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We characterize production workloads of serverless DAGs at a major cloud provider. Our analysis highlights
two major factors that limit performance: (a) lack of efficient communication methods between the serverless
functions in the DAG, and (b) stragglers when a DAG stage invokes a set of parallel functions that must
complete before starting the next DAG stage. To address these limitations, we propose WiseFuse, an automated
approach to generate an optimized execution plan for serverless DAGs for a user-specified latency objective
(SLO) or cost budget. We introduce three optimizations: (1) Fusion combines in-series functions together in a
single VM to reduce the communication overhead between cascaded functions. (2) Bundling executes a group
of parallel invocations of a function in one VM to improve resource sharing among the parallel invocations
to reduce skew. (3) Resource Allocation assigns the right size to each VM hosting a function or a group
of functions to reduce the latency and cost of invoking the serverless DAG. We implement WiseFuse and
evaluate it experimentally using three serverless applications, namely, Video Analytics, Approximate SVD,
and ML Analytics, which span different DAG structures, memory footprints, and intermediate data sizes. In
comparison to competing approaches, WiseFuse shows significant improvements in E2E latency and cost.
Specifically, for the ML pipeline, WiseFuse achieves a P95 latency that is 67% lower than Photons [SoCC-20],
39% lower than Faastlane [USENIX ATC-21], and 90% lower than Sonic [USENIX ATC-21], without increasing
the $ cost.
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1 Introduction

Serverless workflows are becoming increasingly popular for many applications as they are hosted
on a scalable infrastructure with fine-grained resource provisioning and billing [29, 45, 49]. A
serverless workflow contains two or more serverless functions orchestrated as a DAG (Directed
Acyclic Graph). Commercial providers offer orchestration services to facilitate the design and
execution of serverless DAGs (e.g., AWS Step Functions, Azure Durable Functions, and Google
Cloud Workflows). The serverless platform, however, executes each function in the DAG in a
separate VM without making use of the DAG structure and the data transfer among functions,
which leads to significant increases in the end-to-end (E2E) latency and cost [1, 30, 35].

To understand the challenges of supporting serverless workflows, we study production workloads
of serverless DAGs of Azure Durable Functions [5] over two weeks !. Our analysis shows that the
vast majority of DAG executions are for recurring DAGs: the top 5% most frequent DAGs constitute
94.6% of all DAG invocations, with an invocation rate of at least 1.6K times per day.

With this high rate of invocations, the cloud provider can monitor the DAG execution parame-
ters and quickly identify the bottlenecks to optimize the DAG execution. We identify two major
performance bottlenecks: (1) Communication latency between in-series functions, which stems from
the intermediate data that is typically passed through remote storage. (2) Computation skew among
in-parallel invocations of the same functions, since each parallel invocation processes different con-
tent. Our analysis of the production DAGs shows that 46% of the DAGs have a high communication
latency, and 48% of the DAGs have a high computation skew of 2X or more between parallel
workers. Both factors are a direct result of the current state-of-practice where each function in the
DAG runs in a separate VM.

Key Ideas: We propose WIseFUsE, which is an automated approach to generate an optimized
execution plan for serverless DAGs. We show an example of WiseFUSE’s optimizations in Figure 1,
and the solution overview is schematically shown in Figure 2. Users provide WiseFuse with a
DAG definition that includes individual functions as nodes and their data dependencies as edges,
which is typical in today’s commercial offerings . We introduce three optimizations. (1) Fusion:
Combining in-series functions together as a single execution unit. (2) Bundling: Executing parallel
invocations of the same function together in the same VM. (3) Resource Allocation: Assigning
the best size to each VM hosting a function or a group of the DAG functions. First, we show that
Fusion allows for optimized communication between cascaded functions due to better data locality
between sending and receiving functions. Second, we show that Bundling mitigates execution skew
among the colocated function invocations and therefore reduces latency. Finally, assigning the best
sizes for each VM hosting one or more DAG functions allows WiseFUSE to reduce the E2E latency
and $ cost.

Challenges: Determining a good execution plan for a serverless DAG poses three technical chal-
lenges. First, serverless functions experience a high runtime variability, even when executed as
standalone functions [1, 16, 29, 35, 39, 49]. This variability in runtime can be either in communi-
cation time (i.e., while downloading/uploading data from remote storage), or in processing time.
Hence, we need to model the communication time and processing time of individual functions as
well as for the entire DAG as distributions, rather than as single-point estimates. Second, we also
need to estimate the impact of Fusion or Bundling on the E2F latency distribution. The effect is
non-monotonic, e.g., bundling of a certain number of functions decreases E2E latency but excessive
bundling increases it, and the same argument applies to Fusion. Third, the search space of all
possible execution plans is massive, due to the large number of possible DAG widths and VM

We release a subset of the production traces and this is available from https://github.com/Azure/AzurePublicDataset.
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Fig. 1: Example serverless DAG of Video Analytics application (1a) and the corresponding optimized
execution plan generated by WiseFuUsE (1b). The gains in latency and cost over user-defined DAG, using
either minimum or maximum VM size configurations (1c).

size choices, making exhaustive grid search infeasible. Therefore, we need to develop an efficient
algorithm to optimize the execution plan.

Our Solution: To overcome these challenges, we make three technical contributions in WiseFUsE.
First, we create a distribution and correlation-aware performance model to capture the variability
in performance for each function. Our model breaks down the function’s runtime into download,
processing, and upload components, while taking into account the correlation between in-series
and in-parallel workers. By profiling the latency distributions of the three components for each
function, we can identify stages that experience high communication latency (i.e., high latencies in
intermediate data download/upload) and hence can benefit from Fusion. We also identify stages with
parallel invocations of the same function that experience execution skew (i.e., long tail operation),
and hence can benefit from Bundling. Second, we search for a good bundle size, and the right
VM size to assign to each bundle. Using the performance model, we also estimate the impact of
joint Fusion and Bundling of functions on the E2E latency and cost. Finally, we use the above two
contributions to develop a searching strategy that performs a joint optimization of the combination
of Fusion and Bundling operations.

To get a sense of the impact of these three contributions combined, consider the DAG for a
video analytics pipeline in Figure 1a and WIsEFUSE’s execution plan in Figure 1b. Compared to the
user-defined DAG (without performing any Fusion or Bundling action), WisEFUSE achieves 64%
lower latency compared to allocating the Min VM size for each function, and achieves 66% lower
cost over allocating the Max VM size for each function.

Evaluation: We evaluate WiseFUSE using three popular serverless applications with different
DAG structures and show significant improvements in E2E latency and cost compared to four
approaches from recent work. For example, for the video analytics application, WiSEFUSE achieves
62% lower latency than Photons [13], which colocates parallel invocations together in the same
VM to maximize memory utilization. WISEFUSE also achieves 39% and 47% lower latency than
communication optimization frameworks, Faastlane [30] and Sonic [35].

Contributions: We make the following contributions in this paper:

(1) We characterize production FaaS workloads for serverless workflows (i.e., DAGs) of Azure Durable
Functions over two weeks. From our analysis, we pinpoint two major performance bottlenecks:
(a) high latency when transferring data between in-series functions. (b) Lack of resource sharing
between in-parallel invocations of a function, leading to processing skew.

(2) We highlight two types of optimizations that can be performed by the cloud provider while
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Fig. 2: Overview of WiseFuse design. WiseFuse optimizes the execution plan for the user-defined DAG, which
includes combinations of Fusion (vertical coupling of in-series stages), Bundling (horizontal coupling of parallel
workers in a stage) actions, the size of each VM host a function or a group of DAG functions.

executing a serverless DAG, Fusion and Bundling. We show that performing the two independently
is counterproductive and we jointly determine a good combination of Fusion and Bundling actions.
(3) We implement a DAG-aware execution plan optimizer that meets a user-given latency objective
while reducing cost. The execution plan specifies which functions should be fused or bundled, as
well as the appropriate VM sizes.

The rest of the paper is organized as follows: Section 2 motivates the optimizations in WiSEFUSE
using workload characterization of Azure Durable Functions. Section 3 gives an overview of our
design, encompassing Fusion (grouping of in-series functions), Bundling (grouping of parallel
invocations of a function), DAG transformation, usage model, and finding the best configuration.
Section 4 gives the implementation details for WISEFUSE. In section 5, we evaluate WISEFUSE on
AWS Lambda against competing approaches — an approach that does a limited form of Bundling
(Photons), and approaches that perform a variant of Fusion (Sonic and Faastlane), and the user-
defined DAG baseline configured either with the largest VMs to obtain low latency or with the
smallest VMs for lower cost. Further, we use three applications for the evaluation — Video Ana-
lytics, Approximate SVD, and ML Pipeline, and use microbenchmarks to evaluate the individual
contribution of Fusion and Bundling. We evaluate WiseFuUSE on another cloud provider using the
Approx SVD application to see if our techniques generalize. We discuss related Work in Section 6,
and discuss several aspects of WiSEFUSE (e.g., updating the performance model, scheduling, and
security considerations) in Section 7. We present our conclusions in Section 8.

