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Variational quantum circuits are used in quantum machine learning and variational quantum simula-
tion tasks. Designing good variational circuits or predicting how well they perform for given learning or
optimization tasks is still unclear. Here we discuss these problems, analyzing variational quantum circuits
using the theory of neural tangent kernels. We define quantum neural tangent kernels, and derive dynam-
ical equations for their associated loss function in optimization and learning tasks. We analytically solve
the dynamics in the frozen limit, or lazy training regime, where variational angles change slowly and a
linear perturbation is good enough. We extend the analysis to a dynamical setting, including quadratic
corrections in the variational angles. We then consider a hybrid quantum classical architecture and define
a large-width limit for hybrid kemels, showing that a hybrid quantum classical neural network can be
approximately Gaussian. The results presented here show limits for which analytical understandings of
the training dynamics for variational quantum circuits, used for quantum machine learning and optimiza-
tion problems, are possible. These analytical results are supported by numerical simulations of quantum

machine-learning experiments.
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I. INTRODUCTION

The idea of using quantum computers for machine
learning has recently received attention both in academia
and industry [1-13]. While proof-of-principle studies
have shown that some problems of mathematical interest
quantum computers are useful [13], quantum advantage
in machine-learning algorithms for practical applications
is still unclear [14]. On classical architectures, a first-
principles theory of machine learning, especially the so-
called deep learning that uses a large number of layers, is
still in development. Early developments of the statistical
learning theory provide rigorous guarantees on the learning
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capability in generic learning algorithms, but theoretical
bounds obtained from information theory are sometimes
weak in practical settings.

The theory of neural tangent kernel (NTK) has been
deemed an important tool to understand deep neural net-
works [15-21]. In the large-width limit, a generic neural
network becomes nearly Gaussian when averaging over
the initial weights and biases, and the learning capabilities
become predictable. The NTK theory allows an analyti-
cal understanding of the neural networks’ dynamics to be
derived, improving on statistical learning theory and shed-
ding light on the underlying principle of deep learning
[22-26]. In quantum machine learning, a similar first-
principles theory would help in understanding the training
dynamics and selecting appropriate variational quantum
circuits to target specific problems. A step in this direction
has been considered recently, and originally, for quantum
classical neural networks [27]. However, the framework of
Ref. [27] is mostly focused on the classical convolutional
neural networks combined with quantum circuits, and it
does not address the quantum gradient-descent dynamics
of variational circuits.

In this paper, we address this problem, focusing on the
limit where the learning rate is sufficiently small, inspired
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by the classical theory of NTK. Following the framework
and results from Refs. [24,25,28], we first define a quan-
tum analog of a classical NTK. In the limit where the
variational angles do not change much, the so-called lazy
training [29], the frozen quantum neural tangent kernel
(QNTK) leads to an exponential decaying of the loss func-
tion used on the training set. We furthermore compute the
leading-order perturbation above the static limit, where we
define a quantum version of the classical mefakernel. We
derive closed-form formulas for the dynamics of the train-
ing in terms of parameters of variational quantum circuits,
see Fig. 1.

We then move to a hybrid quantum classical neural net-
work framework, and find that it becomes approximately
Gaussian, as long as the quantum outputs are sufficiently
orthogonal. We present an analytic derivation of the large-
width limit where the non-Gaussian contribution to the
neuron correlations is suppressed by large width. Inter-
estingly, we observe that now the width is defined by the
number of independent Hermitian operators in the varia-
tional ansatz, which is upper bounded by (a polynomial of)
the dimension of the Hilbert space. Thus, a large Hilbert-
space size will naturally bring our neural network to the
large-width limit. Moreover, the orthogonality assumption
in the variational ansatz could be achieved statistically
using randomized assumptions. If not, the hybrid quan-
tum classical neural networks could still learn features
even at the large width, indicating a significant difference
compared to the classical neural networks.

