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We introduce a new model of correlated randomly growing graphs and
study the fundamental questions of detecting correlation and estimating as-
pects of the correlated structure. The model is simple and starts with any
model of randomly growing graphs, such as uniform attachment (UA) or pref-
erential attachment (PA). Given such a model, a pair of graphs (G1,G2) is
grown in two stages: until time t� they are grown together (i.e., G1 = G2), af-
ter which they grow independently according to the underlying growth model.

We show that whenever the seed graph has an influence in the underly-
ing graph growth model—this has been shown for PA and UA trees and is
conjectured to hold broadly—then correlation can be detected in this model,
even if the graphs are grown together for just a single time step. We also give
a general sufficient condition (which holds for PA and UA trees) under which
detection is possible with probability going to 1 as t� → ∞. Finally, we show
for PA and UA trees that the amount of correlation, measured by t�, can be
estimated with vanishing relative error as t� → ∞.
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1.3.1. Graph matching and the correlated Erdős–Rényi model . . . . . . . . . . . . . . . . . . . . 1065
1.3.2. Inferring the history of a dynamic graph process from a snapshot . . . . . . . . . . . . . . . 1066

1.4. Discussion and open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067
1.5. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067

2. Detecting correlation when the seed has an influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067
3. Detecting correlation with probability going to 1 as t� → ∞ . . . . . . . . . . . . . . . . . . . . . . . . 1069

3.1. A sufficient condition for Markov sequential attachment rules . . . . . . . . . . . . . . . . . . . . 1069
3.2. Applications to PA and UA trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070
3.3. The distribution of subtree sizes and anti-centrality . . . . . . . . . . . . . . . . . . . . . . . . . . 1072

4. An initial, coarse estimate of t� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076
4.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077
4.2. First moment estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
4.3. Putting everything together: Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080

5. Estimating t� with vanishing relative error as t� → ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082
5.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1084
5.2. First and second moment estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086
5.3. Putting everything together: Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088

Appendix A: Proofs of remaining lemmas in Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089
A.1. Proof of Lemma 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089
A.2. Proof of Lemma 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091

Received July 2020; revised May 2021.
MSC2020 subject classifications. 60C05, 05C80.
Key words and phrases. Random graphs, correlated random graphs, randomly growing graphs, influence of

the seed, preferential attachment, uniform attachment.

1058

https://imstat.org/journals-and-publications/annals-of-applied-probability/
https://doi.org/10.1214/21-AAP1703
http://www.imstat.org
mailto:mracz@princeton.edu
mailto:anirudhs@princeton.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


CORRELATED RANDOMLY GROWING GRAPHS 1059

Appendix B: Proofs of remaining lemmas in Section 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1100
B.1. Proof of Lemma 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1100
B.2. Proof of the variance estimate in Lemma 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109
Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109
Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109

1. Introduction. Understanding computational and inference tasks on networks is of
paramount importance to solving problems in a variety of fields, including biology, sociol-
ogy, and machine learning. While many of these tasks are NP-hard in the worst case, most
graphs occurring in practice are not worst case, motivating the study of these problems un-
der probabilistic generative models. Increasingly, these problems involve not just a single
network but multiple networks that are correlated, and often the crux of the problem lies in
understanding how the networks are correlated. Here we introduce a new model of correlated
randomly growing graphs and study the fundamental questions of detecting correlation and
estimating aspects of the correlated structure.

The model is simple and starts with any model of randomly growing graphs. A model of
randomly growing graphs is specified by a seed graph S and a (probabilistic) growth rule G
(also referred to as an attachment rule). We say that {Gt }t≥|S| is a sequence of randomly
growing graphs with seed S (with |S| vertices) and growth rule G, if the following two things
hold. First, G|S| = S. Subsequently, the sequence of graphs is defined inductively using G:
given Gt , the graph Gt+1 is formed from Gt by adding a single vertex that is attached to some
of the vertices in Gt , chosen according to the attachment rule G. We write Gn ∼ G(n, S) for
an n-vertex graph generated in this way; see Figure 1 for an illustration.

For instance, an attachment rule might involve a positive integer m and the new vertex
attaching to m existing vertices chosen i.i.d. according to some distribution on the existing
vertices. Canonical examples include uniform attachment (UA) [19], where each existing
vertex is chosen with equal probability, and preferential attachment (PA) [2, 7, 34], where
each existing vertex is chosen with probability proportional to its degree. The case m = 1
corresponds to randomly growing trees. We write UA(n, S) for a UA tree on n vertices started
from the seed tree S, and similarly PA(n, S) for a PA tree on n vertices started from S.

We are now ready to introduce the new model of correlated randomly growing graphs. To
keep things simple, we focus on the setting of two correlated graphs. In addition to a seed
graph S and a growth rule G, the model takes an additional parameter t�, which is a positive
integer satisfying t� ≥ |S|. The model is simple: the two graphs G1

t and G2
t grow together

until time t�, after which they grow independently. More precisely, the distribution of the
sequence of the pair of graphs {(G1

t ,G
2
t )}t≥|S| is defined as follows.

FIG. 1. Schematic illustrations of the models studied in this paper. Left: a randomly growing graph, started
from seed S and growing according to growth rule G. Right: two correlated randomly growing graphs, started
from seed S, grown together until time t�, and then growing independently.
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FIG. 2. Differences between independent trees and correlated trees. Here n = 22 and S is the unique tree on 3
vertices.

• Initially, the two graphs grow together: for |S| ≤ t ≤ t� we have that G1
t = G2

t =: Gt and
Gt ∼ G(t, S).

• Subsequently, the two graphs grow independently: conditioned on Gt� , the two sequences
of graphs {G1

t }t≥t� and {G2
t }t≥t� are independent randomly growing graphs, both starting

from the graph Gt� and growing according to G.

This can model, for instance, the citation networks [44] of two scientific fields which ini-
tially shared common beginnings but then grew apart. We write (G1

n,G
2
n) ∼ CG(n, t�, S) for

two n-vertex graphs G1
n and G2

n generated according to this model; see Figures 1 and 2 for
illustrations. We also write CPA(n, t�, S) and CUA(n, t�, S) for correlated PA trees and corre-
lated UA trees, respectively. To the best of our knowledge, this model of correlated randomly
growing graphs has not been studied before; see Section 1.3 for discussion of related work.

This model of correlation satisfies the natural property that the marginal processes are
still randomly growing graphs with seed S and rule G. That is, if (G1

n,G
2
n) ∼ CG(n, t�, S),

then G1
n ∼ G(n, S) and G2

n ∼ G(n, S). Also, if t� = |S|, then {G1
t }t≥|S| and {G2

t }t≥|S| are
independent; we then write (G1

n,G
2
n) ∼ G(n, S)⊗2 to emphasize the independence. Thus we

see that t� (more precisely, t� − |S|) explicitly measures the amount of correlation among the
two graphs.

1.1. Questions: Detection and estimation. We study the fundamental questions of detect-
ing correlation and estimating aspects of the correlated structure in the model of correlated
randomly growing graphs introduced above.

Detection. Given two (unlabeled) n-vertex graphs, G1
n and G2

n, can we detect whether they
are correlated or not? This question can be phrased as a simple hypothesis testing problem.
Under the null hypothesis H0, the two graphs are independent: (G1

n,G
2
n) ∼ G(n, S)⊗2. Under

the alternative hypothesis, denoted Ht� , the two graphs are correlated, with a shared history
until time t�: (G1

n,G
2
n) ∼ CG(n, t�, S). In brief,

(1.1) H0 : (G1
n,G

2
n

) ∼ G(n, S)⊗2, Ht� : (G1
n,G

2
n

) ∼ CG(n, t�, S).

Note that we only observe a snapshot of the two graphs at time n, we do not observe their
history leading up to this snapshot. Is there a test that can distinguish between the two hy-
potheses with asymptotically (in n) nonnegligible power? Under what circumstances can
we distinguish with probability close to 1? Studying these questions is equivalent to under-
standing the total variation distance between G(n, S)⊗2 and CG(n, t�, S); recall that the total
variation distance between two probability measures P and Q is defined as TV(P,Q) :=
1
2‖P − Q‖1 = supA |P(A) − Q(A)|. We are particularly interested in the limit as n → ∞:

(1.2) lim
n→∞ TV

(
CG(n, t�, S),G(n, S)⊗2),

a limit which is well defined, because this total variation distance is nonincreasing in n (since
one can simulate the future evolution of the process) and nonnegative. There exists a test with
asymptotically nonnegligible power for the hypothesis testing problem in (1.1) if and only if
the quantity in (1.2) is positive.
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Estimation. If detection is possible, the natural next questions concern estimation. Is it
possible to estimate the amount of correlation between two correlated randomly growing
graphs? Is it possible to estimate the common shared subgraph? Formally, suppose that
(G1

n,G
2
n) ∼ CG(n, t�, S), but t� is unknown. How well can we estimate t�? How well can

we estimate the shared subgraph Gt�?

1.2. Summary of results and methods. Our results concern the detection and estimation
questions discussed in Section 1.1, and can be summarized as follows.

• Detecting correlation whenever the seed has an influence. We show that there exists a test
with asymptotically (in n) nonnegligible power for the hypothesis testing problem in (1.1)
whenever the seed graph S has an influence on the randomly growing graph G(n, S) (in
a sense to be made precise). This latter property has been shown for PA trees [10, 16]
and UA trees [9]—and is conjectured to hold more broadly—which implies that detecting
correlation is possible for these models. Remarkably, the results show that correlation can
be detected whenever t� > |S|, that is, even if the graphs are grown together for just a single
time step.

• Detecting correlation with probability going to 1 as t� → ∞. We give a general condition
under which correlation can be detected with probability going to 1 as t� → ∞. We con-
jecture that this condition holds for a broad family of randomly growing graphs, and in
particular, we show that it holds for PA and UA trees.

• Estimating t� with vanishing relative error as t� → ∞. Focusing on PA and UA trees,
we show that the amount of correlation, measured by t�, can be estimated with vanishing
relative error as t� → ∞.

In the most general setting, we establish results for sequential attachment rules that are
Markov, in the sense that for every t ≥ |S|, we have that

P(Gt+1 = G |G|S|,G|S|+1, . . . ,Gt) = P(Gt+1 = G |Gt),

where {Gt }t≥|S| is a sequence of randomly growing graphs starting from seed S. This is a
natural assumption, since in many real-world networks new nodes added to the network will
not have access to the history of the network. We also establish stronger results for PA and
UA trees, which are canonical models of randomly growing graphs. For what follows it will
be useful to define

Range(G, S) := {
G : ∃n such that if Gn ∼ G(n, S) then P(Gn = G) > 0

}
,

the set of all possible graphs that can be obtained with positive probability starting from seed
graph S via the attachment rule G. We are now ready to detail our results.

1.2.1. Detecting correlation whenever the seed has an influence. Our first result is a
general result that shows that correlation can be detected whenever the seed graph has an
influence in the underlying randomly growing graph model.

THEOREM 1.1 (Detecting correlation whenever the seed has an influence). Fix a seed
graph S, a positive integer t� such that t� > |S|, and a Markov sequential attachment
rule G. Suppose that there are graphs G and G′ satisfying that |G| = |G′| = t�, that
G,G′ ∈ Range(G, S), and that

(1.3) lim
n→∞ TV

(
G(n,G),G

(
n,G′)) > 0.

Then

lim
n→∞ TV

(
CG(n, t�, S),G(n, S)⊗2) > 0.
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Remarkably, this result holds whenever t� > |S|, showing that correlation can be detected
even if the graphs are grown together for just a single time step.

The condition in (1.3) captures formally what it means for the seed to have an influ-
ence. The study of the influence of the seed in randomly growing graphs was initiated
by Bubeck, Mossel, and Rácz, who studied this question in PA trees [10]. They showed
that for any two seed trees S and T with at least 3 vertices and different degree profiles,
limn→∞ TV(PA(n, S),PA(n,T )) > 0 holds. This already implies that (1.3) holds for PA
trees whenever t� > 3. In subsequent work, Curien, Duquesne, Kortchemski, and Manolescu
showed that limn→∞ TV(PA(n, S),PA(n,T )) > 0 whenever S and T are nonisomorphic
trees with at least 3 vertices [16]. This was then showed for UA trees as well by Bubeck,
Eldan, Mossel, and Rácz [9]. We refer to the recent survey [42] for an exposition of these
results and the associated techniques. These results are summarized in the following two
theorems.

THEOREM 1.2 ([10, 16]). The seed has an influence in PA trees in the following sense. We
have that limn→∞ TV(PA(n, S),PA(n,T )) > 0 for any trees S and T that are nonisomorphic
and have at least 3 vertices.

THEOREM 1.3 ([9]). The seed has an influence in UA trees in the following sense. We
have that limn→∞ TV(UA(n, S),UA(n,T )) > 0 for any trees S and T that are nonisomor-
phic and have at least 3 vertices.

These two theorems, together with Theorem 1.1, directly imply that correlation can be
detected in PA and UA trees. These results are formalized in the following two corollaries.

COROLLARY 1.4 (Detecting correlation in PA trees). Let S be a finite tree with at least
two vertices. Let t� ∈N be such that t� > |S| and t� > 3. Then

lim
n→∞ TV

(
CPA(n, t�, S),PA(n, S)⊗2) > 0.

COROLLARY 1.5 (Detecting correlation in UA trees). Let S be a finite tree. Let t� ∈ N

be such that t� > |S| and t� > 3. Then

lim
n→∞ TV

(
CUA(n, t�, S),UA(n, S)⊗2) > 0.

Theorem 1.1 reduces detecting correlation to detecting the influence of the seed. As such, it
can be viewed as an existence result, since it does not give specific statistics of the two graphs
that can detect correlation. We therefore complement Theorem 1.1 and Corollaries 1.4 and 1.5
by providing alternative, algorithmic proofs of Corollary 1.4 and Corollary 1.5. Specifically,
inspired by [10], we will show that the maximum degrees of the two trees can be used to de-
tect correlation in PA trees. Furthermore, inspired by [9], we will show that there are certain
statistics that measure global balancedness properties of a tree (and which are efficiently com-
putable) that can be used to detect correlation in UA trees. See the Supplementary Material
[43] for details.

1.2.2. Detecting correlation with probability going to 1 as t� → ∞. Ideally, we would
like to detect correlation with probability close to 1. However, for any fixed finite t�, the
probability of successfully being able to detect correlation is strictly bounded away from 1.
This is simply because if G1

t�
∼ G(t�, S) and G2

t�
∼ G(t�, S) are independent, then there is a

positive probability (which depends only on G and t�) that G1
t�

= G2
t�

. With this probability
we may couple G(n, S)⊗2 and CG(n, t�, S), showing that there exists ε = ε(G, t�) > 0 such
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that

(1.4) TV
(
CG(n, t�, S),G(n, S)⊗2) ≤ 1 − ε

for every n ≥ t�. Our focus is thus to show that correlation can be detected with probability
going to 1 as t� → ∞. We first present a general result, which gives a sufficient condition on
the underlying model of randomly growing graphs for this to occur.

THEOREM 1.6 (Detecting correlation with probability going to 1 as t� → ∞). Fix a
seed graph S and a Markov sequential attachment rule G. Let {Gt }t≥|S| be a sequence of
randomly growing graphs with seed S and attachment rule G. Suppose that there is a function
f : Range(G, S) → R such that the limit limt→∞ f (Gt) =: f∞ exists almost surely and that
f∞ is an absolutely continuous random variable with respect to the Lebesgue measure. Then
we have that

lim
t�→∞ lim

n→∞ TV
(
CG(n, t�, S),G(n, S)⊗2) = 1.

The test that distinguishes correlated graphs from independent graphs is simple: we com-
pare |f (G1

n) − f (G2
n)| to an appropriately chosen threshold. The idea behind the proof is

that this quantity tends to 0 as t� → ∞ under the alternative hypothesis Ht� , but f (G1
n) and

f (G2
n) are independent under the null hypothesis H0, so the difference stays away from 0 in

this case.
Theorem 1.6 is a general theorem that we expect applies to a wide class of models of

randomly growing graphs. To demonstrate its utility, we show that PA trees and UA trees
satisfy its conditions. For PA trees, we may choose f to be the normalized maximum degree.
For both cases, we may choose f to be a function that is closely related to notions of centrality
in trees. These have been used to study a variety of statistical problems, such as estimating
the source of a rumor on a tree [45–47] and estimating the seed in randomly growing trees [8,
17, 32]. We thus obtain the following results for PA and UA trees.

THEOREM 1.7. Let S be a finite tree with at least two vertices. Then

lim
t�→∞ lim

n→∞ TV
(
CPA(n, t�, S),PA(n, S)⊗2) = 1.

THEOREM 1.8. Let S be a finite tree. Then

lim
t�→∞ lim

n→∞ TV
(
CUA(n, t�, S),UA(n, S)⊗2) = 1.

1.2.3. Estimating t� with vanishing relative error as t� → ∞. We now turn to questions
of estimation. These are more involved than questions concerning detection and hence we
restrict our attention to PA and UA trees, started from the seed S = S2, the unique tree on
two vertices. We focus on estimating t�, which measures the amount of correlation between
the two correlated trees; we leave the very interesting question of estimating the common
subgraph Gt� for future work (see Section 1.4). Ideally, we would like good estimates of t�
that hold with probability close to 1. From (1.4) it follows that this is only possible as t� → ∞.

Our main result on estimation is that t� can be estimated with vanishing relative error as
t� → ∞; this is the content of the following theorem.

THEOREM 1.9 (Estimating t� in PA and UA trees). Let S = S2 be the unique tree on
two vertices and let (T 1

n , T 2
n ) ∼ CPA(n, t�, S). There exists an estimator t̂n ≡ t̂ (T 1

n , T 2
n ), com-

putable in polynomial time, such that

lim
t�→∞ lim inf

n→∞ P

((
1 − log log t�√

log t�

)
t� ≤ t̂n ≤

(
1 + log log t�√

log t�

)
t�

)
= 1.

The same result also holds when (T 1
n , T 2

n ) ∼ CUA(n, t�, S).
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In other words, the relative error of the estimator t̂n is bounded by log log(t�)/
√

log t�, with
probability close to 1, for large enough t�. The proof of Theorem 1.9 is the most involved
proof in this paper and so we give here a high level overview of the proof strategy. The proof
works equally for both PA and UA trees, with only minor changes.

The main idea is to match several pairs of vertices across the two trees. To explain this
more precisely, we introduce some notation. Let {Tn}n≥2 be a sequence of growing trees with
seed S2. For a vertex v in Tn, let τ(v) be the timestamp of v. That is, τ(v) = k if v is not in
Tk−1 but is introduced in Tk . The two initial vertices are labeled 1 and 2 arbitrarily. We say
that a pair of vertices (v1, v2), where v1 ∈ V (T 1

n ) and v2 ∈ V (T 2
n ), is correctly matched if

τ(v1) = τ(v2).

Correctly matching the centroids. Let θ1(n), θ2(n) be the centroids of the trees T 1
n and T 2

n ,
respectively (we rigorously define the notion of a tree centroid in Section 3.2). Jog and
Loh [27] proved that PA and UA trees with seed S2 have the persistent centroid property:
almost surely, there is a finite time N such that for all t ≥ N , we have that θ(t) = θ(N) := θ .
Using this fact, it follows that the pair (θ1(n), θ2(n)) is correctly matched with probability
tending to 1 as t� → ∞. Although we have so far only matched one pair of vertices in the two
graphs, this provides an important frame of reference going forward, to analyze the correlated
structure in the two trees.

Matching neighbors of the centroids. Next, assuming the high-probability event θ1(n) =
θ2(n) = θ , we consider the rooted trees (T 1

n , θ) and (T 2
n , θ), with the goal of matching many

neighbors of the centroids. We do so by examining subtrees of the two rooted trees. Let
(T i

n, θ)v↓ denote the subtree of the rooted tree (T i
n, θ) that has root v. In other words, the

tree (T i
n, θ)v↓ consists of all vertices u such that the unique path connecting u and θ passes

through v.
The idea behind matching neighbors of the centroid is the “rich-get-richer” property of

subtrees. To illustrate this concept, suppose that for a tree growing via uniform attachment,
we consider neighbors u and v of θ , and |(Tt�, θ)u↓| is much larger than |(Tt�, θ)v↓|. Under
the UA rule, the probability that a new vertex joins a subtree is proportional to the number of
vertices in the subtree; thus it is very unlikely that |(Tt , θ)v↓| exceeds |(Tt , θ)u↓| at any future
time t . Similar behavior holds for PA trees as well. This intuition tells us that if |(Tt�, θ)u↓|
is much larger than |(Tt�, θ)v↓|, then we should have |(T i

n, θ)u↓| > |(T i
n, θ)v↓| for both i = 1

and i = 2.
Taking this idea one step further, we may expect that if the largest R subtrees (for some

positive integer R) of (Tt�, θ) do not have sizes that are too close to each other, then these
should be the same R largest subtrees in (T i

n, θ), for both i = 1 and i = 2. Therefore, we will
match the neighbors of the centroids with the largest subtrees, the second largest subtrees,
and so on, until the Rth largest subtrees. We indeed prove that such a matching procedure for
the neighbors of the centroids, based on subtree ranking, gives us all correct matchings with
probability tending to 1 as t� → ∞.

Constructing estimators for t�. Suppose that (v1, v2) are a correctly matched pair of neigh-
bors of the centroid. We can construct an estimator for t� by comparing the subtree sizes
corresponding to v1 and v2. The evolution of subtree sizes in PA and UA trees exhibit the
following stability property: the fraction of vertices that lie in a particular subtree has a limit
almost surely as the size of the tree tends to infinity. This follows from viewing the subtree
growth as a Pólya urn process.

