e H ,
a n d t h e i n d e x i d es cri b es t h e it h c o m p o n e nt of t h e o ut-
p ut, ass o ci at e d t o t h e it h o p er at or O i.  T h e a b o v e H er miti a n
o p er at or e x p e ct ati o n v al u e e v al u ati o n m o d el is a c o m m o n
d e fi niti o n of t h e q u a nt u m n e ur al n et w or k.  O n e c o ul d als o
m e as ur e t h e r e al a n d i m a gi n ar y p arts dir e ctl y t o d e fi n e a
c o m pl e xi fi e d v ersi o n of t h e q u a nt u m n e ur al n et w or k, us e-
f ul i n t h e c o nt e xt of a m plit u d e e n c o di n g f or t h e z i;δ , a s
dis c uss e d  wit hi n t h e S u p pl e m e nt al  M at eri al [ 3 1 ].  We ar e
n o w i n t h e p ositi o n of i ntr o d u ci n g t h e l oss f u n cti o n

L A ( θ ) =
1

2
α̃ ,i

y i;α̃ − z i;α̃
2

=
1

2
α̃ ,i

ε 2
i;α̃ . ( 2 5)

H er e,  w e c all ε i;α̃ t h e r esi d u al tr ai ni n g err or a n d  w e ass u m e
y i;α̃ i s ass o ci at e d  wit h t h e e n c o d e d d at a φ i(x α̃ ).  N o w,
si mil arl y t o  w h at is d es cri b e d i n S e c. II  A, w e h a v e t h e
gr a di e nt- d es c e nt e q u ati o n

d¯z i;δ = − η

,i ,α̃

ε i ;α̃
d z i;δ

d θ

d z i ;α̃

d θ
, ( 2 6)

wit h a n ass o ci at e d k er n el

K ii
δ ,α̃ =

d z i;δ

d θ

d z i ;α̃

d θ
. ( 2 7)

T o e as e t h e n ot ati o n,  w e d e fi n e t h e j oi nt i n d e x

( δ , i) = ¯a , ( α̃ , i ) = b̂ , ( 2 8)

w hi c h ar e r u n ni n g i n t h e s p a c e D × O (H ) a n d A × O (H ),
r es p e cti v el y, ( w e us e â t o i n di c at e t h at t h e c orr es p o n di n g
d at a c o m p o n e nt is i n t h e s a m pl e s et A , a n d if  w e  wis h
t o  m a k e a g e n er al d at a p oi nt  w e d e n ot e it as ā ), a n d o ur
gr a di e nt- d es c e nt e q u ati o ns ar e

d¯z ā = − η

b̂

K ā b̂ ε b̂ . ( 2 9)

It is p ossi bl e t o s h o w t h at t his k er n el is al w a ys p ositi v e
s e mi d e fi nit e a n d  H er miti a n, s e e S u p pl e m e nt ar y  M at eri al
f or a pr o of.  N o w r e c alli n g  E q. ( 1),  w e ar e i n t h e p osi-
ti o n t o gi v e a n a n al yti c al e x pr essi o n f or t h e  Q N T K f or
a s u p er vis e d l e ar ni n g pr o bl e m as f oll o ws.  D et ails o n t h e
d eri v ati o n c a n b e f o u n d  wit hi n t h e S u p pl e m e nt al  M at eri al
[3 1 ].

D e fi niti o n 4 ( Q N T K f or q u a nt u m  m a c hi n e l e ar ni n g). T h e
Q N T K f or t h e q u a nt u m l e ar ni n g  m o d el,  E q. ( 2 5), is gi v e n
b y

K ii
δ ,α̃ =

d z i;δ

d θ

d z i ;α̃

d θ

= −

⎛

⎝
φ (x δ ) U

†
+ , X , U

†
W

†
U

†
− , O iU − , W U U + , φ (x δ ) ×

φ (x α̃ ) U
†
+ , X , U

†
W

†
U

†
− , O i U − , W U U + , φ (x α̃ )

⎞

⎠ . ( 3 0)

B.  A bs e n c e of r e p r es e nt ati o n l e a r ni n g i n t h e f r o z e n
li mit

I n t h e fr o z e n  Q N T K c as e, t h e k er n el is st ati c, a n d t h e
l e ar ni n g al g orit h m c a n n ot l e ar n f e at ur es fr o m t h e d at a. I n
t h e s a m e f as hi o n of S e c. II  B,  w e t a k e t h e fr oz e n  Q N T K
li mit w h er e t h e c h a n g es of v ari ati o n al a n gl es θ ar e s m all.
Usi n g t h e pr e vi o us n ot ati o ns  w e c a n d e fi n e t h e  Q N T K i n

f or q u a nt u m  m a c hi n e l e ar ni n g i n t h e fr o z e n li mit, a n d a
p erf or m a n c e g u ar a nt e e f or t h e err or o n t h e l oss f u n cti o n i n
t his r e gi m e as f oll o ws.