2 Workload Characterization

We analyze a subset of Azure durable functions production workloads over two weeks. Compared
to a previous characterization of FaaS workloads [45], we focus here on characterizing serverless
DAGs rather than single functions. Our analysis highlights important findings regarding serverless
DAGs in the real world and motivates the optimizations of WiseFuse. We collected data on DAG
executions for 14 days, between October 18" and October 31%t, 2021, from six data centers, three in
the US, two in Europe, and one in Asia. We are releasing publicly an anonymized subset of this
data to spur research in serverless DAGs [6].

We give a general characterization of serverless DAGs in terms of invocation frequency and
structure, then we provide specific characterizations to motivate the importance of Fusion and
Bundling. Additionally, we use microbenchmarks to measure the data transfer latency for different
data sizes at three major Faa$ providers.
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2.1 General DAG Characterization

Definitions: A DAG is a sequence of stages Sj, Sz, ... S4. The order of the stages in the DAG
represent the order of execution (i.e., stage S; executes before S;iy1). A stage S is a set of functions
that execute in parallel F;, F,, ..., F,, and n = 1 for a stage with a single function. All functions
within a single stage execute the same code, but can have different inputs (e.g., scatter fanout stages)
or same inputs but with different hyper-parameters (e.g., broadcast fanout stages).

Daily Invocations: Figure 3 shows the daily DAG invocations collected data between October, 1
31%, 2021. We notice that DAGs are consistently invoked at a high rate of 34M-55.8M invocations
per day. By analyzing earlier data, we notice that the total number of DAG invocations per day has
grown by 6X over the past 2.5 years, suggesting that this workload is growing rapidly.
Invocations per DAG: Now we study the frequency of invocations for each DAG. We collect the
total invocations of each DAG across all 14 days and show the average daily invocations in Figure 4.
We notice that the invocation frequency varies significantly, and the invocation frequency follows
a Zipf distribution, which is well-known for modeling rank-frequency relations. For the fitted
Zipf distribution, the goodness of fit Z-test achieves a p-value of 0.052 (i.e., above 95% confidence

8th_

interval).
Notice that the majority of DAG invocations are for recurring DAGs: The top 5% most frequent

DAGs constitute 94.6% of all DAG invocations, and their invocation rate is > 1.6K/day. Therefore,
improving the performance and cost of these DAGs yields large gains for both users and the cloud
provider.

DAG Structure: We now look at the structure of the DAGs. We collect the number of stages
(i.e., depth) and fanout degree (i.e., width) in DAG executions. We use the maximum number of
parallel functions across all fanout stages to determine the width of the DAG. Note that if the DAG
is invoked K times, it contributes K data points for the width and depth distributions. Figure 5
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shows the CDFs for the DAG widths, depth, and total number of functions. The median number
of functions in the DAG is 3, whereas the median decreases to 2 for the top 5% most frequent
DAGs. We also notice that 60% of all DAGs have a width >1, for which Bundling can potentially be
applied. For the top 5% most frequent DAGs, the ratio of DAGs that can be bundled decreases to
44% and the remaining 56% DAGs are linear chains. DAG depth grows faster than the width till a
crossover point (=80th percentile). At the tail, DAG depths are usually short and the max depth is
47, whereas DAG widths are longer and the max width is 10.9K. This is an important observation
that we leverage in WISEFUSE’s design to reduce the search space, as described in Section 3.6.
E2E Latency for Serverless DAGs: Here we show the distribution of the latency of all DAGs
invocations as well as for invocations from the top 5% DAGs. We plot the CDFs for Min, P50,
and P95 latency in Figure 6. We notice that the median execution time for all DAGs (i.e., median
of medians) is 5.6 sec, whereas it decreases to 3.1 sec for the top 5% DAGs. We also notice that
the variance in execution time between invocations of the same DAG is high (not captured in
the figure). Specifically, the ratio between P95 and P50 is 3X on median, and the ratio between
P50 and Min is 4.8X on median. Hence, it is essential to model the E2E latency of the DAG as a
distribution to capture this variance. Additionally, we contrast the DAG invocation latency to the
single function invocation latency from a prior study [45] that reported the median latency for
serverless functions is 670 ms. Thus, serverless DAGs are longer running than individual functions,
stressing the importance of optimizing DAG E2F latency and cost for users as well as for FaaS
providers.

DAG Resource Consumption: The cost of single DAG invocation is calculated as the product of
consumed resources (memory is the observable parameter) by the execution time. To analyze the
amount of resources consumed per DAG, we capture the resource consumption of its invocations,
providing a distribution per DAG. We plot percentiles of that distribution for each DAG in Figure 7
in GB-sec units. For half of all DAGs, the median invocation consumes more than 210 MB-sec, and
the median P95 is higher than 630 MB-sec. The max consumed memory per DAG (not observed in
the figure) is 1 GB-sec on median. Moreover, for the top 5% most frequent DAGs, a lower median of
230 MB-sec is observed. To understand how resource consumption impacts the $ cost, we give an
example for pricing in Azure Functions, AWS Lambda, and Google Cloud Platform (GCP). For a
DAG that consumes 1 GB-sec per invocation, the cost of 1M invocations is $16 on Azure Durable
Functions, $16.6 on AWS Lambda, and $16.5 on GCP. This motivates the need for allocating the
right resources for functions in the DAG to reduce its latency and cost.
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Fig. 9: Data exchange latency on AWS Lambda, Google, and Azure comparing remote storage to local
communication. Markers represent the median, and error bars represent Min to P95 latency range.

2.2 Data Transfer Between Stages

Volume of Intermediate Data: Here we analyze the total volume of intermediate data being
transferred between all stages in a DAG. We show the distribution of intermediate data sizes in
Figure 8. We notice that 85% of the transferred intermediate data are of sizes > 1KB and the median
is 8KB. When we focus on DAGs with parallel stages, we notice that the size of intermediate data
increases with higher fanout degrees. For example, the median data size for DAGs with stages of 32
workers or more is 710KB, which is 88X the median intermediate data size for all DAGs. Finally, the
size of intermediate data for the top 5% DAGs is not significantly different from that for all DAGs,
with a median of 8.4KB. Therefore, Fusion is essential to reduce latency and cost for all DAGs in
general, and it is more beneficial for wider DAGs in particular.

Latency for Transferring Intermediate Data: We run a benchmark on AWS Lambda, GCP,
and Azure Durable Functions to characterize the latency for exchanging data between serverless
functions. We use a simple linear chain of a single sender and a single receiver function. The sender
generates a random array of bytes of a particular size and uploads it as a file to remote storage (S3
for Lambda, Google Storage for GCP, and Blob Storage for Azure), then the receiver downloads the
file from remote storage. We measure the E2E latency for the chain and subtract the generation
and reconstruction times, hence the remaining time becomes the upload/download times. Figure 9
shows the median, Min, and P95 latency when exchanging different data sizes through remote
storage. We vary the VM sizes for both sender and receiver functions between 512 MB and 10 GB
(Lambda’s Max) or 8 GB (GCP’s Max), whereas we use the consumption plan for Azure which
assigns resources automatically to the sender and receiver functions.

We make the following observations: (1) For AWS Lambda, increasing the VM size from 512
MB to 1 GB yields a significant reduction in data passing latency for file sizes > 1 MB. However,
increasing the VM size further (> 1 GB) does not reduce the communication latency indicating that
the network bandwidth saturates at this point. On the other hand, for GCP, increasing the VM size
increases the network bandwidth but sub-linearly (16X increase in VM size causes a 4X speedup in
data transfer). Hence Fusion becomes essential to reduce data exchange latency and cost in both
platforms. (3) Data exchange latency has a high variability, with a ratio of 8x between the P95 and
the median, and a ratio of 3.4X between the median and the minimum latency for AWS Lambda.
For GCP and Azure, a lower variability is observed (ratio between P95 and median is between 18%
and 80%), but with a lower network bandwidth compared to AWS Lambda. Hence, it is essential
to represent the upload and download times as a distribution to capture that variability. (4) Using
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Fusion, the data exchange latency is reduced significantly for all file sizes and for all platforms (as
observed by comparing local to S3, GCS, or Blob Storage variants.). Moreover, gains are higher for
bigger file sizes making Fusion more beneficial for data intensive applications.

2.3 Skew among Parallel Workers

We analyze the degree of runtime skew observed among all parallel stages in the DAG. For each
stage, we calculate the degree of skew as the ratio between the runtime of the slowest worker to that
of the fastest worker. If the DAG has multiple parallel stages, we take the maximum skew across all
parallel stages. Recall that the E2E latency of the stage (and the entire DAG) is dominated by the
slowest worker in the stage. We show the distribution of DAG skew in Figure 10. We notice that the
median skew is 1.9x. When we focus on DAGs containing parallel stages with higher fanouts, the
median skew rises to 15X and 132X for DAGs containing stages with 32 and 128 parallel workers,
respectively. For the top 5% DAGs, the median is close to 1 (no skew) but 32% of the top 5% DAGs
have a skew greater than 2X. Thus, skew among parallel workers is significant and that motivates
the need for efficient skew mitigation optimizations for serverless DAGs, which we achieve by
Bundling.