We then expect that as we send t� → ∞, the difference between 1
n
|(T 1

n , θ)v1↓| and
1
n
|(T 2

n , θ)v2↓| is close to 0, even for large n. We exploit this property to construct a nearly

unbiased estimator for t� based on the difference between 1
n
|(T 1

n , θ)v1↓| and 1
n
|(T 2

n , θ)v2↓|.
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However, the variance of the estimator corresponding to the matched pair (v1, v2) is not small
enough to ensure that we can estimate t� with vanishing relative error. This is the reason for
matching many pairs of points: we can then average the estimators corresponding to many
correctly matched pairs of vertices, in order to reduce the variance. We finish by applying
Chebyshev’s inequality.

1.3. Related work. Though this paper is, to the best of our knowledge, the first to in-
troduce this model of correlated randomly growing graphs, it is closely related to several
well-studied problems in the literature.

1.3.1. Graph matching and the correlated Erdős–Rényi model. Perhaps the most well-
known related problem is graph matching. In this setting, we are given two graphs and we
want to find a labeling on the vertices that maximizes the similarity between the two graphs.
The applications of this problem are numerous, spanning data privacy in social networks [37,
41], protein-protein interaction networks [48], computer vision [11], pattern recognition [4,
12], machine learning [13], and more. This problem is NP-hard in the worst case (see, e.g.,
the surveys [12, 31]); in fact, it is even hard to approximate under some hardness assump-
tions [39]. However, most graphs occurring in applications are not worst case, which moti-
vates the study of the graph matching problem under probabilistic generative models.

The simplest random graph model is the Erdős–Rényi random graph G(n,p), which has n

vertices and every pair is connected with probability p, independently of any other pair. Thus
naturally the simplest model of correlated random graphs involves two Erdős–Rényi random
graphs that are correlated. This model was introduced by Pedarsani and Grossglauser [41]
and has been widely studied in the past decade in several communities, including computer
science, network science, information theory, probability, and statistics [3, 14, 15, 18, 20, 21,
25, 28–30, 33, 36, 49]. These works have resulted in obtaining the fundamental information-
theoretic limits [14, 15] and recent algorithmic advances [3, 18, 20, 21, 36]. The model of
correlated randomly grown graphs introduced in this paper is fundamentally different from
the correlated Erdős–Rényi model and thus it is not possible to directly compare our results
with those in these papers. Importantly, while Erdős–Rényi random graphs have no inherent
structure, the model of correlated randomly grown graphs is motivated by the fact that many
real-world networks form via a growth process.

In the correlated Erdős–Rényi model the pair (G1,G2) is constructed as follows. First,
sample an unobserved base graph G0 ∼ G(n,p). Next, conditioned on G0, construct G1

and G2 independently by including any given edge with probability q . Both G1 and G2 are
distributed according to G(n,pq), and they are correlated in the sense that the presence of
specified edges are correlated. There is also a “true” labeling of the vertices in G1 and G2,
given by inheriting the labels of the unobserved base graph G0. The goal of the graph match-
ing problem is to recover this true labeling (up to isomorphism). There is also a modified
version of the problem in which the algorithm has side information in the form of a small
number of matched vertices.

The problems of detecting and estimating correlation in a pair of randomly grown graphs
can be viewed as an analog of the graph matching problem (without side information) for
these kind of graphs. We highlight several papers in the graph matching literature that have
related ideas. Barak, Chou, Lei, Schramm, and Sheng study the problem of detecting corre-
lated structure for a pair of Erdős–Rényi graphs [3]. Their approach to solving the detection
problem in certain regimes relies on subgraph counts. Our approach is vastly different, re-
lying on extremal statistics of the graphs (e.g., maximum degree, minimum anti-centrality)
and general balancedess properties (all of which may be computed efficiently). Kazemi, Yart-
seva, and Grossglauser study a variant of the graph matching problem in a pair of correlated
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Erdős–Rényi graphs when there is partial overlap between the graphs; that is, there are ver-
tices in either graph that are not part of any correlated structure [29]. Our model of correlated
randomly grown graphs has a similar characteristic: the subgraph of the shared history, Gt� ,
is common, and the other vertices in the pair of graphs do not necessarily correspond to each
other if they were born after time t�. Their goal is somewhat different from ours; they aim to
estimate the common part, with knowledge of the amount of overlap. On the other hand, we
focus on estimating the amount of correlation, or equivalently, the size of the common part.

Korula and Lattanzi study a version of the graph matching problem for preferential at-
tachment graphs [30], though the manner in which they generate a pair of correlated graphs
is fundamentally different from our model. Similar to the process of generating correlated
Erdős–Rényi graphs, they generate a base graph G0 according to preferential attachment
and independently construct G1 and G2 by including a given edge in G0 with some fixed
probability. However, in this case G1 and G2 are not distributed according to preferential
attachment, which is unnatural. We also note that they require the use of side information in
their algorithm, while we do not assume this, since it is possible to match key information in
our case (e.g., matching the centroid).

1.3.2. Inferring the history of a dynamic graph process from a snapshot. Our work nat-
urally fits under this broad category in terms of the problem scope and the techniques used.
There have been a variety of works of this theme in recent years, including rumor source
estimation [22–24, 45–47], the influence of the seed in randomly growing graphs [9, 10, 16],
and finding the earliest vertices in randomly growing graphs [8, 17, 32]. Applications include
reconstructing the evolution of biological networks [38].

The works on the influence of the seed in randomly growing graphs [9, 10, 16] are par-
ticularly relevant to our work—we refer to Section 1.2 for a discussion of these detailed
connections. These connections are further touched upon in the proofs.

The notion of centrality in trees plays a significant role in our techniques (for the results
specific to PA and UA trees), and in many of the cited works. Shah and Zaman formulated the
notion of rumor centrality for maximum likelihood estimation of the source of a diffusion on
a tree [45–47]. Bubeck, Devroye, and Lugosi introduced a related centrality measure based
on subtree sizes to obtain confidence intervals for the first vertex in a PA or UA tree [8]. This
centrality measure lends itself to an easier analysis with PA and UA trees, since the evolu-
tion of subtree sizes can be understood as Pólya urn processes. Subsequently, this centrality
measure was used by Lugosi and Pereira [32] and by Devroye and Reddad [17] for the more
general problem of obtaining confidence intervals for the seed graph of a UA tree, as well as
for the earliest vertices. Jog and Loh showed that UA trees and PA trees exhibit the persistent
centroid property: the location of the centroid (with respect to the centrality measure of [8])
only changes finitely many times as the number of vertices in the tree increases [26, 27].
We are able to leverage these previous results on centrality in our study of the detection and
estimation problems for PA and UA trees.

Bhamidi, Jin, and Nobel studied a variant of the preferential attachment model with a
change point [6] (see also [1])—this shares some similar elements to our model but is funda-
mentally different. In their model, they examine a single PA tree where, at some time point,
the attachment rule changes. The goal is to estimate this change point, and to do so, they use
knowledge of the history of the graph. Our problem can be viewed as a change point problem
as well, but in a much different sense. Both of the randomly grown graphs have the marginal
distribution of a standard randomly grown graph, and the correlation time t� may be inter-
preted as a change point when the two growing graphs begin to evolve independently. Also,
we observe a single snapshot, rather than the entire history, which is a more appropriate and
interesting setting for our problem.
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Finally, there are many important aspects of modeling network formation that are beyond
the scope of the present article. We refer the reader to the recent work of Overgoor, Benson,
and Ugander [40], which unifies a host of network formation models using a framework
based on discrete choice theory. (See also the references therein for an overview of the related
literature.) Our hope is that the novel phenomena presented in this article can contribute to
the broader discussion on modeling the formation of multiple correlated networks.

1.4. Discussion and open problems. This paper initiates the study of correlated randomly
growing graphs and leaves open several problems. We end the Introduction by discussing
possible future directions.

• Estimating the correlation time t�. We have shown (in PA and UA trees) that the correlation
time t� can be estimated with vanishing relative error as t� → ∞. It would be interesting
to understand the limits of how well t� can be estimated.

• Estimating the common subgraph Gt� . It is of great interest to estimate the common sub-
graph Gt� shared by the two correlated randomly growing graphs. This question can be
formalized in several ways: for instance, we might want to find a large subgraph of Gt�

or a small supergraph of Gt� , with probability close to 1. Recent work by Lugosi and
Pereira [32] and Devroye and Reddad [17] (following work by Bubeck, Devroye, and Lu-
gosi [8]) has studied seed-finding algorithms for UA trees. We suspect that their results and
the techniques they have developed will be useful for estimating Gt� .

• Other models of randomly growing graphs. In our work we focus on PA and UA trees when
studying specific models of randomly growing graphs. Our general result in Theorem 1.1
says that correlation can be detected if (1.3) holds. This is a much weaker form of the
influence of the seed than is established in Theorems 1.2 and 1.3 for PA and UA trees. Are
there models of randomly growing graphs for which it is possible to show that (1.3) holds
even if showing the analogue of Theorems 1.2 and 1.3 is currently out of reach?

• Large amounts of correlation. In our work we have focused on t� being fixed compared
to the graph size n. What if t� is a function of n? This introduces much more correlation
among the two graphs and it would be interesting to understand how much stronger results
can be obtained.

• Three or more correlated graphs. The introduced model of correlated randomly growing
graphs naturally extends to three or more correlated graphs. How do the questions of de-
tection and estimation change in this setting? For instance, is it much easier to estimate the
common subgraph Gt� if we have samples from many correlated graphs?

1.5. Outline. The rest of the paper is organized as follows. We start with proving Theo-
rem 1.1 in Section 2. In Section 3 we turn to detecting correlation with probability going to 1
as t� → ∞ and prove Theorems 1.6, 1.7, and 1.8. Finally, we turn to estimating t� as t� → ∞.
We first provide an initial, coarse estimate of t� in Section 4; this section contains the main
ideas of our estimators. However, further ideas are needed in order to obtain an estimator
of t� which has vanishing relative error as t� → ∞: these, and a proof of Theorem 1.9, can
be found in Section 5.

Proofs of certain technical lemmas in Sections 4 and 5 are deferred to the Appendix. In ad-
dition, we present explicit algorithmic proofs of Corollaries 1.4 and 1.5 in the Supplementary
Material.

2. Detecting correlation when the seed has an influence. In this section we prove The-
orem 1.1. To abbreviate notation, in the following we denote by P0 the underlying probability
measure when (G1

n,G
2
n) ∼ G(n, S)⊗2 and by Pt� the underlying probability measure when
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(G1
n,G

2
n) ∼ CG(n, t�, S). Furthermore, for a graph H we denote by PH the probability mea-

sure on the sequence of randomly growing graphs {Gn}n≥|H | with seed H and attachment
rule G.

PROOF OF THEOREM 1.1. From (1.3) it follows that there exist δ > 0 and a sequence
{En}n≥t� such that

(2.1)
∣∣PG(Gn ∈ En) − PG′(Gn ∈ En)

∣∣ ≥ δ

for every n ≥ t�. Turning now to a pair of graphs (G1
n,G

2
n), with n ≥ t�, we consider the event{

G1
n ∈ En

}∩ {
G2

n ∈ En

}
.

Under the null hypothesis H0, the two graphs G1
n and G2

n are independent, and thus we have
that

P0
(
G1

n ∈ En,G
2
n ∈ En

) = P0
(
G1

n ∈ En

)
P0

(
G2

n ∈ En

) = (
PS(Gn ∈ En)

)2
.

Note also that by conditioning on the graph at time t� and using the fact that the sequential
attachment rule G is Markov, we have that

μ := PS(Gn ∈ En) = ∑
H :|H |=t�

PH (Gn ∈ En)PS(Gt� = H),

where the sum is over all graphs on t� vertices.
Turning to the alternative hypothesis Ht� , we can again condition on the graph at time t�,

and use the fact G1
n and G2

n are independent conditioned on the graph at time t�. We thus
obtain that

Pt�

(
G1

n ∈ En,G
2
n ∈ En

)
= ∑

H :|H |=t�

Pt�

(
G1

n ∈ En,G
2
n ∈ En |G1

t�
= G2

t�
= H

)
PS(Gt� = H)

= ∑
H :|H |=t�

Pt�

(
G1

n ∈ En |G1
t�

= G2
t�

= H
)
Pt�

(
G2

n ∈ En |G1
t�

= G2
t�

= H
)
PS(Gt� = H)

= ∑
H :|H |=t�

(
PH (Gn ∈ En)

)2
PS(Gt� = H).

Altogether, we have thus obtained that

Pt�

(
G1

n ∈ En,G
2
n ∈ En

)− P0
(
G1

n ∈ En,G
2
n ∈ En

)
= ∑

H :|H |=t�

(
PH(Gn ∈ En)

)2
PS(Gt� = H) −

( ∑
H :|H |=t�

PH(Gn ∈ En)PS(Gt� = H)

)2

= ∑
H :|H |=t�

PS(Gt� = H)
(
PH(Gn ∈ En) − μ

)2
.

Note that all terms in this sum are nonnegative. Dropping all terms except those correspond-
ing to G and G′, we have that

Pt�

(
G1

n ∈ En,G
2
n ∈ En

)− P0
(
G1

n ∈ En,G
2
n ∈ En

)
≥ PS(Gt� = G)

(
PG(Gn ∈ En) − μ

)2 + PS

(
Gt� = G′)(

PG′(Gn ∈ En) − μ
)2

.

By the condition that G,G′ ∈ Range(G, S), we have that PS(Gt� = G) and PS(Gt� = G′) are
both strictly positive, and note that these are not a function of n. By (2.1) it follows that at least
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one of PG(Gn ∈ En) and PG′(Gn ∈ En) must be outside of the interval (μ − δ/2,μ + δ/2),
showing that (

PG(Gn ∈ En) − μ
)2 + (

PG′(Gn ∈ En) − μ
)2 ≥ δ2/4.

Putting everything together, we have shown that

Pt�

(
G1

n ∈ En,G
2
n ∈ En

)− P0
(
G1

n ∈ En,G
2
n ∈ En

)
≥ δ2

4
min

{
PS(Gt� = G),PS

(
Gt� = G′)}

for every n ≥ t�, which implies that

lim
n→∞ TV

(
CG(n, t�, S),G(n, S)⊗2) ≥ δ2

4
min

{
PS(Gt� = G),PS

(
Gt� = G′)} > 0. �

3. Detecting correlation with probability going to 1 as t� → ∞. In this section we
focus on detecting correlation with probability going to 1 as t� → ∞. We first prove Theo-
rem 1.6 in Section 3.1 and then prove Theorems 1.7 and 1.8 in Section 3.2.

3.1. A sufficient condition for Markov sequential attachment rules. To abbreviate
notation, in the following we denote by P0 the underlying probability measure when
{(G1

t ,G
2
t )}t≥|S| are two independent sequences of randomly growing graphs with seed S

and attachment rule G. Similarly, we denote by Pt� the underlying probability measure when
the two graphs are correlated until time t�. We say that a random variable is absolutely con-
tinuous when its distribution is absolutely continuous with respect to the Lebesgue measure.

PROOF OF THEOREM 1.6. We will show that for every δ > 0 there exists t ′ = t ′(δ) such
that for every t� ≥ t ′ we have that

(3.1) lim
n→∞ TV

(
CG(n, t�, S),G(n, S)⊗2) ≥ 1 − δ.

To this end, fix δ > 0. Let {(G1
t ,G

2
t )}t≥|S| be two sequences of randomly growing graphs

with seed S and attachment rule G, under either P0 or Pt� . Let f 1∞ := limt→∞ f (G1
t ) and

f 2∞ := limt→∞ f (G2
t ); by our assumptions these limits exist almost surely, under both P0

and Pt� . Observe that

lim
ε→0

P0
(∣∣f 1∞ − f 2∞

∣∣ ≤ ε
) = P0

(
f 1∞ = f 2∞

) = 0,

the latter equality holding because f 1∞ and f 2∞ are i.i.d. absolutely continuous random vari-
ables under P0. Thus fix ε > 0 such that

(3.2) P0
(∣∣f 1∞ − f 2∞

∣∣ ≤ ε
) ≤ δ/2.

Turning to the measure Pt� , note that under Pt� we have that G1
t�

= G2
t�

almost surely, and
hence f (G1

t�
) = f (G2

t�
) almost surely as well. So by the triangle inequality we have, for any

n ≥ t�, that

Pt�

(∣∣f (
G1

n

)− f
(
G2

n

)∣∣ > ε
)

≤ Pt�

(∣∣f (
G1

n

)− f
(
G1

t�

)∣∣ > ε/2
)+ Pt�

(∣∣f (
G2

n

)− f
(
G2

t�

)∣∣ > ε/2
)

= 2Pt�

(∣∣f (
G1

n

)− f
(
G1

t�

)∣∣ > ε/2
) = 2P0

(∣∣f (
G1

n

)− f
(
G1

t�

)∣∣ > ε/2
)
,

where the first equality is due to symmetry and the second equality is because the marginal
processes are the same under P0 and Pt� . Now we can bound from below the total variation
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distance in question by considering the event {|f (G1
n) − f (G2

n)| ≤ ε} under P0 and Pt� . For
any n ≥ t� we have that

TV
(
CG(n, t�, S),G(n, S)⊗2)

≥ Pt�

(∣∣f (
G1

n

)− f
(
G2

n

)∣∣ ≤ ε
)− P0

(∣∣f (
G1

n

)− f
(
G2

n

)∣∣ ≤ ε
)

≥ 1 − 2P0
(∣∣f (

G1
n

)− f
(
G1

t�

)∣∣ > ε/2
)− P0

(∣∣f (
G1

n

)− f
(
G2

n

)∣∣ ≤ ε
)
.

Taking limits as n → ∞, we obtain that

lim
n→∞ TV

(
CG(n, t�, S),G(n, S)⊗2)

≥ 1 − 2P0
(∣∣f 1∞ − f

(
G1

t�

)∣∣ > ε/2
)− P0

(∣∣f 1∞ − f 2∞
∣∣ ≤ ε

)
.

Since f (G1
t�
) → f 1∞ almost surely as t� → ∞, we also have that

P0
(∣∣f 1∞ − f

(
G1

t�

)∣∣ > ε/2
) → 0

as t� → ∞. Thus there exists t ′ = t ′(δ) such that P0(|f 1∞ − f (G1
t�
)| > ε/2) ≤ δ/4 for every

t� ≥ t ′. Combining this with (3.2) shows (3.1) and concludes the proof. �

3.2. Applications to PA and UA trees. Here we show how Theorem 1.6 can be applied to
PA and UA trees, in order to prove Theorems 1.7 and 1.8. In order to apply Theorem 1.6, we
have to find a function f such that

lim
t→∞f (Gt) =: f∞

exists almost surely and that f∞ is an absolutely continuous random variable, where {Gt }t≥|S|
is a sequence of randomly growing graphs with seed S and attachment rule G, and where G
corresponds to either PA or UA trees.

We first argue that it is enough to show this for the special case when the seed is S2, the
unique tree on two vertices, as this implies the same for any seed tree S on at least two
vertices. Indeed, for a tree S on at least two vertices, PA(n, S) has the same distribution
as PA(n, S2) conditioned on PA(|S|, S2) = S (an event which has positive probability), and
therefore, the function f that works for the seed S2 (i.e., which has the desired properties) also
works when the seed is S. The same argument works for UA trees as well. More generally,
suppose that G is a Markov sequential attachment rule and we have a function f satisfying
the desired properties when the seed is S′. Then the same function f also satisfies the desired
properties whenever the seed S satisfies S ∈ Range(G, S′). For PA and UA trees we simply
use that Range(PA, S2) = Range(UA, S2) consists of all finite trees on at least two vertices.

Therefore, in the following we may, and thus will, assume that the seed is S = S2. We start
with PA trees, for which considering the normalized maximum degree suffices.

PROOF OF THEOREM 1.7. For a graph G, define f (G) := �(G)/
√|G|, where recall

that �(G) is the maximum degree in G. Móri [35], Theorem 3.1, showed that the limit
f∞ := limn→∞ f (PA(n, S2)) exists almost surely, and moreover that the limit is almost
surely positive, finite, and it has an absolutely continuous distribution. Now applying Theo-
rem 1.6 yields the desired conclusion. �

We next present a method that works equally well for both PA and UA trees, with only
minor changes needed between the two cases. Accordingly, we present a unified proof for
Theorems 1.7 and 1.8, and throughout the proof we will always explain what differs for PA
and UA trees. The proof is based on a notion of centrality in trees, which we detail below.
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FIG. 3. The anti-centrality �T (v) of vertex v in tree T is the size of the largest pendent subtree.

Given a tree T and a distinguished vertex v in the tree, let (T , v) be the rooted tree with
root v. For any other vertex u, (T , v)u↓ is the rooted subtree of (T , v) whose root is u and
whose vertex set contains all vertices w such that the unique path connecting w and v con-
tains u. The anti-centrality of a vertex v in a tree T is defined as

�T (v) := max
u∈Nv(T )

∣∣(T , v)u↓
∣∣,

where Nv(T ) := {u ∈ V (T ) : (u, v) ∈ E(T )} is the neighborhood of v in T ; see Figure 3 for
an illustration. Note that �T (v) is efficiently computable (i.e., in poly(|T |) time, e.g., using a
breadth first search (BFS) algorithm). A centroid is a vertex that has minimum anti-centrality.
Note that there can be multiple centroids, but only at most two (see, e.g., [27], Lemma 2.1). If
there is a unique centroid (which is often the case), then we refer to it as the centroid. Proper-
ties of this centrality measure and of the corresponding centroid(s) have been widely studied,
both for trees in general and also more specifically in a variety of sequentially-generated
trees, including PA and UA trees (see, e.g., [27] and the references therein). Centroids and
centrality were also used as a key tool in root-finding algorithms in PA and UA trees [8, 17,
32].

In the following {Tn}n≥2 denotes a sequence of trees started from the seed S2 and grown
according to PA or UA. To abbreviate notation, we write �n(v) := �Tn(v) for a vertex v ∈
V (Tn). Recall that for a vertex v in the tree Tn, we denote by τ(v) the timestamp of v. That is,
τ(v) = k if v is not in Tk−1 but is introduced in Tk . In the following when we refer to “a fixed
vertex v,” we mean that the timestamp τ(v) of v is fixed (i.e., it does not change with n). The
following theorem describes properties of the asymptotic behavior of the anti-centrality of a
fixed vertex v in PA and UA trees.