We test the analytical derivations of our theory com-
pared against numerical experiments with the IBM quan-
tum device simulator [30], on a classification problem in
the supervised learning setting, finding good agreement
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FIG. 1. An illustration of the QNTK theory. (a) The QNTK

characterizes the gradient-descent dynamics in the variational
quantum circuit. The quantum state modifies according to the
QNTK prediction. (b) Around the end of the training, the QNTK
is_frozen and almost a constant. (c¢) The gradient-descent dynam-
ics could be highly nonlinear, and the QNTK is running during
gradient descent, which is a property of representation learning.
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FIG. 2. Structure of our paper. In Sec. Il we establish the the-
ory of QNTK in the context of optimization without data for
generic variational quantum ansatz, which is the typical task in
quantum simulation. In Sec. III, we establish the theory of quan-
tum machine learning with the help of QNTK. In Sec. [V, we
define the hybrid quantum classical neural network model, and
we prove that in the large-width limit, the model is approximated
by the Gaussian process. In Sec. V, we give numerical examples
to demonstrate our quantum representation theory. In Sec. VI, we
discuss the implication of this work, and outline open problems
for future works. In the main text, we mostly highlight our theo-
retical frameworks and important theorems. Technical details are
given in the Supplemental Material (SM) [31].
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General nonlinear dynamics
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DONTK:

with the theory. The structure of this paper and the ideas
presented are summarized in Fig. 2.

II. THEORY OF QUANTUM OPTIMIZATION
A. QNTK for optimization

We start from a relatively simple example about the opti-
mization of a quantum cost function, without a model to be
learned from some data associated to it. Let a variational
quantum wave function [32-37] be given as

L
|¢(©)) = U®) [Wo) = (]_[ Weexp (I'GEX:;)) [Wo). (1)

=1

Here we define L unitary operators of the type Up(6;) =
exp(ifeXe), with a variational parameter &;, and a Hermi-
tian operator X; associated to them. We denote the vector
version of all variational parameters as 8 = {6;} and the
initial state as |¥p). Our ansatz also includes constant gates
Wps that do not depend on the variational angles. Here, we
write Up(6¢) as Ug, but Uys are 8 dependent.

We introduce the following mean-squared-error (MSE)
loss function when we wish to optimize the expectation
value of a Hermitian operator O to its minimal eigenvalue
Oy, which is assumed to be known here, over the class of
states |@(0))

2 1

1:(9):%((%|U’f(9)OU(9)|%)—og) 282. 2)

Here we define the residual optimization error &=
(Wo |UT(©)0OU(6)| Wo) — Op. When using gradient descent
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to optimize Eq. (2), the difference equation for the dynam-
ics of the training parameter is given by
dL(6) de
dby = ———— = —ne—. 3

e=—n—p "¢ 2o, 3)
We use the notation do to denote the difference between
the step £+ 1 and the step ¢ during gradient descent for the
quantity o, do = o(t + 1) — o(t), associated to a learning
rate . Then we have also, to the linear order in 6,

de:z—df

£

de de
_ . 4
"Zdegdef @)

The object ), de/dbde /db; serves to construct a toy ver-
sion of the NTK in the quantum setup, in the sense that
it can be seen as a one-dimensional kernel matrix with
training data Oy. We can make our definition of a QNTK
associated to an optimization problem more precise as
follows:

Definition 1 (QNTK for optimization). The QONTK asso-
ciated to the optimization problem of Eq. (2) is given
by

de de
K= e
; de, db,

2
—(wo (ULE [Xg uiwiut ,ou_, WgUg] U+‘g| %) ,
(%)

where

£-1

U= 1_[ WeUp, Uy = 1_[ WeUp.  (6)
r=1 o=t41

It is easy to show that the quantity squared in Eq (5)
is imaginary, hence K is always non-negative, K > 0. A
derivation of Eq. (5) can be found within the Supplemental
Material [31].

B. Frozen QNTK limit for optimization

An analytic theory of the NTK is established when the
learning rate is sufficiently small. It is defined by solving
the coupled difference equations, Eqgs. (3), (4), which we
report here

de
8_5
¢ 0,
7)
de de (
=S =22, ke
”ngdegdef e

dby = —

In the continuum learning rate limit n — 0, Eqgs. (7)
become coupled nonlinear ordinary differential equations,

which are hard to solve in general. Note that this system of
equations stems from a quantum optimization problem and
in general it is classically hard to even instantiate.

Nevertheless, in the following we build an analytic
model for a quantum version of the frozen NTK (frozen
QNTK) in the regime of lazy training, where variational
angles do not change too much. To be more precise, we
assume that at a certain value 8* our variational angles 6
change by a small amount, 8* + §¢. A typical scenario is to
do the Taylor expansion around such values 6* during the
convergence regime for instance. Here 8 is a small scaling
parameter and we define é together with ¢ to denote small
perturbations. We call the limit § — 0% the frozen QNTK
limit.

