
AutoForecast: Automatic Time-Series Forecasting Model Selection
Mustafa Abdallah

mabdall@iu.edu
Indiana University-Purdue University

Indianapolis
Indianapolis, IN, USA

Ryan Rossi
ryrossi@adobe.com
Adobe Systems

San Jose, CA, USA

Kanak Mahadik
mahadik@adobe.com

Adobe Systems
San Jose, CA, USA

Sungchul Kim
sukim@adobe.com
Adobe Systems

San Jose, CA, USA

Handong Zhao
hazhao@adobe.com
Adobe Systems

San Jose, CA, USA

Saurabh Bagchi
sbagchi@purdue.edu
Purdue University

West Lafayette, IN, USA

ABSTRACT

In this work, we develop techniques for fast automatic selection
of the best forecasting model for a new unseen time-series dataset,
without having to first train (or evaluate) all the models on the new
time-series data to select the best one. In particular, we develop
a forecasting meta-learning approach called AutoForecast that
allows for the quick inference of the best time-series forecasting
model for an unseen dataset. Our approach learns both forecasting
models performances over time horizon of same dataset and task
similarity across different datasets. The experiments demonstrate
the effectiveness of the approach over state-of-the-art (SOTA) single
and ensemble methods and several SOTA meta-learners (adapted
to our problem) in terms of selecting better forecasting models (i.e.,
2X gain) for unseen tasks for univariate and multivariate testbeds.

CCS CONCEPTS

• Computing methodologies → Machine learning; Feature
selection;

KEYWORDS

Time-series forecasting, Model selection, AutoML, Meta-learning

ACM Reference Format:

Mustafa Abdallah, Ryan Rossi, Kanak Mahadik, Sungchul Kim, Handong
Zhao, and Saurabh Bagchi. 2022. AutoForecast: Automatic Time-Series
Forecasting Model Selection. In Proceedings of the 31st ACM International
Conference on Information and Knowledge Management (CIKM ’22), October
17–21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3511808.3557241

1 INTRODUCTION

Accurate time-series forecasting at scale is critical for a wide
range of industrial domains such as cloud computing [37], supply
chain [1], energy [11], and finance [33]. Most of the current

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557241

time-series forecasting solutions are built by experts and require
significantmanual effort inmodel construction, feature engineering,
and hyper-parameter tuning [6]. Hence, they do not scale to
generate high-quality forecasts for a wide variety of applications.
Moreover, there is no learning scheme that is uniformly better than
all other learning schemes for all problem instances. For example,
from our experiments (see Figure 2), we find empirically that no
single forecasting model triumphs in more than 0.7% of the datasets
in our two training testbeds comprising 625 time series (details
in Section 6), i.e., there is no unique single model that works well
on all datasets. A naïve approach would be, given a new dataset,
we evaluate the performance of thousands of available models on
the dataset to select the best forecasting model for the problem at
hand. However, this approach is practically infeasible due to the
untenable time burden for every new problem.

In this work, we formulate the problem of automatic and
fast selection of the best time-series forecasting model as a
meta-learning problem. Our solution avoids the infeasible burden
of first training each of the models and then evaluating each one
to select the best model for a new unseen time-series dataset,
or even a new time window within a non-stationary dataset. A
practically important desideratum for any solution to this problem
is that once the meta-learner L is trained in an offline manner
using a large corpus of time-series data, then we can use it to
quickly infer the best forecasting model. The quick inference
requirement of this new problem, makes it challenging to solve,
yet practically important. Our meta-learner L is trained on the
models’ performances on historical datasets and the time-series
meta-features of these datasets.

We emphasize that our time-series forecasting model selection
meta-learning problem has several unique characteristics and
challenges compared to previous related meta-learning problems,
e.g., [16, 40, 54]. First, existing time-series forecasting models
have different designs and different assumptions around the
characteristics of time-series (e.g., probabilistic, seasonal,
traditional, etc.). Therefore, different models perform differently
depending on the characteristics that each dataset exhibits. Thus,
capturing the similarity among different datasets needs careful
selection of representative time-series meta-features. Second,
the new meta-learning approach should capture the temporal
variations of the models’ performances over different time
windows of the dataset. This is borne out of our observation that

5

https://doi.org/10.1145/3511808.3557241
https://doi.org/10.1145/3511808.3557241
https://doi.org/10.1145/3511808.3557241

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Mustafa Abdallah et al.

the best time-series forecasting model for time window𝑤𝑡 is not
necessarily the best model for a subsequent time window𝑤𝑡+𝑘 (see
Figure 3 in Section5.3). Third, the number of available time-series
forecasting models is large (in thousands) and thus training each
forecasting model and then evaluating the suitability of each in
inference leads to an unacceptable time burden for most real-world
scenarios. These challenges motivate the need for our approach.
Our solution. To solve the problem of automatic time-series
forecasting model selection, we propose a temporal meta-learning
approach, called AutoForecast that selects the best time-series
forecasting model without a heavy evaluation burden. The
schematic of AutoForecast with the main components and
their interactions is shown in Figure 1. There are two key
intuitions behind our approach. First, we learn the similarity across
datasets through meta-features that capture key characteristics
of the datasets and then developing our “general meta-learner”
that learns to predict the performance of a model for a time
window within a dataset. Second, we learn a model’s performance
evolution over successive time windows for the same dataset via
our “temporal meta-learner”. We train our meta-learner using
a large model space which has over 320 forecasting models
(Section 5.1). We also generate more than 800 meta-features that
represent five different types of meta-features (simple, statistical,
information theoretic, spectral-based, and landmarker), which
reflect various characteristics of the time-series datasets (Section 3).
We also consider diverse datasets so our meta-learning model
becomes generalizable to new time series datasets (Section 5.1).
To stimulate reproducible research on this topic, we publicly
release the corpus of datasets, along with their meta-features and
the performances across hundreds of models, plus our source
codes for training and evaluation1. Given a new (unseen) dataset,
AutoForecast automatically determines, using the meta-features
and the meta-learners, the best forecasting model among a large
space of models, without the need to train and evaluate any of the
different forecasting models on this new dataset.

The experiments demonstrate the effectiveness of our proposed
approach where we validate our meta-learning approach on
both univariate and multivariate testbeds. In particular, we
show the superiority of our approach over the state-of-the-art
(SOTA) time series forecasting models [27, 30, 41, 48, 52]
(including DeepAR [41], DeepFactors [52], and Prophet [48])
and different meta-learning approaches [20, 32, 56] (including
simple and optimization-based meta-learners). Across all datasets,
AutoForecast is at least 2× better in selecting the best forecasting
model, compared to the closest baseline. Moreover, AutoForecast
yields a significant reduction in inference time over the naïve
approach — AutoForecast has a 42× median inference time
reduction averaged across all datasets.
Summary of Main Contributions. The key contributions of this
work are as follows:
(1) Problem Formulation: We formulate time-series forecasting

model selection in a novel light, as a meta-learning problem.

1The URL for our database and source codes is:
https://drive.google.com/drive/folders/1K1w1Ida5Cr15b5Fhidax-i-fNpWZjvet.
The Adobe traces are available from:
https://github.com/adobe-research/AutoForecast_ResourceUsageData.

Performance Tensor
𝑷 = 𝑃!, 𝑃", … , 𝑃#

(𝑇×𝑛×𝑚)

Training Datasets
𝒟$%&'(= 𝐷!, 𝐷", … , 𝐷(

Model Space

𝓜

𝝍

Meta-features
Extraction

Time Windows

𝓌
Meta-features

Tensor

(Offline) Meta-learner(s) Training

𝑭

(Online) Forecasting Model Selection
Meta-features
Extraction

𝝍

Testing Dataset
𝒟$)*$

𝑭𝒕𝒆𝒔𝒕

Time-series Meta-learner
𝜽

General Meta-learner
𝝓

𝑰

Selected
Model
"𝒎

Loss Function
(𝑴𝑺𝑬,𝑴𝑨𝑷𝑬,
𝐬𝑴𝑨𝑷𝑬)

General Meta-learner
𝚽

(Multi-Output Regression)

Feature-
Embedding

(PCA)

𝝓 𝜽

Model
Inference

Feature-
Embedding

(PCA)

Time-series Meta-learner
𝚯

(Time-series Regression)

Meta-learner (𝑳)

𝑳

Figure 1: An overview of AutoForecast; components that

transfer from offline to online (model selection) phase are

shown in blue. Given the two main inputs, the performance

tensor P and the meta-features tensor F, the meta-learner L
learns two main components: general meta-learner (Φ) and
time-series meta-learner (Θ). These are then used online to

quickly predict the performance of available models on the

new test dataset and pick the expected best model.