D e fi niti o n 5 ( Fr o z e n  Q N T K f or q u a nt u m  m a c hi n e l e ar n-
i n g). I n t h e q u a nt u m l e ar ni n g  m o d el,  E q. ( 2 5),  wit h t h e
fr oz e n  Q N T K li mit,

K ii
δ ,α̃ = − δ 2

⎛

⎝
φ (x δ ) W

†
+ , X , W

†
W

†
− , O iW − , W W + , φ (x δ ) ×

φ (x α̃ ) W
†
+ , X , W

†
W

†
− , O i W − , W W + , φ (x α̃ )

⎞

⎠ . ( 3 1)
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T h e o r e m 3 ( P erf or m a n c e g u ar a nt e e of q u a nt u m  m a c hi n e
l e ar ni n g i n t h e fr o z e n  Q N T K li mit). I n t h e q u a nt u m l e ar n-
i n g  m o d el,  E q. ( 2 5),  wit h t h e fr oz e n  Q N T K li mit, t h e
r esi d u al o pti miz ati o n err or d e c a ys e x p o n e nti all y d uri n g
t h e gr a di e nt d es c e nt as

ε â 1
(t) =

â 2

U â 1 â 2
(t) ε â 2

(0 ),

U â 1 â 2
(t) = (1 − η K )t

â 1 â 2
.

( 3 2)

T h e c o n v er g e n c e r at e is d e fi n e d as

τ c = − l o g (1 − η K ) ≈ η K ii
δ ,α̃ . ( 3 3)

T h e n  w e o bt ai n f or t h e q u a nt u m l e ar ni n g  m o d el,  E q.
( 2 5),  wit h t h e fr o z e n  Q N T K li mit, t h e as y m pt oti c d y n a m-
i cs  wit h t h e D × O (H ) i n d e x ā , is gi v e n b y

z ā (∞ ) = z ā (0 ) −

â 1 ,â 2

K̃ â 1 â 2 K ā â 1
ε â 2

(0 ). ( 3 4)

H er e K̃ m e a ns t h at t h e k er n el d e fi n e d o nl y r estri ct e d t o t h e
s p a c e A × O (H ) ( n ot e t h at it is di ff er e nt fr o m t h e k er n el
i n v ers e d e fi n e d f or t h e  w h ol e s p a c e i n g e n er al), a n d  w e
d e n ot e t h e k er n el i n v ers e as

â ∈ A × O (H )

K̃ â 1 â 2 K̃ â 2 â 3
= δ

â 1
â 3

. ( 3 5)

S p e ci fi c all y, if  w e ass u m e ā i n di c at es t h e d at a i n t h e s p a c e
A × O (H ),  w e h a v e ε ā (∞ ) = 0. Pr o ofs a n d d et ails of
t h es e r es ults ar e gi v e n  wit hi n t h e S u p pl e m e nt al  M at eri al
[3 1 ].  M or e o v er, t h e as y m pt oti c v al u e is di ff er e nt fr o m t h e
fr o z e n  Q N T K c as e i n t h e o pti mi z ati o n pr o bl e m, b e c a us e
of t h e e xist e n c e of t h e di ff er e n c e b et w e e n t h e tr ai ni n g s et
A a n d t h e  w h ol e d at a s p a c e.

C.  R e p r es e nt ati o n l e a r ni n g i n t h e d y n a mi c al s etti n g

I n t h e d y n a mi c al c as e, t h e k er n el is c h a n gi n g d uri n g
t h e gr a di e nt- d es c e nt o pti mi z ati o n, d u e t o n o nli n e arit y i n
t h e u nit ar y o p er ati o ns. I n t his c as e t h e n t h e v ari ati o n al
q u a nt u m cir c uits c o ul d n at ur all y s er v e as ar c hit e ct ur es of
r e pr es e nt ati o n l e ar ni n g i n t h e cl assi c al s e ns e.

We g e n er ali z e t h e l e a di n g- or d er p ert ur b ati o n t h e or y of
o pti mi z ati o n n at ur all y t o t h e l e ar ni n g c as e, a n d  w e st at e
t h e  m ai n t h e or e ms h er e. First,  w e h a v e t h e f oll o wi n g.

T h e o r e m 4 ( P erf or m a n c e g u ar a nt e e of q u a nt u m  m a c hi n e
l e ar ni n g i n t h e  D Q N T K li mit). I n t h e q u a nt u m l e ar ni n g
m o d el,  E q. ( 2 5), at t h e  D Q N T K or d er, t h e tr ai ni n g err or is
gi v e n b y t w o c o ntri b uti o ns, a fr e e a n d i nt er a cti n g p art, as
f oll o ws:

ε â (t) = ε F
â (t) + ε I

â (t), ( 3 6)

w h er e

ε F
â (t) =

â 1

U â â 1
(t) ε â 1

(0 ),

U â 1 â 2
(t) = (1 − η K )t

â 1 â 2
,

( 3 7)

a n d

ε I
â (t) = − η

t− 1

s= 0

(1 − η K )t− 1 − s K (1 − η K )s ε ( 0 )

â

.