In this limit, one can write WU, = Wyexp
(i6; Xe) exp(idpeXe), so that the 6* dependence is absorbed
into the nonvariational part of the unitary by defin-
ing W, (0;) = Wyexp(if;X,;), and we have W,U; —
We(6)) exp(idpeXe). In what follows, we drop the 6*
notation and understand the variational angles as small
parameters that change by § around a value 6*. Then,
expanding linearly for small § we can define the
following.

Definition 2 (Frozen QNTK for quantum optimization). /n
the optimization problem, Eq. (2), the frozen OQNTK limit
is
K= -4
> (wo W [, Wit oW W | %)

E

(8)
with
W—e—an* Wie= ]'[ We. 9)
=1 =041

In the frozen kernel limit, we can state the following
result about the dependency of the residual error €, solving
Eq. (7) linearly for small 4.

Theorem 1 (Performance guarantee of optimization within
the frozen QNTK approximation). When using standard
gradient descent for the optimization problem, Eq. (2),
within the frozen QNTK limit, the residual optimization
error € decays exponentially as

e(t) = (1 — nK)'e(0) = £(0) x (1 + r}c‘)‘z

t
x Z{wg| t, [XE,WEWT EOW_E%] W+g|\l’(}) )

(10)
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with a convergence rate defined as

7. = —log(l — nK) =~ nK

—”322{‘1’0| [st W OW_eWs] WH(%) €2n32L||O||2max||Xg||2 (11)

with the 1L, norm.

The derivation is given within the Supplemental Material [31]. An immediate consequence is that the residual error
will converge to zero,

g(00) = 0. (12)

C. Differential of QNTK (DQNTK)

The frozen QNTK limit describes the regime of the linear approximation of nonlinearities. Therefore, the frozen QNTK
cannot reflect the nonlinear nature of the variational quantum algorithms. In order to formulate an analytical model of the
nonlinearities, we now analyze the leading-order correction in terms of the expansion of the learning rate n and the size
of the variational angle §. We formulate the expansion of de to the second order in de,

ds = Z —dw +3 Z Gon gy, Tou 90t (13)
This time de during gradient descent will follow the equation [25]:

ds de 1 d
de=—ny L4 e Z de _de (14)
dco dw d@fld@fg doy, dog,

With this expansion at second order, we have two contributing terms in Eq. (13). We label the first term of Eq. (13)
quantum effective kernel, K. We use K¥ to distinguish it from K, when only a first-order expansion is considered in the
description of the dynamics. It is dynamical in the sense that it depends on the value of the training parameter ¢ during the
dynamics regulated by a gradient descent. We label the variable part of the second term in Eq. (14) quantum metakernel
or DQNTK.

Definition 3 (Quantum metakernel for optimization). The quantum metakernel associated with the optimization problem
in Eq. (2) is defined via

de de
w=
Z d@gld@h d@fl d(ofz

(15)
In the limit of small changes in 8 = 8* + §¢, optimization problem, Eq. (2), the quantum metakernel is given at the
leading-order perturbation theory in § as
_34 Z +E| XEI’WE Wi,fi.OW—,lefl Wi | Wo

& (W WT L, | Xews Wo WL OW_ g, We, | W g, | Wo) x

Vo (W g, | Xe, O o, | Xeos Wo, WL, OW_t, W, | @yt | Wy | Wo) - €12 £ 16)

L) Wl‘gz XEnggz,gl Xe.,W# W#gIOW e | Qeren | Wien| Vo) i €1 < £
where
£-1
We e, = 1_[ We,
=141 (17)

We, e, We, 2 €1 < £
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The residual error € in the optimization problem of Eq. (2), can then be computed as

(1_[:‘3*=L Wz') 0 (H;] WE)

8:(‘1—'0

£1,62

We are now ready to make a statement about the residual
error in the limit of the DQNTK

Theorem 2 (Performance guarantee of optimization from
DQNTK). In the optimization problem, Eq. (2), at the
DQNTK order, we split the residual optimization error into
two pieces, the free part, and the interacting part,

e=c¢ + &l (19)

K% =KE©0) —

82 3 on00, ¢ Yo Wi,z. Xf.,QL,ez XEZ,W wh LOW_ e, Wey | Oy | Wty | Wo
- ¥,
2 Yo WI—,EQ XEE"QI:z,ﬁ XEI‘WE

wﬂ) — 0y — i Z o (wo ‘WLE [Xg wiwt ,ow_, WE] W+‘g| wo)