(2) Temporal Learning of Performances: We propose a
meta-learner that learns the models’ performances evolution
over time windows of the datasets. Our meta-learner has two
sub-learners — the time-series meta-learner and the general
meta-learner that are designed for different data types with
different time dependencies.

(3) SpecializedMeta-features for Time-series Forecasting: We
design novel time-series landmarker meta-features to capture
the unique characteristics of a time-series dataset toward
effectively capturing task similarity.

(4) Efficiency and Effectiveness: Given a new time-series
dataset, AutoForecast selects the best performing forecasting
algorithm and its associated hyperparameters without requiring
any model evaluations, incurring negligible run-time overhead.
Through extensive experiments on our benchmark testbeds, we
show that selecting a model by AutoForecast outperforms
SOTA meta-learners and popular forecasting models.

(5) Benchmark Data: We release our meta-learning database
corpus (348 datasets), performances of the 322 forecasting
models, meta-features, and source codes for the community
to access it for forecasting model selection and to build on it
with new datasets and models. As part of this, we are unveiling
new traces of Adobe’s computing cluster usage for production
workloads.

2 RELATED WORK

Meta-learning in Time-series Forecasting: There are few works
that consideredmeta-learning for time-series analysis [19, 24, 35, 39,
51]. Among these, a fewworks considered simple ranking-based [24,
29] and rule-based [4, 51] meta-learners. The works [19, 39] applied
a neural network time-series forecasting model trained on a source
(energy) dataset and fine-tuned it on the target (energy) dataset.
However, these works did not consider using meta-learning for the
general problem of forecasting model selection that we consider in
our current work. There also exist few works that have explored

6

https://drive.google.com/drive/folders/1K1w1Ida5Cr15b5Fhidax-i-fNpWZjvet
https://github.com/adobe-research/AutoForecast_ResourceUsageData

AutoForecast: Automatic Time-Series Forecasting Model Selection CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

model selection problem using ensemble learning [15, 46, 49].
However, their problem domain of ensemble learning is different
from our problem of model selection. This is due to the fact that
ensemble learning constitutes buildingmultiplemodels for the same
task and does not in itself involve learning from prior experience
on other tasks. In contrast to those works, AutoForecast can
select among any (heterogeneous) set of methods. Finally, there is
a line of work that considered empirical analysis for performance
estimation [5, 9, 43] and model selection [10, 47] in time-series
forecasting. However, these works have several distinctions from
our work: (i) the need for evaluating all forecasting models in
inference and (ii) providing an analysis of the ranking ability of
performance estimators without having a meta-learner. In contrast,
our meta-learner learns how to automatically select the best model
and can capture the dependence within the same dataset.
Few-shot Learning & Transfer Learning: Few-shot learning
has been recently leveraged for automating machine learning
pipeline [33, 38, 45, 57]. In particular, the works [38, 45, 57]
investigated different problems outside the domain of time-series
forecasting. The work [33] applied meta-learning for zero-shot
univariate time series forecasting. However, that work has the
limitations of focusing on solving the cold start problem (learning
model parameter initialization that generalizes better to similar
tasks) which is different from our forecasting model selection
problem, considering different models from the same N-BEATS
architecture [34], and tackling only univariate time-series datasets.
We emphasize that our framework can use N-BEATS as one
forecasting algorithm in our model space. Finally, there exist few
works that applied transfer learning for time series classification
(TSC) [2, 13, 31, 53]. These works however have two distinctions
from our work. First, they transfer the learned network’s weights
to another network that is also trained on a target dataset. Second,
the TSC problem is different from our forecasting problem.
Hyperparameter Optimization: Automated hyperparameter
optimization (HPO) has received a surge of attention in the
machine learning domain in the last decade [14]. In particular,
decision-theoretic [7], bandit-based [26], meta-heuristic [28] and
Bayesian optimization (BO) techniques [44] are various SOTA
approaches for doing HPO. We emphasize that all of these
approaches rely on multiple model evaluations (i.e., performance
queries) which are computationally expensive and typically start
from scratch for every new dataset and hence lead to huge
overhead when applied to the time-series forecasting model
selection problem.

3 PROBLEM FORMULATION

We address the problem of model selection for time-series
forecasting via the meta-learning approach.
Meta-learning Components: Our proposed meta-learner
AutoForecast depends on:
•A collection of historical time-series forecasting datasetsD𝑡𝑟𝑎𝑖𝑛 =

{𝑫1,𝑫2, · · · ,𝑫𝑛}, namely, a training database, where 𝑛 is the
number of the historical datasets in D𝑡𝑟𝑎𝑖𝑛 . Note that 𝑫𝑖 ∈ R𝑛𝑖×𝑣𝑖 ,
where 𝑛𝑖 is the number of observations of the dataset 𝑫𝑖 and 𝑣𝑖 is
the number of variables in 𝑫𝑖 .

• The forecasting models that define the model space (set), denoted
as M = {𝑀1, 𝑀2, · · · , 𝑀𝑚}, where𝑚 is the size of the model space.
• For each dataset 𝑫𝑖 ∈ D𝑡𝑟𝑎𝑖𝑛 , we sample random 𝑇 windows
from 𝑫𝑖 , where each sample window𝑤𝑡 from dataset 𝑫𝑖 has length
|𝑤𝑡 | (smaller than the dataset length).
Window Notation: Time window represents a sequence of time
observations in the time series. In particular, 𝑤𝑡 denotes the 𝑡-th
time window, and |𝑤𝑡 | is the length of that time window (e.g.,
|𝑤10 | = 16 means that the 10th time window of the dataset has a
length of 16 observations).
Model Design: Now, we explain the model space design in our
solution (AutoForecast). For our forecasting model selection
problem, we define our model as follows.

Definition 1. A model 𝑀𝑖 ∈ M is given by the tuple
𝑀𝑖 = (𝑎𝑖 , h𝑖 , 𝑔𝑖 (·)), where 𝑎𝑖 is the forecasting algorithm, h𝑖 is
the hyperparameter vector for the forecasting algorithm 𝑎𝑖 , and
𝑔𝑖 (·) : R𝑛𝑖×𝑣𝑖 → R𝑛𝑖×𝑣𝑖 is the time-series data representation.

We emphasize that h𝑖 consists of hyper-parameters of the
forecasting algorithm (e.g., number of RNN layers in DeepAR [41])
and that 𝑔𝑖 (·) represents optional transformations of the original
time-series data (e.g., exponential smoothing [22]; see Table 1).
Performance Tensor: Now we introduce the performance tensor:

Definition 2. Given a training database D𝑡𝑟𝑎𝑖𝑛 and a model
space M, we define the performance tensor P ∈ R𝑇×𝑛×𝑚 as

P = {𝑷1, 𝑷2, · · · , 𝑷𝑇 },

where 𝑷𝑘 = (𝑝𝑖, 𝑗
𝑘
) ∈ R𝑛×𝑚 and the element 𝑝𝑖, 𝑗

𝑘
= 𝑀𝑗 (𝑤𝑘 (𝑫𝑖))

denotes the 𝑗𝑡ℎ model𝑀𝑗 ’s performance on the time window𝑤𝑘 of

the 𝑖𝑡ℎ training dataset 𝑫𝑖 . We denote 𝒑𝑖
𝑘
=

[
𝑝
𝑖,1
𝑘

· · · 𝑝
𝑖,𝑚

𝑘

]
as

the performance vector of all models in M on time window𝑤𝑘 of 𝑫𝑖 .

Note that we denote the performance of a model on a time
window by the forecasting error (e.g., MSE) of that model on that
window. The performance tensor represents the prior experience
that the meta-learner will leverage to perform efficiently on the new
unseen task (time-series). This motivates us to define our problem.