( 3 8)

H er e  K is t h e fr oz e n (li n e ar) p art of t h e  Q N T K.  Usi n g a
m atri x n ot ati o n f or t h e c o m p a ct i n di c es â, i n t h e s p a c e A ×
O (H ),  w e h a v e

ε I (t) ≤ η t 1 − η K t− 1 K ε ( 0 ) , ( 3 9)

w h er e  K is d e fi n e d as

K ,ii
δ ,α̃ = iδ 3

,

ϕ (0 )G δ ,i
,

α̃ ,i + iδ 3

,

ϕ (0 )G α̃ ,i
,

δ ,i, ( 4 0)

a n d

G δ ,i

1 , 2
≡ G

1 , 2
( φ (x δ ), O i)

=

⎛

⎝

⎧
⎨

⎩

φ ( x δ ) W
†
+ , 1

X
1
, Q

†

1 , 2
X

2
, W

†

2
W

†
− , 2

O iW − , 2
W

2
W

2 , 1
W

1
W + , 1

φ ( x δ ) : 1 ≥ 2

φ ( x δ ) W
†
+ , 2

X
2
, Q

†

2 , 1
X

1
, W

†

1
W

†
− , 1

O iW − , 1
W

1
W

1 , 2
W

2
W + , 2

φ ( x δ ) : 1 < 2

⎞

⎠ ,

δ ,i ≡ ( φ (x δ ), O i) = φ ( x δ ) W
†
+ , X , W

†
W

†
− , O iW − , W W + , φ ( x δ ) . ( 4 1)
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F or t h e q u a nt u m l e ar ni n g  m o d el,  E q. ( 2 5), at t h e  D Q N T K or d er, t h e d y n a mi cs gi v e n b y gr a di e nt d es c e nt o n a g e n er al
d at a p oi nt is gi v e n b y

z ā (∞ ) = z ā (0 ) −

â 1 ,â 2

K ā â 1
K̃ â 1 â 2 ε â 2

(0 ) +

â 1 ,â 2 ,â 3 ,â 4

⎡

⎣ μ â 1 ā â 2
−

â 5 ,â 6

K ā â 5 K̃
â 5 â 6 μ â 1 â 6 â 2

⎤

⎦ Z
â 1 â 2 â 3 â 4
A ε â 3

(0 ) ε â 4
(0 )

+

â 1 ,â 2 ,â 3 ,â 4

⎡

⎣ μ ā â 1 â 2
−

â 5 ,â 6

K ā â 5 K̃
â 5 â 6 μ â 6 â 1 â 2

⎤

⎦ Z
â 1 â 2 â 3 â 4
B ε â 3

(0 ) ε â 4
(0 ), ( 4 2)

w h er e Z A ,B s ar e c all e d t h e q u a nt u m al g orit h m pr oj e ct ors
(s e e  R efs. [2 4 ,2 8 ] f or t h eir ori gi n al fr a m e w or k),

Z
â 1 â 2 â 3 â 4
A

≡ K̃ â 1 â 3 K̃ â 2 â 4 −

â 5

K̃ â 2 â 5 X
â 1 â 5 â 3 â 4 ,

Z
â 1 â 2 â 3 â 4
B

≡ K̃ â 1 â 3 K̃ â 2 â 4 −

â 5

K̃ â 2 â 5 X
â 1 â 5 â 3 â 4 +

η

2
X

â 1 â 2 â 3 â 4 , ( 4 3)

a n d X is d e fi n e d as

X
â 1 â 2 â 3 â 4 =

∞

s= 0

[(1 − η K )s ]â 1 â 3
[(1 − η K )s ]â 2 â 4

, ( 4 4)

or

δ
â 1
â 5

δ
â 2
â 6

=

â 3 ,â 4

X
â 1 â 2 â 3 â 4

× K̃ â 3 â 5 δ â 4 â 6
+ δ â 3 â 5 K̃ â 4 â 6

− η K̃ â 3 â 5 K̃ â 4 â 6
. ( 4 5)

Fi n all y, μ is t h e q u a nt u m  m et a k er n el i n t h e q u a nt u m
m a c hi n e l e ar ni n g c o nt e xt,

μ
i0 i1 i2
δ 0 δ 1 δ 2

= μ ā 0 ā 1 ā 2
=

1 , 2

d 2 z i0 ;δ 0

d ϕ
1
d ϕ

2

d z i1 ;δ 1

d ϕ
1

d z i2 ;δ 2

d ϕ
2

ϕ = 0

= δ 4

1 , 2

δ 1 ,i1
1

δ 2 ,i2
2

G
δ 0 ,i0
1 , 2

. ( 4 6)

S p e ci fi c all y, if  w e ass u m e t h at ā i s fr o m A × O (H ), w e
will g et ε ā (∞ ) = 0.  M or e d et ails of μ ar e gi v e n  wit hi n
t h e S u p pl e m e nt al  M at eri al [3 1 ].  T h e e xist e n c e of q u a nt u m
al g orit h m pr oj e ct ors s h o ws t h e q u a nt u m al g orit h m d e p e n-
d e n c e of t h e v ari ati o n al q u a nt u m cir c uits,  w hi c h i n di c at es
p o w erf ul r e pr es e nt ati o n l e ar ni n g p ot e nti al b e c a us e of n o n-
li n e arit y.