=10

. (18)
OW 0 We l <y

QE 1+E2 W+9£2 ‘.IJO

[
The free part follows the exponentially decaying dynamics
= (1= 1K)'e(0), (20)

and the interacting part is given by
el(t) = —nt(1 — nK)'K2£(0). 21)

Here we have

de de det de¥
= Z (OF Z —
dby d@g dby dby

_2:33Z{w0| ‘,1[)(5,1'4;3 EOW_E%]W+E|WQ)

2

Thus, the residual optimization error & will always
finally approach zero,

g(00) = 0. (23)

Thus, the leading-order perturbative correction gives the
contribution O(8%).

Moreover, we notice that DQNTK leads to interesting
physical consequences. More precisely, the next leading
correction above the perturbative limit will cause the so-
called catapult effect, where there are small bumps appear-
ing before an exponential decay [38]. The reason is rather
simple and probably most clearly explained in our draft
within the Supplemental Material [31]. We know that the
leading order gives schematically the term approximately
exp(—nKt) for the residual training error, where n is the
small learning rate, K is the quantum neural tangent kernel,
and f is the number of iterations. Moreover, we derive the
correction towards the residual training error, which scales
as approximately fexp(—nKt). In general, in higher-order

o W, [Xe, O [Xes WEW! LOW_ W WeWer | Wo| Wo) 02 ¢
7 (¥ Wj_,g X, QE‘E; [stf, WLWLEJOW—,E Wz*] We e We] W+,z| ‘1'0) <

¢e (0). (22)

corrections, we get schematically the correction approxi-
mately # exp(—nKft) for a more general polynomial # in
the prefactor of the exponential decay. This type of cor-
rection forms a first-principles explanation of the catapult
effect, where a similar related model is discussed. A full
characterization of the catapult effect in classical and quan-
tum cases is beyond the scope of this paper, and we leave
it for future research [39].

III. THEORY OF LEARNING

A. General theory

The results outlined in Sec. II can be extended in the
context of supervised learning from a data space D. In
particular, we are given a training set contained in the
dataspace A C D. The data can be loaded into quantum
states through a quantum feature map [9,11]. We define the
variational quantum ansatz with a single layer by regard-
ing the output of a quantum neural network with the data
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point x; as

Zis =z (0,%x5) = (¢ (x5)| U'O:U | (x5)) - (24)

Here, we assume that O; is taken from O(H), a subset of
the space of Hermitian operators of the Hilbert space 'H,
and the index i describes the ith component of the out-
put, associated to the ith operator O;. The above Hermitian
operator expectation value evaluation model is a common
definition of the quantum neural network. One could also
measure the real and imaginary parts directly to define a
complexified version of the quantum neural network, use-
ful in the context of amplitude encoding for the z;;, as
discussed within the Supplemental Material [31]. We are
now in the position of introducing the loss function

1 1
LA(G) = 5 Z (yi;& _— Z;;ﬁ,)2 = E ZEE‘&. (25}

Here, we call ;4 the residual training error and we assume
Via 1s associated with the encoded data ¢;(xz). Now,
similarly to what is described in Sec. 11 A, we have the
gradient-descent equation

dziSdzxcr
dziS = —HZ Eig—

(26)
db; ng
£i'a

il dZ,‘;,g dZ;\';&
&a — — do, dby

--%

¢ ¢ (xa) |U.

B. Absence of representation learning in the frozen
limit
In the frozen QNTK case, the kernel is static, and the
learning algorithm cannot learn features from the data. In
the same fashion of Sec. Il B, we take the frozen QNTK
limit where the changes of variational angles 8 are small.
Using the previous notations we can define the QNTK in

_—SEZ

¢ () U] L Xe, U OU_ e WeU| U] 6 () x
LYo UWIUL 00U WU Ure| 6 (3a)

b (x5) [ WL [Xe WIWL LOW_aWe| Wia] 6 (x0))
=\ (o0 |7l [ Wit com_m | Weo| o )

with an associated kernel

i dzis dzia .
=) ————. (27)
7~ dOy doy
To ease the notation, we define the joint index
@G.n=a (@i)=b (28)

which are running in the space D x O(H) and A x O(H),
respectively, (we use a to indicate that the corresponding
data component is in the sample set A, and if we wish
to make a general data point we denote it as a), and our
gradient-descent equations are

dza = —-n Z KEE)EEJ' (29)

It is possible to show that this kernel is always positive
semidefinite and Hermitian, see Supplementary Material
for a proof. Now recalling Eq. (1), we are in the posi-
tion to give an analytical expression for the QNTK for
a supervised learning problem as follows. Details on the
derivation can be found within the Supplemental Material

[31].
Definition 4 (QNTK for quantum machine learning). The

ONTK for the quantum learning model, Eq. (25), is given
by

30)

for quantum machine learning in the frozen limit, and a
performance guarantee for the error on the loss function in
this regime as follows.