Definition 3. Time-series forecasting model selection
problem. Given a new input task (dataset) 𝑫𝑡𝑒𝑠𝑡 (i.e., unseen
time-series forecasting task), the time-series forecasting model
selection problem is then stated as follows: for each time window
𝑤𝑡 in 𝑫𝑡𝑒𝑠𝑡 , select the best model 𝑀̂𝑡 ∈ M to employ on that window.
Formally, such selection problem is given by

𝑀̂𝑡 ∈ argmax
𝑀𝑗 ∈M

𝑀𝑗 (𝑤𝑡 (𝑫𝑡𝑒𝑠𝑡)), 𝑡 ∈ {1, 2, . . . ,𝑇 }. (1)

Our problem can be described as follows. We are given a new
time series dataset and we have to select the best model to perform
forecasting on it. We have a prior bag of models fromwhich we have
to select the best candidate for the forecasting task. An additional
subtlety is that within the new time series, we may have to select
different best models for different time windows.
Time-series Meta-Features: A key component of AutoForecast
is the extraction of meta-features that aims to capture the important
characteristics of a time-series dataset. To achieve such a goal, we
extract meta-features (defined below) for each time-series dataset.

7

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Mustafa Abdallah et al.

Definition 4. Given a time-series dataset 𝑫𝑖 , we define the
meta-features tensor F𝑖 = {𝑭 𝑖1, · · · , 𝑭

𝑖
𝑇
} ∈ R𝑇×𝑑×𝑣𝑖 , where the

meta-features matrix 𝑭 𝑖
𝑘

∈ R𝑑×𝑣𝑖 denotes the set of the meta
features for the time window𝑤𝑘 of the dataset 𝑫𝑖 , given by

𝑭 𝑖
𝑘
≜ {𝜓 (𝑤𝑘 (𝑫𝑖)) :𝜓 : R |𝑤𝑖 |×𝑣𝑖 → R𝑑×𝑣𝑖 }, (2)

where𝜓 (·) : R |𝑤𝑖 |×𝑣𝑖 → R𝑑×𝑣𝑖 defines feature extraction module
in AutoForecast and 𝑑 denotes the number of the meta-features.2
Meta-Features Categories: The set of meta features in our
work that capture the main characteristics of a dataset can be
organized into five categories [50]: simple (general task properties),
statistical (properties of the underlying dataset distributions),
information-theoretic (entropy measures), spectral (frequency
domain properties), and landmarker (forecasting models’ attributes
on the task) features. The idea of our proposed landmarker
features is to apply a few of the fast, easy-to-construct time-series
forecasting models on a dataset and extract features from (i)
the structure of the estimated forecasting model, and (ii) its
output performance scores. The complete meta-features list in
AutoForecast are explained in Section 5.1.

4 AUTOFORECAST

AutoForecast consists of two-phases: offline training of the
meta-learner and online inference that aims at selecting the
appropriate model at test time. We argue that running time of
the offline training phase is not critical since it is done only once.
On the contrary, forecasting model selection for a new time-series
dataset should incur small run-time overhead since it is critical
for quick selection of the forecasting model. We now explain our
meta-learning approach and its components.

4.1 Meta-Learning Objective and Training

We show the overview of the major components of AutoForecast
in Figure 1. We highlight the components transferred from offline
to online stage (model selection) in blue; namely, meta-feature
extractors𝜓 , feature embedding, time-series meta-learner Θ, and
general meta-learner Φ. The meta-learner L has three main inputs;
the performance tensor P, the meta-features tensor F, and the loss
function. In the offline training of the meta-learner L, it learns two
components Θ and Φ. The time-series meta-learner Θ captures the
temporal relationship between the meta-features of the consecutive
time windows within the same dataset and the evolution of the
performances of the models on these windows. On the other hand,
the general meta-learner Φ predicts the best model for each task
(window) without taking into account the temporal relationship
among different time windows within the same dataset.
Rationale for Having both General and Time-series

Meta-learners: The rationale of having both meta-learners is the
fact that the temporal dependency among different time windows
depends on the dataset type. Some datasets have strong temporal
dependency which would be predicted efficiently by the time-series
meta-learner Θ while others datasets would have weak temporal
dependence among different windows performances in which the
general meta-learner Φ is expected to perform better. We show the
2Note that we do feature embedding (PCA), shown in Figure 1, to get the final
meta-features tensor 𝑭𝑖 . Such embedding eliminates redundancy among features.

results of such different datasets for our two testbeds in performance
benchmark folder within our anynomized link (in Section 1).
General Meta-learner Φ: We propose multi-output regression
model for training our general meta-learner Φ. From running all
the models in M on different time windows𝑤𝑡 with 𝑡 ∈ {1, . . . ,𝑇 }
for all datasets in the training database D𝑡𝑟𝑎𝑖𝑛 , we collect a set of
𝑁 = 𝑇 × 𝑛 distinct training samples of the meta-features matrix
and the performance vector (𝑭 𝑖𝑡 ,𝒑𝑖𝑡), with 𝑡 ∈ [1,𝑇] and 𝑖 ∈ [1, 𝑛].
Thus, the multi-output regression model is given by

𝒑̂𝑖𝑡 = Φ
(
𝑭 𝑖𝑡 , 𝜷

)
; 𝑡 ∈ [1,𝑇], 𝑖 ∈ [1, 𝑛], (3)

where Φ denotes the regression function (e.g., linear, NN) and
𝜷 are the unknown regression parameters. Thus, the general
meta-learner’s objective, denoted by loss function 𝐿Φ, is given by

𝐿Φ =

𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

𝐿(𝒑̂𝑖𝑡 ,𝒑𝑖𝑡), (4)

where 𝐿 is the loss metric (e.g., MSE, MAPE, etc). Therefore, Φ
learns the mapping between the meta-features of a time window
in a dataset and the corresponding best model in the model space.
LSTM-based Time-series Meta-learner Θ: The goal of
the time-series meta-learner Θ is to learn how the models’
performances evolve with the time-series meta-feature matrices
over time. For this purpose, we propose time-series multi-regression
model to learn such performance evolution. For any dataset 𝑫𝑖 ,
given the time-series meta-feature matrices 𝑭 𝑖1, 𝑭

𝑖
2, . . . , 𝑭

𝑖
𝑡 and the

history of the performance vectors 𝒑𝑖1, . . . ,𝒑
𝑖
𝑡−1, we aim to predict

performance vector 𝒑𝑖𝑡 of current time window𝑤𝑡 . The time-series
regression equation would be

𝒑̂𝑖𝑡 = Θ
(
𝑭 𝑖1, . . . , 𝑭

𝑖
𝑡−1, 𝑭

𝑖
𝑡 ,𝒑

𝑖
1, . . . ,𝒑

𝑖
𝑡−1

)
, 𝑖 ∈ [1, 𝑛], 𝑡 ∈ [1,𝑇], (5)

where Θ denotes the time-series regression function.
We adapt long-short term memory (LSTM) inputs

for our time-series meta-learner Θ. We denote 𝑿𝑡 as
the input at the time window 𝑤𝑡 which is given by
𝑿𝑡 =

[
𝑭 𝑖1,𝒑

𝑖
1, 𝑭

𝑖
2,𝒑

𝑖
2, · · · , 𝑭

𝑖
𝑡−1,𝒑

𝑖
𝑡−1, 𝑭

𝑖
𝑡

]
. The predicted LSTM’s

output denoted by 𝒑̂𝑖𝑡 is a function of 𝑿𝑡 . We now provide the
detailed equations of such relation between 𝒑̂𝑖𝑡 and 𝑿𝑡 . The LSTM
cell at time 𝑡 has two recurrent features, denoted by 𝒉𝑖𝑡 and 𝒄𝑖𝑡 ,
called the hidden state and the cell state, respectively. The LSTM
cell consists of three layers (forget gate layer, input gate layer, and
output gate layer). The activation of those layers is given by

𝒇 𝑖𝑡 = 𝜎

(
𝑾𝑓 · [𝒉𝑖𝑡−1,𝑿𝑡] + 𝒃𝑓

)
,

𝒍𝑖𝑡 = 𝜎

(
𝑾𝑙 · [𝒉𝑖𝑡−1,𝑿𝑡] + 𝒃𝑙

)
,

𝒐𝑖𝑡 = 𝜎

(
𝑾𝑜 · [𝒉𝑖𝑡−1,𝑿𝑡] + 𝒃𝑜

)
.