I V.  H Y B RI D  Q U A N T U M  C L A S SI C A L  N E T W O R K
A N D  T H E  L A R G E- WI D T H  LI MI T

I n t his s e cti o n  w e d e fi n e a s etti n g i n  w hi c h o n e c a n s p e a k
of a q u a nt u m a n al o g of t h e l ar g e- wi dt h li mit f or  N T Ks. I n
s u c h a li mit,  w e e x p e ct t h at t h e d y n a mi cs li n e ari z es d ur-
i n g t h e  w h ol e tr ai ni n g pr o c ess, si mil ar t o  w h at h a p p e ns
i n t h e fr o z e n r e gi m e of l a z y tr ai ni n g, a n d t h e c orr el ati o n
f u n cti o n of t h e o ut p uts n e ur o ns b e c o m es  G a ussi a n.  T h e
cl assi c al  N T K t h e or y r e q uir es a r a n d o m i niti ali z ati o n of
w ei g hts a n d bi as a n d t a k es t h e l ar g e- wi dt h li mit of n e ur al
n et w or k ar c hit e ct ur es. I n t h e q u a nt u m s et u p, t h e r a n d o m
i niti ali z ati o n is a r a n d o m c h oi c e of tr ai n a bl e a ns ät z e.

T o s e e it  m or e cl e arl y,  w e c o nsi d er a h y bri d q u a n-
t u m cl assi c al n e ur al n et w or k  m o d el [4 0 ,4 1 ]. St arti n g fr o m
a q u a nt u m n e ur al n et w or k,  w e  m e as ur e t h e o ut p ut n e u-
r o ns fr o m t h e q u a nt u m ar c hit e ct ur e a n d dr ess t h e m  wit h
a si n gl e-l a y er cl assi c al n e ur al n et w or k.  T h e o ut p ut of t h e
cl assi c al n e ur al n et w or k c o ul d b e t h e n r e- e n c o d e d i nt o a
q u a nt u m r e gist er vi a a n ot h er q u a nt u m f e at ur e  m a p.  A si n-
gl e q u a nt u m t o cl assi c al st e p c a n b e c all e d o n e h y bri d
l a y er, a n d t h e n o n e c o ul d c o nstr u ct  m ulti pl e h y bri d l a y-
ers c o n n e ct e d b y f e at ur e  m a p e n c o di n g, s e e Fi g. 3 f or a n
ill ustr ati o n.

F or t h e q u a nt u m p art of t h e cir c uit,  w e us e t h e s a m e
str u ct ur e of q u a nt u m n e ur al n et w or ks  wit h  H er miti a n o p er-
at or e x p e ct ati o n v al u es.  M at h e m ati c all y, t h e  m o d el is

FI G. 3.  T h e h y bri d q u a nt u m cl assi c al n e ur al n et w or k c o nsi d-
er e d h er e.  We r e p etiti v el y a p pl y q u a nt u m a n d cl assi c al n e ur al
n et w or ks i n o ur ar c hit e ct ur e,  wit h f e at ur e  m a p e n c o di n g |ψ
a n d q u a nt u m  m e as ur e m e nts,  m a p pi n g t h e d at a p oi nt x α t o t h e
pr e di cti o n z α .
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d e fi n e d as

z
Q
1; α ;j1

= φ 1 (x α ) U †, 1 θ 1 O 1
j1
U 1 θ 1 φ 1 (x α ) , ( 4 7)

z
Q
ω ;α ;jω

= φ ω w ω − 1; α U †, ω ( θ ω )O ω
jω

U ω ( θ ω ) φ ω w ω − 1; α ,

( 4 8)

w ω ;α ;j C
ω

= σ ω
j C
ω

⎛

⎝
di m O ω (H ω )

jω = 1

W ω
j C
ω ,jω

z
Q
ω ;α ;jω

+ b ω
j C
ω

⎞

⎠ ≡

σ ω
j C
ω

z C
ω ;α ;j C

ω
. ( 4 9)

H er e,  E q. ( 4 7) i niti ali z es t h e q u a nt u m n e ur al n et w or k,
m a p pi n g t h e d at a x α t o c o m p o n e nts j1 , l a b eli n g t h e i n d e x i n
t h e s p a c e of  H er miti a n o p er at or  w e us e O 1 (H 1 ).  T h e v ari-
ati o n al a ns at z is si mil ar t o  w h at  w e h a v e dis c uss e d b ef or e,
b ut t h e y  mi g ht b e di ff er e nt i n di ff er e nt l a y ers.  We us e t h e
l a b el ω t o d e n ot e t h e or d er of h y bri d l a y ers, r a n gi n g fr o m
1 t o t h e t ot al n u m b er of h y bri d l a y ers.  We i ntr o d u c e t h e
q u a nt u m a ns at z U ω ( θ ω ) = L ω

ω = 1 W ω
ω
e x p iθ ω

ω
X ω

ω
, t h e

f e at ur e  m a p φ ω , a n d t h e o p er at or s p a c e O ω (H ω ) i n d e x jω .
E q u ati o n ( 4 8) i ntr o d u c es t h e r e c ursi v e e n c o di n g fr o m t h e
cl assi c al n e ur al n et w or k d at a w ω − 1; α = (w ω − 1; α ) j C

ω − 1
t o t h e

s p a c e O ω (H ω ),  w h er e t h e cl assi c al d at a v e ct or w ω ;α ;j C
ω

i s
o bt ai n e d t hr o u g h a si n gl e-l a y er cl assi c al n e ur al n et w or k
wit h t h e n o nli n e ar a cti v ati o n σ ω

j C
ω

,  w ei g ht  m atri x W ω
j C
ω ,jω

, a n d

bi as v e ct or b ω
j C
ω

wit h t h e cl assi c al i n d e x j C
ω , a n d t h e pr e-

a cti v ati o n z C
ω ;α ;j C

ω
.  W h e n  w e i nti ali z e t h e h y bri d n et w or k,

t h e cl assi c al  w ei g hts a n d bi as es ar e st atisti c all y  G a ussi a n
f oll o wi n g t h e  L e C u n p ar a m etri z ati o n [4 2 ],

E W ω
j C
1, ω ,j1, ω

W ω
j C
2, ω ,j2, ω

= δ j C
1, ω ,j C

2, ω
δ j1, ω ,j2, ω

C ω
W

di m O ω (H ω )
,

E b ω
j C
1, ω

b ω
j C
2, ω

= δ j C
1, ω ,j C

2, ω
C ω

b .