2.4 Impact of DAG Skew and Intermediate Data Size on Latency

Finally, we analyze the impact of skew and intermediate data size on the distribution of DAG E2E
latency. We split all DAGs into two groups with respect to their average skew (skew < 100 and skew
> 100). Similarly, we split all DAGs into two groups with respect to their average intermediate data
size (size < 1IMB, and size > 1MB). We show the E2E latency distributions for the four groups in
Figure 11. We notice that both skew and intermediate data size have a significant impact on the DAG
EZ2E latency. Specifically, DAGs with skew > 100 have 17X higher median latency than DAGs with
skew < 100. Similarly, DAGs with intermediate data size > 1MB have 9.5X higher median latency
than DAGs with size < 1MB. This motivates our focus on these two factors to optimize through
Bundling (reducing execution skew) and Fusion (reducing intermediate data passing latency).

3 Design

First, we give an overview of WisEFUSE’s design and its components. Second, we give the details for
building a performance model for each function in the DAG, which we use to estimate the impact
of Fusion or Bundling on the E2E latency and cost. Finally, we show how WIseFUSE explores the
vast search space of actions for Fusion, Bundling, and VM size allocation to find the best execution
plan.
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Fig. 12: Without Bundling, latency is dominated by Fig. 13: Coupling between Fusion and Bundling.
the straggler (X2) and is equal to t2. With Bundling,  Fusion reduces data exchange latency but prevents
X, gets more resources after X; executes, shuffling, which is essential to break the locality of
decreasing the stage’s latency to t;. stragglers and reduce the E2E latency.

3.1 Overview

Fusion: Fusion combines two consecutive stages to reduce the data exchange latency between them.
For example, performing Fusion of stages S; and S;1 combines each sending function in S; with
its receiving functions in Siy;. Accordingly, Fusion needs to take into account the communication
primitive between the two stages. For example, if the communication primitive between stages S;
and S;;; is one-to-one (i.e., each function in S; is sending data to only one function in S;;;), then
the Fusion is performed in one-to-one manner and the resulting stage will have the same degree of
parallelism (DOP) as both stages. However, if the communication primitive is one-to-many, many-to-
one, or many-to-many, Fusion will generate a single stage with a DOP of Min(DOP(S;), DOP(S;+1)).
Finally, if the communication primitive is all-to-all (i.e., shuffling), Fusion combines all functions in
stage S; with all functions in stage S;;;, producing a stage with a single function.

Bundling: Bundling is the operation of colocating two parallel workers together to run on the
same VM, hence enabling resource sharing between them (Figure 12). Higher bundle sizes are
achieved by recursively applying the same operation, leading to bundle sizes that are powers of 2.
Bundling reduces execution time skew by allowing stragglers to access more resources (e.g., CPU
capacity and/or Memory) once other colocated workers finish execution. For Bundling to be useful,
the function has to be scalable, i.e., given more resources it should be sped up (till a point). Notice
that Bundling does not require knowledge/prediction of which invocation is the straggler. However,
for Bundling to be efficient, stragglers need to be spread out over different bundles as much as
possible, which WiseFUsE achieves through shuffling (Figure 13).

Bundling also reduces data exchange latency in two cases. First, for broadcast stages, our bundling

technique leverages the fact that all workers within a single bundle can read from the same local
copy of the input data, and hence downloads the data once per bundle. Second, in case of a skew
in the intermediate data sizes between the two parallel workers, Bundling allows for resource
sharing so that the straggler gets a higher network bandwidth, speeding up its upload and download
operations.
DAG Transformation: WiseFUSE takes as input a user-defined DAG, with each function denoted
as a separate node. By applying a sequence of Fusion and Bundling operations, the original DAG is
transformed to a new DAG with fewer number of nodes. WIsEFUSE’s target is to identify the best
combination of Fusion and Bundling operations that transforms the DAG into the best performing
DAG in terms of E2E latency and cost. The transformations do not need any additional effort or
code changes from the user. Figure 1 shows an example of a user-defined serverless DAG (1a),
WiseFUsE’s transformed DAG (1b), and the gains after the transformation (1c).
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3.2 Workflow and Usage Model

We show the main design components of WiseFUsE in Figure 2. First, similar to current commercial
FaaS platforms, the user provides WiseFUse with the DAG definition, which includes the executable
package for each function and the data dependencies between the functions in the DAG.

Second, we execute WISEFUSE’s performance modeler. We represent each function as a com-
position of three steps: download (input data), process, and upload (output data). We then perform
per-function profiling and latency modeling to capture the variability in each of these three steps.
This is essential for us to estimate the gains of fusing in-series functions together in a single VM,
or Bundling in-parallel functions together in the same VM. For example, functions that have a high
latency in the download or upload steps can benefit more from Fusion due to removing the data
exchange latency between in-series functions. On the other hand, functions that experience latency
skew in the process step can benefit more from Bundling due to resource sharing.

The modeler also estimates the degree of correlation between latencies of either in-parallel or
in-series functions, which is essential to correctly estimate the impact of performing Fusion or
Bundling. The output of the modeler is a performance model for each stage in the DAG that can
estimate the latency distribution for each of the three steps (download, process, and upload) given
a candidate VM size and bundle size.

Third, the DAG optimizer uses the generated performance models and explores the vast search

space of Fusion, Bundling, and VM size allocations for the entire DAG. Next, it proposes the best
set of transformations that leads to a new DAG which is given to the user for approval before
deployment.
Usage model: In the typical usage model, the cloud provider deploys WiseFusk and applies it to
serverless DAGs submitted by the clients. The cloud provider does the profiling runs needed for the
performance modeler, without charging the client. In its profiling runs, the vendor cannot use
content characteristics to enhance its model, due to data privacy limitations. It can however use
metadata like the size of the input. Alternately, WiseFusk can be deployed by users as a user-side
optimization tool. In this case, the users can provide hints of content to WiseFusk such as the input
category (e.g., for Video-Analytics application, input category can be: Sports, News, etc.). WISEFUSE
can use these content-aware hints to build a separate performance model for each input category
and further improve the estimation accuracy of the model. Further, the user can apply WIseFUSE
at her end to do the DAG transformation, using Fusion and Bundling, on her original application
DAG. She then submits the transformed DAG to the serverless platform of the cloud provider.

3.3 Per-function Performance Model

The first step is to build a performance model that maps the amount of resources for a given function
to the expected latency distribution. Notice that modeling the latency distribution is important for
both latency-sensitive and cost-sensitive applications. This is because of the pay-as-you-go cost
model of serverless platforms, which bills the user proportionally to the product of the allocated
resources and the function’s runtime. We create this latency distribution separately for the three
phases of a function’s execution — data download, execution latency for the function itself, and
data upload.

Profiling: To start off, WIsEFUSE profiles the latency distributions for 4 VM sizes, including Min
and Max VM sizes. Min implies the lowest size at which the function will execute and Max implies the
largest VM size supported by the FaaS platform. The value of the intermediate VM sizes vary for
different FaaS platforms. For AWS Lambda, there are fine-grained VM sizes supported — 128 MB to
10 GB in step sizes of 1 MB. We do not wish to profile for all possible VM sizes and we leverage
discontinuities that exist in the vendor offerings. Hence, we pick 1,024 MB as one intermediate
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profiling point as that is the size at which AWS saturates the network bandwidth (i.e., increasing
memory beyond it does not provide any more network bandwidth as shown in Figure 9). We pick
1,792 MB as another intermediate profiling point as a VM with one full core gets assigned at that
point. For GCP, there are only 7 VM sizes to pick from and here we can afford to profile for all sizes.
Interpolation: This initial profiling divides the configuration space into multiple regions. For
example, for AWS Lambda, this divides the VM size space into 3 regions: Min-1024, 1024-1792,
and 1792-Max. Afterward, WiseFuse performs percentile-wise linear interpolation to infer the
CDF for the intermediate memory settings. For example, the P50 latency for 6 GB is estimated as
the average between the P50 latency of 1.8 GB and of 10.2 GB. This generates a prior distribution
for these intermediate memory settings. To verify the prediction accuracy in a region, WISEFUSE
collects a few test points using the midpoint memory setting in that region to measure its actual
CDF (i.e., the posterior distribution) and compares it with the prior distribution. If the error between
the prior and posterior CDFs is high (i.e., > 15%) in any region, Wi1seFUSE collects more data for
the midpoint in that region and adds it to its profiled points, splitting that region further into two
smaller regions. This process is repeated till saturation in accuracy is reached for all regions. In
practice, we find that dividing the space into 5 regions is sufficient to achieve an error < 15% for all
latency percentiles.