THEOREM 3.1. Let {Tn}n≥2 be a sequence of trees started from the seed S2 and grown
according to PA or UA. Let v be a fixed vertex. Then the limit

�(v) := lim
n→∞

1

n
�n(v)

exists almost surely. Furthermore, �(v) is an absolutely continuous random variable.

We refer to �(v) as the limiting anti-centrality of v. We defer the proof of this theorem to
Section 3.3, where, in addition to Theorem 3.1, we also prove a distributional representation
of �(v); see Theorem 3.3. The key insight behind the proof is that the evolution of the sizes of
the subtrees around v can be described in terms of Pólya urn processes (see [42], Section 4).
The limits of these Pólya urn processes are absolutely continuous random variables, from
which we can show that �(v) is also an absolutely continuous random variable. The structure
of �(v) is the same in both PA and UA trees (with only minor differences in the details),
which allows us to develop techniques and proofs that simultaneously work for both models
of random trees.
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We are particularly interested in the anti-centrality of the centroid(s). Note that even if the
tree T has two centroids, the anti-centrality of the two centroids is equal, by definition. If
θ(T ) is a centroid of the tree T , then

�T

(
θ(T )

) = min
v∈T

max
u∈Nv(T )

∣∣(T , v)u↓
∣∣.

Turning to the sequence of trees {Tn}n≥2, let θ(n) := θ(Tn) denote a centroid of Tn. Jog and
Loh proved in [27], for both PA and UA trees, that almost surely the centroid only changes
finitely many times. That is, the limit θ := limn→∞ θ(n) exists almost surely; we call θ the
limiting centroid of the sequence of trees {Tn}n≥2. Together with Theorem 3.1 this implies
the following corollary.

COROLLARY 3.2. Let {Tn}n≥2 be a sequence of trees started from the seed S2 and grown
according to PA or UA. Moreover, let θ(n) := θ(Tn) denote a centroid of Tn. Then the limit

lim
n→∞

1

n
�n

(
θ(n)

) = lim
n→∞

1

n
min
v∈Tn

max
u∈Nv(Tn)

∣∣(Tn, v)u↓
∣∣

exists almost surely and is an absolutely continuous random variable.

PROOF. By [27], the centroid stabilizes almost surely, that is, the limiting centroid
θ := limn→∞ θ(n) exists almost surely. Let v1, v2, . . . , vn denote the vertices in Tn, labeled
in order of appearance; that is, τ(vk) = k for k > 2 (and v1 and v2 are the two vertices
in the initial tree T2). Fix k ≥ 1 and let Ek := {θ = vk} be the event that the limiting cen-
troid is vk . Let E := ⋃

k≥1 Ek and note that P(E) = 1. On the event Ek we have that
limn→∞ 1

n
�n(θ(n)) = �(vk), so altogether we have that limn→∞ 1

n
�n(θ(n)) = �(θ) and

thus the limit exists almost surely. To see that the limit is absolutely continuous, let F be a
set with Lebesgue measure zero. Then

P
(
�(θ) ∈ F

) = ∑
k≥1

P
({

�(θ) ∈ F
}∩ Ek

) = ∑
k≥1

P
({

�(vk) ∈ F
}∩ Ek

)
≤ ∑

k≥1

P
(
�(vk) ∈ F

) = 0,

where in the second equality we used the definition of Ek and in the last equality we used
that �(vk) is absolutely continuous for any fixed k ≥ 1. �

Corollary 3.2 directly implies Theorems 1.7 and 1.8, as follows.

PROOF OF THEOREMS 1.7 AND 1.8. For a tree T , define

f (T ) := 1

|T | min
v∈T

max
u∈Nv(T )

∣∣(T , v)u↓
∣∣.

By Corollary 3.2, the limit f∞ := f (Tn) exists almost surely and is absolutely continuous,
for both PA and UA trees. Now applying Theorem 1.6 yields the desired conclusion. �

3.3. The distribution of subtree sizes and anti-centrality. In this section we derive the
limiting distribution of the sizes of the subtrees around a fixed vertex v, and using this we
derive a distributional representation of the limiting anti-centrality �(v). Theorem 3.1 then
follows immediately. Before we state the main theorem of this section, we recall the definition
of the timestamp τ(v) of v: τ(v) = k if v is not in Tk−1 but is in Tk . In particular, we use the
convention that the timestamp of both vertices in the initial tree T2 is 2.
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THEOREM 3.3. Let {Tn}n≥2 be a sequence of trees started from the seed S2 and grown
according to PA or UA. Let v be a fixed vertex. Let {ϕk}k≥0 be mutually independent random
variables, all of them having a beta distribution, with parameters as follows:

ϕ0 ∼
⎧⎪⎨⎪⎩

Beta
(
τ(v) − 1,1

)
for UA,

Beta
(
τ(v) − 3

2
,

1

2

)
for PA,

and for k ≥ 1, let

ϕk ∼
⎧⎪⎨⎪⎩

Beta(1,1) for UA,

Beta
(

1

2
,
k + 1

2

)
for PA.

We then define the random variables {ψ�}�≥0 as follows: ψ0 := ϕ0, and for � ≥ 1 let

ψ� := ϕ�

�−1∏
i=0

(1 − ϕi).

The limiting anti-centrality �(v) of v exists almost surely and has the following distributional
representation:

(3.3) �(v)
d= max

�≥0
ψ�.

In this representation ψ� is the asymptotic normalized size of the �th subtree around v;
here counting starts at � = 0 and subtrees are ordered according to their first appearance
around v. Similar representations—of various limiting quantities using a sequence of inde-
pendent (beta) random variables—are common in the study of preferential attachment, uni-
form attachment, and related random graph models (see, e.g., [5, 42]). We refer the reader
to [42], Section 4, for an exposition.

PROOF. We first prove the claim for UA trees. Note that v is a leaf in Tτ(v). Let u0 denote
the neighbor of v in Tτ(v) and let e0 denote the edge connecting v and u0. For n ≥ τ(v), the
edge e0 partitions Tn into two subtrees: (Tn, v)u0↓ and Tn \ (Tn, v)u0↓. When a new vertex
joins the tree, it attaches to an existing vertex uniformly at random. Therefore, the probability
of the new vertex joining either one of these two subtrees is proportional to their size. Thus
the evolution of the pair of subtree sizes, (|(Tn, v)u0↓|, n − |(Tn, v)u0↓|), follows a classical
Pólya urn. Initially, at time n = τ(v), the pair of subtree sizes is (τ (v) − 1,1). Therefore, by
classical results on Pólya urns (see, e.g., [42], Section 4.5 and Example 4.7), the limit

(3.4) ϕ0 := lim
n→∞

1

n

∣∣(Tn, v)u0↓
∣∣

exists almost surely and ϕ0 ∼ Beta(τ (v) − 1,1).
Next, let u1 denote the first vertex that attaches to v with τ(u1) > τ(v), and let e1 de-

note the edge connecting v and u1. (Note that almost surely τ(u1) < ∞.) For n ≥ τ(u1),
the edges e0 and e1 partition the tree Tn into three subtrees: (Tn, v)u0↓, (Tn, v)u1↓, and
Tn \ ((Tn, v)u0↓ ∪ (Tn, v)u1↓). When a new vertex joins the tree, it attaches to an existing ver-
tex uniformly at random. We can view this as a multi-stage process as follows. First, the vertex
decides whether it will join the subtree (Tn, v)u0↓ or the subtree Tn \ (Tn, v)u0↓; it does so by
flipping a coin, with the probability of choosing either option being proportional to the size
of the respective subtree. Next, if the vertex decides to join the subtree Tn \ (Tn, v)u0↓, it then
chooses whether to join the subtree (Tn, v)u1↓ or the subtree Tn \ ((Tn, v)u0↓ ∪ (Tn, v)u1↓);
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it again does so by flipping a coin, with the probability of choosing either option being pro-
portional to the size of the respective subtree. This second coin flip is independent of the first
coin flip. Finally, once the vertex has decided which of the three subtrees to join, it attaches
to a vertex chosen uniformly at random from the given subtree.

From this construction it is immediate that, when viewed at the times when the new vertex
joins the subtree Tn \ (Tn, v)u0↓, the pair

(3.5)
(∣∣(Tn, v)u1↓

∣∣, n − ∣∣(Tn, v)u0↓
∣∣− ∣∣(Tn, v)u1↓

∣∣)
evolves as a classical Pólya urn started from (1,1). Thus the limit

(3.6) ϕ1 := lim
n→∞

|(Tn, v)u1↓|
n − |(Tn, v)u0↓|

exists almost surely and ϕ1 ∼ Beta(1,1) (in other words, ϕ1 is uniform on the interval [0,1]).
Moreover, the evolution of the Pólya urn describing the pair in (3.5) is independent of the
process that determines the times at which the subtree Tn \ (Tn, v)u0↓ increases, which means
that ϕ1 and ϕ0 are independent. Putting together (3.4) and (3.6), we obtain that

lim
n→∞

1

n

∣∣(Tn, v)u1↓
∣∣ = lim

n→∞
|(Tn, v)u1↓|

n − |(Tn, v)u0↓|
n − |(Tn, v)u0↓|

n
= ϕ1(1 − ϕ0) = ψ1

almost surely.
We can then iterate this argument. For � ≥ 2, let u� denote the �th vertex to attach to v.

The random variables ϕ2, ϕ3, . . . can be defined inductively by the limit

ϕ� := lim
n→∞

|(Tn, v)u�↓|
n −∑�−1

i=0 |(Tn, v)ui↓|;

the same argument as above shows that this limit exists almost surely, ϕ� ∼ Beta(1,1) for
every � ≥ 1, and that ϕ� is independent of ϕ0, ϕ1, . . . , ϕ�−1. Subsequently, this implies by
induction that

lim
n→∞

1

n

∣∣(Tn, v)u�↓
∣∣ = lim

n→∞
|(Tn, v)u�↓|

n −∑�−1
i=0 |(Tn, v)ui↓|

n −∑�−1
i=0 |(Tn, v)ui↓|

n

= ϕ�

�−1∏
i=0

(1 − ϕi) = ψ�

almost surely. We have thus shown that the asymptotic normalized size of the �th subtree
around v is given by ψ�. What remains is to understand how the subtree sizes of these fixed
neighbors of v relate to the anti-centrality of v.

Define the event Ek := {ϕk > 1/2} and let E := ⋃
k≥1 Ek . The events {Ek}k≥1 are mutually

independent and P(Ek) = 1/2 for every k ≥ 1. Therefore, P(E) = 1. Since Ek holds if and
only if ϕk > 1 − ϕk , the event Ek is equivalent to the event that

lim
n→∞

1

n

∣∣(Tn, v)uk↓
∣∣ > lim

n→∞
1

n

(
n −

k∑
�=0

∣∣(Tn, v)u�↓
∣∣)

holds. Thus on the event Ek we have, for all n large enough, that

∣∣(Tn, v)uk↓
∣∣ > n −

k∑
�=0

∣∣(Tn, v)u�↓
∣∣.
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Consider the neighbors of v, and note that together the pendant subtrees make up all of the
tree (except for v). Thus for any u ∈ Nv(Tn) \ {u0, u1, . . . , uk} we have that

∣∣(Tn, v)u↓
∣∣ ≤ ∑

w∈Nv(Tn)\{u0,u1,...,uk}

∣∣(Tn, v)w↓
∣∣ = n − 1 −

k∑
�=0

∣∣(Tn, v)u�↓
∣∣.

Therefore, it follows that, on the event Ek , we have that

�n(v) = max
�∈{0,1,...,k}

∣∣(Tn, v)u�↓
∣∣

for all n large enough. Thus dividing by n and taking limits, we have that, on the event Ek ,
the limit �(v) := limn→∞ 1

n
�n(v) exists and moreover

�(v) = max
�∈{0,1,...,k}ψ�.

Consequently, on the event E, the limit �(v) := limn→∞ 1
n
�n(v) exists and moreover

�(v) = max�≥0 ψ�. Since E holds almost surely, this concludes the proof of (3.3) for UA
trees.

For PA trees the arguments are similar, so we only explain the differences. In PA, when
a new vertex joins the tree, it attaches to an existing vertex with probability proportional to
its degree. Thus, if we partition the tree into finitely many subtrees, the probability that the
new vertex joins a particular subtree is proportional to the sum of the degrees of the vertices
in the subtree. Moreover, when a vertex joins a particular subtree, it increases the sum of the
degrees in the subtree by 2, due to the new edge. For more details, see [42], Section 4.5 and
Example 4.11.

Thus there are two differences in the analysis of subtrees above: (1) the quantity asso-
ciated with a subtree that we analyze is now the sum of the degrees of the vertices in the
subtree (instead of the number of vertices in the subtree), and (2) the Pólya urns that arise
have replacement matrix ( 2 0

0 2 ) (see [42], Section 4.5). The first change also means that the
initial conditions of the appropriate Pólya urns are different. Specifically, the limiting ran-
dom variable ϕ0 arises from a Pólya urn with replacement matrix ( 2 0

0 2 ) and initial condition

(2τ(v)−3,1), which is why ϕ0 ∼ Beta(τ (v)− 3
2 , 1

2). For k ≥ 1, the limiting random variable
ϕk arises from a Pólya urn with replacement matrix ( 2 0

0 2 ) and initial condition (1, k + 1),

which is why ϕk ∼ Beta(1
2 , k+1

2 ).
There is one more subtle point here: we are interested in the asymptotic behavior of the

sizes of various subtrees (that is, the number of vertices in the subtrees), but the analysis
concerns the sum of the degrees of the vertices in the subtrees. However, the map x �→ 2x −1
takes the number of vertices in a subtree to the sum of the degrees of the vertices in the subtree
(this uses the fact that we are considering subtrees where there is exactly one edge exiting
the subtree). The normalization factor also differs by essentially a factor of 2: it is n when
the considering the number of vertices and 2n − 2 when considering the sum of the degrees.
Thus after normalization the quantity that we care about (subtree size) is asymptotically the
same as the quantity that we analyze (sum of the degrees in a subtree).

With these changes we have thus determined that the asymptotic normalized size of the
�th subtree around v is given by ψ� for PA trees. What remains is to show (3.3) for PA trees.
Since the random variables {ϕk}k≥1 are no longer i.i.d. uniform on [0,1] (as in the case of
UA trees), a different argument is needed here. For k ≥ 1 define the event

Ek :=
{

max
�∈{0,1,...,k}ψ� > 1 −

k∑
�=0

ψ�

}
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and let E := ⋃
k≥0 Ek . An analogous argument as above shows that on the event Ek we

have that �(v) := limn→∞ 1
n
�n(v) exists and moreover �(v) = max�∈{0,1,...,k} ψ�. Thus on

the event E we have that �(v) := limn→∞ 1
n
�n(v) exists and moreover �(v) = max�≥0 ψ�.

What remains to show is that P(E) = 1, which is equivalent to showing that limk→∞P(Ek) =
1, since {Ek}k≥0 is an increasing sequence of events. This, in turn, follows from the fact that
1−∑k

�=0 ψ� → 0 in probability as k → ∞. To see that this convergence in probability holds,
first observe that 1 −∑k

�=0 ψ� = ∏k
�=0(1 − ϕk). Then by independence we have that

E

[
1 −

k∑
�=0

ψ�

]
=

k∏
�=0

E[1 − ϕk] = 1

2τ(v) − 2

k∏
�=1

� + 1

� + 2
= 1

(τ (v) − 1)(k + 2)
,

which goes to 0 as k → ∞. The conclusion then follows from Markov’s inequality. �

Theorem 3.3 directly implies Theorem 3.1, as we now show.

PROOF OF THEOREM 3.1. By Theorem 3.3, the limiting anti-centrality �(v) exists al-
most surely. Moreover, it satisfies the distributional representation given in (3.3). That is, it
is the maximum of countably many absolutely continuous random variables. As such, it is
absolutely continuous as well. Indeed, if F is a set with Lebesgue measure zero, then

P
(
�(v) ∈ F

) = P

(
max
�≥0

ψ� ∈ F
)

≤ ∑
�≥0

P(ψ� ∈ F) = 0.
�

4. An initial, coarse estimate of t�. We now turn to the problem of estimating t�. The
estimator that we use to prove Theorem 1.9 is somewhat involved, so in this section we first
study a simpler estimator. The guarantees we prove for this simpler estimator are weaker than
those in Theorem 1.9 (see Theorem 4.1 below), but studying this simpler estimator highlights
some of the key ideas that also go into the more involved estimator studied subsequently in
Section 5. Moreover, as we shall see in Section 5, our estimator for t� that achieves vanishing
relative error needs as input an initial, coarse estimate of t�—and the simple estimator studied
in this section provides this.

In this section we will thus prove the following result.

THEOREM 4.1 (A coarse estimate of t� in PA and UA trees). Let S = S2 be the
unique tree on two vertices and let (T 1

n , T 2
n ) ∼ CPA(n, t�, S). There exists an estimator

t̂n ≡ t̂ (T 1
n , T 2

n ), computable in polynomial time, such that

lim
t�→∞ lim inf

n→∞ P

(
t�

log t�
≤ t̂n ≤ t� log t�

)
= 1.

The same result also holds when (T 1
n , T 2

n ) ∼ CUA(n, t�, S).

We now describe the estimator used to prove Theorem 4.1. Recall all the notation intro-
duced in Sections 3.2 and 3.3, which we will use here. Moreover, for anything introduced
previously in these sections, if we add a superscript i to it (where i ∈ {1,2}), this means that
it is the appropriate object in the tree T i

n . For instance, θ1(n) and θ2(n) are the centroids in
T 1

n and T 2
n , respectively.

The main idea is to consider the minimum anti-centrality in the two trees T 1
n and T 2

n . In
other words, we consider the sizes of the largest pendent subtrees of the two centroids. The
heuristic, which we will make precise, is as follows. If t� is large, then the centroids in T 1

n

and T 2
n correspond to the same vertex, with probability close to 1. If this is the case, then the

sizes of the largest pendent subtrees of the centroids should be similar, and their difference
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FIG. 4. The pendent subtrees of the centroids θ1(n) and θ2(n) in T 1
n and T 2

n , respectively, are ordered in
decreasing order. The estimator studied in Section 4 is a function of the (normalized) sizes of the largest pendent
subtrees, X1

n and X2
n.

should concentrate on some function of n and t�—which should be a function of only t� in
the limit as n → ∞. Estimating this function and inverting it then allows us to estimate t�.
See Figure 4 for an illustration.

Thus we define, for i ∈ {1,2}, the random variable

(4.1) Xi
n := 1

n
min
v∈T i

n

max
u∈Nv(T i

n)

∣∣(T i
n, v

)
u↓
∣∣ = 1

n
�T i

n

(
θi(n)

)
.

Now define

(4.2) Yn := (X1
n − X2

n)
2

2X1
n(1 − X1

n)
.

As we shall see, Yn is concentrated around 1/t�, so we can define the estimator t̂n := 1/Yn.
Theorem 4.1 then follows immediately from the following result.

THEOREM 4.2. Let S = S2 be the unique tree on two vertices and let (T 1
n , T 2

n ) ∼
CPA(n, t�, S). Define Yn via (4.1) and (4.2). We have that

lim
t�→∞ lim inf

n→∞ P

(
1

t� log t�
≤ Yn ≤ log t�

t�

)
= 1.

The same result also holds when (T 1
n , T 2

n ) ∼ CUA(n, t�, S).

In the remainder of this section we prove this theorem. We start in Section 4.1 with some
preliminaries: specifically, we define a couple of “nice” events on the space of sequences of
growing trees, on which we will obtain bounds for Yn. We prove a first moment estimate
for Yn in Section 4.2. We then prove Theorem 4.2 in Section 4.3, using the fact that the
previously defined “nice” events have probability close to 1. We defer the proof of this latter
fact to Appendix A.

4.1. Preliminaries. We start by introducing some notation on labeling vertices. Let
{Tn}n≥2 be a growing sequence of trees started from the seed S = S2, where at each step
we add a single new node and a new edge. We denote the vertices of Tn by v1, v2, . . . , vn,
where v1 and v2 are the two initial vertices in S, and for k ≥ 3, vk is the unique vertex with
timestamp k. As before, we write �n(v) := �Tn(v) for a vertex v ∈ V (Tn). We write ṽi,n(1)

for the neighbor of vi that is the root of the largest subtree of (Tn, vi) (assuming that there
is a unique largest subtree). With this notation we have that �n(vi) = |(Tn, vi)ṽi,n(1)↓|. More
generally, for any k ≥ 1 we write ṽi,n(k) for the neighbor of vi that is the root of the kth
largest subtree of (Tn, vi) (assuming that there is a unique such vertex). Finally, we write
θ̃n(1) for the neighbor of the centroid θ(n) that is the root of the largest subtree of (Tn, θ(n))

(assuming that the centroid is unique and that there is a unique largest subtree).
We are now ready to define what we mean by the “nice” event on the space of sequences

of growing trees.
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DEFINITION 4.3 (The event A). Given a sequence of trees {Tn}n≥t� , we say that the
event A holds if and only if the following three properties all hold:

(A1) The centroid θ(n) is unique for all n ≥ t� and θ(n) = θ(t�) for all n ≥ t�.
(A2) The vertex θ̃n(1) is uniquely defined for all n ≥ t� and θ̃n(1) = θ̃t�(1) for all n ≥ t�.
(A3) For all n ≥ t� we have that

(4.3)
∣∣∣∣1n�n

(
θ(n)

)− 1

t�
�t�

(
θ(t�)

)∣∣∣∣ ≤ 1

t
1/3
�

min
{

1

t�
�t�

(
θ(t�)

)
,1 − 1

t�
�t�

(
θ(t�)

)}
.