( 5 0)

N ot e t h at i n t his c as e, t h e r ol e of wi dt h i n t h e l ar g e-
wi dt h t h e or y is r e pl a c e d  wit h t h e di m e nsi o n of t h e o p er at or
s p a c e, di m (O ω (H ω )).  T h e v al u e of t h e di m e nsi o n ( wi dt h)
c o ul d b e ar bitr ar y i n pri n ci pl e, b ut it is u p p er b o u n d e d
b y t h e s q u ar e of t h e di m e nsi o n of t h e  Hil b ert s p a c e,
di m (O ω (H ω )) ≤ di m (H ω )2 , i n t h e q u bit s yst e m.

If  w e n o w ass u m e t h at o ur q u a nt u m tr ai ni n g p ar a m-
et ers θ ω ar e c h os e n fr o m e ns e m bl es ( or t h e v ari ati o n al
a ns ät z e t h e ms el v es ar e fr o m s o m e e ns e m bl es), si mil ar t o
t h e cl assi c al ass u m pti o n.  D e n oti n g t h e e x p e ct ati o n v al u e
fr o m q u a nt u m e ns e m bl es as E ,  w e s h o w t h e f oll o wi n g
st at e m e nt.

T h e o r e m 5 ( N o n- G a ussi a nit y fr o m l ar g e  wi dt h). T h e
f o ur- p oi nt f u n cti o n of cl assi c al pr e a cti v ati o ns is n e arl y
G a ussi a n if di m (O ω (H ω )) is l ar g e,

E c o n n z C
ω ;α 1 ;j C

1, ω
z C
ω ;α 2 ;j C

2, ω
z C
ω ;α 3 ;j C

3, ω
z C
ω ;α 4 ;j C

4, ω

= O
1

di m (O ω (H ω ))
, ( 5 1)

as l o n g as,

E c o n n z
Q
ω ;α 1 ;j1, ω

z
Q
ω ;α 2 ;j1, ω

z
Q
ω ;α 3 ;j2, ω

z
Q
ω ;α 4 ;j2, ω

= O (1 ) × δ j1, ω ,j2, ω
, ( 5 2)

a n d t h eir p er m ut ati o ns f or all ω s.  H er e t h e n ot ati o n E c o n n

m e a ns t h e c o n n e ct e d  G a ussi a n c orr el at ors s u btr a cti n g
Wi c k c o ntr a cti o ns.

M or e d et ails ar e gi v e n  wit hi n t h e S u p pl e m e nt al  M at eri al
[3 1 ].  T h e ort h o g o n al c o n diti o n  E q. ( 5 2) c a n b e n at u-
r all y a c hi e v e d b y r a n d o mi z e d ar c hit e ct ur es, f or i nst a n c e,
H a ar r a n d o m n ess a n d k d esi g ns.  We i nt er pr et t h e r es ult as
f oll o ws:

( a) I n t his h y bri d c as e, t h e r ol e of wi dt h i n t h e n e ur al
n et w or k is u p p er b o u n d e d b y t h e s q u ar e di m e nsi o n
of t h e w t h  Hil b ert s p a c e.  T h us, if  w e s c al e u p t h e
n u m b er of q u bits,  w e ar e n at ur all y i n t h e l ar g e- wi dt h
li mit.  H o w e v er, if o ur v ari ati o n al a ns at z is s p ars e
e n o u g h s u c h t h at t h e o p er at or s p a c e di m e nsi o n
di m O (H ) is s m all, t h e n  w e  will h a v e si g ni fi c a nt
fi nit e  wi dt h e ff e cts.

( b)  T h e c o n diti o n,  E q. ( 5 2), f or q u a nt u m o ut p uts is
n at ur all y s atis fi e d b y r a n d o m ar c hit e ct ur es. If  w e
ass u m e t h at o ur v ari ati o n al a ns at z is hi g hl y r a n-
d o m,  w e ar e e x p e ct e d t o h a v e si mil ar  G a ussi a n
pr o c ess b e h a vi ors as t h e l ar g e- wi dt h li mit of cl assi-
c al n e ur al n et w or ks.  H o w e v er, t h e s a m e ass u m pti o n
will g e n eri c all y l e a d t o t h e b arr e n pl at e a u pr o bl e m
[8 ],  w h er e t h e d eri v ati v es of t h e l oss f u n cti o n  will
m o v e sl o wl y  w h e n  w e s c al e u p o ur o p er at or s p a c e
di m e nsi o n.  O ur r es ult s h o ws a p ossi bl e c o n n e cti o n
b et w e e n t h e l ar g e- wi dt h li mit a n d t h e b arr e n pl at e a u
pr o bl e m.