3.4 Estimating the Impact of Fusion

Here we show how WISEFUSE estimates the impact of fusing two in-series functions together. We
represent the latency of a function as a composition of three components: (1) Download-duration
(Down): the time to read the input file(s) from remote storage. (2) Process-duration (Proc): the
computation time. (3) Upload-duration (Up): the time to upload the output file(s) to remote storage.
We model the function’s latency PDF as a convolution between the three components:

P(latency = t) = P(Down = k,Proc=m,Up =t —k — m) (1)

Notice that we still represent each component as the distribution of a random variable, rather
than a constant, to capture the latency variability. By factorizing the latency into these three
components, we can easily estimate the impact of fusing two functions on their combined latency
and cost. For example, if we perform Fusion between Extract and Classify stages in Figure 1a,
we remove the upload step from Extract and the download step from Classify. Thus, we estimate
the combined latency as a convolution between Down(Extract), Proc(Extract), Proc(Classify), and
Up(Classify) CDFs. Importantly, WiseFusk takes into consideration the correlation between the
different components to efficiently estimate the convolution between them. For example, we estimate
the Pearson correlation coefficient between all four components and find a strong correlation of
0.73 between Proc(Classify) and Up(Classify) CDFs. This is because it takes longer to perform
object detection for frames with many objects; it also takes longer to crop and upload the detected
objects. Hence, in WISEFUSE, we use the marginal distributions for the statistically independent
components, while we use the joint distribution for highly correlated components (Proc(Classify)
and Up(Classify) in this case). We show the accuracy of WI1seFUSE’s estimates for the impact of
Fusion in Section 5.4.2.

3.5 Estimating the Impact of Bundling

Here we show how our model estimates the impact of bundling parallel invocations together on their
combined latency distribution. By bundling parallel invocations, stragglers can leverage additional
resources released by the fast executing workers (Figure 12). This allows for local resource sharing
between the bundled workers and decreases their combined latency. However, Bundling can cause
contention if the number of bundled invocations is high compared to the VM’s size. Accordingly,
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Algorithm 1 Get Bundled-Pair Latency

Input: Numlterations=N, PerfModel: Model, WorkerSize: C
Output: Latency CDF for bundled pair: CDFpy i

: ## Use performance model to get the CDF for a single worker in the bundle with VM of size C

: CDFsingle = Model(C)

: ## Use performance model to get speedup distribution for a single worker when executed on a VM of size 2C
CDFpouple = Model(2C)

: ## divide the percentiles of the CDF with double sized VM over the CDF with single sized VM

g CDFSpeedup = CDFDouble/CDFsingle

: fori=0-> N do

## Sample 2 latency points t1, t2 that where observed in the same run (to sustain the correlation)
Sort the points t1<t2

Estimate skew = t2-t1

Set reduced-skew = CDFspeequp(skew) * skew

Add (t1 + reduced-skew ) to CDFpyndie

: end for

: return CDFpyndie

—_
HeYexsdepde

=
=W N

Fig. 14: Pseudo code for calculating the latency CDF for any sized bundle of functions in one stage

selecting the best bundle size is not trivial and it has to be carefully selected. Therefore, Bundling
is beneficial and used when: (1) The DAG has a fanout stage since linear-chains do not benefit from
Bundling. (2) Functions are scalable: The function can leverage additional resources when made
available. (3) Input content skew: Stragglers experience longer execution times due to their input
content, not variability due to infrastructure (e.g., poor network bandwidth). (4) Stragglers can be
spread out over different bundles, which we achieve through shuffling.

For simplicity of design, we consider that workers can be bundled in powers of two only. Further,
all bundle sizes within one stage are equal. We give the steps for estimating the latency distribution
of a bundle of workers in Algorithm 1. First, we use the performance model to estimate the latency
distribution for a single function when assigned additional resources. For example, if the function
is originally allocated a VM size (C) and then is bundled with another function in a VM with double
the size (2C). The ratio between %((ZCC)) shows the speedup due to additional resources, i.e., the
function’s scalability. We then draw pairs of latency points from our profiles to capture the natural
skew observed between the two workers. Then, we estimate the reduction of that skew (due to
Bundling) using the speedup CDF. In summary, the algorithm considers two important factors:
(1) The speedup distribution due to additional resources (2) The natural degree of skew observed
between the two workers.

Notice that we represent the speedup as a distribution rather than a scalar value, which is
essential to capture the reduction in latency for each latency percentile. For example, Figure 15
shows the two CDFs for the Classify function in our Video Analytics application, using 1 core VM
vs 6 cores VM. We notice the speedup varies for different percentiles. For example, the speedup on
the median is only 11%, whereas it becomes 47% for the P95. This is because invocations at higher
percentiles experience higher skew and therefore reap greater benefit from additional resources.
A stage’s latency is estimated as the "Max" latency among all bundles (stage i with N bundles):

P(X;<2z)= P(X,‘,l <z, X2 <z.X;N < z) (2)
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Fig. 15: Speed-up in Classify when executed on a 6-core VM vs a 1-core VM.

Similar to Eq 1, identifying the correlation between the parallel workers is essential to accurately
estimate the stage’s latency distribution. Specifically, in case of a low correlation between parallel
workers, we can simplify Eq 2 as the multiplication of the marginal distributions, P(X; < z) =
P(X;;1 < z)N. However, in case of a high correlation, this simplification can cause overestimation of
the combined latency. In our applications, we observe a high enough correlation coefficient (0.4-0.6)
between parallel workers, hence we use the joint distributions when estimating Eq 2.

3.6 Execution Plan Optimization

Here we show the steps for finding an optimized execution plan for a user-given latency objective.
Search Space: We calculate the size of DAG transformations, including Fusion, Bundling, and VM
size selection. Let D be a DAG of N stages, denoted as Sy, Sz, ..., SN Since we can perform Fusion of
any consecutive pair of stages S; and S;;1, we have N — 1 consecutive pairs, and for each pair, we
have a binary decision (to fuse or not to fuse). By performing this decision recursively, we actually
explore all possible Fusion configurations between consecutive stages (not just pairwise Fusion).
Hence, we have a total of 2N~ possible combinations of Fusion actions. Since in practice N is
not large (P50 depth is 2 and P99 is 12, Figure 5), this exhaustive search of Fusion space is feasible.
Now, let the maximum degree of parallelism in any stage be 1K (recall that the actual observed
P99 width is 84). Since we consider bundle sizes to be powers of 2 only, we have a maximum of
log2(1000) =~ 10 possible bundle sizes for each stage. Notice that after we perform Fusion for any
pair of stages, they are represented as a single stage in the new DAG. Therefore, the total number
of Fusion and Bundling actions is given by Y., (V') x 10, where i represent number of stages
after performing any combination of Fusion actions, and it varies between 1 (all stages are fused
into one stage), and N (no Fusion). For a DAG of 8 stages and max degree of parallelism of 1K, we
have 215.6M possible Fusion and Bundling actions that we can select from. Notice that this space
does not include the possible actions of selecting the VM sizes, which can be as few as 7 different
sizes for Google Cloud [22], or as many as any memory size (in steps of 1 MB) between 128 MB
and 10.24 GB for AWS Lambda [3]. Thus, an exhaustive search to find the best plan is expensive
and impractical.

Importance of E2E Optimization: Here we show the importance of selecting Fusion, Bundling,
and VM allocation options for all stages in the DAG jointly, rather than optimizing each stage
separately. Consider a DAG of 2 stages such that the first stage has only one function denoted as
Xj. The second stage has k parallel invocations of a function, denoted as (X31, X32, ... Xo.k) and
they receive their input files from X;. Now, in order to achieve data locality between the two stages
and minimize X;’s latency, we perform Fusion. This forces us to execute the sending function and
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all receiving functions in the same VM. Thus, we force Bundling with a bundle size of k over the
second stage. This can be harmful for large values of k where Bundling can cause contention in the
VM and increase the E2E latency and cost.

Another cause of local optimization shortcoming is that Fusion removes the possibility to "shuffle"
stragglers across bundles, which is needed in many cases to break the locality of stragglers. For
example, consider the example shown in Figure 13a for a stage of two workers X; ; and X; ; and
each of the them triggers two workers in the second stage. In the second stage, workers X, 5 and
X34 are stragglers. If we perform Fusion between the two stages (which is the best local decision
for workers X; ; and X ), we will have to execute the two stragglers together in the same bundle
and hence the locality of stragglers will remain. In contrast, if we do not perform Fusion between
the two stages, we can spread the two stragglers over two separate bundles, which leads to a lower
EZ2E latency for the bundles (Figure 13b). Accordingly, selecting the best Fusion and Bundling
actions for each stage separately (i.e., local optimization) is sub-optimal. WisEFUSE avoids this
pitfall by selecting the execution plan (which includes Fusion and Bundling options for all stages)
that optimizes the E2E latency (or cost) for the entire DAG.

Search Strategy: As shown in Figure 2, the DAG optimizer takes as input either a latency objective
(for latency-sensitive applications) or a budget (for cost-sensitive ones). The first step is to generate
different Fusion variants from the user-defined DAG, and by default, we explore all Fusion variants.
However, if exploring all Fusion variants is infeasible in a specific situation, we can select a subset
that fuses stages with high data exchange (upload/download) volume. Afterward, a searching
algorithm is executed for each variant in parallel to identify its best configuration vector X, which
denotes the best VM sizes and bundle sizes for each stage in that variant. After the configuration
vectors are generated for all Fusion variants, we select the vector that meets the latency objective
with the lowest cost. Equivalently, for the budget objective, we select the vector that meets the
budget objective and provides the lowest latency among the options.