The exponent 1/3 in (4.3) is chosen for simplicity; any positive constant that is less
than 1/2 is a good choice for everything that follows. Furthermore, we always have that
�t�(θ(t�)) ≤ t�/2—this is a known property of tree centroids (see, e.g., [27], Lemma 2.1)—
so the minimum in (4.3) is always attained by the first term; we include the second term in the
definition just for clarity. Given a sequence of trees {Tn}n≥2, we say that the event A holds if
and only if it holds for the subsequence {Tn}n≥t� . The event A clearly depends on t�, but we
choose to omit t� from the notation in order to keep notation lighter. The following lemma
shows that for PA and UA trees the event A holds with probability close to 1 when t� is large.

LEMMA 4.4. Let {Tn}n≥2 be a sequence of trees started from the seed S and grown
according to PA or UA. There exists a finite constant C such that for every t� ≥ 2 we have
that

(4.4) P
(
Ac) ≤ C

log t�
,

where Ac denotes the complement of A.

The proof of Lemma 4.4 is deferred to Appendix A.
The intuition behind defining A in this way is as follows. On the event A, both the cen-

troid and the largest subtree of the centroid do not change locations within the tree for n ≥ t�.
Hence, by conditioning on the tree at time t�, studying �n(θ(n)) essentially amounts to un-
derstanding the growth of a fixed subtree that is present in Tt� . Since the sizes of fixed subtrees
grow according to Pólya urn processes (in PA and UA trees), their distributions are very well
understood.

We are interested in a pair of correlated randomly growing (either PA or UA) trees
{(T 1

n , T 2
n )}n≥2. Let A1 and A2 denote the “nice” events corresponding to {T 1

n }n≥2 and
{T 2

n }n≥2. Since T 1
n = T 2

n for all n ≤ t�, we have, in particular, that θ1(t�) = θ2(t�) =: θ(t�)

and also that θ̃1
t�
(1) = θ̃2

t�
(1) =: θ̃t�(1). A key observation is that on the event A1 ∩A2 we have

that θ1(n) = θ2(n) = θ(t�) for all n ≥ t� and that θ̃1
n(1) = θ̃2

n(1) = θ̃t�(1) for all n ≥ t�, which
implies that on the event A1 ∩ A2 we have that Xi

n = 1
n
|(T i

n, θ(t�))θ̃t� (1)↓| for i ∈ {1,2} and

all n ≥ t�. Thus in order to understand the behavior of the statistic Yn on the event A1 ∩A2,
it suffices to condition on the tree at time t� and then analyze the behavior of fixed subtrees.
We do this next.

Condition now on the tree T 1
t�

= T 2
t�

=: Tt� ; that is, assume that Tt� is given. To abbreviate
notation, we write θ := θ(t�) and θ̃ (1) := θ̃t�(1); importantly, note that these are now fixed
vertices (i.e., they do not change with n). Define the random variables

Zi
n := 1

n

∣∣(T i
n, θ

)
θ̃ (1)↓

∣∣
for i ∈ {1,2} and n ≥ t�. As observed above, on the event Ai we have that Xi

n = Zi
n for n ≥ t�.
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In UA trees, the evolution of (nZi
n, n − nZi

n) for n ≥ t� follows a classical Pólya urn
with initial condition (�t�(θ), t� − �t�(θ)), for i ∈ {1,2}. Moreover, the Pólya urns for i =
1 and i = 2 are independent (recall that we are conditioning on Tt� , so this is conditional
independence given Tt�). In PA trees, the evolution of (2nZi

n − 1,2n − 2nZi
n − 1) for n ≥ t�

follows a Pólya urn with replacement matrix ( 2 0
0 2 ) and initial condition (2�t�(θ) − 1,2t� −

2�t�(θ) − 1), for i ∈ {1,2}. Moreover, the Pólya urns for i = 1 and i = 2 are independent
(again, this is conditional independence given Tt�).

Thus by classical results on Pólya urns it follows that the limiting random variables

Zi := lim
n→∞Zi

n

exist almost surely for i ∈ {1,2}, for both PA and UA trees. Moreover, Z1 and Z2 are i.i.d.
(again, this is conditional independence given Tt�) beta random variables, with parameters
given as follows:

(4.5) Z ∼
⎧⎪⎨⎪⎩

Beta
(
�t�(θ), t� − �t�(θ)

)
for UA,

Beta
(
�t�(θ) − 1

2
, t� − �t�(θ) − 1

2

)
for PA.

Here Z is a random variable with the same distribution as Z1 and Z2.
From (4.5) it is clear that the quantity �t�(θ) plays an important role in the distribution

of Z. We always have that �t�(θ) ≤ t�/2. Typically �t�(θ) is on the order t�, but with some
small probability it can be of smaller order. The following definition and lemma quantify this.

DEFINITION 4.5 (The event B). Let B denote the following event:

B :=
{

t�√
log t�

≤ �t�

(
θ(t�)

) ≤ t�

2

}
.

The event B clearly depends on t�, but we choose to omit t� from the notation in order to
keep notation lighter. Also, as mentioned above, the bound �t�(θ) ≤ t�/2 always holds, but
we still include it in the definition of B just for clarity.

LEMMA 4.6. Let {Tn}n≥2 be a sequence of trees started from the seed S and grown
according to PA or UA. There exists a finite constant C such that for every t� ≥ 2 we have
that

(4.6) P
(
Bc) ≤ C

log1/4(t�)
,

where Bc denotes the complement of B.

The bound in (4.6) can be improved to C/
√

log t� for UA trees, but we choose to have a
unified theorem for PA and UA trees for simplicity. The proof of Lemma 4.6 is deferred to
Appendix A.

4.2. First moment estimate. In this subsection we prove the following first moment esti-
mate.

LEMMA 4.7. Let (T 1
n , T 1

n ) ∼ CPA(n, t�, S). For all t� large enough we have that

(4.7) lim sup
n→∞

E[Yn1A1∩A2] ≤ 1 + 3t
−1/3
�

t�
.

The same bound holds also when (T 1
n , T 1

n ) ∼ CUA(n, t�, S).
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We note that a matching lower bound (of the form (1 − o(1))/t� as t� → ∞) also holds,
but since we will not use that direction, we do not give details here.

PROOF. We condition on the tree Tt� at time t�; by the tower rule we have that

(4.8) E[Yn1A1∩A2] = E
[
E[Yn1A1∩A2 |Tt�]

]
.

Now given Tt� , observe that property (A3) in Definition 4.3 implies that on the event A1 ∩A2

we have that

X1
n

(
1 − X1

n

) ≥ 1

t�
�t�(θ)

(
1 − 1

t�
�t�(θ)

)(
1 − t−1/3

�

)2

for n ≥ t�. Plugging this inequality into the definition of Yn we obtain that

E[Yn1A1∩A2 |Tt�] ≤ E[(X1
n − X2

n)
21A1∩A2 |Tt�]

2 · 1
t�
�t�(θ)(1 − 1

t�
�t�(θ))(1 − t

−1/3
� )2

≤ E[(Z1
n − Z2

n)
2 |Tt�]

2 · 1
t�
�t�(θ)(1 − 1

t�
�t�(θ))(1 − t

−1/3
� )2

,

where the second inequality follows by observing that on the event A1 ∩ A2 we have that
Xi

n = Zi
n for i ∈ {1,2}, and then removing the indicator to get an upper bound. Taking the

limit as n → ∞ and applying the bounded convergence theorem we obtain that

(4.9) lim sup
n→∞

E[Yn1A1∩A2 |Tt�] ≤ E[(Z1 − Z2)2 |Tt�]
2 · 1

t�
�t�(θ)(1 − 1

t�
�t�(θ))(1 − t

−1/3
� )2

.

Now using conditional independence, the limiting conditional distribution obtained in (4.5),
and plugging in the variance of the beta distribution, we have that

E
[(

Z1 − Z2)2 |Tt�

] = 2 Var(Z |Tt�) =

⎧⎪⎪⎨⎪⎪⎩
2�t�(θ)(t� − �t�(θ))

t2
� (t� + 1)

for UA,

2(�t�(θ) − 1/2)(t� − �t�(θ) − 1/2)

(t� − 1)2t�
for PA.

Plugging these formulas into (4.9), we obtain, for both PA and UA trees, that

lim sup
n→∞

E[Yn1A1∩A2 |Tt�] ≤
(

1 + 1

t� − 1

)2(
1 − t−1/3

�

)−2 1

t�
≤ 1 + 3t

−1/3
�

t�
,

where the second inequality holds for all t� large enough. Since this holds for any tree Tt� ,
taking an expectation and using (4.8) we arrive at (4.7). �

4.3. Putting everything together: Proof of Theorem 4.2. PROOF OF THEOREM 4.2. We
start with the upper bound, which is a consequence of Lemma 4.7 and Markov’s inequality.
First, by a union bound we have that

P

(
Yn ≥ log t�

t�

)
≤ P

((
A1 ∩A2)c)+ P

({
Yn ≥ log t�

t�

}
∩A1 ∩A2

)
.

By a union bound and Lemma 4.4 we have that the first term is at most C/ log t� for some
constant C, and so it remains to deal with the second term. By Markov’s inequality we have
that

P

({
Yn ≥ log t�

t�

}
∩A1 ∩A2

)
≤ P

(
Yn1A1∩A2 ≥ log t�

t�

)
≤ t�

log t�
E[Yn1A1∩A2].
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By (4.7) we thus have that

lim sup
n→∞

P

(
Yn ≥ log t�

t�

)
≤ C + 2

log t�

for all t� large enough. This expression goes to zero as t� → ∞, which concludes the proof
of the upper bound.

We now turn to the lower bound. To abbreviate notation, we introduce the quantity δt� :=
(t� log t�)

−1/2. Our goal is to show that

lim
t�→∞ lim sup

n→∞
P
(
Yn ≤ δ2

t�

) = 0.

Since Yn ≤ δ2
t�

implies that |X1
n − X2

n| ≤ δt� , we have that

P
(
Yn ≤ δ2

t�

) ≤ P
(∣∣X1

n − X2
n

∣∣ ≤ δt�

)
.

By a union bound we have that

P
(∣∣X1

n − X2
n

∣∣ ≤ δt�

)
≤ P

((
A1)c)+ P

((
A2)c)+ P

(
Bc)+ P

({∣∣X1
n − X2

n

∣∣ ≤ δt�

}∩A1 ∩A2 ∩B
)
.

By Lemmas 4.4 and 4.6, there exists a finite constant C such that the first three terms in the
display above are bounded above by C/ log1/4(t�). Since this goes to zero as t� → ∞, what
remains is to bound the last term in the display above. To do this, we first condition on the
tree Tt� . By the tower rule, using also the fact that the event B is measurable with respect to
Tt� , we have that

(4.10) P
({∣∣X1

n − X2
n

∣∣ ≤ δt�

}∩A1 ∩A2 ∩B
) = E

[
E[1{|X1

n−X2
n|≤δt� }1A1∩A2 |Tt�]1B

]
.

We now fix Tt� and study the conditional expectation E[1{|X1
n−X2

n|≤δt� }1A1∩A2 |Tt�]. Recall

that on the event A1 ∩A2 we have that Xi
n = Zi

n for i ∈ {1,2} and n ≥ t�. Therefore, by the
bounded convergence theorem we have that

lim sup
n→∞

E[1{|X1
n−X2

n|≤δt� }1A1∩A2 |Tt�] = E[1{|Z1−Z2|≤δt� }1A1∩A2 |Tt�]

≤ E[1{|Z1−Z2|≤δt� } |Tt�],
(4.11)

where the inequality follows by dropping the second indicator. For notational convenience,
and in order to treat the cases of PA and UA trees simultaneously, we introduce

(4.12) (a, b) :=
⎧⎪⎨⎪⎩
(
�t�(θ), t� − �t�(θ)

)
for UA,(

�t�(θ) − 1

2
, t� − �t�(θ) − 1

2

)
for PA.

Recall from (4.5) that, conditioned on Tt� , the random variables Z1 and Z2 are i.i.d. Beta(a, b)

random variables. To bound the expression in (4.11), we first condition on Z1. By the tower
rule, we have that

E[1{|Z1−Z2|≤δt� } |Tt�] = E
[
E
[
1{|Z1−Z2|≤δt� } |Z1, Tt�

] |Tt�

]
.

Conditioned on Z1 and Tt� , we have that Z2 ∼ Beta(a, b), so we can compute this conditional
expectation explicitly:

(4.13) E
[
1{|Z1−Z2|≤δt� } |Z1, Tt�

] = 1

B(a, b)

∫ (Z1+δt� )∧1

(Z1−δt� )∨0
xa−1(1 − x)b−1 dx,
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where B(a, b) = �(a)�(b)/�(a + b) is the beta function. Recall from (4.10) that we only
care about bounding this expression when the event B holds. From the definition of B, and
also the definitions of a and b (see (4.12)), it follows that if B holds, then a, b > 2 for all
t� large enough. We know that if a, b > 1, then the mode of the Beta(a, b) distribution is at

a−1
a+b−2 . Plugging this into (4.13), we obtain, for all t� large enough, that

(4.14) E
[
1{|Z1−Z2|≤δt� } |Z1, Tt�

]
1B ≤ 2δt�

B(a, b)

(
a − 1

a + b − 2

)a−1( b − 1

a + b − 2

)b−1
1B.

Now using the standard inequalities
√

2πnn+1/2en ≤ n! ≤ enn+1/2en, which hold for all n ≥
1, we have that

B(a, b) = (a − 1)!(b − 1)!
(a + b − 1)! ≥ 2π

(
a − 1

a + b − 1

)a−1( b − 1

a + b − 1

)b−1 √
(a − 1)(b − 1)

(a + b − 1)3/2 .

Therefore,

1

B(a, b)

(
a − 1

a + b − 2

)a−1( b − 1

a + b − 2

)b−1
≤ 1

2π

(a + b − 1)3/2
√

(a − 1)(b − 1)

(
1 + 1

a + b − 2

)a+b−2

≤ e

2π

(a + b − 1)3/2
√

(a − 1)(b − 1)
.

Plugging this back into (4.14), we obtain, for all t� large enough, that

E
[
1{|Z1−Z2|≤δt� } |Z1, Tt�

]
1B ≤ Cδt�

(a + b)3/2
√

ab
1B

for some constant C. From (4.12) we have that a + b ≤ t�. We also have that b ≥ t�/2 − 1/2.
Furthermore, on the event B we have that a ≥ t�/

√
log t� − 1/2. Altogether these imply that

(a + b)3/2
√

ab
1B ≤ C′t1/2

� log1/4(t�)

for some constant C′ and all t� large enough. Plugging this back into the previous display and
using the definition of δt� we obtain that

E
[
1{|Z1−Z2|≤δt� } |Z1, Tt�

]
1B ≤ C′′

log1/4(t�)

for some constant C′′ and all t� large enough. Now taking an expectation over Z1 and us-
ing (4.10) and (4.11), we finally obtain that

lim sup
n→∞

P
({∣∣X1

n − X2
n

∣∣ ≤ δt�

}∩A1 ∩A2 ∩ B
) ≤ C′′

log1/4(t�)

for all t� large enough. This goes to zero as t� → ∞, which concludes the proof. �

5. Estimating t� with vanishing relative error as t� → ∞. In this section we prove
Theorem 1.9. To do this, we build on the ideas and the estimator introduced in Section 4,
which provided an initial, coarse estimate of t�. The key additional idea compared to Section 4
is to average, over many subtrees, statistics similar to Yn; see Figure 5 for an illustration. We
start by defining precisely the estimator used to prove Theorem 1.9.

For a tree Tn on n vertices, let Tn(k) denote the kth largest subtree of the rooted tree
(Tn, θ(n)) (with ties broken arbitrarily), with the root of this subtree denoted by θ̃n(k). In
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FIG. 5. The pendent subtrees of the centroids θ1(n) and θ2(n) in T 1
n and T 2

n , respectively, are ordered in
decreasing order. The estimator studied in Section 5 matches several of the largest pendent subtrees in the two
trees, as indicated by the colors in the figure.

particular, with this notation we have that �n(θ(n)) = |Tn(1)|. As before, for anything de-
fined for a tree Tn, if we add a superscript i to it (where i ∈ {1,2}), this means that it is the
appropriate object in the tree T i

n . For i ∈ {1,2} and k ≥ 1, define the normalized subtree size

Xi
n(k) := 1

n

∣∣T i
n(k)

∣∣;
see Figure 5 for an illustration. Now define

Yn(k) := (X1
n(k) − X2

n(k))2

2X1
n(k)(1 − X1

n(k))

and note that Yn(1) ≡ Yn. For any k ≥ 1 define

Sn(k) := 1

k

k∑
�=1

Yn(�).

For k = 1 we have that Sn(1) = Yn(1) = Yn and everything proved in Section 4 applies. For
k > 1 (and k not too large, to be made precise later), we still have that Sn(k) is concentrated
around 1/t�. The improvement in Sn(k) for large k, compared to Sn(1), is that Sn(k) has
smaller variance than Sn(1), by roughly a factor of order k.

In order to obtain a significant improvement over Sn(1), we aim to use Sn(k) with a choice
of k that diverges as t� → ∞. The catch is that t� is unknown—in fact, it is the quantity that
we desire to estimate. This is where it is useful to have an initial, coarse estimate of t�, which
allows to choose an appropriate k. To this end, define

Kn :=
⌊
− 1

400
logYn

⌋
.

Our estimator for t� is then

t̂n := 1

Sn(Kn)
.

Theorem 1.9 then follows immediately from the following result.

THEOREM 5.1. Let S be the tree on two vertices and let (T 1
n , T 2

n ) ∼ CPA(n, t�, S). We
have that

lim
t�→∞ lim inf

n→∞ P

((
1 − log log t�

2
√

log t�

)
1

t�
≤ Sn(Kn) ≤

(
1 + log log t�√

log t�

)
1

t�

)
= 1.

The same result also holds when (T 1
n , T 2

n ) ∼ CUA(n, t�, S).
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In the remainder of this section, which is structured similar to Section 4, we prove this
theorem. We start in Section 5.1 with some preliminaries: specifically, we define a couple of
“nice” events on the space of sequences of growing trees, on which we will obtain bounds
for Sn(Kn). We state and prove first moment estimates in Section 5.2, where we also state
a variance estimate whose proof we defer to Appendix B.2. We then prove Theorem 5.1 in
Section 5.3, using the fact that the previously defined “nice” events have probability close
to 1. We prove this latter fact in Appendix B.1.

5.1. Preliminaries. In Section 4 we defined “nice” events A and B. Here, we define
analogous “nice” events, which we denote by C and D. First, we define

K ≡ K(t�) :=
⌊

1

384
log t�

⌋
,

which we fix for the rest of Section 5. We are now ready to define the event C.

DEFINITION 5.2 (The event C). Given a sequence of trees {Tn}n≥t� , we say that the event
C holds if and only if the following three properties all hold:

(C1) The centroid θ(n) is unique for all n ≥ t� and θ(n) = θ(t�) for all n ≥ t�.
(C2) For all integers 1 ≤ k ≤ K , the vertex θ̃n(k) is uniquely defined for all n ≥ t�, and

also θ̃n(k) = θ̃t�(k) for all n ≥ t�.
(C3) For all n ≥ t� and all 1 ≤ k ≤ K , we have that

(5.1)
∣∣∣∣1n

∣∣∣∣Tn(k)

∣∣∣∣− 1

t�

∣∣∣∣Tt�(k)|| ≤ 1

t
1/3
�

min
{

1

t�

∣∣Tt�(k)
∣∣,1 − 1

t�

∣∣Tt�(k)
∣∣}.

As in Definition 4.3, the exponent 1/3 in (5.1) is chosen for simplicity; any positive
constant that is less than 1/2 is a good choice for everything that follows (though the
choice impacts the choice of other constants/exponents later on). Also, we always have that
|Tt�(k)| ≤ |Tt�(1)| = �t�(θ(t�)) ≤ t�/2, so the minimum in (5.1) is always attained by the first
term; we include the second term in the definition just for clarity. Given a sequence of trees
{Tn}n≥2, we say that the event C holds if and only if it holds for the subsequence {Tn}n≥t� .
The event C clearly depends on t�, but we choose to omit t� from the notation in order to keep
notation lighter. The following lemma shows that for PA and UA trees the event C holds with
probability close to 1 when t� is large.

LEMMA 5.3. Let {Tn}n≥2 be a sequence of trees started from the seed S and grown
according to PA or UA. There exists a finite constant C such that for every t� ≥ 2 we have
that

(5.2) P
(
Cc) ≤ C

t
1/2000
�

,

where Cc denotes the complement of C.

Lemma 5.3 follows directly from Lemma 5.4 below.
Since the event C is analogous to the event A, the intuition is similar. Let C1 and C2 denote

the “nice” events corresponding to {T 1
n }n≥2 and {T 2

n }n≥2, respectively. The key point of the
construction is that on the event C1 ∩ C2, studying X1

n(k) and X2
n(k) reduces to studying the

evolution of fixed subtrees that are present in the tree at time t�.
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Formally, condition on the tree T 1
t�

= T 2
t�

=: Tt� . To abbreviate notation, we write θ := θ(t�)

and θ̃ (k) := θ̃t�(k) for all 1 ≤ k ≤ K ; importantly, note that these are now fixed vertices (i.e.,
they do not change with n). Define the random variables

Zi
n(k) := 1

n

∣∣(T i
n, θ

)
θ̃ (k)↓

∣∣
for i ∈ {1,2}, 1 ≤ k ≤ K , and n ≥ t�. On the event Ci we have that Xi

n(k) = Zi
n(k) for all

n ≥ t� and all 1 ≤ k ≤ K .
As discussed in Section 4 for k = 1, by classical results on Pólya urns it follows that the

limiting random variables

Zi(k) := lim
n→∞Zi

n(k)

exist almost surely for i ∈ {1,2} and 1 ≤ k ≤ K , for both PA and UA trees. Moreover, for any
1 ≤ k ≤ K , we have that Z1(k) and Z2(k) are i.i.d. (this is conditional independence given
Tt�) beta random variables, with parameters given as follows:

(5.3) Z(k) ∼
⎧⎪⎨⎪⎩

Beta
(∣∣Tt�(k)

∣∣, t� − ∣∣Tt�(k)
∣∣) for UA,

Beta
(∣∣Tt�(k)

∣∣− 1

2
, t� − ∣∣Tt�(k)

∣∣− 1

2

)
for PA.