where𝑾𝑓 ,𝑾𝑙 ,𝑾𝑜 and 𝒃𝑓 , 𝒃𝑙 , 𝒃𝑜 ∈ R𝑚 denote the weights matrices
and the biases of the three layers, respectively. These are the
parameters to be learned during the training of the time-series
meta-learner. Moreover, the cell update u𝑖𝑡 is constructed with a
tanh activation function as follows.

u𝑖𝑡 = tanh
(
𝑾𝑢 · [𝒉𝑖𝑡−1,𝑿𝑡] + 𝒃𝑢

)
,

8

AutoForecast: Automatic Time-Series Forecasting Model Selection CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

where𝑾𝑢 and 𝒃𝑢 ∈ R𝑚 are further weight and bias parameters to
be learned. Thus, the new cell and hidden states at time 𝑡 are

𝒄𝑖𝑡 = 𝒇 𝑖𝑡 · 𝒄𝑖𝑡−1 + 𝒍𝑖𝑡 · u𝑖𝑡
𝒉̂𝑖𝑡 = 𝒐𝑖𝑡 · tanh(𝒄𝑖𝑡)

Finally, the output equations of the LSTM cell are given by

V𝑖𝑡 =𝑾𝑣𝒉̂
𝑖
𝑡 + 𝒃𝑣

𝒑̂𝑖𝑡 = 𝜎 (V𝑖𝑡),

with 𝑾𝑣 and 𝒃𝑣 ∈ R𝑚 are learned weight and bias parameters.
This gives the relationship between the input 𝑿𝑡 and the predicted
performance output vector 𝒑̂𝑖𝑡 .

During training, Θ learns the parameters
𝑾𝑓 , 𝒃𝑓 ,𝑾𝑙 , 𝒃𝑙 ,𝑾𝑜 , 𝒃𝑜 ,𝑾𝑢 , 𝒃𝑢 ,𝑾𝑣, 𝒃𝑣 which are the weights
and biases of the forget, input, and output layers and cell
updates, respectively. Thus, the objective of the LSTM time-series
meta-learner Θ, is to minimize the loss denoted by 𝐿Θ, given by

𝐿Θ =

𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

𝐿(𝒑̂𝑖𝑡 ,𝒑𝑖𝑡). (6)

We emphasize that Θ learns the appropriate current model (from
the model space) given both the history of the meta-features and
performance vectors over time windows.
Meta-learner Objective: Having established the two main
components, the general meta-learner Φ and the time-series
meta-learner Θ, we now define the objective of our meta-learner L,
given by a linear combination of the two components as follows:

min
𝜷,𝑾𝑓 ,𝑾𝑙 ,𝑾𝑜 ,𝒃𝑓 ,𝒃𝑙 ,𝒃𝑜 ,𝑾𝑢 ,𝒃𝑢 ,𝑾𝑣 ,𝒃𝑡

𝑎𝐿Φ (F,P) + (1 − 𝑎)𝐿Θ (F,P), (7)

The parameter 𝑎 defines the relative weight of the two
meta-learners. In our experiments, we chose 𝑎 = 0.5 for training
our meta-learner. The meta-learner L learns jointly general
meta-learner Φ (Equation 4) and time-series meta-learner Θ
(Equation 6) given meta-learner inputs, the performance tensor
P and the meta-features tensor F. By definition, this meta-learner
L optimizes the loss over all datasets and all time windows.

4.2 Online Inference And Model Selection

In the online mode of AutoForecast, we aim to make use of the
trainedmeta-leanerL to quickly infer the best model for the current
task. Given a new time-series dataset 𝑫𝑡𝑒𝑠𝑡 , AutoForecast first
computes the corresponding meta-features tensor F̂𝑡𝑒𝑠𝑡 = 𝜓 (𝑫𝑡𝑒𝑠𝑡).
Those time-series meta-features are then embedded (using PCA)
to obtain the final meta-features tensor 𝑭𝑡𝑒𝑠𝑡 . Then, in the model
inference, as shown in Figure 1, the model set performances are
predicted for each available model inM. The model 𝑀̂𝑡 with the
lowest predicted error score by L on the time window𝑤𝑡 of 𝑫𝑡𝑒𝑠𝑡

is chosen as the selected model for that window𝑤𝑡 . Such a process
is repeated for all time windows𝑤0,𝑤1, . . . ,𝑤𝑇 of 𝑫𝑡𝑒𝑠𝑡 .

Now, we explain such model selection process for each
time window across the time windows 𝑤0,𝑤1, . . . ,𝑤𝑇 of
𝑫𝑡𝑒𝑠𝑡 as follows. For the first window (𝑤0), the inference
is given by 𝑀̂0 ∈ argmin𝑀̄ ∈M L(𝑭 𝑡𝑒𝑠𝑡0). For any other
window 𝑤𝑡 (𝑡 > 0), the time-series meta-learner Θ
inference depends on the history of the meta-features

and the history of the models’ performances as follows
𝑀̂Θ
𝑡 ∈ argmin𝑀̄ ∈M Θ(𝑭 𝑡𝑒𝑠𝑡0 , . . . , 𝑭 𝑡𝑒𝑠𝑡

𝑡−1 , 𝑭
𝑡𝑒𝑠𝑡
𝑡 , 𝒑̂𝑡𝑒𝑠𝑡0 , . . . , 𝒑̂𝑡𝑒𝑠𝑡

𝑡−1). On
the other hand, the general meta-learner Φ inference depends on
the predicted (regression) output on the meta-features of current
time window where 𝑀̂Φ

𝑡 ∈ argmin𝑀̄ ∈M Φ(𝑭 𝑡𝑒𝑠𝑡𝑡). Thus, the final
selected model is given by

𝑀̂𝑡 ∈ argmin
𝑀̄ ∈{𝑀̂Φ

𝑡 ,𝑀̂
Θ
𝑡 }

𝒑̂𝑡𝑒𝑠𝑡𝑡 (𝑀̄) . (8)

We emphasize that tie between models can happen in online
inference (i.e., two or more models can have an identical predicted
performance). We built upon the several tie breaking techniques
that have been examined in the literature [8, 23], but usually such
a choice does not have a strong influence on the performance
of AutoForecast. For making the decision between the model
selected by the general meta-learner Φ and that selected by the
time-series meta-learner Θ, we choose the model with the best
performance (i.e., least predicted error score) (Equation 8).
Inference Time Complexity: Recall that the number of
meta-features is 𝑑 and the number of models in our model space
M is𝑚. The time complexity for the inference part of the general
meta-learner Φ is O(𝑑). On the other hand, the time complexity of
the time-series LSTMmeta-learnerΘ is given by O(𝑑× |𝑋𝑡 |), where
|𝑋𝑡 | is the length of the input sequence. Therefore,AutoForecast’s
inference time is given by O(𝑑 × |𝑋𝑡 |). We emphasize that the
inference times of the naïve method is much larger since it is
given byO(∑𝑚

𝑖=1 𝐼𝑖) (summation of inference time of all algorithms),
where 𝐼𝑖 is the inference times of forecasting algorithm 𝑎𝑖 .

5 EXPERIMENTS

We evaluate AutoForecast by designing experiments to answer
the following research questions:
(1) Does employing AutoForecast for time-series forecasting

model selection yield improved performance, as compared to
no model selection, as well as other selection techniques (such
as meta-learners adapted from the AutoML domain)?

(2) How much reduction in inference time does AutoForecast
give over the naïve method?

(3) How does performance change with different datasets with
different temporal dependencies?

5.1 Experimental Setup

Models and Performance Collection: By pairing seven SOTA
time-series forecasting algorithms (which are DeepAR [41],
Deep Factors [52], Prophet [48], Seasonal Naive [30], Gaussian
Process [55], Vector Auto Regression [25], and Random Forest
Regressor [27]) and their corresponding hyperparameters, and
using different data representation methods, we compose a model
setM with 322 unique models (see Table 1 for the complete list).
For our testbeds, we first generate the performance tensor P, by
evaluating the models from M against the benchmark datasets
in each testbed. For consistency, all models are built using the
GluonTS [3], Scikit-learn [36], and Statsmodels [42] Python libraries
on an Intel i7 @2.60 GHz, 16GB RAM, 8-core workstation.

Time-series Meta Features: There are prior works that
generated standard time-series features [17], tsfresh [12] (that we
used for generating part of our meta-features).

9

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Mustafa Abdallah et al.

Table 1: Time-Series Forecasting Model Space. See hyperparameter definitions for various algorithms from GluonTS [3] and

statsmodels [42]. The number of models (last column) is all possible combinations of hyperparameters and data representations.