Handling Different Input Sizes: The same serverless DAG can be executed with different
input sizes, which can impact the execution time, memory footprint, or the fanout degree of its
functions. Accordingly, different input sizes can be optimally executed with different execution
plans. WiseFUSE leverages polynomial regression to estimate the upload, process, and download
CDFs for new (unseen) input sizes. The order of the polynomial is different for different applications
and stages. For example, upload and download CDFs of PCA stage in our ML pipeline application
have a linear relation while its process CDF has a quadratic relation with input size (PCA has
quadratic compute complexity [50]). We evaluate WiseFuUskg’s ability to handle different input sizes
in Section 5.4.3.

Finding the best configuration vector: We show the pseudocode for WiseFUSE’s optimizer in
Algorithm 2. First, we estimate the latency distribution for the fused stages as shown in Section 3.4.
Afterward, we apply a Dynamic Programming (DP) search algorithm to select the best VM size
and bundle size for each stage. We observe that our optimization problem can be reduced to the
well known Knapsack problem. We set the knapsack’s capacity to be our latency objective for
the latency-sensitive application (equivalently, the capacity would be our $ cost objective for a
cost-sensitive application). The items in the knapsack represent configurations of each stage (one
configuration/stage). The weight of each item is the latency of that configuration and the cost of
each item is the inverse of the $ cost of that configuration (since our target is to minimize the cost
subject to meeting the latency objective). The algorithm proceeds as follows: For each stage in
the DAG, we estimate the latency and cost for each feasible action, which includes all VM sizes
(in steps of 128 MB) and all bundle sizes (in powers of 2). We divide the latency objective into
equal-sized windows (10 ms) and actions that lead to the same latency window are considered
equivalent. Hence only the action that has the least cost is saved in the DP table, while others
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Algorithm 2 Pseudocode for WisEFUSE’s optimizer

Input: DAG = D with N stages, PerfModel = Model, Latency Target = T
Output: Execution Plan = ExecPlan

1: ## From DAG D, getall m = 2(N=1) Fysion variants DVj, ... DV,
2: ## Initialize Setx as empty set
3: for i = 0 to m (in-parallel) do
4: Set Vector X = DP(DV;, Latency Target T)
5: Add X to Set[i]
6 Set Cost[i] = GetCost(DV;, X, Model)
7 Set Latency[i] = GetLatency(DV;, X, Model)
8: end for
9: ## Across all variants, find best variant index ipes;
such that Latency[ipes;] < T and Cost[ipes,] is minimum
10: return ExecPlan = (DV;,,,, Setx[ipest])

are pruned. By doing so, we keep the number of solutions that gets transferred from one stage to
the next bounded (at most AXT), leading to a much faster searching time. Specifically, the time
complexity is O(S X A X T), where S is the number of stages, A is the number of possible actions
per stage, and T is the number of latency buckets (Latency Target/10 ms). For a DAG of 8 stages, 46
VM sizes, and 10 bundle sizes for each stage, we have 3.68K actions to explore using DP, compared
to 215.6M for the exhaustive case.

3.7 Further Design Considerations

Interaction with Cold Starts: WiseFUSE’s performance modeler profiles the latency distribu-
tion for each function in the DAG using different inputs. During profiling, DAG invocations are
performed serially and in quick succession to leverage warm VMs and to eliminate cold starts.
Accordingly, the latency distribution of our model captures the variability that is due to input
content only, not cold starts. One positive side effect of performing Fusion or Bundling is that they
cause the DAG execution to use fewer VMs. Hence, they can reduce the incidence of cold starts.
Sharing Functions between Multiple DAGs: WisEFUSE does not limit sharing of the same
function between multiple DAGs. This is because both Fusion or Bundling are implemented during
the deployment phase, whereas the functions’ user-defined packages and source codes are still
separately shared and edited by users to preserve modularity of the functions.

Handling Deeper DAGs: The optimizer shown in Algorithm 2 explores all Fusion variants for
the input DAG, which can be a large pace to explore in case the DAG has many stages. Recall that
for a DAG of N stages, we have m = 2(N~V Fusion variants. Although the Fusion variants are
explored in parallel, the computation cost for the optimizer can become problematic if the number
of stages grow. To reduce the size of this search space, we can construct an ordered list of pairs of
stages combined with the median data communication latency between them: [(S;, Si+1, Hcomm)]-
Afterwards, we can limit the optimizer to explore Fusing the subset of pairs of stages that have the
highest data communication latency between them, and for which Fusion will be most efficient.
Mitigating Infrastructure Skew WiseFuske ’s Bundling objective is to mitigate input-based
(demand-side) execution straggler. However, Bundling has a positive side effect of reducing the
overall number of VMs/containers used to execute a stage and therefore can indirectly minimize
the infrastructure-based (supply-side) variability as well. For example, with Bundling of broadcast
fanout stages, each bundle downloads the input file once and hence the file is made available for all
invocations at the same time. This removes any possible variability in download times (e.g. due to
network fluctuations) between the invocations in case they were executed on separate VMs.
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Using Homogeneous Bundle Sizes: Our solution considers homogeneous bundle sizes only. It
might seem more beneficial to bundle parallel workers into heterogeneous bundle sizes according
to their execution times. For example, a better solution can be executing straggler workers as
standalone functions with high resources, while bundling short running workers together with low
resources. Unfortunately, this approach requires identifying based on content, which workers are
likely to become stragglers, something that providers are unable to do due to privacy regulations.

4 Implementation

We implement WIseFUsE in C# with 2.7K LOC. The runtime of our search heuristic is 6 ms for
Approx SVD, 535 ms for ML pipeline, and 779 ms for Video analytics. WISEFUSE collects execution
times for N invocations per function to build its performance model, and the value of N is user-
defined. We find empirically that N=300 is sufficient to model P95 latency with error < 15% for our
three evaluation applications. For higher percentiles (e.g., P98), we would need to profile more points.
In general, more points need to be profiled for accurate predictions for higher percentile latencies
(e.g. we need at least 1000 points to profile the P999 latency). The profiling cost with N=300 on
AWS Lambda is $3.8 for Approx SVD, $0.9 for ML pipeline, and $1.7 for Video analytics, whereas it
is $3.4 for Approx SVD on Google. In our evaluation on AWS Lambda, we use StepFunction [2] for
function orchestration. However, because of data transfer quota limits in Google Cloud Functions
(details in Section 5.5), we use remote storage triggers to orchestrate the functions in the DAG.
Fusion: We follow the same programming paradigm as used in current FaaS platforms, where
developers identify a handler for each function, which serves as the function’s entry point. When
two functions are to be fused together, their execution packages and dependencies are combined and
a single wrapper is added to simply call both function handlers in order. Then, we intercept function
calls to remote storage API to redirect the communication to the next fused function through local
memory. In case WiseFUSE decides not to fuse the two stages, the upload and download commands
are forwarded to the remote storage API and their latency is recorded. Thus our implementation
abstracts away from the user whether Fusion is used, i.e., whether data is passed through remote
storage or local memory.

Bundling: To perform Bundling, we rely on parallelism APIs supported by the runtime (e.g.,
Python3’s multiprocessing API) to invoke multiple parallel instances of the function’s handler. Note
that we only bundle invocations of the same function and hence the bundled invocations share
the same execution packages and dependencies. Moreover, we bundle invocations that belong to
the same DAG execution (and hence belong to the same user) for data privacy considerations. In
case the bundled functions are data dependent on the same input file (i.e., Broadcast fanout), we
download their input file once per bundle. We expect the VM’s OS to dynamically assign more
resources (e.g., more CPU capacity) to stragglers after shorter running workers complete their
execution.

5 Evaluation
5.1 Baselines and Competing Approaches

We evaluate the latency and $ cost for each application using WISEFUSE’s execution plan versus
the following baselines and competing approaches.

1. User-defined DAG: This is the state-of-practice in which each function in the DAG runs in a
separate VM and VM sizes are either right-sized to the functions’ memory footprints (User-Min) or
set to max VM size (User-Max).

2. Faastlane [30]: Here the entire DAG is executed within a single VM. Faastlane has a fallback
strategy of using remote storage when a single VM is not large enough to execute all the functions
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within one stage. In this case, the functions are divided into bundles but the bundle size is fixed to
# CPU cores of the VM. The VM size is set to fit the most resource-demanding stage.

3. Soni1c [35]: Reduces communication latency by selecting between three data passing methods:
remote storage, direct passing, and local VM-storage passing. However, direct passing cannot be
supported in AWS Lambda or GCP and we implement SoNIC’s remote storage and local VM-storage
options only. Sonic performs no Bundling or any other skew mitigation technique. Further, it
assumes function execution times are deterministic and hence does not use function execution
time distributions.

4. Photons [13]: Colocates parallel invocations together to improve the memory utilization, not to
meet latency or cost objectives. However, this colocation mitigates execution skew to some extent.
Moreover, Photons colocates as many parallel invocations as possible as per the function’s memory
footprint. This can cause excessive bundling and can increase the E2E latency.