Definition 5 (Frozen QNTK for quantum machine learn-

ing). In the quantum learning model, Eq. (25), with the
Jfrozen QNTK limit,

(31)
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Theorem 3 (Performance guarantee of quantum machine
learning in the frozen QNTK limit). In the quantum learn-
ing model, Eq. (25), with the frozen QNTK limit, the
residual optimization error decays exponentially during
the gradient descent as

g0, () = Y Uaya, ()53, (0),
a (32)
Uiy (6) = [(1 = 1K)']

The convergence rate is defined as

ayaz”

7o = - log (1 — nK) | ~ n |KE,

L ®

Then we obtain for the quantum learning model, Eq.
(25), with the frozen QNTK limit, the asymptotic dynam-
ics with the D x O(H) index a, is given by

2a(00) = 23(0) — Y~ K%Kz, 64, (0).

ay,az

(34)

Here K means that the kernel defined only restricted to the
space A x O(H) (note that it is different from the kernel
inverse defined for the whole space in general), and we
denote the kernel inverse as

paa . . _ sa
D KK, =35
acAxO(H)

(35)

Specifically, if we assume a indicates the data in the space
A x O(H), we have g;(c0) = 0. Proofs and details of
these results are given within the Supplemental Material
[31]. Moreover, the asymptotic value is different from the
frozen QNTK case in the optimization problem, because
of the existence of the difference between the training set
A and the whole data space.

K =8y gr(0)GY 07 +i8° Y o (0)Gy,0%,

e

and

Gyl y, = Guy, ($(x5), 0)

C. Representation learning in the dynamical setting

In the dynamical case, the kernel is changing during
the gradient-descent optimization, due to nonlinearity in
the unitary operations. In this case then the variational
quantum circuits could naturally serve as architectures of
representation learning in the classical sense.

We generalize the leading-order perturbation theory of
optimization naturally to the learning case, and we state
the main theorems here. First, we have the following.

Theorem 4 (Performance guarantee of quantum machine
learning in the DQNTK limit). In the quantum learning
model, Eq. (25), at the DONTK order, the training error is
given by two contributions, a free and interacting part, as
follows:

ga(t) = 5 (1) + £5(2), (36)
where
5 (t) =) U, (Dea, (0),
an (37)
Uaa, (0) = [(1 = 1K)'], .,
and

1
HOE (—nZ(l — k)" KA - nK)Ss(O)) :
=0 a
(38)
Here K is the frozen (linear) part of the QNTK. Using a

matrix notation for the compact indices a, in the space A x
O(H), we have

(0x6) [P0, [Xers Oy [Xeas Wi, WL, O W | W W | W | 6 x0)) : 1 2 12

(x0) [P 4, [Xers O, [Xers Wh, W O W | W W | W,

0} = 009 (x:).0) = (p(xo) |W, [ Xe WIW OW_ W | W 6 x)

le"@| < ntll — k1= KA e, (39)
where K is defined as
(40)
£
b)) ti<t |
(41)
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For the quantum learning model, Eq. (25), at the DQNTK order, the dynamics given by gradient descent on a general

data point is given by

23(00) = 23(0) — D Kz K6, (0) + ) | Haazy — D KaasK ™% paaa, |24 €4 (0)ez, (0)
ap,dz a1,d2,a3,a4 as,ag
+ Z Maza, — Z Kzas K% pagaya, |25 2™ €4y (04, (0), (42)
ay,d,d3,d as,dg

where Z4ps are called the quantum algorithm projectors
(see Refs. [24,28] for their original framework),

251525354

A

= finds grasas _ Z fanas Xllt"ruasésﬁ4

as

251525354

B

= 4187 Tina = findis 1185834, 1 L a1@ra3a
= Ka|a3Ka2a4 _ ZKGZ“S‘an 1 3a4 + EX'" 1a24a3 4, (43}

as

and X is defined as

Xalagagru Z [(1 _ nK) ]0153[(1 T}K)S]aQap (44}
s=0
or
al an ayasazay
asaaﬁ ZX

a3,y

x (KayasSagag + 8asasKayaq — NKayasKayag) - (45)