Forecasting Algorithm HyperParameter 1 HyperParameter 2 Data Representation Total

DeepAR num_cells = [10,20,30,40,50] num_rnn_layers = [1,2,3,4,5] {Exp_smoothing, Raw} 50
DeepFactor num_hidden_global = [10,20,30,40,50] num_global_factors = [1,5,10,15,20] {Exp_smoothing, Raw} 50
Prophet changepoint_prior_scale = [0.001, 0.01, 0.1, 0.2, 0.5] seasonality_prior_scale = [0.01, 0.1, 1.0, 5.0, 10.0] {Exp_smoothing, Raw} 50

Seasonal Naive season_length = [1,5,7,10,30] N/A {Exp_smoothing, Raw} 10
Gaussian Process cardinality = [2,4,6,8,10] max_iter_jitter = [5,10,15,20,25] {Exp_smoothing, Raw} 50

Vector Auto Regression cov_type= {“HC0”,“HC1”,“HC2”,“HC3”,“nonrobust”} trend = {‘n’, ‘c’, ‘t’, ‘ct’ } {Exp_smoothing, Raw} 40
Random Forest Regressor n_estimators = [10,50,100,250,500,1000] max_depth = [2,5,10,25,50,’None’] {Exp_smoothing, Raw} 72

322

Table 2: Hit-at-𝑘 Accuracy (the higher the better) comparison of AutoForecast against the different baseline meta-learners for

both univariate and multivariate testbeds. AutoForecast outperforms all baselines for both testbeds.

Dataset Testbed k Global Best AS ISAC MLP AutoForecast-TSL AutoForecast

Univariate 1 2.46 2.15 0.82 0.62 2.67 3.95

5 7.18 4.92 2.67 1.13 9.04 14.57

10 11.97 7.89 4.10 4.51 14.15 21.45

50 37.40 28.00 11.45 22.25 35.28 52.05

Multivariate 1 6.78 2.26 4.19 0.43 5.16 5.87
5 12.18 4.73 5.69 1.51 9.03 13.86

10 16.21 9.03 7.31 4.06 11.39 20.91

50 41.72 24.73 14.64 20.86 35.06 51.67

We now provide details of our meta-features (shared with our
database and source codes in the link provided in Section 1). For
each dataset, we generate a meta-feature vector that consists
of more than 800 meta-features where some of them are based
on [50]. Specifically, our meta-features can be categorized into (1)
simple features, (2) statistical features, (3) information-theoretic
features, (4) Spectral features, and (5) landmarker features. Broadly
speaking, the statistical features captures statistical properties
of the underlying data distributions; e.g., min, max, variance,
skewness, covariance, etc. of the features and feature combinations.
The information-theoretic features capture information-theoretic
underlying characteristics in the time-series; e.g., entropy, trend,
non-linearity, change statistics, etc. Most of those meta-features
have been commonly used in the AutoML literature [50]. Our
meta-features vector also includes landmarker features, which are
problem-specific, and aim to capture the unique characteristics of
a dataset. The idea is to apply a few of the fast, easy-to-construct
time-series forecasting models on a dataset and extract features
from (i) the structure of the estimated forecasting model, and (ii)
its output performance scores. We emphasize that our landmarker
meta-features are novel and that some components of the spectral
meta-features have not been used in any related work.

Training Testbed Sources:Meta-learning works if the new task
can leverage prior knowledge. Our testbeds are built to simulate the
case whenmeta-train comes frommany different distributions. This
diversity enhancing the training of the meta-learning model. Model
selection on test data can thus benefit from the prior experience on
the train set. We thus have created a repository of 348 forecasting
datasets including two hitherto unreleased ones from Adobe’s
production compute clusters. In particular, most of the datasets
are from different application domains (e.g., finance, IoT, energy,
storage, etc.) where we use benchmark datasets from Kaggle [21],
Adobe real traces, and other open source repositories. The Adobe
trace datasets records CPU and Memory usage for 50 different
services running in Adobe production clusters collected for 15 days

from May 1 to May 15 in 2021. Such traces are shared for the first
time in our current work.

Dataset Types in AutoForecast: We consider two general
types of time-series datasets depending on the number of the
variables 𝑣𝑖 in the time-series dataset. (1) Univariate Datasets with
single time-series (𝑣𝑖 = 1) and (2) Multivariate Datasets with several
time-series (variables) (i.e., 𝑣𝑖 > 1) that need to be predicted. In
particular, we collect 308 univariate time-series datasets for the first
testbed and 40 multivariate datasets with 317 time-series for the
second testbed. In total, we have 625 time-series in our testbeds. For
each dataset in the testbeds, we use different time windows selected
randomly from the dataset, where each time window has a length
of 16 (i.e., |𝑤𝑡 | = 16 ∀𝑡 ∈ {1, . . . ,𝑇 }). Note that our approach has no
restriction on the length of the time window nor any assumption
of the homogeneity of windows duration.

Evaluation: For evaluating AutoForecast, for robustness, we
split each testbed into 5 folds for cross-validation. We build the
train/test testbed by each time selecting four folds from the datasets
for training and the remaining fifth fold for testing (i.e., after
training the meta-learning approach, we use it to infer the best
forecasting model for the new unseen test datasets of that fifth
fold). Finally, we take the average performance of these five folds.
Wemainly compare the Hit-at-𝑘 accuracy ofAutoForecast against
different meta-learners baselines. This metric indicates whether the
selected model fits within the top-𝑘 models from ground truth data.
We also compare using the metric, mean square error (MSE) and the
average rank. For each testbed, the meta-learners are first ranked
by the corresponding forecasting MSE under the selected model
for each dataset and then the rank is averaged across all datasets.

Time-series Meta-learner Setup: For our time-series
meta-learner Θ explained in Section 4, we used LSTM with 4 layers
where each layer has 50 units. The training was with 50 epochs
with the Adam optimizer with a batch size of 25 and dropout rate
of 0.2 to prevent over-fitting. A detailed evaluation of the effect of
such parameters on Θ’s performance is available and is omitted
here due to space constraints.

10

AutoForecast: Automatic Time-Series Forecasting Model Selection CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 3: Average rank (the lower the better) comparison of AutoForecast against the different baseline meta-learners for both

testbeds. AutoForecast outperforms all baselines.

Dataset Testbed Global Best AS ISAC MLP AutoForecast-TSL AutoForecast

Univariate 2.5161 2.7965 2.9096 3.7072 2.5202 2.0571

Multivariate 2.3191 3.0851 2.3191 3.8723 2.3404 1.3191

5.2 Baselines

We adapt recent meta-learning approaches to our specific problem
setting, and also include a few methods that do not perform model
selection.
No model selection: This category always employs either the
same single model or the ensemble of all the models:
• Random Forest (RF) [27]: is a SOTA tree ensemble that
combines the predictions made by many decision trees into a
single model. In prediction, the RF regression model takes the
average of all the individual decision tree estimates.

• SOTA Forecasting Algorithms: We selected seven popular
time series forecasting models, including the recent works
DeepAR [41], DeepFactors [52], and Prophet [48]. For each
model, we generated multiple variants by varying the values
of hyperparameters and data representations (10-72 variants,
details in Table 1) and we chose the model variant with the best
average performance across all training datasets.

Simple meta-learners: Meta-learners in this category pick the
generally well-performing forecasting model, globally or locally:

• Global Best (GB): It selects the forecasting model with the
largest average performance across all train datasets (across all
time windows), without using any meta-features.

• ISAC [20]: clusters the training datasets based on meta-features.
Given a new test time-series dataset, it identifies its closest cluster
and selects the best model with largest average performance on
the cluster’s datasets.

• ARGOSMART (AS) [32]: finds the closest training time-series
dataset to a given test time-series dataset, based on meta-feature
similarity, and selects the model with the best performance on
that nearest neighbor training dataset.

Optimization-based meta-learners: Meta-learners in this
category learn meta-feature by task similarities toward optimizing
performance estimates:

• Multi-layer Perceptron (MLP): Given the training datasets
and selected time window, the MLP regressor directly maps the
meta-features onto model performances by regression. However,
this does not learn temporal dependence within datasets.

• AUTOFORECAST-TSL: is a variant of our solution in which
the meta-learner L consists only of the time-series learner Θ.