5. Theoretical lowest latency: This provides the theoretical (oracle), lowest latency for any
serverless DAG. It runs all the functions in the serverless application within one VM, which can be
arbitrarily large to accommodate the largest number of parallel workers in any stage.

5.2 Applications

The three applications? that we use in our evaluation are adopted from prior works and they show a
diversity in structure (i.e., depth and width), intermediate data volumes, and execution time skews.
(1) Video Analytics: Adopted from Pocket [29] and Sontc [35]. This application performs object
detection and classification for frames in a video (Figure 1a). The first stage in the DAG, called
Split, downloads the input video from remote storage (S3) and splits it into equal chunks of 2
seconds. Each chunk is then sent to Extract stage to extract a representative frame from the chunk.
Each frame is then sent to Classify stage to detect and classify all objects in the frame. Finally, the
objects are either sent to Face-Detect if the frame contains a person, or sent to OCR if the frame
contains a car. We use 600 YouTube videos of lengths 1 minute, 5 minutes and 10 minutes. Of them,
50% are used for profiling, and the other 50%, for evaluation.

(2) Approximate Singular Value Decomposition (SVD): This application estimates an approx-
imate Singular Value Decomposition (SVD) for a large-scale input matrix, which is widely used
in recommender systems [28, 51]. SVD has a time complexity of O(n®) and a space complexity
of O(n?). Accordingly, several approximation techniques have been proposed to parallelize SVD
computations and significantly reduce the runtime and memory footprints [25, 43, 48]. We perform
SVD for the Netflix prize dataset [40] and use the Split-Merge approach [31]. The dataset has movie
ratings for 17,770 movies, submitted by 480,189 users, and each rating is on a 5-star integer scale,
from 1 to 5. The application has two stages. The first stage performs a matrix split operation to
a user-defined number of sub-matrices. Each sub-matrix is then sent to an instance of RunSVD
function to estimate its decompositions. Finally, all matrix decompositions are saved to remote
storage. First, as a preprocessing step, we save the Netflix data in 128 equal blocks, divided by
rows. This is the minimum degree of parallelism that we can run at without hitting the maximum
memory limit in AWS Lambda (10 GB). The 128 blocks are then saved to remote storage. We set the
number of split functions in the first stage to 128 (one invocation per block) and each invocation
splits the block further into k sub-matrices (k = 2 in our case). Thus, we run 256 instances of the
RunSVD function, in parallel, on the sub-matrices. With this degree of decomposition, we calculate
the reconstruction error and it is small (< 0.5%), which is considered acceptable for most SVD
deployments.

2The code of the three applications is available from https://github.com/icanforce/WiseFuse-applications
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Fig. 16: WiSEFUSE’s comparison in latency and $ cost. % over the bars show WiseFUsE’s gains in E2E latency
(1.5% configuration) over this particular scheme. We set the latency target to (1.5%, 2.5%, and 5x) of the best
theoretical latency (total processing time using an arbitrarily large VM and zero communication latency).

(3) ML Pipeline: Adopted from Cirrus [8], this application trains a random forest (RF) prediction
model for the MNIST handwritten characters [11], containing 810K images. The first function
downloads the dataset from remote storage and performs Principal Component Analysis (PCA). In
the second function, a hyper-parameter tuning stage is invoked, which includes 64 parallel lambdas,
each executes with a unique set of hyper-parameters (# features, # trees, and tree max depth). In
the final function, the accuracy of each model is estimated on a held-out dataset and the top 10
models are uploaded to remote storage. The LightGBM boosting framework was used for training
the RF [32].

5.3 EZ2E Evaluation

Video Analytics: We compare the latency and cost of WISEFUSE to the baselines using 300 test
videos, which were not used in the profiling. We show the P95 latency and cost for 1K executions
for each baseline in Figure 16a. WIsEFUSE and all baselines are executed in AWS Lambda, using
Step Functions for DAG orchestration and Amazon S3 as the remote storage. We report the
cumulative cost of 1K executions. We show the performance of three different settings of WiseFUsE,
corresponding to different latency objectives relative to the Theoretical Lowest Latency (1.5%, 2.5X%,
and 5X). This evaluates the ability of WiseFUSE to be configured to meet different price-latency
points. For the rest of this E2E evaluation, we refer to the performance of WiseFUsE 1.5X.
Compared to the user-defined DAG baseline, WISEFUSE achieves either 63% lower cost than
User-Max or 61% lower P95 latency than User-Min (although it increases the cost somewhat (11%)
over User-Min). This is because of WisEFUSE’s execution plan, which fuses the Split stage with the
Extract stage to reduce the communication latency, also bundles parallel invocations of Classify
together to mitigate computation skew. Moreover, by assigning the right resources to each set of
bundled or fused functions, WiseFUSE meets the latency objective with significantly lower cost.
Compared to Sonic, WiseFUSE achieves 47% lower P95 latency. Recall that Sonic only considers
fusing in-series functions to leverage data locality, and hence fuses the Split with the Extract
stage together. However, it neither performs any Bundling nor considers the latency distribution
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Fig. 17: Comparison between WisEFUSE (-Full) and its two variants that do Bundling only, or Fusion only.

and hence assigns resources that minimize the average latency, in contrast to WiseFuUsE that assigns
the right resources to meet the required latency percentile objective.

Considering Photons, we notice its latency is as high as User-Min and WiseFUSE achieves a lower
latency by 62%. Recall that Photons performs Bundling mainly to improve memory utilization.
Therefore, it bundles as many parallel invocations as possible based on the functions’ memory
footprint. This causes Photons to bundle 16 parallel invocations of the Classify stage together in
one VM. Although this maximizes the memory utilization, it assigns less than optimal resources to
each worker and causes a significant increase in latency. WIseFUSE uses its performance model to
identify the best bundle size, which is 4 for this application.

We notice Faastlane is the closest baseline to WisEFUSE, yet WisEFUSE achieves 39% lower P95
latency. Faastlane (similar to WiseFusk) fuses the Split and the Extract stages together, but
falls back to remote storage (S3) when executing the Classify stage. Moreover, it uses a fixed
bundle size of 6 workers to match the 6 vCPUs that are provided by AWS Lambda’s Max VM
size. Additionally, Faastlane cannot mitigate the significant execution skew that exists among the
parallel workers.

Approximate SVD: We show the latency and cost of WiseFusk versus baselines in Figure 16b.
Compared to user-defined DAG, WiseFUsE achieves lower latency than User-Min and User-Max by
61% and 81% respectively. Although User-Max assigns the maximum resources to each worker, it
still suffers from the increased communication latency between the split and SVD stages. WiSEFUSE
performs Fusion of these stages and reduces the communication latency significantly. WiseFusg
achieves 50% lower latency than Faastlane, 68% lower latency than Photons, and 42% lower latency
than Sonic. This again shows the importance of jointly performing both types of optimizations
while assigning the cost-optimized VM sizes. In terms of cost, only SoNIc (marginally) reduces the
cost over WISEFUSE (7%), while it (significantly) increases the latency (42%).

ML Pipeline: We show the evaluation results in Figure 16c. We notice two main differences in this
application. First, using Min VM sizes (as done by User-Min) does not provide the lowest cost. In
fact, it increases the cost by almost 2x compared to using the Max VM sizes. The reason is that the
ParamTune function shows a superlinear improvement in the runtime when allocated additional
resources. For example, the function’s runtime reaches 306 sec when assigned a VM of size 1,240
MB (VM min size) and it becomes only 22.2 sec when the VM size is increased to 10,240 MB—an 8x
increase in the allocated resources leads to a 14X decrease in the latency, and therefore WISEFUSE
provides lower cost than User-Min. Second, WiseFuUsE produces similar execution plans for latency
targets of 1.5%, 2.5%, and 5X the best theoretical latency. This is again because exploring lower VM
sizes or bundle-sizes for this application does not reduce the cost compared to the 1.5X case, and
hence the optimizer converges to this particular plan as it meets all latency targets with reduced
cost. Finally, WISEFUSE meets the latency targets of 1.5X, 2.5, and 5X the best theoretical latency
for all three applications with a small error in the range of [0.3%,12%].
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Comparison to exhaustive search: As a proxy for exhaustive search, we compare WiSEFUSE
with grid search where we set grid search to start from the best Fusion strategy given by WIseFUSE
and then explore all bundle sizes between 1 and 16 (increments of 1) and all VM sizes between
1 GB and 10.24 GB (AWS Lambda’s Max) (increments of 500 MB). This results in a total of 32K
profiling runs for grid search (recollect we need at least 100 samples for each data point for creating
a distribution) compared to 300 points for WiseFusE (which simply uses its performance model
trained with these 300 points). We show the result in Figure 18. The execution plan found by grid
search gives 1.1% lower latency for Video Analytics, 15% for Approx SVD, and 2.7% for ML Pipeline.
However, grid search’s plans use a smaller bundle sizes compared to WiseFuskt and hence increase
the cost by 28% for video analytics and 5% for Approx. SVD. Recall that the cost shown is only
the cost of executing the DAG, and does not include the profiling cost, which as discussed above
is much higher for grid search. Considering the lower profiling cost, and correspondingly lower
incurred cost, of WISEFUSE, this latency performance would be considered acceptable in many
situations.