Here Z(k) is a random variable with the same distribution as Z1(k) and Z2(k).
From (5.3) it is clear that the quantity |Tt�(k)| plays an important role in the distribu-

tion of Z(k). In Section 4 we defined B to be the event that |Tt�(1)| ≥ t�/
√

log t�. Here we
analogously want to define an event D on which we have lower bounds for |Tt�(k)| for all
1 ≤ k ≤ K . However, it turns out that we need some further properties from the event D; be-
cause of this we do not define it explicitly here—see Appendix B.1 for an implicit definition.
The following lemma guarantees the existence of an event D with the appropriate properties.

LEMMA 5.4. Let {Tn}n≥2 be a sequence of trees started from the seed S and grown ac-
cording to PA or UA. There exists a finite constant C such that for every t� ≥ C the following
holds. There exists a Tt�-measurable event D such that the following three things hold. First,
on D we have for all 1 ≤ k ≤ K that ∣∣Tt�(k)

∣∣ ≥ t7/8
� .

Second,

P
(
Dc) ≤ C

t
1/2000
�

.

Finally,

(5.4) P
(
Cc |D) ≤ C

t3
�

.

We note that the bound in (5.4) can be improved to a bound that decays faster than any
polynomial in t�; however, we only state this simpler, weaker bound, since this is all we need
for our purposes. The proof of Lemma 5.4 is deferred to Appendix B.1. In the following, D
always refers to the event guaranteed by Lemma 5.4.
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5.2. First and second moment estimates. We first state and prove the following first mo-
ment estimates.

LEMMA 5.5. Let (T 1
n , T 2

n ) ∼ CPA(n, t�, S). For all t� large enough the following holds.
Fix k ∈ {1,2, . . . ,K}. Then, we have that

(5.5) lim sup
n→∞

E
[
Sn(k)1C1∩C2 |D] ≤ 1 + 3t

−1/3
�

t�

and that

(5.6) lim inf
n→∞ E

[
Sn(k)1C1∩C2 |D] ≥ 1 − 3t

−1/3
�

t�
.

The same bounds also hold when (T 1
n , T 2

n ) ∼ CUA(n, t�, S).

PROOF. We start with the upper bound. By the exact same arguments as in the proof of
Lemma 4.7, we have for every � ∈ {1, . . . ,K} that

lim sup
n→∞

E
[
Yn(�)1C1∩C2 |D] ≤

(
1 + 1

t� − 1

)2(
1 − t−1/3

�

)−2 1

t�
.

Therefore, by linearity of expectation we also have that

lim sup
n→∞

E
[
Sn(k)1C1∩C2 |D] ≤

(
1 + 1

t� − 1

)2(
1 − t−1/3

�

)−2 1

t�
.

The right hand side of the display above is at most (1 + 3t
−1/3
� )/t� for all t� large enough,

which concludes the proof of (5.5).
We now turn to the lower bound. This follows similar lines as the upper bound, but an

additional argument is needed. Fix � ∈ {1, . . . ,K}. We again condition on the tree Tt� at time
t�; by the tower rule we have that

E
[
Yn(�)1C1∩C2 |D] = E

[
E
[
Yn(�)1C1∩C2 |Tt�

] |D]
.

Now given Tt� such that D holds, property (C3) in Definition 5.2 implies that on the event C1

we have that

X1
n(�)

(
1 − X1

n(�)
) ≤ 1

t�

∣∣T 1
t�
(�)

∣∣(1 − 1

t�

∣∣T 1
t�
(�)

∣∣)(1 + t−1/3
�

)2

for n ≥ t�. Plugging this inequality into the definition of Yn(�) we obtain that

E
[
Yn(�)1C1∩C2 |Tt�

] ≥ E[(X1
n(�) − X2

n(�))
21C1∩C2 |Tt�]

2 · 1
t�
|Tt�(�)|(1 − 1

t�
|Tt�(�)|)(1 + t

−1/3
� )2

= E[(Z1
n(�) − Z2

n(�))
21C1∩C2 |Tt�]

2 · 1
t�
|Tt�(�)|(1 − 1

t�
|Tt�(�)|)(1 + t

−1/3
� )2

,

where the equality follows by observing that on the event C1 ∩C2 we have that Xi
n(�) = Zi

n(�)

for i ∈ {1,2}. Now writing the indicator as 1C1∩C2 = 1 − 1(C1∩C2)c , we have that

E
[
Yn(�)1C1∩C2 |Tt�

] ≥ E[(Z1
n(�) − Z2

n(�))
2 |Tt�]

2 · 1
t�
|Tt�(�)|(1 − 1

t�
|Tt�(�)|)(1 + t

−1/3
� )2

− E[(Z1
n(�) − Z2

n(�))
21(C1∩C2)c |Tt�]

2 · 1
t�
|Tt�(�)|(1 − 1

t�
|Tt�(�)|)(1 + t

−1/3
� )2

.

(5.7)
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We deal with the two terms in (5.7) separately, starting with the first term, for which the
analysis is similar to that in the upper bound.

By the bounded convergence theorem we have that

lim
n→∞E

[(
Z1

n(�) − Z2
n(�)

)2 |Tt�

] = E
[(

Z1(�) − Z2(�)
)2 |Tt�

]
.

Now using conditional independence, the limiting conditional distribution obtained in (5.3),
and plugging in the variance of the beta distribution, we have that

E
[(

Z1(�) − Z2(�)
)2 |Tt�

]

= 2 Var
(
Z(�) |Tt�

) =

⎧⎪⎪⎨⎪⎪⎩
2|Tt�(�)|(t� − |Tt�(�)|)

t2
� (t� + 1)

for UA,

2(|Tt�(�)| − 1/2)(t� − |Tt�(�)| − 1/2)

(t� − 1)2t�
for PA.

Plugging these formulas into the above, we obtain for UA trees that

lim
n→∞

E[(Z1
n(�) − Z2

n(�))
2 |Tt�]

2 · 1
t�
|Tt�(�)|(1 − 1

t�
|Tt�(�)|)(1 + t

−1/3
� )2

= 1

(t� + 1)(1 + t
−1/3
� )2

≥ 1 − 2.5t
−1/3
�

t�
,

where the inequality holds for all t� large enough. For PA trees we obtain that

lim
n→∞

E[(Z1
n(�) − Z2

n(�))
2 |Tt�]

2 · 1
t�
|Tt�(�)|(1 − 1

t�
|Tt�(�)|)(1 + t

−1/3
� )2

= 1

t�
· 1

(1 + t
−1/3
� )2

· t2
�

(t� − 1)2 · |Tt�(�)| − 1/2

|Tt�(�)|
· t� − |Tt�(�)| − 1/2

t� − |Tt�(�)|
.

We always have that |Tt�(�)| ≤ t�/2. Since Tt� is such that D holds, by Lemma 5.4 we also
have that |Tt�(�)| ≥ t

7/8
� . Plugging these inequalities into the display above, we obtain that

lim
n→∞

E[(Z1
n(�) − Z2

n(�))
2 |Tt�]

2 · 1
t�
|Tt�(�)|(1 − 1

t�
|Tt�(�)|)(1 + t

−1/3
� )2

≥ 1

t�
· 1

(1 + t
−1/3
� )2

· t2
�

(t� − 1)2 · t
7/8
� − 1/2

t
7/8
�

· t�/2 − 1/2

t�/2
≥ 1 − 2.5t

−1/3
�

t�
,

where the second inequality holds for all t� large enough.
We now turn to the second term in (5.7). Since Z1

n(�) − Z2
n(�) ∈ [−1,1], we have that

E
[(

Z1
n(�) − Z2

n(�)
)21(C1∩C2)c |Tt�

] ≤ P
((
C1 ∩ C2)c |Tt�

)
.

As mentioned above, we always have that |Tt�(�)| ≤ t�/2; moreover, since Tt� is such that
D holds, by Lemma 5.4 we also have that |Tt�(�)| ≥ t

7/8
� . Using these inequalities we may

bound the second term in (5.7):

E[(Z1
n(�) − Z2

n(�))
21(C1∩C2)c |Tt�]

2 · 1
t�
|Tt�(�)|(1 − 1

t�
|Tt�(�)|)(1 + t

−1/3
� )2

≤ t1/8
� P

((
C1 ∩ C2)c |Tt�

)
.

Taking an expectation over Tt� , this bound becomes t
1/8
� P((C1 ∩ C2)c |D). By Lemma 5.4 we

have that P((C1 ∩ C2)c |D) ≤ Ct−3
� for some finite constant C and all t� large enough. Thus

ultimately the bound becomes Ct
−23/8
� , which is at most 0.5t

−4/3
� for all t� large enough.
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Overall, we have thus shown that

lim inf
n→∞ E

[
Yn(�)1C1∩C2 |D] ≥ 1 − 3t

−1/3
�

t�

for all t� large enough (where here “large enough” does not depend on �). The bound in (5.6)
follows by linearity of expectation. �

The following lemma gives a variance bound that we will use.

LEMMA 5.6. Let (T 1
n , T 2

n ) ∼ CPA(n, t�, S). There exists a finite constant C such that for
all t� large enough we have for all k ∈ {1,2, . . . ,K} that
(5.8) lim sup

n→∞
Var

(
Sn(k)1C1∩C2 |D) ≤ C

kt2
�

.

The same bound also holds when (T 1
n , T 2

n ) ∼ CUA(n, t�, S).

The proof of Lemma 5.6 is somewhat lengthy, so we defer it to Appendix B.2.

5.3. Putting everything together: Proof of Theorem 5.1. PROOF OF THEOREM 5.1. In
the following we set

(5.9) ε := log log t�

2
√

log t�

to abbreviate notation. Our goal is to show that

(5.10) lim
t�→∞ lim sup

n→∞
P

(∣∣∣∣Sn(Kn) − 1

t�

∣∣∣∣ ≥ ε

t�

)
= 0.

To do this, we first fix k ∈ {1,2, . . . ,K} and bound the probability P(|Sn(k) − 1
t�
| ≥ ε

t�
).

By conditioning on the “nice” event D, we have that

P

(∣∣∣∣Sn(k) − 1

t�

∣∣∣∣ ≥ ε

t�

)
≤ P

(∣∣∣∣Sn(k) − 1

t�

∣∣∣∣ ≥ ε

t�

∣∣∣∣D)
+ P

(
Dc).

The second term above is at most C/t
1/2000
� by Lemma 5.4. We can break the first term above

into two further terms, based on whether the “nice” event C1 ∩ C2 holds or not: by a union
bound we have that

P

(∣∣∣∣Sn(k) − 1

t�

∣∣∣∣ ≥ ε

t�

∣∣∣∣D)
≤ P

(∣∣∣∣Sn(k)1C1∩C2 − 1

t�

∣∣∣∣ ≥ ε

t�

∣∣∣∣D)
+ P

((
C1 ∩ C2)c |D)

.

The second term in the display above is at most C/t3
� by Lemma 5.4, so it remains to deal

with the first term above. Recall that Lemma 5.5 implies that for all t� large enough we have
for all n large enough that ∣∣∣∣E[Sn(k)1C1∩C2 |D]− 1

t�

∣∣∣∣ ≤ 4t
−1/3
�

t�
.

Recalling the definition of ε from (5.9), note that ε ≥ 8t
−1/3
� for all t� large enough and hence

ε − 4t
−1/3
� ≥ ε/2 for all t� large enough. By the triangle inequality we thus have that

P

(∣∣∣∣Sn(k)1C1∩C2 − 1

t�

∣∣∣∣ ≥ ε

t�

∣∣∣∣D)
≤ P

(∣∣Sn(k)1C1∩C2 −E
[
Sn(k)1C1∩C2 |D]∣∣ ≥ ε

2t�

∣∣∣∣D)
.
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Finally, by Chebyshev’s inequality we have that

P

(∣∣Sn(k)1C1∩C2 −E
[
Sn(k)1C1∩C2 |D]∣∣ ≥ ε

2t�

∣∣∣∣D)
≤ 4t2

�

ε2 Var
(
Sn(k)1C1∩C2 |D)

.

Taking a limit as n → ∞ and putting all the above bounds together we have thus obtained
that

(5.11) lim sup
n→∞

P

(∣∣∣∣Sn(k) − 1

t�

∣∣∣∣ ≥ ε

t�

)
≤ C

kε2 + C

t
1/2000
�

for some finite constant C and all t� large enough.
Now we are ready to show (5.10). Define the event

E := {log t� − log log t� ≤ − logYn ≤ log t� + log log t�}.
By a union bound we have that

P

(∣∣∣∣Sn(Kn) − 1

t�

∣∣∣∣ ≥ ε

t�

)
≤ P

({∣∣∣∣Sn(Kn) − 1

t�

∣∣∣∣ ≥ ε

t�

}
∩ E

)
+ P

(
Ec).

By Theorem 4.2 we have that limt�→∞ lim supn→∞P(Ec) = 0, so what remains is to deal
with the first term on the right hand side of the display above. On the event E we have that⌊

1

400
log t� − 1

400
log log t�

⌋
≤ Kn ≤

⌊
1

400
log t� + 1

400
log log t�

⌋
,

so by a union bound we have that

P

({∣∣∣∣Sn(Kn) − 1

t�

∣∣∣∣ ≥ ε

t�

}
∩ E

)
≤

� 1
400 log t�+ 1

400 log log t��∑
k=� 1

400 log t�− 1
400 log log t��

P

(∣∣∣∣Sn(k) − 1

t�

∣∣∣∣ ≥ ε

t�

)
.

Note that 1
400 log t� − 1

400 log log t� ≤ K for all t� large enough, so we can apply the
bound (5.11) that holds for fixed k ≤ K . Thus taking a limit as n → ∞ and applying (5.11)
we thus obtain that

lim sup
n→∞

P

({∣∣∣∣Sn(Kn) − 1

t�

∣∣∣∣ ≥ ε

t�

}
∩ E

)
≤ C log log t�

ε2 log t�
+ C log log t�

t
1/2000
�

≤ C′

log log t�

for some finite constants C and C′, and all t� large enough, where in the second inequality
we used the definition of ε from (5.9). Taking the limit as t� → ∞ concludes the proof. �

APPENDIX A: PROOFS OF REMAINING LEMMAS IN SECTION 4

In this subsection we prove Lemmas 4.4 and 4.6, proofs that we have deferred until now.

A.1. Proof of Lemma 4.6. We start with the proof of Lemma 4.6, which is relatively
short.

PROOF OF LEMMA 4.6. First, by a union bound we have that

(A.1) P
(
Bc) = P

(
�t�

(
θ(t�)

)
<

t�√
log t�

)
≤

t�∑
i=1

P

(
�t�(vi) <

t�√
log t�

)
.

Noting that the term for i = 1 is equal to the term for i = 2, we now fix i ≥ 2. Note that vi is
introduced in Ti . Let w denote the neighbor of vi in Ti . By definition we have that

�t�(vi) = max
u∈Nvi

(Tt� )

∣∣(Tt�, vi)u↓
∣∣ ≥ ∣∣(Tt�, vi)w↓

∣∣
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and so—introducing Mn := 1
n
|(Tn, vi)w↓| for n ≥ i in order to abbreviate notation—we have

that

P

(
�t�(vi) <

t�√
log t�

)
≤ P

(
Mt� ≤ 1√

log t�

)
.

This latter probability can be understood using Pólya urn and martingale arguments. The
proofs for PA and UA trees are similar, and we start with UA trees. For UA trees, the evolution
of the pair (nMn,n − nMn) for n ≥ i follows a classical Pólya urn with initial condition
(i − 1,1). By standard results on Pólya urns we have that {Mn}n≥i is a martingale, the limit
M∞ := limn→∞ Mn exists almost surely, and M∞ ∼ Beta(i − 1,1). By this latter property
we have that

(A.2) P(M∞ ≤ z) = zi−1

for all z ∈ (0,1). Since {Mn}n≥i is a nonnegative martingale, we also have that

P(M∞ ≤ 2z |Mn ≤ z) ≥ 1/2

for all z ≥ 0 and n ≥ i, which implies that P(Mn ≤ z) ≤ 2P(M∞ ≤ 2z). Thus using (A.2) we
have that

P

(
Mt� ≤ 1√

log t�

)
≤ 2

(
2√

log t�

)i−1

for all t� large enough. Plugging this bound back into (A.1) and noting that the geometric
sum is on the same order as the largest term, we obtain that

P
(
Bc) ≤ 12√

log t�

for all t� large enough.
Turning now to PA trees, the evolution of the pair (2nMn − 1,2n − 2nMn − 1) for n ≥ i

follows a Pólya urn with replacement matrix ( 2 0
0 2 ) and initial condition (2i − 3,1). Define

M̃n := (2nMn − 1)/(2n − 2). The process {M̃n}n≥i is a bounded martingale and hence its
limit as n → ∞ exists almost surely. Since

M̃n = Mn + 1

n − 1
Mn − 1

2n − 2

and Mn ∈ [0,1], the limit of the martingale equals the limit of Mn; that is, M∞ :=
limn→∞ Mn = limn→∞ M̃n exists almost surely. Furthermore, by standard results on Pólya
urns we know that M∞ ∼ Beta(i − 3/2,1/2). By this latter property, and using the bound
(1 − z)−1/2 ≤ √

2 for z ∈ (0,1/2) in the density function of the beta distribution, we have
that

P(M∞ ≤ z) ≤
√

2

(i − 3
2)B(i − 3

2 , 1
2)

zi−3/2

for all z ∈ (0,1/2). We can further bound this quantity using properties of the Gamma func-
tion. Specifically, we use the following identities: �(z + 1) = z�(z), for a positive integer n

we have that �(n+1) = n! and also that �(n+1/2) = (2n)!√π

4nn! , and finally that �(1/2) = √
π .

Using these we have that

(A.3)
(
i − 3

2

)
B

(
i − 3

2
,

1

2

)
= (i − 3

2)�(i − 3
2)�(1

2)

�(i − 1)
= π(i − 1)

(
2i − 2
i − 1

)
4−i+1 ≥ 4−i+1.
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Plugging this back into the previous display we obtain that

P(M∞ ≤ z) ≤ 4(4z)i−3/2

for all z ∈ (0,1/2). Using the fact that M̃n ≤ 2Mn, together with the same martingale argu-
ment as before, we have that

P(Mn ≤ z) ≤ P(M̃n ≤ 2z) ≤ 2P(M∞ ≤ 4z).

The previous two displays combined imply that P(Mn ≤ z) ≤ 8(16z)i−3/2 for all z ∈ (0,1/8)

and n ≥ i. We have thus obtained that

P

(
Mt� ≤ 1√

log t�

)
≤ 8

(
16√
log t�

)i−3/2

for all t� large enough. Plugging this bound back into (A.1) and noting that the geometric
sum is on the same order as the largest term, we obtain the desired bound (4.6). �

A.2. Proof of Lemma 4.4. We now turn to the proof of Lemma 4.4, which is more
involved. We start by stating and proving a few auxiliary lemmas that we will use.

The following lemma gives us an exponential bound on the probability that a vertex of
large timestamp ever becomes the centroid. This was proved in [27]; see their Lemmas A.1
and 3.1.

LEMMA A.1. Consider a sequence of PA or UA trees started from the seed S = S2. For
all t large enough we have that

P
(
vt+1 becomes at least as central as θ(t) at some future time

) ≤ P(t/2)

2t/2 ,

where P is a fixed polynomial.

The following lemma is useful in studying the relative (anti-)centralities of two vertices by
examining the growth of specific subtrees.

LEMMA A.2. Let {Tn}n≥2 be a sequence of growing trees (such as PA or UA trees),
where at every time step a single vertex is added to the tree, together with a single edge. Let
v1, v2, v3, . . . denote the vertices in order of appearance. Fix t and let i and j be distinct
positive integers such that i, j ≤ t . Suppose that

(A.4) �t(vi) > �t(vj )

and that there exists N > t such that

(A.5) �N(vi) ≤ �N(vj ).

Then there must exist M such that t < M ≤ N and∣∣(TM,vi)vj↓
∣∣ = ∣∣(TM,vj )vi↓

∣∣.
PROOF. We start with some notation. Fix n ≥ t and consider the tree Tn. Let a1, a2, a3, . . .

denote the sizes of the pendent subtrees of vi , excluding the subtree that contains vj . Simi-
larly, let b1, b2, b3, . . . denote the sizes of the pendent subtrees of vj , excluding the subtree
that contains vi . Finally, let c denote the number of vertices that are “in between” vi and vj ;
that is, c is the number of vertices u such that the path from u to vi does not contain vj and



1092 M. Z. RÁCZ AND A. SRIDHAR

the path from u to vj does not contain vi . Note that with this notation we have the following
equalities:

�n(vi) = max
{
c + 1 +∑

�

b�, a1, a2, a3, . . .

}
,

�n(vj ) = max
{
c + 1 +∑

k

ak, b1, b2, b3, . . .

}
,

and also

(A.6)
∣∣(Tn, vi)vj↓

∣∣ = 1 +∑
�

b�,
∣∣(Tn, vj )vi↓

∣∣ = 1 +∑
k

ak.

We now claim that if �n(vi) > �n(vj ), then
∑

� b� >
∑

k ak . We prove this by contradiction;
suppose that

∑
� b� ≤ ∑

k ak . Then �n(vj ) ≥ c + 1 + ∑
k ak ≥ c + 1 + ∑

� b�, so �n(vi) >

�n(vj ) implies that �n(vi) = ak′ for some k′. But then �n(vj ) ≥ c + 1 +∑
k ak ≥ 1 + ak′ >

�n(vi), which is a contradiction. The same argument shows that if �n(vi) ≥ �n(vj ), then∑
� b� ≥ ∑

k ak . As a corollary, we have that if �n(vi) = �n(vj ), then
∑

� b� = ∑
k ak .