5.3 Results

5.3.1 Variation of Best Model across Time. Figure 2 shows that
no single forecasting model triumphs in more than 0.7% of the
datasets. Figure 3 shows the aggregate statistics on all datasets of the
univariate testbed. This contradicts the claims that one forecasting
algorithm can work best for different datasets and motivates the
need for an effective approach for learning such both dimensions,
which we propose in our current work.

0 50 100 150 200 250 300
Forecasting Model Index

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Pr
ob

ab
ilit

y
of

 b
ei

ng
 B

es
t M

od
el

Histogram of Best Models for Training Dataset

Figure 2: A histogram of the best forecasting model’s

probability distribution across datasets of our two training

testbeds. Different datasets have different best models and

no single model triumphs in more than 0.7% of the datasets.

Windows 1 and 2 Windows 1 and 3 Windows 2 and 3

Time Window Pair

0

50

100

150

200

250

300
N

u
m

b
e
r

o
f
B

e
s
t
M

o
d
e
l
S

im
ila

ri
ti
e
s Same Forecasting Models and Same Hyper-parameters

Same Forecasting Models and Different Hyper-parameters

Different Forecasting Models

Figure 3: The aggregate statistics for similarity in the best

forecasting model across three consecutive time windows

for univariate testbed. Most different time windows have

different (best) models.

5.3.2 Univariate Testbed Results. To investigate the impact of the
train/test similarity on meta-learning performance, we build the
univariate testbed that consists of 308 diverse datasets.

Superiority of AutoForecast compared to all baseline

methods w.r.t. the Hit-at-𝑘 , average rank, and MSE: The
different results are provided in Tables 2-4 where the best result for
every testbed is highlighted in bold.We observe thatAutoForecast
outperforms previous SOTA meta-learning methods adapted to our
problem. For example,AutoForecast has 79.20%, 171.86%, 423.17%,
375.61%, and 51.59% higher Hit-at-10 accuracy than GB, AS , ISAC,
MLP, and AutoForecast-TSL, respectively.

Statistical Significance of AutoForecast: To compare two
methods statistically, we use the pairwise Wilcoxon rank test
on performances (i.e., MSE of selected models) across datasets
(significance level 𝑝 < 0.05). Table 5 shows that AutoForecast
is significantly better than most of the baseline meta-learners, i.e.,
including GB (9.07×10−5), AS (1.07×10−37) andAutoForecast-TSL
(8.16 × 10−15).

11

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Mustafa Abdallah et al.

Table 4: Results for one-step ahead forecasting (MSE; the lower the better) for both testbeds. The selectedmodel byAutoForecast
yields better performance compared to baseline meta-learners and SOTA methods. For each SOTA, we choose the model with

the best average performance from all its model variants.

Dataset Testbed Seasonal Naive DeepAR Deep Factors Random Forest Prophet Gaussian Process VAR
Univariate 0.0345 ± 0.0382 0.0164 ± 0.0506 0.0217 ± 0.0415 0.0199 ± 0.0398 0.0155 ± 0.0295 0.1661 ± 0.2104 0.0602 ± 0.1260

Global Best AS ISAC MLP AutoForecast-TSL AutoForecast
0.0065 ± 0.0199 0.0158 ± 0.0556 0.0071 ± 0.0145 0.0351 ± 0.1186 0.00463 ± 0.0138 0.00256 ± 0.0090

Multivariate Seasonal Naive DeepAR Deep Factors Random Forest Prophet Gaussian Process VAR
0.0149 ± 0.0408 0.0085 ± 0.0197 0.0135 ± 0.0232 0.0071 ± 0.0365 0.0065 ± 0.0153 0.2576 ± 0.1344 0.9865 ± 0.2988

Global Best AS ISAC MLP AutoForecast-TSL AutoForecast
0.0046 ± 0.0099 0.0139 ± 0.0563 0.0046 ± 0.0099 0.0121 ± 0.2462 0.00541 ± 0.0186 0.00124 ± 0.0051

Table 5: Pairwise statistical test results between every pair of methods by Wilcoxon signed rank test. Statistically better method

(𝑝 = 0.05) shown in bold (both marked bold if no significance). In the left, Univariate testbed is shown. In the right, Multivariate

testbed is shown. For both testbeds, AutoForecast is statistically better than most of the baseline meta-learners.

Method 1 Method 2 p-value

AutoForecast GB 9.0712 × 10−5
AutoForecast AS 1.0726 × 10−37
AutoForecast ISAC 0.1349
AutoForecast MLP 0.0657
AutoForecast AutoForecast-TSL 8.1683 × 10−15
AutoForecast-TSL GB 2.2611 × 10−8
AutoForecast-TSL AS 1.5760 × 10−14
AutoForecast-TSL ISAC 2.3843 × 10−16
AutoForecast-TSL MLP 1.1658 × 10−26
GB AS 9.4952 × 10−33
GB ISAC 0.0322
GB MLP 4.5489 × 10−9
AS ISAC 1.7842 × 10−37
AS MLP 4.4658 × 10−54
ISAC MLP 2.2062 × 10−31

Method 1 Method 2 p-value

AutoForecast GB 1.0
AutoForecast AS 3.9399 × 10−7
AutoForecast ISAC 0.8240
AutoForecast MLP 0.0004
AutoForecast AutoForecast-TSL 0.0025
AutoForecast-TSL GB 0.00254
AutoForecast-TSL AS 5.8013 × 10−7
AutoForecast-TSL ISAC 1.5598 × 10−5
AutoForecast-TSL MLP 3.4572 × 10−8
GB AS 3.9399 × 10−7
GB ISAC 0.8240
GB MLP 0.0004
AS ISAC 1.4217 × 10−7
AS MLP 6.6612 × 10−8
ISAC MLP 3.7789 × 10−8

Meta-learners perform better than methods without model

selection: Table 4 shows that meta-learners outperform almost
all models with no model selection. In particular, three
meta-learners (AutoForecast, Global Best, ISAC) significantly
outperform baseline time-series forecasting models. For instance,
AutoForecast has 92.58%, 84.39%, 88.20%, 87.14%, 83.48%, 98.45%,
and 95.75% lower MSE over Seasonal Naive, DeepAR, Deep Factors,
Random Forest, Prophet, Gaussian Process, and VAR, respectively.
These results signify the benefits of using meta-learning for model
selection, specifically using AutoForecast.
Optimization-based meta learners generally perform better

than simple meta learners: Two of the top-3 meta learners by
average rank and MSE (AutoForecast and AutoForecast-TSL)
are all optimization-based and significantly outperform simple
meta-learners such as ISAC and AS as shown in Table 2 and Table 4.
The interpretation is that simple meta-learners weigh meta-features
equally for task similarity, whereas optimization-based methods
learn which meta-features matter (e.g., time-series regression on
meta-features in AutoForecast-TSL), leading to better results.
Dataset-wise Performance: We present the detailed
performances for each dataset by comparing AutoForecast
with all baseline methods in our anonymized link (provided
in the Introduction as footnote). It is noted these results are
averaged across the different time windows for each dataset.
The results shows that AutoForecast achieves the best average
MSE and average rank among all meta-learners. We note that
AutoForecast and AutoForecast-TSL have same performance
for datasets with higher temporal dependency.

5.3.3 Multivariate Testbed Results. In this testbed, we choose some
time series within one dataset for training and a disjoint set of time

series within the same dataset for testing. Our multivariate testbed
consists of 40 datasets.