Compute and Communication Latency Scaling in GCP We look at the change in both compute
and communication latency with varying memory sizes on Google Cloud Functions for the Approx
SVD application in Figure 22. The general serverless notion of scaling all resources with respect to
the memory allocated is generally true, except when going from 4GB to 8GB. Both these memory
sizes have the same compute power (2.4 GHz) and thus the average compute latency doesn’t change
between these two. As for communication latency, we see a consistent decrease as the memory
size increases. This points to the network bandwidth continuing to scale unlike in AWS Lambda
where it saturates at 1792MB (1 core).

Ablation Study: To analyze the gains of Fusion and Bundling separately, we limit WISEFUSE to
perform Bundling only (called WiseFuse-Bundling) or Fusion only (called WiseFuse-Fusion). Both
variants still select the best VM sizes for nodes in the DAG after transformation. We compare the
performance of these two variants to our full solution (WiseFusg-Full) in Figure 17 for our three
applications. For Video Analytics, we notice that WiseFuse-Full achieves lower latency than both
variants. We also notice that WisEFuse-Bundling achieves lower latency than WiseFusg-Fusion,
indicating that execution skew contributes more latency than data exchange for this application.
For Approx SVD, we notice that WiseFusg-Full achieves a similar performance to WiseFuse-Fusion,
whereas WiseFuse-Bundling has a higher latency but lower cost. The reason is that in this DAG,
Fusion forces bundling of size 2, which WiseFusg-Full also found to be the best transformation.
Finally, for ML Pipeline, WiseFusEe-Full achieves similar performance to WiseFuse-Bundling as
WiseFusEg-Full found that all Fusion decisions were harmful to performance and hence performs
Bundling only for this DAG.

In summary, WiseFuse outperforms all baselines and competing approaches and is able to
provide an execution plan that reduces E2E latency and cost. Further, both Fusion and Bundling
are required for achieving the gains, albeit these two contribute to different extents for different
applications.

5.4 Microbenchmarks

We run microbenchmarks to evaluate the accuracy of WiseFuUsE’s performance model, impact of
Fusion, impact of Bundling, and impact of varying the input size on the E2E latency and cost.

5.4.1  Per-function Modeling Accuracy =~ Here we show accuracy of our per-function performance
model, described in Section 3.3. For each VM size € {Min, 1 GB, 1.8 GB, and 10.24 GB(Max)}, we
collect profiling information for each function. For evaluation, we use 300 points for 3 test VM sizes.
We use our performance model to estimate the CDFs for each function in our evaluation applications
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Table 1: RMSE in latency estimates for each function  Fig 18: Comparison between WiseFusk and Grid
in our evaluation applications. Search.

and compare the estimated P95 latency to the actual P95 latency. We show the results in Table 1. We
notice that our performance model has very low error, in the range [0.25%, 13%] across all functions
and all applications. Moreover, the upload and download operations have higher errors on average
than the process operation. This is because of the high variability in data exchange latency that
we empirically observe in production environments due to network bandwidth fluctuations. This
stresses the benefit of our Fusion mechanism to reduce communication latency.

5.4.2 Estimating Latency After Fusion and Bundling In this section, we evaluate the accuracy of
our performance model in estimating the latency after we perform either Fusion or Bundling to our
video analytics application. For Fusion, we use a single linear chain of "Split—Extract— Classify"
and we want to estimate the chain’s E2E CDF when all three functions are fused together, thus
evaluating our algorithm described in Section 3.3. As mentioned in Section 3.4, considering the
correlation between the operations is essential to accurately estimate their combined CDF. Here
we notice that "Classify-Process" and "Classify-Upload" have a high correlation of 0.7. This high
correlation is because frames with a large number of objects take longer for identification, cropping,
and uploading. We compare in Figure 19 the case where we neglect this correlation with the
case where we consider it (as in WiseFUsE). As in the figure, ignoring this correlation causes
underestimation of the combined latency and increases the error to a maximum of 12.5%. However,
WIsEFUSE, using the joint distributions to take this correlation into consideration, reduces the error
to < 3.4%. This shows the importance of our correlation-aware performance model to accurately
estimate the impact of fusing functions together.
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Fig. 19: Accuracy of WiseFuse’s CDF estimation for a  Fig. 20: Accuracy of WiseFuse’s CDF estimation for a

fused chain for our Video Analytics application. bundle of 4 Classify workers. WIseFUSE achieves
Without considering correlation, errors can be up to  errors in the range of [-6.4%,7%] compared to the
12.5%. With correlation, errors come down to < 3.4%. actual CDF.
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Fig. 21: Video Analytics: Comparison between WisEFUSE’s optimized plan and user-defined DAG using min
and max VM sizes. We show how the latency and cost are impacted by varying input sizes.

To evaluate the benefit of Bundling and our ability to predict the latency CDF, we consider the
Bundling strategy WISEFUSE chooses for the Classify stage. The Classify stage is a ripe target
as it experiences the highest computation skew in the DAG. WiseFUSE selects a Bundle size of 4.
We compare WisEFUSE’s estimated CDF using the approach in Section 3.5 to the actual CDF of the
Bundle in Figure 20. We also show the standalone (i.e., no bundling) CDF before Bundling using
a VM size of 1,792 MB, which comes with a full vCPU core. We notice that with Bundling, the
combined CDF improves the tail latency significantly compared to standalone CDF as P95 latency
decreases by 27%. This highlights the gain due to skew mitigation through Bundling. Moreover, we
notice that our estimated CDF for the bundle is very close to the actual, with errors in the range of
+ 7% across all percentiles. In summary, WiseFUsE’s performance model shows high accuracy in
estimating the impact of Fusion and Bundling on the DAG’s latency, which is essential in selecting
the best execution plan for the DAG.

5.4.3 Varying Input Data Size  Here we evaluate WISEFUSE’s performance and cost with different
input sizes. We execute the Video Analytics application with varying input video lengths of 1, 5,
and 10 minutes, using 300 videos for each length. We notice that changing the input size impacts the
following parameters: (1) Upload, process, and download CDFs for Split stage. (2) Fanout degree
for Extract and Classify stages. To evaluate the accuracy of our polynomial regression, we use
two sizes as inputs and estimate for the third size. Our estimated CDFs show an error of < 9.4%
across all percentiles. Afterward, we compare WISEFUSE’s execution plan to the user-defined DAG
with both min- and max-VM sizes in Figure 21. We notice the following: first, with 1-min video
inputs, WiseFuse and User-Max achieve similar latency but with 68% lower cost for WIseFUSE.
The reason is that WisEFUSE mitigates execution skew through Bundling. However, user-Max, by
allocating the max VM size to all workers, also mitigates execution skew, albeit, with higher cost.
In contrast, with 5-min and 10-min video clips, W1SEFUSE achieves lower latency than user-Max
by 61% and 69% respectively as WisEFUSE performs Fusion between Split and Extract. Hence,
WIiSEFUSE reduces the data exchange time, which increases as we increase the input video length. In
summary, by estimating the impact of varying the input size on the upload, process, and download
CDFs, WiseFusE finds optimized execution plans for different input sizes.

5.5 WIsSEFUSE on Google Cloud

Here we show the results of WiseFUsE and baselines on Google Cloud using the Approx SVD
application (Figure 16d). This is to verify if the benefits of WiseFUSE are tied to any esoteric FaaS
platform features (AWS Lambda) or if they generalize. We use the same implementation of Wi1sEFUSE
as on AWS Lambda, with S3 being substituted by Google Cloud Storage. Significantly, the GCP
equivalent for AWS Step Functions, Google Workflows, has very limited support for invoking
serverless functions directly and this feature is still in beta [23]. The recommended approach is to
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communication on Google Cloud Functions with  Google Cloud Functions. While network bandwidth
varying memory size. The network bandwidth scales with memory size, the communication skew
continues to scale unlike in AWS Lambda. grows.

invoke functions using HTTP calls but this is infeasible for applications with large fanouts (e.g.,
Approx SVD) since we hit the memory limit of 64KB [24] easily when counting the sizes of all the
HTTP headers for all responses. Thus, as a workaround, we use Google Cloud Pub/Sub [21] topics
where one stage publishes to a given topic upon completion, and the subsequent stage, is triggered
by an event from Pub/Sub. We use the Approx SVD application in preference to the other two since
this has a much higher fanout and thus stresses our workaround for GCP Workflows.

Our benchmarks show that in Google Cloud Functions, network bandwidth continues to scale
with VM sizes (unlike in AWS Lambda) as shown by the decrease in communication latency with
memory sizes (Figure 9). However, we still see a high data communication skew — up to 6.8%
between paralle]l workers as seen in Figure 23 — which causes significant increase in the E2E latency
and cost. This skew is mitigated by WiseFusEg’s Fusion since that eliminates data communication
between stages. Figure 16d shows that WI1SEFUSE achieves lower latency than all other baselines
similar to the evaluation on AWS Lambda. The main difference between the two platforms is
the amount of compute power available. In GCP, the maximum memory size of 8 GB still only
provides the same compute power (2 cores) as a 4 GB VM [20]. In contrast, in AWS Lambda, we
get up to 6 cores with the 10.24 GB VM. This means that Bundling is not as effective on Google
Cloud. Consequently, baselines that perform only Fusion (Sonic and Faastlane) are much closer in
performance to WiseFUSE.