Altogether, using (A.6), we have shown that

(A.7) sgn
(
�n(vi) − �n(vj )

) = sgn
(∣∣(Tn, vi)vj↓

∣∣− ∣∣(Tn, vj )vi↓
∣∣),

where sgn is the sign function: sgn(x) = −1 if x < 0, sgn(x) = 0 if x = 0, and sgn(x) = 1 if
x > 0. Observe also that the integer-valued quantity

f (n) := ∣∣(Tn, vi)vj↓
∣∣− ∣∣(Tn, vj )vi↓

∣∣
changes by 1, 0, or −1 as n increases by one. The assumption (A.4), together with (A.7), im-
plies that f (t) > 0. The assumption (A.5), together with (A.7), implies that f (N) ≤ 0. There-
fore, by the previous observation, there must exist M ∈ {t + 1, . . . ,N} such that f (M) = 0.

�

The following lemma gives concentration bounds for Pólya urns.

LEMMA A.3. Let {(An,Bn)}n≥0 be a stochastic process with a deterministic initial con-
dition satisfying A0,B0 ≥ 1, and let k := A0 + B0.

If {(An,Bn)}n≥0 evolves as a classical Pólya urn, then for any ε > 0 we have that

P

(
∃n ≥ 0 :

∣∣∣∣ An

k + n
− A0

k

∣∣∣∣ ≥ ε

)
≤ 2 exp

(−kε2/2
)
.

If {(2An − 1,2Bn − 1)}n≥0 evolves as a Pólya urn with replacement matrix
( 2 0

0 2

)
, then for

any ε ≥ 2/(k − 1) we have that

P

(
∃n ≥ 0 :

∣∣∣∣ An

k + n
− A0

k

∣∣∣∣ ≥ ε

)
≤ 2 exp

(−(k − 1)ε2/8
)
.

PROOF. We start with the first claim. Defining Mn := An/(k +n), we have that {Mn}n≥0
is a martingale. The martingale differences satisfy |Mn −Mn−1| ≤ 1/(k +n) for every n ≥ 1.
Therefore, by the maximal version of Azuma’s inequality we have for every ε > 0 that

P

(
sup
n≥0

|Mn − M0| ≥ ε
)

≤ 2 exp
(
− ε2

2
∑

n≥1(k + n)−2

)
.

The claim follows from the fact that
∑

n≥1(k + n)−2 ≤ 1/k.
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Turning to the second claim, first note that again An + Bn = k + n for every n ≥ 0. Define
M̃n := (2An − 1)/(2An + 2Bn − 2) = (2An − 1)/(2(k +n− 1)) and observe that the process
{M̃n}n≥0 is a martingale. Furthermore, the martingale differences satisfy |M̃n − M̃n−1| ≤
1/(k + n − 1) for every n ≥ 1. Therefore, by the same argument as above we have for every
ε > 0 that

P

(
sup
n≥0

|M̃n − M̃0| ≥ ε
)

≤ 2 exp
(−(k − 1)ε2/2

)
.

Now observe that |(Mn − M0) − (M̃n − M̃0)| ≤ 1/(k − 1), so by the triangle inequality we
have that

P

(
sup
n≥0

|Mn − M0| ≥ ε
)

≤ P

(
sup
n≥0

|M̃n − M̃0| ≥ ε − 1/(k − 1)
)

≤ P

(
sup
n≥0

|M̃n − M̃0| ≥ ε/2
)

for any ε ≥ 2/(k − 1). The result follows by putting the previous two displays together. �

Finally, the following lemma gives a tail bound for degrees in PA and UA trees.

LEMMA A.4. Let {Tn}n≥2 be a sequence of trees started from the seed S = S2 and grown
according to PA or UA. Let v1, v2, v3, . . . denote the vertices in order of appearance. Let dn(v)

denote the degree of v in Tn. There exists a positive constant c such that for every 1 ≤ i ≤ n

we have that

P
(
dn(vi) ≥ √

n log2(n)
) ≤ exp

(−c log3(n)
)
.

PROOF. The vertex v3 attaches to either v1 or v2; without loss of generality, assume that it
attaches to v1, that is, v1 has degree 2 in T3. For both PA and UA trees, dn(v1) stochastically
dominates dn(vi) for 1 < i ≤ n, so it suffices to prove the claim for v1. Furthermore, the
random variable dn(v1) in a PA tree stochastically dominates the random variable dn(v1) in
a UA tree, hence it suffices to prove the claim for PA trees.

For n ≥ 3 let Mn := dn(v1)/
√

n − 2. Observe that

E
[
dn+1(v1) |dn(v1)

] =
(

1 + 1

2n − 2

)
dn(v1).

Since (1 + 1/(2n − 2))/
√

n − 1 ≤ 1/
√

n − 2 for every n ≥ 3, it follows that {Mn}n≥3 is a
supermartingale. Also, |Mn − Mn−1| ≤ 1/

√
n − 1. Thus by Azuma’s inequality for super-

martingales, noting that M3 = 2, we have for every λ > 0 that

P

(
dn(v1)√
n − 2

− 2 ≥ λ

)
≤ exp

(
− λ2

2
∑n

i=4 1/(i − 1)

)
≤ exp

(
− λ2

2 logn

)
.

Plugging in λ = log2(n) yields the desired claim. �

We are now ready to prove Lemma 4.4.

PROOF OF LEMMA 4.4. We divide the proof into six steps. In the following we infor-
mally call a vertex an “early” vertex if its timestamp is at most log t�.

Step 1: The centroid is an early vertex.
For a fixed i ≥ 1, let A1(i) denote the event that vi never becomes a centroid during the

whole process; that is, the event that vi is not a centroid in Ts for any s ≥ i. Define

A1 := ⋂
i>log t�

A1(i).
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An immediate consequence of Lemma A.1 is that P(A1(i)
c) ≤ exp(−i/3) for all i large

enough. So by a union bound we have, for all t� large enough that

P
(
Ac

1
) ≤ ∑

i>log t�

P
(
A1(i)

c) ≤ ∑
i>log t�

e−i/3 ≤ 4

t
1/3
�

.

Step 2: Early subtrees are large in Tt� .
This is an important intermediate step towards the overarching goal of characterizing the

centroid. Specifically, the consequence of early subtree sizes being large is that then many of
the random variables we will consider in future steps will be “stable” in timesteps t ≥ t�.

For distinct positive integers i, j ≤ log t�, we will show that subtrees of the form
(Tt�, vi)vj↓ are large. Formally, for distinct positive integers i, j ≤ log t�, define the event

E2(i, j) :=
{∣∣(Tt�, vi)vj↓

∣∣ ≥ t�

log7(t�)

}
.

We proceed by bounding the probability of the complement of E2(i, j), using arguments
similar to those found in the proof of Lemma 4.6. Since the details are repetitive, we only
give the final bounds and leave the details to the reader.

Assume in the following that 1 ≤ i < j ≤ log t�. We start with UA trees. Let ϕj ∼
Beta(1, j − 1). Then, by combining Pólya urn and martingale arguments as in the proof
of Lemma 4.6, we have for every z ∈ [0,1] that

max
{
P

(
1

t�

∣∣(Tt�, vi)vj↓
∣∣ ≤ z

)
,P

(
1

t�

∣∣(Tt�, vj )vi↓
∣∣ ≤ z

)}
≤ 2P(ϕj ≤ 2z).

For every z ∈ [0,1] we have that

P(ϕj ≤ z) = (j − 1)

∫ z

0
(1 − x)j−2 dx ≤ (j − 1)z.

Combining the previous two displays and using the fact that j ≤ log t�, we have that

max
{
P
(
E2(i, j)c

)
,P

(
E2(j, i)

c)} ≤ 4j

log7(t�)
≤ 4

log6(t�)
.

Turning now to PA trees, let ϕ′
j ∼ Beta(1/2, j − 3/2). Then, again by combining Pólya

urn and martingale arguments as in the proof of Lemma 4.6, we have for every z ∈ [0,1] that

(A.8) max
{
P

(
1

t�

∣∣(Tt�, vi)vj↓
∣∣ ≤ z

)
,P

(
1

t�

∣∣(Tt�, vj )vi↓
∣∣ ≤ z

)}
≤ 2P

(
ϕ′

j ≤ 4z
)
.

We have that

P
(
ϕ′

j ≤ z
) = 1

B(1
2 , j − 3

2)

∫ z

0
x−1/2(1 − x)j−5/2 dx ≤ 2

√
2

B(1
2 , j − 3

2)

√
z,

where the inequality holds for every z ∈ (0,1/2). From (A.3) and the symmetry of the beta
function we have that

(A.9) B

(
1

2
, j − 3

2

)
= π

j − 1

j − 3
2

(
2j − 2
j − 1

)
4−j+1 ≥ 1√

j − 1
,

where the inequality follows by using the bound
(2n

n

) ≥ 4n/
√

4n which holds for all n ≥ 1.
Combining the two previous displays we have obtained that P(ϕ′

j ≤ z) ≤ 2
√

2jz for all z ∈
(0,1/2). Plugging this back into (A.8) and using the fact that j ≤ log t�, we have, for all t�
large enough, that

max
{
P
(
E2(i, j)c

)
,P

(
E2(j, i)

c)} ≤ 8
√

2
√

j

log7/2(t�)
≤ 12

log3(t�)
.
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Altogether we have shown in this step that for all distinct positive integers i, j ≤ log t�,
and for both PA and UA trees, we have, for all t� large enough, that

P
(
E2(i, j)c

) ≤ 12

log3(t�)
.

Step 3: The anti-centrality rankings for the early vertices are stable.
Using Step 2, we will now show that the relative anti-centrality of any pair of early vertices

is “stable” (with probability close to 1); that is, it does not change after a certain time. More
specifically, we will show, for distinct positive integers i, j ≤ log t�, that if �t�(vi) > �t�(vj ),
then �t(vi) > �t(vj ) for every t ≥ t�, with probability close to 1 (and similarly if the in-
equality goes the other way). We thus define the events

A3(i, j) := {∀t ≥ t� : (�t�(vi) − �t�(vj )
)(

�t(vi) − �t(vj )
)
> 0

}
for distinct positive integers i, j ≤ log t�, and also

A3 := ⋂
1≤i,j≤log t�

i �=j

A3(i, j).

By Lemma A.2, if we wish to compare �t(vi) and �t(vj ), it suffices to compare the sizes
of the subtrees (Tt , vi)vj↓ and (Tt , vj )vi↓. This motivates defining the event

E3(i, j) :=
{
∀t ≥ t� :

∣∣∣∣ |(Tt , vi)vj↓|
|(Tt , vi)vj↓| + |(Tt , vj )vi↓| − 1

2

∣∣∣∣ > 1

log3(t�)

}
∩ E2(i, j) ∩ E2(j, i)

for distinct positive integers i, j ≤ log t�. We claim that, for all t� large enough, if E3(i, j)

holds, then A3(i, j) must also hold. To see this, first note that on E2(i, j) ∩ E2(j, i) we have
that

(A.10)
∣∣(Tt , vi)vj↓

∣∣+ ∣∣(Tt , vj )vi↓
∣∣ ≥ ∣∣(Tt�, vi)vj↓

∣∣+ ∣∣(Tt�, vj )vi↓
∣∣ ≥ t�

log7(t�)
.

Since the quantity |(Tt , vi)vj↓| can change by at most 1 at a time, the display above implies
that the ratio

(A.11)
|(Tt , vi)vj↓|

|(Tt , vi)vj↓| + |(Tt , vj )vi↓|
can only change by at most log7(t�)/t� at each time step. Since this is smaller than 1/ log3(t�)

for all t� large enough, the event E3(i, j) thus implies, for all t� large enough, that the ratio
in (A.11) is either strictly greater than 1/2 for all t ≥ t� or strictly smaller than 1/2 for all
t ≥ t�. In light of Lemma A.2, this implies that A3(i, j) holds for all t� large enough.

In the remainder of this step we thus focus on bounding the probability of E3(i, j). Since
E3(i, j) = E3(j, i), we may, and thus will, assume in the following that 1 ≤ i < j ≤ log t�.
To abbreviate notation, we introduce J := |(Tj , vj )vi↓|, and note that 1 ≤ J ≤ j − 1. We first
give the proof for UA trees and subsequently explain what changes for PA trees.

Conditioned on Tj , the pair (∣∣(Tt , vi)vj↓
∣∣, ∣∣(Tt , vj )vi↓

∣∣),
when viewed at times when one of the coordinates increases, evolves as a classical Pólya urn
started from (1, J ). Therefore, conditioned on Tj , the limit

(A.12) ϕi,j := lim
t→∞

|(Tt , vi)vj↓|
|(Tt , vi)vj↓| + |(Tt , vj )vi↓|



1096 M. Z. RÁCZ AND A. SRIDHAR

exists almost surely, and moreover ϕi,j ∼ Beta(1, J ). Since this holds for every tree Tj on j

vertices, the limiting random variable ϕi,j exists almost surely unconditionally (and its distri-
bution is a mixture of beta distributions). Plugging in the density of the Beta(1, J ) distribution
we have, for all t� large enough, that

P

(∣∣∣∣ϕi,j − 1

2

∣∣∣∣ ≤ 2

log3(t�)

∣∣∣∣Tj

)
= J

∫ 1
2 +2/ log3(t�)

1
2 −2/ log3(t�)

(1 − x)J−1 dx

≤ J

(
2

3

)J−1 4

log3(t�)
≤ 6

log3(t�)
,

where we used that J (2/3)J−1 ≤ 4/3 for every positive integer J . Taking an expectation over
Tj we obtain that

(A.13) P

(∣∣∣∣ϕi,j − 1

2

∣∣∣∣ ≤ 2

log3(t�)

)
≤ 6

log3(t�)

for all t� large enough. We can now bound the probability of E3(i, j)c:

P
(
E3(i, j)c

) ≤ P

(∣∣∣∣ϕi,j − 1

2

∣∣∣∣ ≤ 2

log3(t�)

)
+ P

(
E3(i, j)c ∩

{∣∣∣∣ϕi,j − 1

2

∣∣∣∣ > 2

log3(t�)

})
.

By (A.13) the first term above is at most 6/ log3(t�) for all t� large enough, so what remains
is to bound the second term. To do this, we introduce the event

E ′ :=
{
∃t ≥ t� :

∣∣∣∣ |(Tt , vi)vj↓|
|(Tt , vi)vj↓| + |(Tt , vj )vi↓| − ϕi,j

∣∣∣∣ ≥ 1

log3(t�)

}
.

By the triangle inequality and a union bound we have that

P

(
E3(i, j)c ∩

{∣∣∣∣ϕi,j − 1

2

∣∣∣∣ > 2

log3(t�)

})
≤ P

(
E2(i, j)c

)+ P
(
E2(j, i)

c)+ P
(
E ′ ∩ E2(i, j) ∩ E2(i, j)

)
.

The first two terms in the display above are bounded above by C/ log3(t�) for some finite C,
by Step 2. It thus remains to bound the third term. To do this, we condition on the tree Tt� . By
the tower rule, noting that E2(i, j) and E2(i, j) are measurable with respect to Tt� , we have
that

(A.14) P
(
E ′ ∩ E2(i, j) ∩ E2(i, j)

) = E
[
P
(
E ′ ∣∣Tt�

)
1E2(i,j)∩E2(j,i)

]
.

Now if E ′ holds then there exists t ≥ t� such that∣∣∣∣ |(Tt , vi)vj↓|
|(Tt , vi)vj↓| + |(Tt , vj )vi↓| − |(Tt�, vi)vj↓|

|(Tt�, vi)vj↓| + |(Tt�, vj )vi↓|
∣∣∣∣ ≥ 1

2 log3(t�)
.

Therefore, by Lemma A.3, we have that

P
(
E ′ ∣∣Tt�

) ≤ 2 exp
(
−|(Tt�, vi)vj↓| + |(Tt�, vj )vi↓|

8 log6(t�)

)
.

By (A.10) this implies that

P
(
E ′ ∣∣Tt�

)
1E2(i,j)∩E2(j,i) ≤ 2 exp

(
−1

8
t� log−13(t�)

)
and so by (A.14) we have that

P
(
E ′ ∩ E2(i, j) ∩ E2(i, j)

) ≤ 2 exp
(
−1

8
t� log−13(t�)

)
.
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Putting everything together we have thus shown for UA trees that

P
(
E3(i, j)c

) ≤ C

log3(t�)

for some finite constant C and all t� ≥ 2.
The proof for PA trees is similar, so we only highlight the minor changes. First, conditioned

on Tj , the pair (
2
∣∣(Tt , vi)vj↓

∣∣− 1,2
∣∣(Tt , vj )vi↓

∣∣− 1
)
,

when viewed at times when one of the coordinates increases, evolves as a Pólya urn with
replacement matrix ( 2 0

0 2 ), started from (1,2J − 1). This implies that, conditioned on Tj ,
we have that ϕi,j ∼ Beta(1/2, J − 1/2). The probability estimate with the beta distribution
follows similarly, resulting in the inequality in (A.13), with the constant 6 replaced with a
larger finite constant. The rest of the proof is unchanged, except when Lemma A.3 is applied,
then the constant in the exponent changes.

We have thus shown, for both PA and UA trees, that

P
(
Ac

3
) ≤ ∑

1≤i,j≤log t�
i �=j

P
(
A3(i, j)c

) ≤ ∑
1≤i,j≤log t�

i �=j

P
(
E3(i, j)c

) ≤ ∑
1≤i,j≤log t�

i �=j

C

log3(t�)
≤ C

log t�

for some finite constant C and all t� ≥ 2.
Brief recap. We briefly pause to recap what we have proved so far. Observe that on the

event A1 ∩A3 we have that property (A1) of Definition 4.3 holds. In Steps 1 and 3 above we
proved that P((A1 ∩ A3)

c) ≤ P(Ac
1) + P(Ac

3) ≤ C/ log t� for some finite constant C and all
t� ≥ 2. What remains is to deal with properties (A2) and (A3) of Definition 4.3.

Step 4: The root of the largest pendent subtree of the centroid is an early vertex.
Recall the definition of ṽi,t (1) from Section 4.1: ṽi,t (1) is the neighbor of vi that is the root

of the largest subtree of (Tt , vi) (assuming that there is a unique largest subtree; if the largest
subtree is not unique, let ṽi,t (1) denote a neighbor of vi that is the root of a largest subtree of
(Tt , vi)). For i ≤ log t�, define the event

A4(i) := {∀t ≥ t� the timestamp of ṽi,t (1) is at most log t�
}
.

Since ṽi,t (1) may not be uniquely defined, the definition of A4(i) needs some clarification:
in the definition of A4(i) it is understood that, if ṽi,t (1) is not uniquely defined, then every
vertex that can be chosen as ṽi,t (1) has timestamp at most log t�. In other words, A4(i) is the
event that no neighbor of vi with timestamp greater than log t� is the root of a largest subtree
of (Tt , vi), for all t ≥ t�. Define also

A4 := ⋂
1≤i≤log t�

A4(i).

Our goal in Step 4 is to bound P(Ac
4).

To abbreviate notation, in the following we let s := log t� and fix i ≤ s. For any t ≥ s we
define two subtrees. First, let T ′

t (i) := (Tt , vi)ṽi,s (1)↓; here if ṽi,s(1) is not uniquely defined,
then we fix a particular choice for the remainder of the argument. We also define T ′′

t (i) to
be the subtree of Tt rooted at vi that contains all subtrees of (Tt , vi) formed after time s. In
particular, we have that |T ′

s (i)| = �s(vi) and |T ′′
s (i)| = 1. Now define the event

E4(i) :=
{
∀t ≥ s : |T ′′

t (i)|
|T ′′

t (i)| + |T ′
t (i)|

<
1

2

}
.

If E4(i) holds, then |T ′′
t (i)| < |T ′

t (i)| for all t ≥ t�, which implies that no subtree of vi born
after time s ever becomes as large as the subtree rooted at ṽi,s(1). Therefore, if E4(i) holds,
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then A4(i) must also hold. Thus P(A4(i)
c) ≤ P(E4(i)

c), and in the following we bound this
latter probability.

Consider first the case of UA trees. Conditioned on Ts , the pair (|T ′′
t (i)|, |T ′

t (i)|), when
viewed at times when one of the coordinates increases, evolves as a classical Pólya urn started
from (1,�s(vi)). Therefore, Lemma A.3 implies that

(A.15) P

(
∃t ≥ s : |T ′′

t (i)|
|T ′′

t (i)| + |T ′
t (i)|

≥ 1

1 + �s(vi)
+ λ

∣∣∣∣Ts

)
≤ exp

(
−λ2

2
�s(vi)

)
for every λ > 0. For PA trees a similar argument shows that (A.15) holds with a different
constant in the exponent, and for all λ ≥ 2/�s(vi).

Recalling that dn(v) denotes the degree of v in Tn, define the event

E ′(i) := {
ds(vi) <

√
s log2(s)

}
.

By Lemma A.4 we have, for both PA and UA trees, that

(A.16) P
(
E ′(i)c

) ≤ exp
(−c log3(s)

) = exp
(−c(log log t�)

3)
for some positive constant c. On the event E ′(i) we have that

�s(vi) = ∣∣(Ts, vi)ṽi,s (1)↓
∣∣ ≥ s − 1√

s log2(s)
≥ log1/3(t�),

where the second inequality holds for all t� large enough. Here the first inequality follows
from the pigeonhole principle: there are s − 1 vertices in the rooted subtree (Ts, vi) apart
from vi , and there are at most

√
s log2(s) subtrees, so at least one of them has at least (s −

1)/(
√

s log2(s)) vertices.
Combining this argument with the inequality (A.15), we have, for all t� large enough, that

(A.17) P
(
E4(i)

c
∣∣Ts

)
1E ′(i) ≤ exp

(−c log1/3(t�)
)

for some positive constant c, and both PA and UA trees. Putting together (A.16) and (A.17)
we thus have that

P
(
E4(i)

c) = E
[
P
(
E4(i)

c
∣∣Ts

)] ≤ E
[
P
(
E4(i)

c
∣∣Ts

)
1E ′(i)

]+ P
(
E ′(i)c

)
≤ exp

(−c log1/3(t�)
)+ exp

(−c(log log t�)
3) ≤ 2 exp

(−c(log log t�)
3)

for some positive constant c and all t� large enough. Finally, by a union bound we have that

P
(
Ac

4
) ≤

log t�∑
i=1

P
(
A4(i)

c) ≤
log t�∑
i=1

P
(
E4(i)

c) ≤ 2 log(t�) exp
(−c(log log t�)

3)
for some positive constant c and all t� large enough. This is at most 1/ log t� for all t� large
enough.