For the Multivariate testbed, AutoForecast still

outperforms all baseline methods w.r.t. average rank,

MSE, and Hit-at-𝑘 accuracy as shown in Tables 2-4. Moreover,
Figure 4 shows that for the pool of multivariate datasets (across
all time windows), AutoForecast gives a gain of 2X and
higher compared to other meta-learning baselines. Dataset-wise

benchmark performance for the datasets in the multivariate testbed
is shown in our anonymized link. AutoForecast has the lowest
average MSE on most of the multivariate datasets.
Statistical Significance of AutoForecast: Table 5 shows that
for Multivariate testbed, AutoForecast is also significantly better
than most of the baseline meta-learners, i.e., including AS and MLP
while there is no significant statistical difference from GB and ISAC.
5.3.4 Runtime Analysis. Inference run time statistics of

AutoForecast: Table 6 shows that AutoForecast (meta-feature
generation and model selection) takes 1.7 seconds on most time
series datasets. Moreover, Figure 5 shows that AutoForecast
has significant reduction in inference time compared to the naïve
approach (i.e., doing inference using all possible models and then
selecting the model with the best performance), median is 42×
across the two testbeds (i.e., 41× on univariate testbed and 45× on
multivariate testbed).
Comparing AutoForecastwith baselines: In terms of inference,
Table 6 shows that most of the meta-learners are fast, taking
less than 2 seconds to infer the best forecasting model. Finally,
we compare the training cost of AutoForecast against the
baseline meta-learners. Table 6 also shows that AutoForecast
has comparable computational training cost. While the training
process is offline and done only once and hence is less critical, this

12

AutoForecast: Automatic Time-Series Forecasting Model Selection CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

0 50 100 150 200 250 300 350 400 450

Number of Best Model Selections

GB

ISAC

AS

MLP

AutoForecast-TSL

AutoForecast

Figure 4: The number of best model selections by each

meta-learning approach. AutoForecast has 2× gain in

the selection of best model compared to the closest

baselines (ISAC and GB).

Univariate Multivariate

40

50

60

70

80

90

R
e
d
u
c
ti
o
n
 i
n
 I
n
fe

re
n
c
e
 T

im
e

Figure 5: The inference time reduction

of AutoForecast over the naïve approach.

AutoForecast gives a median reduction of 42X over

naïve approach for both testbeds.

Table 6: Average and standard deviation inference and training runtime performance (in seconds) for both dataset testbeds.

Phase Dataset Testbed Naïve Global Best AS ISAC MLP AutoForecast-TSL AutoForecast

Inference Univariate 70.9500 ± 1.7801 0.6259 ± 0.0964 0.8537 ± 0.1438 10.2480 ± 2.7182 1.2745 ± 0.5198 0.7962 ± 0.0436 1.6508 ± 0.0401
Multivariate 48.6287 ± 5.4051 0.4151 ± 0.0403 1.3055 ± 0.2610 7.037 ± 1.6239 1.1461 ± 0.2176 0.682 ± 0.0372 1.1309 ± 0.1257

Training Univariate N/A N/A 308.9301 ± 46.1968 278.8083 ± 57.9900 705.2908 ± 123.3715 334.8091 ± 31.6808 670.5855 ± 31.5465
Multivariate N/A N/A 194.3877 ± 39.7441 182.4753 ± 34.3238 411.9337 ± 41.7406 178.1978 ± 18.0098 376.3956 ± 40.0195

experiment emphasizes that our better model selection performance
does not entail a prohibitive training cost.

6 DISCUSSION

(1) Reproducibility of AutoForecast: To further research into
the important problem introduced in our work, we have publicly
released our source codes and benchmark data to enable others
reproduce our work. In particular, we are publicly releasing, with
this submission, our meta-learning database corpus of 348 datasets,
containing 625 time series in all, performances of the 322 forecasting
models, and meta-features for the datasets. This resource will
hopefully encourage the community to standardize efforts at
benchmarking time series forecasting model selection. We also
encourage the community to expand this resource by contributing
their new datasets and models. The anonymized website with
our database and source codes is: https://drive.google.com/drive/
folders/1K1w1Ida5Cr15b5Fhidax-i-fNpWZjvet. The details of each
dataset in the two testbeds and the different categories of
meta-features are presented in Section 5.1. This serves as the
training data and ground truth evaluation data for AutoForecast.
(2) Usage of Meta-Learning in AutoForecast:We emphasize
that we use the term “meta-learning” in the context of traditional
principle of meta-learning which is building upon prior experience
on a set of historical tasks to “do better” on a new task. We
build the experience across different datasets using our general
meta-learner and build experience on the sequential temporal
dependence within the same dataset using the LSTM time-series
meta-learner. We also capture task similarity between a new input
task (dataset) and historical datasets using the “meta-features”.
We also emphasize that our proposed method is faster compared
to gradient descent-based meta-learners, equivalently pure Deep
Learning-based meta-learners, [18, 34], e.g., on our univariate
testbed, N-Beats [34] has significantly slower training (average
= 3600 seconds) and inference time (average = 101 sec) compared
to AutoForecast (average = 670 seconds for training and 1.13 sec
for inference). Integrating our meta-learning approach with a deep
learning approach is a potential area of future work.

(3) Diversity of Datasets: We acknowledge that diversity of
sources makes the meta-learning model learn from such diversity
since model selection on test data would benefit from the prior
experience on that diverse train set. For that purpose, we use
benchmark datasets from Kaggle, Adobe real traces, and other
open-source repositories, where the datasets are from different
application domains (e.g., finance, IoT, energy, storage, etc.). We
have released these benchmark datasets (anonymized link provided
earlier in this Section) to help the community build on our work.

7 CONCLUSION

We introduced a meta-learning approach to automate the process
of time-series forecasting by automatically inferring the best
time-series model on an unseen dataset, without needing exhaustive
evaluation of all existing models on this dataset. The problem
arises because there are many possible forecasting models with
their associated hyperparameters, and different choices are optimal
for different datasets. Our proposed solution AutoForecast is a
meta-learner, trained on an extensive pool of historical time-series
forecasting datasets and models. To effectively capture dataset
similarity, we designed novel problem-specific meta-features.
AutoForecast generalizes to new datasets since it learns two
models from the training corpus: first, the mapping between the
meta-features vector and the corresponding best-model via the
general meta-learner (Φ); and second, the evolution of the models’
performances in time with the meta-features and previous models’
performances via the time-series meta-learner (Θ). Thus, for a
new different dataset, we extract its meta-features vector and
then determine the best model using the pre-trained (Φ) and
(Θ). Extensive experiments on two large testbeds, univariate and
multivariate, showed that AutoForecast significantly improves
time-series forecasting model selection over directly using some
of the most popular models as well as several SOTA meta-learners.
We showed that AutoForecast gives a significant improvement in
the inference time compared to naïve approaches. We release the
benchmark data for the community to contribute new datasets and
models to further advance automating time-series forecasting.

13

https://drive.google.com/drive/folders/1K1w1Ida5Cr15b5Fhidax-i-fNpWZjvet
https://drive.google.com/drive/folders/1K1w1Ida5Cr15b5Fhidax-i-fNpWZjvet

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Mustafa Abdallah et al.

REFERENCES

[1] H. Abbasimehr, M. Shabani, and M. Yousefi. An optimized model using lstm
network for demand forecasting. Computers & industrial engineering, 143:106435,
2020.

[2] M. Abdallah, W. J. Lee, N. Raghunathan, C. Mousoulis, J. W. Sutherland, and
S. Bagchi. Anomaly detection through transfer learning in agriculture and
manufacturing iot systems. arXiv preprint arXiv:2102.05814, 2021.

[3] A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus,
T. Januschowski, D. C. Maddix, S. S. Rangapuram, D. Salinas, J. Schulz, et al.
Gluonts: Probabilistic and neural time series modeling in python. J. Mach. Learn.
Res., 21(116):1–6, 2020.

[4] B. Arinze, S.-L. Kim, and M. Anandarajan. Combining and selecting forecasting
models using rule based induction. Computers & Operations Research,
24(5):423–433, 1997.

[5] C. Bergmeir and J. M. Benítez. On the use of cross-validation for time series
predictor evaluation. Information Sciences, 191:192–213, 2012.

[6] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter
optimization. In 25th annual conference on neural information processing systems
(NIPS 2011), volume 24. Neural Information Processing Systems Foundation, 2011.

[7] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.
Journal of machine learning research, 13(2), 2012.

[8] P. Brazdil, C. G. Carrier, C. Soares, and R. Vilalta. Metalearning: Applications to
data mining. Springer Science & Business Media, 2008.

[9] V. Cerqueira, L. Torgo, and I. Mozetič. Evaluating time series forecasting models:
An empirical study on performance estimation methods. Machine Learning,
109(11):1997–2028, 2020.

[10] V. Cerqueira, L. Torgo, and C. Soares. Model selection for time series forecasting:
Empirical analysis of different estimators. arXiv preprint arXiv:2104.00584, 2021.