Finally, p is the quantum metakernel in the quantum
machine learning context,

d*z; . (dz‘ 51 dZi,. )
ipiyiz in:80 i138) i2:82
“ = Uz = 2

8818, apa) ay P d@fldﬂofz dﬁ% d@%g

1542 p=0
4 g 82,
=6 O, PG (46)
£y,8

Specifically, if we assume that a is from A4 x O(H), we
will get gz(00) = 0. More details of p are given within
the Supplemental Material [31]. The existence of quantum
algorithm projectors shows the quantum algorithm depen-
dence of the variational quantum circuits, which indicates
powerful representation learning potential because of non-
linearity.

IV. HYBRID QUANTUM CLASSICAL NETWORK
AND THE LARGE-WIDTH LIMIT

In this section we define a setting in which one can speak
of a quantum analog of the large-width limit for NTKs. In
such a limit, we expect that the dynamics linearizes dur-
ing the whole training process, similar to what happens
in the frozen regime of lazy training, and the correlation
function of the outputs neurons becomes Gaussian. The
classical NTK theory requires a random initialization of
weights and bias and takes the large-width limit of neural
network architectures. In the quantum setup, the random
initialization is a random choice of trainable ansitze.

To see it more clearly, we consider a hybrid quan-
tum classical neural network model [40,41]. Starting from
a quantum neural network, we measure the output neu-
rons from the quantum architecture and dress them with
a single-layer classical neural network. The output of the
classical neural network could be then re-encoded into a
quantum register via another quantum feature map. A sin-
gle quantum to classical step can be called one hybrid
layer, and then one could construct multiple hybrid lay-
ers connected by feature map encoding, see Fig. 3 for an
illustration.

For the quantum part of the circuit, we use the same
structure of quantum neural networks with Hermitian oper-
ator expectation values. Mathematically, the model is

x(!’
o | | - |
~ |2 *
5:8& sza — zéﬁ’a E———— Zg;a
I 1 1 I
g1 W o g2 W )

FIG. 3. The hybrid quantum classical neural network consid-
ered here. We repetitively apply quantum and classical neural
networks in our architecture, with feature map encoding |y)
and quantum measurements, mapping the data point x, to the
prediction z,.
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defined as

Z] ey {‘I’] (Xa) UT] ( )C)J'll Ul (91)‘ ¢1 (xa)} s (4'}'}

= (b (Wo-1:a)| UM (6°)0F U (6°) |0 (War-1:a)) »

(48)

am!Jm

dim Q% (H?)
— e ) —
s =7 2 W 1| =

Jur
Jw=1

(49)

Here, Eq. (47) initializes the quantum neural network,
mapping the data x, to components j;, labeling the index in
the space of Hermitian operator we use O! (). The vari-
ational ansatz is similar to what we have discussed before,
but they might be different in different layers. We use the
label @ to denote the order of hybrid layers, ranging from
1 to the total number of hybrld layers. We introduce the
quantum ansatz U”(6“) = ]_[E _1 W, exp (IGE X ), the
feature map ¢,,, and the operator space O‘”(H“’) index Jo-
Equation (48) introduces the recursive encoding from the
classical neural network data wy_1.,4 = (We—1; ﬂ) < to the

space O“(H®), where the classical data vector w w0 is
obtained through a smgle-layer classical neural network

with the nonlinear activation 0} ¢, weight matrix W, and

m:fw

bias vector b“’ with the classical index j¢, and the pre-
activation zc o . When we intialize the hybrid network,

the claSSICal welghts and biases are statistically Gaussian
following the LeCun parametrization [42],

Ciy
E (Hﬁf&,.fm W;:‘fw,;m) 3“ e w2 dim O»(He®)’

]E(b“’ e, )_ac pres

l,m 2&} jlﬂ"‘bﬂ)

(50)

Note that in this case, the role of width in the large-
width theory is replaced with the dimension of the operator
space, dim(O?(H®)). The value of the dimension (width)
could be arbitrary in principle, but it is upper bounded
by the square of the dimension of the Hilbert space,
dim(O®(H®)) < dim(H®)2, in the qubit system.