( c)  M or e o v er, t h e ort h o g o n al c o n diti o n i n  E q. ( 5 2) w e
i m p os e d o es n ot  m e a n t h at  w e h a v e t o s et t h e
a ns at z t o b e hi g hl y r a n d o m. It c o ul d als o b e p ot e n-
ti all y s atis fi e d b y fi x e d a ns ät z e, f or i nst a n c e,  wit h
s o m e err or- c orr e cti o n t y p es of ort h o g o n al c o n di-
ti o ns. If t h e c o n diti o n is g e n er all y n ot s atis fi e d, t h e
v ari ati o n al ar c hit e ct ur e  w e st u d y c o ul d h a v e hi g hl y
n o n- G a ussi a n a n d r e pr es e nt ati o n l e ar ni n g f e at ur es,
alt h o u g h it  mi g ht b e t h e or eti c all y h ar d t o u n d erst a n d
[4 3 ].
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FI G. 4.  T hr e e- di m e nsi o n al ill ustr ati o n of o ur d at a s et f or tr ai n-
i n g.  H er e  w e us e t hr e e i n p uts x [ 0, 1, 2] a n d l a b el t h e m  wit h 0 or
1, c ol or e d b y r e d or bl u e, r es p e cti v el y.  T h e d at a s et is g e n er at e d
usi n g a d _ h o c _ d a t a .

V.  N U M E RI C A L  R E S U L T S

I n t his s e cti o n,  w e t est o ur  Q N T K t h e or y i n pr a cti c e,
usi n g t h e  Qis kit s oft w ar e li br ar y [ 3 0 ] t o si m ul at e t h e i m pl e-
m e nt ati o n of a p ar a di g m ati c q u a nt u m  m a c hi n e-l e ar ni n g
t as k o n q u a nt u m pr o c ess ors, b ot h i n n ois el ess a n d n ois y
c as es.  We c o nsi d er a v ari ati o n al cl assi fi c ati o n pr o bl e m i n
s u p er vis e d l e ar ni n g  wit h t hr e e q u bits.  T h e d at a s et is g e n-
er at e d  wit h t h e a d _ h o c _ d a t a f u n cti o n alit y as pr o vi d e d
i n q i s k i t . m l . d a t a s e t s wit hi n t h e  Qis kit  M a c hi n e
L e ar ni n g  m o d ul e [ 4 4 ], s e e Fi g. 4 f or a n ill ustr ati o n.

O ur n u m eri c al e x p eri m e nts ar e p erf or m e d first usi n g t h e
n ois el ess s t a t e v e c t o r _ s i m u l a t o r b a c k e n d, t h e n
i n cl u di n g b ot h st atisti c al (n s h ots = 8 1 9 2) a n d si m ul at e d
h ar d w ar e n ois e  wit h t h e  Qis kit q a s m _ s i m u l a t o r . A
si m pli fi e d  m o d el of d e vi c e n ois e, f e at uri n g t h e q u bit
r el a x ati o n a n d d e p h asi n g, si n gl e- q u bit a n d t w o- q u bit
g at e err ors a n d r e a d o ut i n a c c ur a ci es, is c o nstr u ct e d  wit h
t h e N o i s e M o d e l . f r o m _ b a c k e n d ( ) Qis kit  m et h o d
a n d p ar a m etri z e d usi n g o ur c ali br ati o n d at a fr o m t h e
i b m q _ b o g o t a s u p er c o n d u cti n g pr o c ess or ( a c c ess e d o n
O ct o b er, 1 5 2 0 2 1).

We i m pl e m e nt s u p er vis e d l e ar ni n g usi n g a  Qis kit
M a c hi n e  L e ar ni n g N e u r a l N e t w o r k C l a s s i f i e r wit h
a s q u ar e d err or l oss, o bt ai ni n g r e as o n a bl e c o n v er-
g e n c e  wit h gr a di e nt- d es c e nt al g orit h ms (s e e Fi g. 5 ).
T h e u n d erl yi n g v ari ati o n al q u a nt u m cl assi fi er is b as e d
o n t h e T w o L a y e r Q N N d esi g n,  wit h a t hr e e i n p ut
Z Z F e a t u r e M a p a n d a R e a l A m p l i t u d e s tr ai n a bl e
a ns at z  wit h t hr e e r e p etiti o ns a n d 1 2 p ar a m et ers. F urt h er
d et ails o n n u m eri c al si m ul ati o ns ar e gi v e n  wit hi n t h e S u p-
pl e m e nt al  M at eri al [ 3 1 ].  N ot e t h at  w e d o n ot d e m a n d a
p erf e ct c o n v er g e n c e ar o u n d t h e gl o b al  mi ni m u m, si n c e
t h e  Q N T K t h e or y o nl y c ar es a b o ut t h e d eri v ati v es of

FI G. 5.  C o n v er g e n c e of t h e o bj e cti v e f u n cti o n d uri n g gr a di e nt
d es c e nt.  H er e  w e c o m p ar e t h e i d e al a n d n ois y c as es, l a b el e d b y
r e d or bl u e, r es p e cti v el y.