[11] B. Chatterjee, D.-H. Seo, S. Chakraborty, S. Avlani, X. Jiang, H. Zhang,
M. Abdallah, N. Raghunathan, C. Mousoulis, A. Shakouri, S. Bagchi, D. Peroulis,
and S. Sen. Context-aware collaborative intelligence with spatio-temporal
in-sensor-analytics for efficient communication in a large-area iot testbed. IEEE
Internet of Things Journal, 8(8):6800–6814, 2021.

[12] M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr. Time series feature
extraction on basis of scalable hypothesis tests (tsfresh–a python package).
Neurocomputing, 307:72–77, 2018.

[13] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Transfer
learning for time series classification. In 2018 IEEE international conference on
big data (Big Data), pages 1367–1376. IEEE, 2018.

[14] M. Feurer and F. Hutter. Hyperparameter optimization. In Automated Machine
Learning, pages 3–33. Springer, Cham, 2019.

[15] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter.
Efficient and robust automated machine learning. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 28. Curran Associates, Inc., 2015.

[16] C. Finn, P. Abbeel, and S. Levine. Model-agnosticmeta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pages
1126–1135. PMLR, 2017.

[17] J.-Y. Franceschi, A. Dieuleveut, andM. Jaggi. Unsupervised scalable representation
learning for multivariate time series. arXiv preprint arXiv:1901.10738, 2019.

[18] H. Hewamalage, C. Bergmeir, and K. Bandara. Recurrent neural networks for
time series forecasting: Current status and future directions. International Journal
of Forecasting, 37(1):388–427, 2021.

[19] A. Hooshmand and R. Sharma. Energy predictive models with limited data using
transfer learning. In Proceedings of the Tenth ACM International Conference on
Future Energy Systems, pages 12–16, 2019.

[20] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. Isac-instance-specific
algorithm configuration. In ECAI, volume 215, pages 751–756. Citeseer, 2010.

[21] Kaggle. Time Series Forecasting Datasets. https://www.kaggle.com/search?q=
time+series+forecasting+in%3Adatasets, 2021. [Online; accessed 21-May-2021].

[22] P. S. Kalekar et al. Time series forecasting using holt-winters exponential
smoothing. Kanwal school of information Technology, 4329008(13):1–13, 2004.

[23] A. Kalousis. Algorithm selection via meta-learning. PhD thesis, University of
Geneva, 2002.

[24] C. Lemke and B. Gabrys. Meta-learning for time series forecasting and forecast
combination. Neurocomputing, 73(10-12):2006–2016, 2010.

[25] R. Lewis and G. C. Reinsel. Prediction of multivariate time series by autoregressive
model fitting. Journal of multivariate analysis, 16(3):393–411, 1985.

[26] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of
Machine Learning Research, 18(1):6765–6816, 2017.

[27] A. Liaw, M. Wiener, et al. Classification and regression by randomforest. R news,
2(3):18–22, 2002.

[28] P. R. Lorenzo, J. Nalepa, M. Kawulok, L. S. Ramos, and J. R. Pastor. Particle swarm
optimization for hyper-parameter selection in deep neural networks. In Proc. of
the Genetic & Evolutionary Computation Conference, pages 481–488, 2017.

[29] M. Matijaš, J. A. Suykens, and S. Krajcar. Load forecasting using a multivariate
meta-learning system. Expert systems with applications, 40(11):4427–4437, 2013.

[30] P. Montero-Manso, G. Athanasopoulos, R. J. Hyndman, and T. S. Talagala. Fforma:
Feature-based forecast model averaging. International Journal of Forecasting,
36(1):86–92, 2020.

[31] J. Narwariya, P. Malhotra, L. Vig, G. Shroff, and T. Vishnu. Meta-learning for
few-shot time series classification. In Proceedings of the 7th ACM IKDD CoDS and
25th COMAD, pages 28–36. ACM, 2020.

[32] M. Nikolić, F. Marić, and P. Janičić. Simple algorithm portfolio for sat. Artificial
Intelligence Review, 40(4):457–465, 2013.

[33] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio. Meta-learning framework
with applications to zero-shot time-series forecasting. arXiv:2002.02887, 2020.

[34] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. In International
Conference on Learning Representations, 2020.

[35] Z. Pan, W. Zhang, Y. Liang, W. Zhang, Y. Yu, J. Zhang, and Y. Zheng.
Spatio-temporal meta learning for urban traffic prediction. IEEE Transactions on
Knowledge and Data Engineering, pages 1–1, 2020.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.

[37] A. Poghosyan, A. Harutyunyan, N. Grigoryan, C. Pang, G. Oganesyan,
S. Ghazaryan, and N. Hovhannisyan. An enterprise time series forecasting
system for cloud applications using transfer learning. Sensors, 21(5):1590, 2021.

[38] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[39] M. Ribeiro, K. Grolinger, H. F. ElYamany, W. A. Higashino, and M. A. Capretz.
Transfer learning with seasonal and trend adjustment for cross-building energy
forecasting. Energy and Buildings, 165:352–363, 2018.

[40] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and
R. Hadsell. Meta-learning with latent embedding optimization. In International
Conference on Learning Representations, 2019.

[41] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of
Forecasting, 36(3):1181–1191, 2020.

[42] S. Seabold and J. Perktold. Statsmodels: Econometric and statistical modeling
with python. In Proceedings of the 9th Python in Science Conference, volume 57,
page 61. Austin, TX, 2010.

[43] S. Y. Shah, D. Patel, L. Vu, X.-H. Dang, B. Chen, P. Kirchner, H. Samulowitz,
D. Wood, G. Bramble, W. M. Gifford, et al. Autoai-ts: Autoai for time series
forecasting. In Proceedings of the 2021 International Conference on Management
of Data, pages 2584–2596, 2021.

[44] B. Shahriari, A. Bouchard-Côté, and N. Freitas. Unbounded bayesian optimization
via regularization. In Artificial intelligence and statistics, pages 1168–1176. PMLR,
2016.

[45] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[46] T. S. Talagala, R. J. Hyndman, G. Athanasopoulos, et al. Meta-learning how to
forecast time series. Monash Econometrics Working Papers, 6:18, 2018.

[47] T. S. Talagala, F. Li, and Y. Kang. Fformpp: Feature-based forecast model
performance prediction. International Journal of Forecasting, 2021.

[48] S. J. Taylor and B. Letham. Forecasting at scale. The American Statistician,
72(1):37–45, 2018.

[49] E. Vaiciukynas, P. Danenas, V. Kontrimas, and R. Butleris. Meta-learning for time
series forecasting ensemble. arXiv preprint arXiv:2011.10545, 2020.

[50] J. Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018.
[51] X. Wang, K. Smith-Miles, and R. Hyndman. Rule induction for forecasting

method selection: Meta-learning the characteristics of univariate time series.
Neurocomputing, 72(10-12):2581–2594, 2009.

[52] Y. Wang, A. Smola, D. Maddix, J. Gasthaus, D. Foster, and T. Januschowski. Deep
factors for forecasting. In International Conference on Machine Learning, pages
6607–6617. PMLR, 2019.

[53] T. Wen and R. Keyes. Time series anomaly detection using convolutional neural
networks and transfer learning. arXiv preprint arXiv:1905.13628, 2019.

[54] M.Wistuba, N. Schilling, and L. Schmidt-Thieme. Scalable gaussian process-based
transfer surrogates for hyperparameter optimization. Machine Learning,
107(1):43–78, 2018.

[55] W. Yan, H. Qiu, and Y. Xue. Gaussian process for long-term time-series forecasting.
In 2009 International Joint Conference on Neural Networks, pages 3420–3427. IEEE,
2009.

[56] Y. Zhao, R. A. Rossi, and L. Akoglu. Automating outlier detection via
meta-learning. arXiv preprint arXiv:2009.10606, 2020.

[57] F. Zhou, C. Cao, K. Zhang, G. Trajcevski, T. Zhong, and J. Geng. Meta-gnn:
On few-shot node classification in graph meta-learning. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management,
CIKM ’19, page 2357–2360, New York, NY, USA, 2019. Association for Computing
Machinery.

14

https://www.kaggle.com/search?q=time+series+forecasting+in%3Adatasets
https://www.kaggle.com/search?q=time+series+forecasting+in%3Adatasets

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 AutoForecast
	4.1 Meta-Learning Objective and Training
	4.2 Online Inference And Model Selection

	5 Experiments
	5.1 Experimental Setup
	5.2 Baselines
	5.3 Results

	6 Discussion
	7 Conclusion
	References