If we now assume that our quantum training param-
eters 8 are chosen from ensembles (or the variational
ansitze themselves are from some ensembles), similar to
the classical assumption. Denoting the expectation value
from quantum ensembles as [, we show the following
statement.

Theorem 5 (Non-Gaussianity from large width). The
Jfour-point function of classical preactivations is nearly
Gaussian if dim(O® (H®)) is large,

E. zc zC zC
onn ﬂ-'ﬂl:fm, wianiiy, oy, oy,

1
=0 ——m——— |, 51
() eh
as long as,
o o 9 o
Econn (zcu;ar 11,0200 0 033,020 2,0 )
_o(l)x J'IwJEw’ (52}

and their permutations for all ws. Here the notation Eony
means the connected Gaussian correlators subtracting
Wick contractions.

More details are given within the Supplemental Material
[31]. The orthogonal condition Eq. (52) can be natu-
rally achieved by randomized architectures, for instance,
Haar randomness and k designs. We interpret the result as
follows:

(a) In this hybrid case, the role of width in the neural
network is upper bounded by the square dimension
of the wth Hilbert space. Thus, if we scale up the
number of qubits, we are naturally in the large-width
limit. However, if our variational ansatz is sparse
enough such that the operator space dimension
dim O(H) is small, then we will have significant
finite width effects.

(b) The condition, Eq. (52), for quantum outputs is
naturally satisfied by random architectures. If we
assume that our variational ansatz is highly ran-
dom, we are expected to have similar Gaussian
process behaviors as the large-width limit of classi-
cal neural networks. However, the same assumption
will generically lead to the barren plateau problem
[8], where the derivatives of the loss function will
move slowly when we scale up our operator space
dimension. Our result shows a possible connection
between the large-width limit and the barren plateau
problem.

(c) Moreover, the orthogonal condition in Eq. (52) we
impose does not mean that we have to set the
ansatz to be highly random. It could also be poten-
tially satisfied by fixed ansitze, for instance, with
some error-correction types of orthogonal condi-
tions. If the condition is generally not satisfied, the
variational architecture we study could have highly
non-Gaussian and representation learning features,
although it might be theoretically hard to understand
[43].

030323-9



JUNYU LIU et al.

PRX QUANTUM 3, 030323 (2022)

Data set for classification

. Label 0
. Label 1

FIG. 4. Three-dimensional illustration of our data set for train-
ing. Here we use three inputs x[0, 1, 2] and label them with 0 or
1, colored by red or blue, respectively. The data set is generated
using ad_hoc_data.

V. NUMERICAL RESULTS

In this section, we test our QNTK theory in practice,
using the Qiskit software library [30] to simulate the imple-
mentation of a paradigmatic quantum machine-learning
task on quantum processors, both in noiseless and noisy
cases. We consider a variational classification problem in
supervised learning with three qubits. The data set is gen-
erated with the ad_hoc_data functionality as provided
in giskit.ml.datasets within the Qiskit Machine
Learning module [44], see Fig. 4 for an illustration.

Our numerical experiments are performed first using the
noiseless statevector_simulator backend, then
including both statistical (nghets = 8192) and simulated
hardware noise with the Qiskit gasm_simulator. A
simplified model of device noise, featuring the qubit
relaxation and dephasing, single-qubit and two-qubit
gate errors and readout inaccuracies, is constructed with
the NoiseModel.from_backend () Qiskit method
and parametrized using our calibration data from the
ibmg_bogota superconducting processor (accessed on
October, 15 2021).

We implement supervised learning using a Qiskit
Machine Learning NeuralNetworkClassifier with
a squared error loss, obtaining reasonable conver-
gence with gradient-descent algorithms (see Fig. 5).
The underlying variational quantum classifier is based
on the TwoLayerQNN design, with a three input
7ZZFeatureMap and a RealAmplitudes trainable
ansatz with three repetitions and 12 parameters. Further
details on numerical simulations are given within the Sup-
plemental Material [31]. Note that we do not demand a
perfect convergence around the global minimum, since
the QNTK theory only cares about the derivatives of

Objective function during learning

50,
40 — Noiseless
: — MNoisy
] 30
g |
@ |
S 20
10}
20 40 e0 80 100
Iterations
FIG. 5. Convergence of the objective function during gradient

descent. Here we compare the ideal and noisy cases, labeled by
red or blue, respectively.

the residual learning errors, which is invariant by shift-
ing a constant or changing the initial condition when
solving the training dynamics. In the classical theory of
NTK, in the infinite width case, for instance, the multi-
layer perceptron (MLP) model is both overparametrized
and generalized, and the answer would give the global
minimum. Including finite width corrections, there might
be multiple local minima, and it is a feature of repre-
sentation learning. Moreover, we use the error-mitigation
protocol by applying CompleteMeasFitter from
giskit.ignis.mitigation.measurement tomit-
igate readout noise.