6 Related Work

Characterization and modeling of serverless workloads. A related study [45] characterizes
FaaS workload of Azure Functions, focusing on individual functions rather than on DAGs. We draw
a number of comparisons between our work and this study, and highlight their implications on
performance and cost (Section 2). Atoll [47] also characterizes popular apps from AWS Serverless
Application Repository (SAR) but does not shed light on the DAG structures. Microservice archi-
tecture is a more general computing model than serverless computing. A microservice is similar
to a serverless function, but being stateful, can be long running. The workload characterization
of microservices at Alibaba [33] shows that the distribution of microservices execution time is
heavy-tailed. In contrast, serverless functions are shorter and providers impose timeouts on func-
tion execution times. Less directly related but an inspiration for our work is analysis of workloads
on the cloud that was used to drive capacity planning and task scheduling decisions [37, 38]. A
few prior studies have targeted predicting the execution time of serverless functions. For example,
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Sizeless [14] predicts (a point estimate) and optimizes resources for a single serverless function
by building regression models from a host of synthetic functions. Another study [15] observes a
variance in execution time in serverless environments, and hence, applies mixture density networks
to predict the distribution of the function cost. However, its Monte-Carlo simulation mechanism
is sample inefficient. WISEFUSE uses a more direct method by applying statistical operations to
combine the distributions of individual functions, and thus, to infer the E2E latency distribution.
Optimizing performance of serverless DAGs. Several recent proposals aim at making serverless
executions more efficient, in terms of both latency and cost. Sonic [35] proposed a hybrid and
dynamic approach to pick between three different intermediate data passing methods in serverless
DAGs. The solution focuses only on reducing data exchange latency, and hence cannot mitigate
execution skew or right size the resources to meet latency targets. Moreover, SONIC makes a major
simplification, assuming that function execution times are deterministic and thus ignores runtime
variances. The idea of bundling multiple parallel invocations to mitigate execution skew was
proposed in OrIoN [36]. However, the solution does not consider Fusion or any similar technique
to reduce communication latency between consecutive stages in the DAG. Moreover, ORION finds
the best bundle size through trial and error rather than leveraging the performance model as done
by WiseFusk. Llama [44] considers optimizing the latency and cost for serverless video analytics
pipelines. Llama is application specific and is designed for tuning video analytics parameters
(including content-dependent parameters) such as sampling rate or batch size. Finally, Caerus [52]
targets optimizing the latency and cost of two-stage Map-Reduce jobs by deciding when to start
the execution of each mapper/reducer function. The solution applies to functions that can start
execution when their input data is partially available, and hence, solves an orthogonal problem.
Compared to these solutions, WiseFUsE performs both Fusion and Bundling and allocates resources
to generate a cost optimized plan that meets a user-given latency target. A complementary line
of work provides efficient scheduling for serverless DAGs. WUkoNG [9] provides decentralized
and parallel scheduling distributed across Lambda executors. It leads to serverless DAGs using
the network I/O highly efficiently. Xanadu [10] and Kraken [7] tackle the problem of cascading
cold starts in a dynamic DAG. Overall, no prior work in this category considers execution time
distributions or combines such distributions for optimizing E2E latency or cost. Schedulers on the
cloud like Apache Spark [17] and Dask [26], which deal with stateful services, have an orthogonal
set of concerns, such as, state migration and cluster utilization [19, 53].

Optimizing communication latency in serverless workflows. Besides Sonic, recent work also
identifies communication latency as a major performance degrading factor in serverless workflows.
Pocket [29] and Locus [42] show that current options for remote storage are either slow disk-based
(e.g., S3) or expensive memory-based (e.g., ElastiCache Redis). Therefore, Pocket combines different
storage media (e.g., DRAM, SSD, NVMe) that users can choose to conform to their application
needs. SAND [1] (similar to Faastlane [30]) avoids network communication altogether by forcing
all functions that belong to the same DAG to execute on the same container, thus leveraging data
locality between them. While all these systems try to reduce communication latency between
serverless functions, they either take an extreme approach of forcing all functions in a DAG to
execute in the same container (sacrificing scheduling flexibility and parallelism), or they rely on
users to select storage media for their applications.

Optimizing resources in serverless workflows. Photons [13] uses a technique similar to bundling
restricted to DAGs with one fanout stage while focusing on security issues and reduction in the
memory footprint. In contrast, WiseFUSE optimizes more general DAGs with several fanout stages
and cascade functions, rightsizing resources to functions and function-bundles. The concept of
optimizing for a target latency in a serverless DAG is seen in Atoll [47], proactively initializing
VMs to schedule function requests onto them. Proactive approaches run into the challenge of
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predicting when to start new containers with specific dependencies, exacerbated by unpredictable
request arrival rates. Moreover, this approach is complementary to WiseFuse’s DAG restructuring.
There is significant work in improving serverless runtimes and these can benefit us by reducing
execution times of individual functions. Such approaches include reducing latencies by low-level
system optimizations [27, 41, 46], keeping containers alive [18, 45], or quick checkpoint save and
restore [12].

7 Discussion

Updating the profiled information: In order to keep WiseFuskg’s performance model current, we
need to monitor the workload to detect changes, and update the profiled characteristics. WiseFUsg
achieves this by applying the following steps. WiseFUSE models the latency of a function as the
contribution of three components: download, process, and upload, and maintains a distribution for
each component. The serverless provider logs the initialization time and total execution time for
each function invocation, for billing, and for continuous monitoring (e.g., AWS CloudWatch and
Azure Cloud Monitor). Since WiseFUSE already captures per-function distributions and estimates
the DAG EZ2E latency distribution, it can detect changes to the workload characteristics or to
warm-up latencies by comparing its profiled distributions to the online monitored distributions.
Reprofiling is triggered when comparing statistics of the captured distribution to those of the
monitored distribution indicates a change as follows: (1) when a change in a per-function statistic
exceeds a threshold (10% error in P50, or 15% in P95), (2) when a change in per-DAG latency statistic
or the user-specified target latency percentile exceeds similar thresholds, and (3) upon changes to
the function binary or the DAG structure. When such a change is detected, WisEFUSE creates a new
distribution using N data samples. In many cases, the N data samples would be already available
from the monitored distribution. By default N = 300, which we find empirically sufficient to model
P95 latency with low errors. This kind of profiling for tail latencies is conceptually similar to that
in OptimusCloud [34].

Larger serverless functions: WiseFUSE’s objective is to transform the user-defined DAG to an
optimized DAG. This transformation includes colocating multiple parallel invocations together
(i.e., Bundling), and/or fusing multiple stages together (i.e., Fusion). Accordingly, each node in the
optimized DAG serves as a new function and hence becomes the new basic unit of scaling and
scheduling. Thus, the new nodes in the transformed DAG will, expectedly, have higher memory
footprints (e.g., due to Bundling) and/or longer execution times (e.g., due to Fusion) compared to
nodes in the user-defined DAG. However, this is not a concern as cloud providers are increasingly
supporting larger VMs and relatively long execution times (e.g., AWS Lambda supports up to 10
GB of memory and 15 min of execution time [4]).

Security Concerns for Fusion and Bundling: WiseFusk only bundles or fuses functions of the
same DAG that belong to the same user. However, there could be security sensitive functions that
should not be bundled or fused. For example, assume function A has sensitive data and function B
should not have access to that data even when both functions belong to the same DAG of the same
user. In such a case, the user provides this constraint to WI1SEFUSE so that the security-sensitive
function is excluded from WiseFuUsE’s search space.

8 Conclusion

We characterize production workloads of serverless DAGs at a major FaaS provider and see that
serverless DAGs are increasing in popularity. We analyze the execution parameters (function
execution time, skew among the parallel invocations of a function, and data transfer between
functions). From our analysis, we identify two major performance bottlenecks in serverless DAGs: (1)
communication latency between in-series functions (due to infrastructure reasons) (2) computation
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skew among in-parallel function invocations (due to data skews). We present WISEFUSE that
addresses these challenges through two operations — Fusion (of in-series stages) and Bundling (of
in-parallel function invocations), addressing communication and computation skew, respectively.
Concretely, WISEFUSE uses Fusion and Bundling operations to derive an optimized execution
plan that meets a user-defined latency SLA with low cost. Through experimental evaluation and
comparisons with baselines and competing approaches (Faastlane, Sonic, and Photons), and using
three applications, we show that WISEFUSE is superior. Specifically, for an ML pipeline, WISEFUSE
achieves a P95 latency that is 67% lower than Photons, 39% lower than Faastlane, and 90% lower
than Sonic, without increasing the $ cost. Our evaluation on AWS Lambda and GCP Functions also
highlights some hitherto unknown platform-specific nuances of serverless execution.
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