t h e r esi d u al l e ar ni n g err ors,  w hi c h is i n v ari a nt b y s hift-
i n g a c o nst a nt or c h a n gi n g t h e i niti al c o n diti o n  w h e n
s ol vi n g t h e tr ai ni n g d y n a mi cs. I n t h e cl assi c al t h e or y of
N T K, i n t h e i n fi nit e  wi dt h c as e, f or i nst a n c e, t h e  m ulti-
l a y er p er c e ptr o n ( M L P)  m o d el is b ot h o v er p ar a m etri z e d
a n d g e n er ali z e d, a n d t h e a ns w er  w o ul d gi v e t h e gl o b al
mi ni m u m. I n cl u di n g fi nit e  wi dt h c orr e cti o ns, t h er e  mi g ht
b e  m ulti pl e l o c al  mi ni m a, a n d it is a f e at ur e of r e pr e-
s e nt ati o n l e ar ni n g.  M or e o v er,  w e us e t h e err or- miti g ati o n
pr ot o c ol b y a p pl yi n g C o m p l e t e M e a s F i t t e r fr o m
q i s k i t . i g n i s . m i t i g a t i o n . m e a s u r e m e n t t o  mit-
i g at e r e a d o ut n ois e.

I n Fi g. 6 ,  w e c o m p ut e t h e  Q N T K ei g e n v al u es f or
b ot h t h e n ois el ess a n d n ois y si m ul ati o ns, c o m p ari n g t h e m
wit h t h e or eti c al pr e di cti o ns. Si n c e  w e ar e i n t h e u n d er-
p ar a m etri z e d r e gi m e, t h e n u m b er of n o n z er o ei g e n v al u es
of t h e  Q N T K is t h e s a m e as t h e n u m b er of v ari ati o n al
a n gl es,  w hi c h is 1 2 i n o ur e x p eri m e nts.  We fi n d a gr e e m e nt
b et w e e n t h os e t w o i n t h e l at e ti m e,  w hi c h s h o ws t h e p o w er
of pr e di ct a bilit y usi n g t h e  Q N T K t h e or y.

H er e  w e gi v e a n a d diti o n al s u m m ar y b as e d o n o ur
n u m eri c al a n al ysis. P h ysi c all y, t h er e ar e t w o di ff er e n c es
b et w e e n q u a nt u m a n d cl assi c al i n t er ms of  D N T K. First,
n o n- G a ussi a nit y c o ul d b e g e n er at e d if t h e q u a nt u m p art
of t h e n e ur al n et w or ks is n ot ort h o g o n al e n o u g h, a n d
t h e ort h o g o n alit y is li k el y c a us e d b y  H a ar r a n d o m n ess or
q u a nt u m err or- c orr e cti o n c o n diti o ns, s e e  R efs. [ 4 5 – 4 7 ].
S e c o n dl y, t h e e ff e ct of q u a nt u m n ois es is si g ni fi c a nt i n
t h e n e ar-t er m q u a nt u m d e vi c es, a n d  w e c a n cl e arl y s e e
t h e c orr e cti o n b et w e e n q u a nt u m a n d cl assi c al i n Fi g. 6 as
n u m eri c al e x a m pl es.

Fi n all y,  w e  wis h t o a d dr ess t h e li mit ati o n of o ur t h e-
ori es. I n f a ct, o ur t h e or y is li mit e d b y t h e n at ur e of t h e
p ert ur b ati v e  m et h o d, a n d  m a n y of t h e q u a nt u m  m a c hi n e-
l e ar ni n g d y n a mi cs c o ul d b e hi g hl y n o nli n e ar. F urt h er m or e,
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( a)

( b)

FI G. 6.  K er n el ei g e n v al u es d uri n g t h e gr a di e nt- d es c e nt
d y n a mi cs.  U p: n ois el ess si m ul ati o n.  D o w n: n ois y si m ul ati o n
i n cl u di n g a  m o d el of d e vi c e err ors.  T h e s oli d c ur v es ar e 1 2
n o n z er o ei g e n v al u es of t h e  Q N T K,  w hil e t h e d as h e d li n es
ar e t h e or eti c al pr e di cti o ns of t h e fr o z e n  Q N T K at t h e l at e
ti m e.

t h e pr es e n c e of n ois e o n c urr e nt q u a nt u m pr o c ess ors  will
als o li mit t h e s c o p e of t h e t h e or y, a n d it is  w ort h tr yi n g
t o e x pl or e f urt h er i n e x p eri m e nts a n d t h e ori es a b o ut h o w
us ef ul t h e t h e or y is i n pr a cti c e.

VI.  C O N C L U SI O N S  A N D  O P E N  P R O B L E M S

T h e r es ults pr es e nt e d h er e est a blis h a g e n er al fr a m e-
w or k of a  Q N T K t h e or y, d eri vi n g a n al yti c al tr e at m e nt of
t h e o pti mi z ati o n a n d l e ar ni n g d y n a mi cs i n t h at r e gi m e.  We
o utli n e t h e f oll o wi n g o p e n pr o bl e ms f or f ut ur e st u d y.