In Fig. 6, we compute the QNTK eigenvalues for
both the noiseless and noisy simulations, comparing them
with theoretical predictions. Since we are in the under-
parametrized regime, the number of nonzero eigenvalues
of the QNTK is the same as the number of variational
angles, which is 12 in our experiments. We find agreement
between those two in the late time, which shows the power
of predictability using the QNTK theory.

Here we give an additional summary based on our
numerical analysis. Physically, there are two differences
between quantum and classical in terms of DNTK. First,
non-Gaussianity could be generated if the quantum part
of the neural networks is not orthogonal enough, and
the orthogonality is likely caused by Haar randomness or
quantum error-correction conditions, see Refs. [45-47].
Secondly, the effect of quantum noises is significant in
the near-term quantum devices, and we can clearly see
the correction between quantum and classical in Fig. 6 as
numerical examples.

Finally, we wish to address the limitation of our the-
ories. In fact, our theory is limited by the nature of the
perturbative method, and many of the quantum machine-
learning dynamics could be highly nonlinear. Furthermore,
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(a) Running of noiseless kernel eigenvalues

e
=)
=

w
@
3
g
c
S g4
2 10
[
1078
II
20 40 60 80 100
Iterations
(b) Running of noisy kernel eigenvalues

Eigenvalues

20 40 60 80 100
Iterations

FIG. 6. Kernel eigenvalues during the gradient-descent
dynamics. Up: noiseless simulation. Down: noisy simulation
including a model of device errors. The solid curves are 12
nonzero eigenvalues of the QNTK, while the dashed lines
are theoretical predictions of the frozen QNTK at the late
time.

the presence of noise on current quantum processors will
also limit the scope of the theory, and it is worth trying
to explore further in experiments and theories about how
useful the theory is in practice.

VI. CONCLUSIONS AND OPEN PROBLEMS

The results presented here establish a general frame-
work of a QNTK theory, deriving analytical treatment of
the optimization and learning dynamics in that regime. We
outline the following open problems for future study.

(a) Our research gives practical guidance to the design
variational quantum algorithms. One could com-
pute the QNTK, or the kernel itself in the quan-
tum kernel method [11]. It will be interesting to
compare those results with other theoretical crite-
ria about the quality of the variational quantum
algorithms [48,49]. In fact, higher eigenvalues of
neural tangent kernels lead to faster convergences

and fewer generalization errors with good alignment
with the target function we want to fit [50-55]. It
will be interesting to explore in practice if the ana-
lytical assumptions made here on the large-width
limit and small nonlinearity hold for practical use
cases with a number of parameters scaling polyno-
mially with the system size (see classical analogs
[561).

(b) It would be interesting if one could investigate when
the frozen QNTK limit is useful in other contexts. In
Trotter product formulas, for instance,

lim (eiaXfﬂein,fﬂ)" ,

n—00

(33)

to implement the gate U = €@+ Thus, small
variational angles might widely appear in real cases
of quantum architectures, even beyond the regime
of lazy training around convergence.

(c) Connection to the barren plateau problem (see Refs.
[46,47]). Our work suggests a possible connection
between the barren plateau problem in variational
quantum algorithms and the large-width limit in
classical neural networks, by observing the follow-
ing similarity between the LeCun parametrization
above

Cw
E (W}lc,-, ’ﬂfﬁ) =% h g Y

and the 1-design random formula [57]

8idjk
dimH’

E(Uy Ul) = (55)

(d) It will be interesting to explore the robustness of
the QNTK theory against noise. Specifically, we
have obtained an exponential convergence when the
QNTK is frozen.

(e) Finally, it will be interesting to explore the non-
linear regime where the perturbative analysis fails.
One could draw phase diagrams of quantum
machine learning about some order parameters, for
instance, the learning rate [38]. Those studies will
deepen our theoretical understanding of quantum
machine learning. More directions include com-
parisons between the classical and quantum cases,
exploring non-Gaussianity in and out of the large-
width limit, and exploring the consequences when
the orthogonality condition is not met.
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