Step 5: Early subtree rankings are stable.
For i satisfying 1 ≤ i ≤ log t�, let A5(i) denote the event that for every pair of neighbors

u1, u2 of vi that are early vertices (that is, have timestamp at most log t�), we either have that
|(Tt , vi)u1↓| > |(Tt , vi)u2↓| for all t ≥ t� or that |(Tt , vi)u1↓| < |(Tt , vi)u2↓| for all t ≥ t�. In
other words, the pairwise rankings of early subtrees of vi do not change after time t�. Define
also A5 := ⋂

1≤i≤log t�
A5(i).

Observe that, since u1 and u2 are neighbors of vi , we have that (Tt , vi)u1↓ = (Tt , u2)u1↓
and that (Tt , vi)u2↓ = (Tt , u1)u2↓. Let k, � ≤ log t� be distinct positive integers and recall from
Step 3 that, for all t� large enough, on the event E3(k, �) we either have that |(Tt , vk)v�↓| >
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|(Tt , v�)vk↓| for all t ≥ t� or that |(Tt , vk)v�↓| < |(Tt , v�)vk↓| for all t ≥ t�. Putting the previous
two sentences together we have that ⋂

1≤i,j≤log t�
i �=j

E3(i, j) ⊆ A5

for all t� large enough. Consequently, by Step 3 we have, for some finite constant C and all
t� large enough, that

P
(
Ac

5
) ≤ ∑

1≤i,j≤log t�
i �=j

P
(
E3(i, j)c

) ≤ ∑
1≤i,j≤log t�

i �=j

C

log3(t�)
≤ C

log t�
.

Finally, observe that on the event A1 ∩ A4 ∩ A5 we have that property (A2) of Defini-
tion 4.3 holds. Furthermore, we have shown that P((A1 ∩ A4 ∩ A5)

c) ≤ P(Ac
1) + P(Ac

4) +
P(Ac

5) ≤ C/ log t� for some finite constant C and all t� ≥ 2.
Step 6: Concentration for early subtrees.
It remains to deal with property (A3) of Definition 4.3. So far we have shown that on the

event A1 ∩A3 ∩A4 ∩A5 we have that properties (A1) and (A2) of Definition 4.3 hold, and
moreover that θ(t�) and θ̃t�(1) are both early vertices. In light of this we define the events

A6(i, j) :=
{
∀t ≥ t� :

∣∣∣∣1t
∣∣∣∣(Tt , vi)vj↓

∣∣∣∣− 1

t�

∣∣∣∣(Tt�, vi)vj↓|| ≤ 1

t
1/3
�

· 1

t�

∣∣(Tt�, vi)vj↓
∣∣}

for distinct positive integers i, j ≤ log t�, and also

A6 := ⋂
1≤i,j≤log t�

i �=j

A6(i, j).

Observe that on the event A1 ∩ A3 ∩ A4 ∩ A5 ∩ A6 we have that property (A3) of Defini-
tion 4.3 holds. In fact, since property (A3) lies at the crux of the proof, this is the reason
why we introduced the events A1, . . . ,A6. Note that while property (A3) concerns the anti-
centrality of the centroid, on the event A1 the centroid is an early vertex, and on the event A4
the root of the largest pendent subtree of the centroid is an early vertex, which explains why
the intersection in the definition of A6 goes over early pairs of indices. Thus to conclude the
proof what remains to be shown is that P(Ac

6) ≤ C/ log t� for some finite constant C and all
t� ≥ 2.

Fix distinct positive integers i, j ≤ log t�. By arguments similar to those in Step 3, in par-
ticular using Lemma A.3, we have that

P
(
A6(i, j)c

∣∣Tt�

) ≤ 2 exp
(
−ct�

(
1

t
1/3
�

· 1

t�

∣∣(Tt�, vi)vj↓
∣∣)2)

= 2 exp
(−ct−5/3

�

∣∣(Tt�, vi)vj↓
∣∣2)

for some positive constant c and all t� large enough. Recalling the definition of E2(i, j) we
thus have that

P
(
A6(i, j)c

∣∣Tt�

)
1E2(i,j) ≤ 2 exp

(−ct1/3
� log−14(t�)

)
for all t� large enough. Using Step 2 we thus have that

P
(
A6(i, j)c

) ≤ E
[
P
(
A6(i, j)c

∣∣Tt�

)
1E2(i,j)

]+ P
(
E2(i, j)c

)
≤ 2 exp

(−ct1/3
� log−14(t�)

)+ 12

log3(t�)

for all t� large enough. The conclusion follows by a union bound. �
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APPENDIX B: PROOFS OF REMAINING LEMMAS IN SECTION 5

B.1. Proof of Lemma 5.4. We start with a preliminary lemma.

LEMMA B.1. Let {Tn}n≥2 be a sequence of trees started from the seed S = S2 and grown
according to PA or UA. Let v1, v2, v3, . . . denote the vertices in order of appearance. Let dn(v)

denote the degree of v in Tn. Fix ε > 0. There exists a finite constant C such that the following
holds. For every t� ≥ C, t ≥ tε� , and i ≤ 100 log t�, we have that

P

(
dt (vi) ≤ 1

6
log t

)
≤ t−1/28.

PROOF. If i ≤ i ′, then dt (vi) stochastically dominates dt (vi′) for every t ≥ i ′, so it suf-
fices to prove the inequality for i = i� := �100 log t�� > 2. Let t > i�, and let Xi�+1, . . . ,Xt

be independent Bernoulli random variables such that E[Xk] = 1/(2k − 4). Conditioned on
Tt−1, the probability that vt connects to vi� is at least 1/(2t − 4), for both PA and UA trees.
This implies that dt (vi�) stochastically dominates Yt := 1 + Xi�+1 + · · ·Xt . Thus we have
that

P

(
dt (vi�) ≤ 1

6
log t

)
≤ P

(
Yt ≤ 1

6
log t

)
.

Since Yt − 1 is the sum of independent Bernoulli random variables, we have that Var(Yt ) ≤
E[Yt ]. Thus by Bernstein’s inequality we have for every x ≥ 0 that

P
(
Yt ≤ E[Yt ] − x

) ≤ exp
(
− x2/2

E[Yt ] + x/3

)
.

Setting x = E[Yt ]/2, we obtain that

P

(
Yt ≤ 1

2
E[Yt ]

)
≤ exp

(
− 3

28
E[Yt ]

)
.

We have that

E[Yt ] = 1 + 1

2

t−2∑
k=i�−1

1

k
≥ 1 + 1

2

∫ t−1

i�−1

1

x
dx = 1 + 1

2
log

(
t − 1

i� − 1

)

and so E[Yt ] ≥ 1
3 log t for all t� large enough. Plugging this inequality into the displays above

and putting them together concludes the proof. �

PROOF OF LEMMA 5.4. The proof is similar to that of Lemma 4.4 and most of the work
has already been done there. However, we modify the proof in a few key places to show the
desired result. First, we slightly change the definition of an early vertex. Fix γ := 18. In the
following we informally call a vertex an “early” vertex if its timestamp is at most γ log t�.
We also fix s1 := t

1/64
� and s2 := t

1/48
� , and note that s1 = s

3/4
2 .

Modified Step 1: The centroid is an early vertex.
Recall the definition of A1(i) from Lemma 4.4. Define C1 := ⋂

i>γ log t�
A1(i), the event

that only early vertices are ever a centroid. Similarly as in Step 1 of Lemma 4.4, we thus
have, for all t� large enough, that

(B.1) P
(
Cc

1
) ≤ ∑

i>γ log t�

P
(
A1(i)

c) ≤ ∑
i>γ log t�

e−i/3 ≤ 4

t
γ /3
�

.
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Now let D1 denote the event that Tt� satisfies P(Cc
1 |Tt�) ≤ t

−γ /6
� . By Markov’s inequality, the

tower rule, and (B.1) we have that

(B.2) P
(
Dc

1
) = P

(
P
(
Cc

1

∣∣Tt�

)
> t−γ /6

�

) ≤ tγ /6
� E

[
P
(
Cc

1

∣∣Tt�

)] = tγ /6
� P

(
Cc

1
) ≤ 4t−γ /6

� ,

where the last inequality holds for all t� large enough.
Modified Step 2: Subtrees formed before time s2 are large in Tt� .
In Step 2 of Lemma 4.4 we proved that early subtrees are large in Tt� . Here we need to

show that many more subtrees are large—though what “large” means is relaxed here—for
reasons that will become clear in later steps. Formally, define the Tt�-measurable events

D2(i, j) := {∣∣(Tt�, vi)vj↓
∣∣ ≥ t7/8

�

}
for distinct positive integers i, j ≤ s2, and also

D2 := ⋂
1≤i,j≤s2

i �=j

D2(i, j).

We proceed by bounding the probability of the complement of D2(i, j). Since the arguments
are identical to those in Step 2 of Lemma 4.4, we omit most details and only give the final
bounds.

Assume in the following that 1 ≤ i < j ≤ s2. In Step 2 of Lemma 4.4 we showed that, for
both PA and UA trees, and for every z ∈ [0,1], we have that

max
{
P

(
1

t�

∣∣(Tt�, vi)vj↓
∣∣ ≤ z

)
,P

(
1

t�

∣∣(Tt�, vj )vi↓
∣∣ ≤ z

)}
≤ 12

√
jz.

Setting z = t
−1/8
� and using the bound j ≤ s2, we obtain that

max
{
P
(
D2(i, j)c

)
,P

(
D2(i, j)c

)} ≤ 12s
1/2
2 t−1/16

� .

By a union bound we thus have, for both PA and UA trees, that

(B.3) P
(
Dc

2
) ≤ 12s

5/2
2 t−1/16

� ≤ 12t−1/96
� .

Modified Step 3: The size-based ranking in Tt� of subtrees formed before time s2 persists.
This is similar to Step 3 of Lemma 4.4, but with some differences, which we highlight.

Define the events

C3(i, j) := {∀t ≥ t� : (∣∣(Tt�, vi)vj↓
∣∣− ∣∣(Tt�, vj )vi↓

∣∣)(∣∣(Tt , vi)vj↓
∣∣− ∣∣(Tt , vj )vi↓

∣∣) > 0
}
,

H3(i, j) :=
{
∀t ≥ t� :

∣∣∣∣ |(Tt , vi)vj↓|
|(Tt , vi)vj↓| + |(Tt , vj )vi↓| − 1

2

∣∣∣∣ > t−1/4
�

}
,

D3(i, j) :=
{∣∣∣∣ |(Tt�, vi)vj↓|

|(Tt�, vi)vj↓| + |(Tt�, vj )vi↓| − 1

2

∣∣∣∣ ≥ 2t−1/4
�

}
for distinct positive integers i, j ≤ s2, and also

C3 := ⋂
1≤i,j≤s2

i �=j

C3(i, j) and D3 := ⋂
1≤i,j≤s2

i �=j

D3(i, j).

By the same arguments as in Step 3 of Lemma 4.4, we have that if H3(i, j) ∩D2 holds, then
C3(i, j) must also hold. By Lemma A.3 we have, for every tree Tt� such that D3(i, j) ∩ D2
holds, that

P
(
H3(i, j)c

∣∣Tt�

) ≤ 2 exp
(−(

2t7/8
� − 1

)
t−1/2
� /8

) ≤ 2 exp
(−t3/8

� /8
)
.
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Thus by a union bound we have, for every tree Tt� such that D3 ∩D2 holds, that

(B.4) P
(
Cc

3

∣∣Tt�

) ≤ 2s2
2 exp

(−t3/8
� /8

)
,

and note that this decays faster than any polynomial in t�.
In the remainder of this step we bound the probability P((D3 ∩ D2)

c). A union bound
shows that P((D3 ∩D2)

c) ≤ P(Dc
2)+P(Dc

3 ∩D2); the former probability is at most 12t
−1/96
�

by (B.3), so it suffices to bound P(Dc
3 ∩D2). By a further union bound, and incurring a factor

of s2
2 , it suffices to bound P(D3(i, j)c ∩ D2), where 1 ≤ i < j ≤ s2. To this end, define ϕi,j

as in (A.12); again this limiting random variable exists almost surely. By a union bound we
then have that

P
(
D3(i, j)c ∩D2

)
≤ P

(∣∣∣∣ϕi,j − 1

2

∣∣∣∣ ≤ 4t−1/4
�

)
+ P

(
D3(i, j)c ∩D2 ∩

{∣∣∣∣ϕi,j − 1

2

∣∣∣∣ > 4t−1/4
�

})
.

Both of these terms can be bounded by the same arguments as in Step 3 of Lemma 4.4. First,
there exists a finite absolute constant C such that the first term above is at most Ct

−1/4
� .

Next, the second term is at most 2 exp(−t
3/8
� /8). Altogether this gives that P(D3(i, j)c ∩

D2) ≤ C′t−1/4
� for some finite absolute constant C′. By a union bound we thus have that

P(Dc
3 ∩D2) ≤ C ′t−5/24

� . Putting everything together we have thus obtained that

(B.5) P
(
(D3 ∩D2)

c) ≤ C′′t−1/96
�

for some finite absolute constant C′′.
Modified Step 4: The roots of the K largest pendent subtrees of the centroid have times-

tamp at most s2.
This is similar to Step 4 of Lemma 4.4, but with significant differences—this step has the

biggest differences among all. For one, we have to additionally show that the centroid has
degree at least K .

For a positive integer i ≤ γ log t� define the event

D′
4(i) :=

{
ds1(vi) >

1

6
log s1

}
,

and also define D′
4 := ⋂

1≤i≤γ log t�
D′

4(i). By Lemma B.1 and a union bound we have that

(B.6) P
((
D′

4
)c) ≤

γ log t�∑
i=1

P
((
D′

4(i)
)c) ≤ (γ log t�)s

−1/28
1 = (γ log t�)t

−1/1792
�

for all t� large enough. Observe that if Ts1 is such that D′
4 holds, then—since K ≤

(1/6) log s1—all early vertices have degree at least K in Ts1 , and hence also in Tt for t ≥ s1
(in particular t = t�). For every Ts1 such that D′

4 holds, and for every i ≤ γ log t�, choose
and fix K neighbors of vi in Ts1 arbitrarily (e.g., the K neighbors with largest pendent sub-
trees: ṽi,s1(1), . . . , ṽi,s1(K), with ties broken by favoring earlier vertices), and label them as
ui

1, . . . , u
i
K . In the following, whenever we refer to a tree Ts1 such that D′

4 holds, we automat-
ically assume this fixed choice of Kγ log t� labeled vertices (where repetitions are possible).
In the following we fix Ts1 such that D′

4 holds and condition on Ts1 .
Now fix i ≤ γ log t�. To simplify notation, we write u1, . . . , uK instead of ui

1, . . . , u
i
K .

By Pólya urn arguments it follows that (conditioned on Ts1 ) for every � ∈ [K] the limiting
random variable

φi,� := lim
t→∞

1

t

∣∣(Tt , vi)u�↓
∣∣
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exists almost surely. Moreover, its distribution (conditioned on Ts1 ) is given by

φi,� ∼
⎧⎪⎨⎪⎩

Beta
(∣∣(Ts1, vi)u�↓

∣∣, s1 − ∣∣(Ts1, vi)u�↓
∣∣) for UA,

Beta
(∣∣(Ts1, vi)u�↓

∣∣− 1

2
, s1 − ∣∣(Ts1, vi)u�↓

∣∣− 1

2

)
for PA.

We now argue that, for both PA and UA trees, for all x ∈ [0,1] we have that

(B.7) P(φi,� < x |Ts1) ≤ 2
√

s1x.

We start with UA trees. When |(Ts1, vi)u�↓| = 1, a direct computation shows that

P(φi,� < x |Ts1) = 1 − (1 − x)s1−1 ≤ s1x.

Otherwise, Markov’s inequality implies that

(B.8) P(φi,� < x |Ts1) = P
(
φ−1

i,� > x−1 ∣∣Ts1

) ≤ xE
[
φ−1

i,�

∣∣Ts1

] = x
s1 − 1

|(Ts1, vi)u�↓| − 1
≤ s1x.

For PA trees, when |(Ts1, vi)u�↓| = 1, a direct computation shows that

P(φi,� < x |Ts1) = 1

B(1
2 , s1 − 3

2)

∫ x

0
y−1/2(1 − y)s1−5/2 dy ≤ √

s1

∫ x

0
y−1/2 dy = 2

√
s1x,

where in the inequality we used that B(1
2 , s1 − 3

2) ≥ 1/
√

s1 (see (A.9)) and also that t� is
large enough (so that s1 ≥ 5/2). Otherwise, Markov’s inequality (just like in (B.8)) implies a
bound of 2s1x. In conclusion, we have shown (B.7) in all cases. As a consequence, using the
same martingale arguments as in the proof of Lemma 4.6, we have that

(B.9) P

(
1

s2

∣∣(Ts2, vi)u�↓
∣∣ ≤ x

∣∣∣∣Ts1

)
≤ 2P(φi,� ≤ 4x |Ts1) ≤ 8

√
s1x.

Now define the event

D′′
4(i) := ⋂

1≤�≤K

{∣∣(Ts2, vi)u�↓
∣∣ ≥ s

1/8
2

}
,

which is well defined when Ts1 is such that D′
4 holds. By a union bound and using (B.9) with

x = s
−7/8
2 , we have that

P
(
D′′

4(i)c
∣∣Ts1

) ≤
K∑

�=1

P
(∣∣(Ts2, vi)u�↓

∣∣ < s
1/8
2

∣∣Ts1

) ≤ 8Ks
−1/16
2 = 8Kt−1/768

� .

Now define the event D′′
4 := ⋂

1≤i≤γ log t�
D′′

4(i), which is well defined when Ts1 is such
that D′

4 holds. By the display above, together with a union bound, we have, for every Ts1

such that D′
4 holds, that

(B.10) P
((
D′′

4
)c ∣∣Ts1

) ≤ (8Kγ log t�)t
−1/768
� .

For i ≤ γ log t� define the event

C4(i) := {
dt�(vi) ≥ K

}
∩ {∀t ≥ t� : the timestamps of ṽi,t (1), . . . , ṽi,t (K)are all at most s2

}
,

and also let C4 := ⋂
1≤i≤γ log t�

C4(i). Note that if D′
4 holds, then {dt�(vi) ≥ K} holds as well,

so to understand C4(i) we need to understand the second event in the display above. To do



1104 M. Z. RÁCZ AND A. SRIDHAR

this, we consider the subtree T ′
t of (Tt , vi) which is rooted at vi and consists of vi together

with all subtrees of vi that are formed after time s2. We can then define the event

H4(i) := ⋂
1≤�≤K

{
∀t ≥ s2 :

∣∣∣∣ |T ′
t |

|T ′
t | + |(Tt , vi)u�↓| − 1

1 + |(Ts2, vi)u�↓|
∣∣∣∣ ≤ 1

3

}
,

which is well defined whenever Ts1 is such that D′
4 holds. Provided that t� is large enough, if

H4(i) holds, then |T ′
t |/(|T ′

t |+|(Tt , vi)u�↓|) < 1/2 for all t ≥ s2, which implies that no subtree
born after time s2 will ever become larger than any of the subtrees with roots u1, . . . , uK .
This, in turn, means that no subtree born after time s2 will ever become one of the K largest
subtrees of vi . Therefore, H4(i) ⊆ C4(i).

If Ts1 is such that D′
4 holds, and also Ts2 is such that D′′

4 holds, then by Lemma A.3 and a
union bound we have that

P
(
H4(i)

c
∣∣Ts1, Ts2

) ≤ 2K exp
(
− 1

72
t1/384
�

)
.

Together with the previous paragraph and a union bound we thus have that

(B.11) P
(
Cc

4

∣∣Ts1, Ts2

) ≤ (2Kγ log t�) exp
(
− 1

72
t1/384
�

)
whenever Ts1 is such that D′

4 holds, and also Ts2 is such that D′′
4 holds.

The display above motivates defining D4 to be the event that Tt� satisfies

(B.12) P
(
Cc

4

∣∣Tt�

) ≤ exp
(
− 1

144
t1/384
�

)
;

note that D4 is Tt�-measurable. In the rest of this step we bound P(Dc
4). By conditioning first

on Ts1 and then on Ts2 , together with a couple of union bounds, we obtain that

(B.13) P
(
Dc

4
) ≤ E

[
P
(
Dc

4

∣∣Ts1, Ts2

)
1D′

4
1D′′

4

]+E
[
P
((
D′′

4
)c ∣∣Ts1

)
1D′

4

]+ P
((
D′

4
)c)

.

By (B.6) and (B.10) we have that the second and the third term in the display above are
together at most t

−1/1800
� for all t� large enough. Turning to the first term in the display

above, let Ts1 be such that D′
4 holds, and subsequently let Ts2 be such that D′′

4 holds. Then by
Markov’s inequality we have that

P
(
Dc

4

∣∣Ts1, Ts2

) = P

(
P
(
Cc

4

∣∣Tt�

)
> exp

(
− 1

144
t1/384
�

) ∣∣∣∣Ts1, Ts2

)
≤ exp

(
1

144
t1/384
�

)
E
[
P
(
Cc

4

∣∣Tt�

) ∣∣Ts1, Ts2

]
= exp

(
1

144
t1/384
�

)
P
(
Cc

4

∣∣Ts1, Ts2

)
.