( a)  O ur r es e ar c h gi v es pr a cti c al g ui d a n c e t o t h e d esi g n
v ari ati o n al q u a nt u m al g orit h ms.  O n e c o ul d c o m-
p ut e t h e  Q N T K, or t h e k er n el its elf i n t h e q u a n-
t u m k er n el  m et h o d [1 1 ]. It  will b e i nt er esti n g t o
c o m p ar e t h os e r es ults  wit h ot h er t h e or eti c al crit e-
ri a a b o ut t h e q u alit y of t h e v ari ati o n al q u a nt u m
al g orit h ms [ 4 8 ,4 9 ]. I n f a ct, hi g h er ei g e n v al u es of
n e ur al t a n g e nt k er n els l e a d t o f ast er c o n v er g e n c es

a n d f e w er g e n er ali z ati o n err ors  wit h g o o d ali g n m e nt
wit h t h e t ar g et f u n cti o n  w e  w a nt t o fit [ 5 0 – 5 5 ]. It
will b e i nt er esti n g t o e x pl or e i n pr a cti c e if t h e a n a-
l yti c al ass u m pti o ns  m a d e h er e o n t h e l ar g e- wi dt h
li mit a n d s m all n o nli n e arit y h ol d f or pr a cti c al us e
c as es  wit h a n u m b er of p ar a m et ers s c ali n g p ol y n o-
mi all y  wit h t h e s yst e m si z e (s e e cl assi c al a n al o gs
[5 6 ]).

( b) It  w o ul d b e i nt er esti n g if o n e c o ul d i n v esti g at e  w h e n
t h e fr o z e n  Q N T K li mit is us ef ul i n ot h er c o nt e xts. I n
Tr ott er pr o d u ct f or m ul as, f or i nst a n c e,

li m
n → ∞

e i a X / n e i b Z/ n n
, ( 5 3)

t o i m pl e m e nt t h e g at e U = e i(a X + b Z ) .  T h us, s m all
v ari ati o n al a n gl es  mi g ht  wi d el y a p p e ar i n r e al c as es
of q u a nt u m ar c hit e ct ur es, e v e n b e y o n d t h e r e gi m e
of l a z y tr ai ni n g ar o u n d c o n v er g e n c e.

( c)  C o n n e cti o n t o t h e b arr e n pl at e a u pr o bl e m (s e e  R efs.
[4 6 ,4 7 ]).  O ur  w or k s u g g ests a p ossi bl e c o n n e cti o n
b et w e e n t h e b arr e n pl at e a u pr o bl e m i n v ari ati o n al
q u a nt u m al g orit h ms a n d t h e l ar g e- wi dt h li mit i n
cl assi c al n e ur al n et w or ks, b y o bs er vi n g t h e f oll o w-
i n g si mil arit y b et w e e n t h e  L e C u n p ar a m etri z ati o n
a b o v e

E W j C
1 j1

W j C
2 j2

= δ j C
1 ,j C

2
δ j1 ,j2

C W

wi dt h
, ( 5 4)

a n d t h e 1- d esi g n r a n d o m f or m ul a [ 5 7 ]

E (U ij U
†
kl ) =

δ ilδ j k

di m H
. ( 5 5)

( d) It  will b e i nt er esti n g t o e x pl or e t h e r o b ust n ess of
t h e  Q N T K t h e or y a g ai nst n ois e. S p e ci fi c all y,  w e
h a v e o bt ai n e d a n e x p o n e nti al c o n v er g e n c e  w h e n t h e
Q N T K is fr o z e n.

( e) Fi n all y, it  will b e i nt er esti n g t o e x pl or e t h e n o n-
li n e ar r e gi m e  w h er e t h e p ert ur b ati v e a n al ysis f ails.
O n e c o ul d dr a w p h as e di a gr a ms of q u a nt u m
m a c hi n e l e ar ni n g a b o ut s o m e or d er p ar a m et ers , f or
i nst a n c e, t h e l e ar ni n g r at e [3 8 ].  T h os e st u di es  will
d e e p e n o ur t h e or eti c al u n d erst a n di n g of q u a nt u m
m a c hi n e l e ar ni n g.  M or e dir e cti o ns i n cl u d e c o m-
p aris o ns b et w e e n t h e cl assi c al a n d q u a nt u m c as es,
e x pl ori n g n o n- G a ussi a nit y i n a n d o ut of t h e l ar g e-
wi dt h li mit, a n d e x pl ori n g t h e c o ns e q u e n c es  w h e n
t h e ort h o g o n alit y c o n diti o n is n ot  m et.
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e d g e c o n v ers ati o ns  wit h  D a n  A.  R o b erts o n cl arif y-
i n g his b o o k a n d l e ct ur e [2 5 ,2 8 ]. J. L. is s u p p ort e d i n
p art b y I nt er n ati o n al  B usi n ess  M a c hi n es (I B M)  Q u a n-
t u m t hr o u g h t h e  C hi c a g o  Q u a nt u m  E x c h a n g e, a n d t h e
Prit z k er S c h o ol of  M ol e c ul ar  E n gi n e eri n g at t h e  U ni v ersit y
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1- 0 0 2 0,  W 9 1 1 N F- 1 8- 1- 0 2 1 2),  A R O  M U RI ( W 9 1 1 N F- 1 6-
1- 0 3 4 9),  A F O S R  M U RI ( F A 9 5 5 0- 1 9- 1- 0 3 9 9, F A 9 5 5 0- 2 1
- 1- 0 2 0 9),  D o E  Q- N E X T,  N S F ( E F M A- 1 6 4 0 9 5 9,  O M A-
1 9 3 6 1 1 8,  E E C- 1 9 4 1 5 8 3),  N T T  R es e ar c h, a n d t h e P a c k ar d
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