Now plugging in (B.11), we obtain that

P
(
Dc

4

∣∣Ts1, Ts2

) ≤ (2Kγ log t�) exp
(
− 1

144
t1/384
�

)
.

Plugging this back into (B.13) we finally obtain, for all t� large enough, that

(B.14) P
(
Dc

4
) ≤ 2t−1/1800

� .

Modified Step 5: In Step 5 of Lemma 4.4 we showed that early subtree rankings are stable.
Here we already showed in Modified Step 3 that the size-based ranking in Tt� of subtrees
formed before time s2 persists.
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Modified Step 6: Concentration of subtree sizes.
In light of the previous steps, we define the events

C6(i, j) :=
{
∀t ≥ t� :

∣∣∣∣1t
∣∣∣∣(Tt , vi)vj↓

∣∣∣∣− 1

t�

∣∣∣∣(Tt�, vi)vj↓|| ≤ 1

t
1/3
�

· 1

t�

∣∣(Tt�, vi)vj↓
∣∣}

for distinct positive integers i, j ≤ s2, and also

C6 := ⋂
1≤i,j≤s2

i �=j

C6(i, j).

In Step 6 of Lemma 4.4 we showed that

P
(
C6(i, j)c

∣∣Tt�

) ≤ 2 exp
(−ct−5/3

�

∣∣(Tt�, vi)vj↓
∣∣2)

for some positive constant c and all t� large enough. Thus if Tt� is such that D2 holds, then

P
(
C6(i, j)c

∣∣Tt�

) ≤ 2 exp
(−ct−5/3

� t7/4
�

) = 2 exp
(−ct1/12

�

)
.

Thus by a union bound we have that if Tt� is such that D2 holds, then

(B.15) P
(
Cc

6

∣∣Tt�

) ≤ 2s2
2 exp

(−ct1/12
�

)
,

which decays faster than any polynomial in t�.
Putting everything together. Define the events

D := D1 ∩D2 ∩D3 ∩D4,

C̃ := C1 ∩ C3 ∩ C4 ∩ C6.

The event D is Tt�-measurable by construction. Putting together (B.2), (B.5), and (B.14), we
have that P(Dc) ≤ 3t

−1/1800
� for all t� large enough.

Next, we argue that if D holds, then |Tt�(k)| ≥ t
7/8
� . First, note that if D1 holds, then the

centroid at time t� is an early vertex. If D4 holds, then all early vertices have degree at least
K in Tt� , and for every early vertex the timestamps of their neighbors corresponding to the
K largest pendent subtrees are all at most s2. Finally, if D2 holds, then all subtrees formed
before time s2 have size at least t

7/8
� , and if D3 holds, then none of these subtree sizes are

equal (i.e., everything is well defined). Putting these observations together we indeed have
that |Tt�(k)| ≥ t

7/8
� if D holds.

Finally, turning to the event C, observe that C̃ ⊆ C by construction. Therefore,

P
(
Cc

∣∣D) ≤ P
(
C̃c

∣∣D)
and it suffices to bound this latter quantity. Putting together the definition of D1, (B.4), the
definition of D4 (see (B.12)), and (B.15), we have that for every tree Tt� such that D holds,
we have that

P
(
C̃c

∣∣Tt�

) ≤ Ct−γ /6
�

for some universal finite constant C. Taking an expectation over Tt� and recalling that γ = 18
concludes the proof of (5.4), and thus also the proof of the lemma. �



1106 M. Z. RÁCZ AND A. SRIDHAR

B.2. Proof of the variance estimate in Lemma 5.6. We start with two preliminary lem-
mas regarding the variance and covariance of functions of Beta and Dirichlet random vari-
ables, which will be useful in the proof of Lemma 5.6.

LEMMA B.2. There exists a finite constant C such that the following holds. Let α and
t be such that 1/2 ≤ α < t and 1/2 ≤ t − α. Let ψ1 and ψ2 be i.i.d. Beta(α, t − α) random
variables. Then

Var
(
(ψ1 − ψ2)

2) ≤ Cα2(t − α)2

t6 .

PROOF. Let ψ ∼ Beta(α, t − α). Bounding the variance by the second moment we have
that

Var
(
(ψ1 − ψ2)

2) ≤ E
[
(ψ1 − ψ2)

4] = E
[
ψ4

1 − 4ψ3
1 ψ2 + 6ψ2

1 ψ2
2 − 4ψ1ψ

3
2 + ψ4

2
]

= 2E
[
ψ4]− 8E

[
ψ3]

E[ψ] + 6E
[
ψ2]2.

For every positive integer k we have that E[ψk] = ∏k−1
i=0 (α + i)/(t + i). Plugging this into

the display above we obtain that

E
[
(ψ1 − ψ2)

4] = 12α(α + 1)(t − α)(t − α + 1)

t2(t + 1)2(t + 2)(t + 3)

and the claim follows. �

LEMMA B.3. There exists a finite constant C such that the following holds. Let α1, α2,
and t be such that 1/2 ≤ α1, α2 and α1 + α2 < t . Let (ψ1, φ1,1 − ψ1 − φ1) and (ψ2, φ2,1 −
ψ2 − φ2) be i.i.d. Dir(α1, α2, t − α1 − α2) random vectors, where Dir denotes the Dirichlet
distribution. Then

Cov
(
(ψ1 − ψ2)

2, (φ1 − φ2)
2) ≤ Cα2

1α2
2

t6 .

PROOF. Let (ψ,φ,1−ψ −φ) ∼ Dir(α1, α2, t −α1 −α2). By expanding the terms in the
definition of the covariance and using independence, we have that

Cov
(
(ψ1 − ψ2)

2, (φ1 − φ2)
2)

= 2E
[
ψ2φ2]− 2E

[
ψ2]

E
[
φ2]+ 4E[ψ]{E[ψ]E[φ2]−E

[
ψφ2]}

+ 4E[φ]{E[ψ2]
E[φ] −E

[
ψ2φ

]}+ 4E[ψφ]2 − 4
(
E[ψ]E[φ])2

.

For nonnegative integers β1 and β2, the joint moments of ψ and φ are given by

E
[
ψβ1φβ2

] =
∏β1−1

i=0 (α1 + i)
∏β2−1

j=0 (α2 + j)∏β1+β2−1
i=0 (t + i)

.

Plugging this into the display above we obtain that

Cov
(
(ψ1 − ψ2)

2, (φ1 − φ2)
2)

= 4α1α2{−2t3 + (2α1α2 + 5α1 + 5α2 − 3)t2 + (−5α1α2 + 6α1 + 6α2)t − 6α1α2}
t4(t + 1)2(t + 2)(t + 3)

.

To obtain an upper bound, we can drop all negative terms in the numerator. Using also the
trivial bounds t ≤ t2 and α1, α2 ≤ 2α1α2, we thus obtain that

Cov
(
(ψ1 − ψ2)

2, (φ1 − φ2)
2) ≤ 200α2

1α2
2

t2(t + 1)2(t + 2)(t + 3)

and the claim follows. �
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We are now ready to prove Lemma 5.6.

PROOF OF LEMMA 5.6. We bound the variance by conditioning on the tree Tt� . By the
law of total variance we have that

Var
(
Sn(k)1C1∩C2

∣∣D) = E
[
Var

(
Sn(k)1C1∩C2

∣∣Tt�

) ∣∣D]
+E

[
E
[
Sn(k)1C1∩C2

∣∣Tt�

]2 ∣∣D]−E
[
Sn(k)1C1∩C2

∣∣D]2
.

From the proof of Lemma 5.5 (see also the proof of Lemma 4.7) it follows that

lim sup
n→∞

E
[
E
[
Sn(k)1C1∩C2

∣∣Tt�

]2 ∣∣D] ≤
(

1 + 3t
−1/3
�

t�

)2

for all t� large enough, and by Lemma 5.5 we also have that

lim inf
n→∞ E

[
Sn(k)1C1∩C2

∣∣D]2 ≥
(

1 − 3t
−1/3
�

t�

)2

for all t� large enough (where in both cases “large enough” does not depend on k). Putting
these displays together we obtain that

lim sup
n→∞

Var
(
Sn(k)1C1∩C2

∣∣D) ≤ lim sup
n→∞

E
[
Var

(
Sn(k)1C1∩C2

∣∣Tt�

) ∣∣D]+ 12

t
7/3
�

for all t� large enough. Since k ≤ K ≤ log t�, the latter term in the display above is at most
12/(kt2

� ), so it remains to bound the first term.
Interchanging the limsup and the expectation, we have that

(B.16) lim sup
n→∞

E
[
Var

(
Sn(k)1C1∩C2

∣∣Tt�

) ∣∣D] ≤ E

[
lim sup
n→∞

Var
(
Sn(k)1C1∩C2

∣∣Tt�

) ∣∣D]
,

so in what follows we study the conditional variance of Sn(k)1C1∩C2 given Tt� (with Tt� such
that D holds). Expanding the variance of the sum we have that

(B.17) Var
(
Sn(k)1C1∩C2

∣∣Tt�

) = 1

k2

k∑
�=1

k∑
m=1

Cov
(
Yn(�)1C1∩C2, Yn(m)1C1∩C2

∣∣Tt�

)
.

Recall from Section 5.1 the definition of Zi
n(�), the limit Zi(�) := limn→∞ Zi

n(�), and the
distribution of the limit from (5.3). In particular, recall that on the event C1 ∩ C2 we have that
Xi

n(�) = Zi
n(�) for all n ≥ t� and all 1 ≤ � ≤ K . To bound the covariance in (B.17), we bound

from above the expectation of the product, and bound from below the individual expectations.
First, using property (C3) of Definition 5.2 we have that

(B.18)

E
[
Yn(�)Yn(m)1C1∩C2

∣∣Tt�

]
≤ E[(X1

n(�) − X2
n(�))

2(X1
n(m) − X2

n(m))21C1∩C2
∣∣Tt�]

4(1 − t
−1/3
� )4 |Tt� (�)|

t�
(1 − |Tt� (�)|

t�
)
|Tt� (m)|

t�
(1 − |Tt� (m)|

t�
)

≤ E[(Z1
n(�) − Z2

n(�))
2(Z1

n(m) − Z2
n(m))2

∣∣Tt�]
4(1 − t

−1/3
� )4 |Tt� (�)|

t�
(1 − |Tt� (�)|

t�
)
|Tt� (m)|

t�
(1 − |Tt� (m)|

t�
)
,

where the second inequality follows by replacing Xi
n(�) and Xi

n(m) with Zi
n(�) and Zi

n(m)

on the event C1 ∩ C2, and then removing the indicator. Turning to the lower bound, from the
proof of Lemma 5.5 we have, for any � ≤ K and any Tt� such that D holds, that

E
[
Yn(�)1C1∩C2

∣∣Tt�

] ≥ E[(Z1
n(�) − Z2

n(�))
2
∣∣Tt�]

2(1 + t
−1/3
� )2 |Tt� (�)|

t�
(1 − |Tt� (�)|

t�
)

− t1/8
� P

((
C1 ∩ C2)c ∣∣Tt�

)
.
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On the event D we have that |Tt�(�)| ≥ t
7/8
� , which implies that the fraction in the display

above is at most t
1/8
� . Therefore, multiplying the bounds in the display above with indices �

and m we obtain that

(B.19)

E
[
Yn(�)1C1∩C2

∣∣Tt�

]
E
[
Yn(m)1C1∩C2

∣∣Tt�

]
≥ E[(Z1

n(�) − Z2
n(�))

2 |Tt�]E[(Z1
n(m) − Z2

n(m))2 |Tt�]
4(1 + t

−1/3
� )4 |Tt� (�)|

t�
(1 − |Tt� (�)|

t�
)
|Tt� (m)|

t�
(1 − |Tt� (m)|

t�
)

− 2t1/4
� P

((
C1 ∩ C2)c ∣∣Tt�

)
.

Putting together (B.18) and (B.19), we obtain an upper bound on the covariance in (B.17)
that consists of three terms:

(B.20)

Cov
(
Yn(�)1C1∩C2, Yn(m)1C1∩C2

∣∣Tt�

)
≤ Cov((Z1

n(�) − Z2
n(�))

2, (Z1
n(m) − Z2

n(m))2 |Tt�)

4(1 − t
−1/3
� )4 |Tt� (�)|

t�
(1 − |Tt� (�)|

t�
)
|Tt� (m)|

t�
(1 − |Tt� (m)|

t�
)

+ {(
1 − t−1/3

�

)−4 − (
1 + t−1/3

�

)−4}×
× E[(Z1

n(�) − Z2
n(�))

2 |Tt�]E[(Z1
n(m) − Z2

n(m))2 |Tt�]
4 |Tt� (�)|

t�
(1 − |Tt� (�)|

t�
)
|Tt� (m)|

t�
(1 − |Tt� (m)|

t�
)

+ 2t1/4
� P

((
C1 ∩ C2)c ∣∣Tt�

)
.

We now deal with each term in turn, starting with the last one. Since this term does not
depend on the indices � and m, nor on n, averaging over � and m, and taking the limit as n →
∞, this term remains 2t

1/4
� P((C1 ∩ C2)c |Tt�). Taking an expectation over Tt� (see (B.16)),

this becomes 2t
1/4
� P((C1 ∩ C2)c |D), which by Lemma 5.4 is at most C/t

11/4
� for some finite

constant C.
Turning to the second term in (B.20), first note that(

1 − t−1/3
�

)−4 − (
1 + t−1/3

�

)−4 ≤ 9t−1/3
�

for all t� large enough. In the proof of Lemma 5.5 we showed that

lim
n→∞

E[(Z1
n(�) − Z2

n(�))
2 |Tt�]

|Tt� (�)|
t�

(1 − |Tt� (�)|
t�

)
≤ C

t�

for all � ≤ K and some universal finite constant C. Putting these bounds together, we obtain
that, after taking a limit as n → ∞ (which exists), the second term in (B.20) is at most C/t

7/3
�

for some universal finite constant C. This holds for all indices � and m, and for all trees Tt� .
Thus after averaging over all these we still have a bound of C/t

7/3
� .

Finally, we turn to the first term in (B.20), which is the main term among the three. By the
bounded convergence theorem the limit as n → ∞ of this term exists and is equal to

Cov((Z1(�) − Z2(�))2, (Z1(m) − Z2(m))2 |Tt�)

4(1 − t
−1/3
� )4 |Tt� (�)|

t�
(1 − |Tt� (�)|

t�
)
|Tt� (m)|

t�
(1 − |Tt� (m)|

t�
)
.

To obtain a slightly simpler expression, recall that |Tt�(�)| ≤ t�/2 for all � ∈ {1, . . . ,K}, and
hence the display above is bounded from above by

(B.21)
Ct2

� Cov((Z1(�) − Z2(�))2, (Z1(m) − Z2(m))2 |Tt�)

|Tt�(�)||Tt�(m)|
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for some universal finite constant C. We now distinguish two cases based on whether or not
the indices � and m are equal.

First, when � = m, we have from (5.3) and Lemma B.2 that

Var
((

Z1(�) − Z2(�)
)2 ∣∣Tt�

) ≤ C|Tt�(�)|2(t� − |Tt�(�)|)2

t6
�

≤ C|Tt�(�)|2
t4
�

for some universal finite constant C. Thus the expression in (B.21) is bounded from above by
C′/t2

� for some universal finite constant C′. There are k terms in (B.17) where the indices are
equal; furthermore, there is a 1/k2 factor in front of the sum. Putting all this together we see
that the contribution from these terms is at most C′/(kt2

� ), which is the bound in the claim.
We turn now to the case when � �= m. By Pólya urn arguments (see, e.g., [42], Section 4.5)

it follows that the two vectors (Z1(�),Z1(m),1 − Z1(�) − Z1(m)) and (Z2(�),Z2(m),1 −
Z2(�)−Z2(m)) are i.i.d. (conditionally given Tt�) Dirichlet random vectors, with parameters
given as follows:(

Z(�),Z(m),1 − Z(�) − Z(m)
)

∼
⎧⎪⎨⎪⎩

Dir
(∣∣Tt�(�)

∣∣, ∣∣Tt�(m)
∣∣, t� − ∣∣Tt�(�)

∣∣− ∣∣Tt�(m)
∣∣) for UA,

Dir
(∣∣Tt�(�)

∣∣− 1

2
,
∣∣Tt�(m)

∣∣− 1

2
, t� − ∣∣Tt�(�)

∣∣− ∣∣Tt�(m)
∣∣) for PA.

By Lemma B.3 we thus have for � �= m that

Cov
((

Z1(�) − Z2(�)
)2

,
(
Z1(m) − Z2(m)

)2 ∣∣Tt�

) ≤ C|Tt�(�)|2|Tt�(m)|2
t6
�

for some universal finite constant C. Thus the expression in (B.21) is bounded from above
by C′|Tt�(�)||Tt�(m)|/t4

� for some universal finite constant C′. Plugging this back into (B.17)
we see that the contribution to this expression from terms where � �= m is at most

C′

k2t4
�

k∑
�=1

k∑
m=1

∣∣Tt�(�)
∣∣∣∣Tt�(m)

∣∣ = C′

k2t4
�

(
k∑

�=1

∣∣Tt�(�)
∣∣)2

≤ C′

k2t4
�

t2
� = C′

k2t2
�

,

which concludes the claim. �
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SUPPLEMENTARY MATERIAL

Detecting correlation in correlated PA andUA trees (DOI: 10.1214/21-AAP1703SUPP;
.pdf). In this supplementary material we give alternative proofs to Corollaries 1.4 and 1.5 that
are algorithmic: they explicitly specify (efficiently computable) statistics that detect correla-
tion in PA and UA trees.
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ations II: Erdős-Rényi Graphs and Universality. Preprint. Available at https://arxiv.org/abs/1907.08883.

[22] FANTI, G., KAIROUZ, P., OH, S., RAMCHANDRAN, K. and VISWANATH, P. (2016). Rumor source ob-
fuscation on irregular trees. In ACM SIGMETRICS 44 153–164. https://doi.org/10.1145/2964791.
2901471

[23] FANTI, G., KAIROUZ, P., OH, S., RAMCHANDRAN, K. and VISWANATH, P. (2017). Hiding the ru-
mor source. IEEE Trans. Inf. Theory 63 6679–6713. MR3707563 https://doi.org/10.1109/TIT.2017.
2696960

[24] FANTI, G., KAIROUZ, P., OH, S. and VISWANATH, P. (2015). Spy vs. spy: Rumor source obfuscation. In
ACM SIGMETRICS 43 271–284.

[25] GANASSALI, L. and MASSOULIÉ, L. (2020). From tree matching to sparse graph alignment. In Conference
on Learning Theory 1633–1665. PMLR.

http://www.ams.org/mathscinet-getitem?mr=2091634
https://doi.org/10.1126/science.286.5439.509
http://www.ams.org/mathscinet-getitem?mr=3161480
https://doi.org/10.1214/12-AOP755
http://www.ams.org/mathscinet-getitem?mr=3770872
https://doi.org/10.1214/17-AAP1297
http://www.ams.org/mathscinet-getitem?mr=1824277
https://doi.org/10.1002/rsa.1009
http://www.ams.org/mathscinet-getitem?mr=3607120
https://doi.org/10.1002/rsa.20649
http://www.ams.org/mathscinet-getitem?mr=3648049
https://doi.org/10.3150/16-BEJ831
http://www.ams.org/mathscinet-getitem?mr=3361606
https://doi.org/10.1109/TNSE.2015.2397592
https://arxiv.org/abs/1711.06783
http://www.ams.org/mathscinet-getitem?mr=3326003
https://doi.org/10.5802/jep.15
http://www.ams.org/mathscinet-getitem?mr=3934290
http://www.ams.org/mathscinet-getitem?mr=4221654
https://doi.org/10.1007/s00440-020-00997-4
http://www.ams.org/mathscinet-getitem?mr=2484382
https://doi.org/10.1007/978-3-211-75357-6
https://arxiv.org/abs/1907.08880
https://arxiv.org/abs/1907.08883
https://doi.org/10.1145/2964791.2901471
http://www.ams.org/mathscinet-getitem?mr=3707563
https://doi.org/10.1109/TIT.2017.2696960
https://doi.org/10.1214/12-AOP755
https://doi.org/10.1214/17-AAP1297
https://doi.org/10.1002/rsa.1009
https://doi.org/10.1109/TNSE.2015.2397592
https://doi.org/10.1145/2964791.2901471
https://doi.org/10.1109/TIT.2017.2696960


CORRELATED RANDOMLY GROWING GRAPHS 1111

[26] JOG, V. and LOH, P.-L. (2017). Analysis of centrality in sublinear preferential attachment trees via
the Crump-Mode-Jagers branching process. IEEE Trans. Netw. Sci. Eng. 4 1–12. MR3625951
https://doi.org/10.1109/TNSE.2016.2622923

[27] JOG, V. and LOH, P.-L. (2018). Persistence of centrality in random growing trees. Random Structures
Algorithms 52 136–157. MR3731614 https://doi.org/10.1002/rsa.20726

[28] KAZEMI, E., HASSANI, S. H. and GROSSGLAUSER, M. (2015). Growing a graph matching from a handful
of seeds. Proc. VLDB Endow. 8 1010–1021.

[29] KAZEMI, E., YARTSEVA, L. and GROSSGLAUSER, M. (2015). When can two unlabeled networks be
aligned under partial overlap? In Proceedings of the 53rd Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton) 33–42. IEEE, New York.

[30] KORULA, N. and LATTANZI, S. (2014). An efficient reconciliation algorithm for social networks. Proc.
VLDB Endow. 7 377–388.

[31] LIVI, L. and RIZZI, A. (2013). The graph matching problem. PAA Pattern Anal. Appl. 16 253–283.
MR3084902 https://doi.org/10.1007/s10044-012-0284-8

[32] LUGOSI, G. and PEREIRA, A. S. (2019). Finding the seed of uniform attachment trees. Electron. J. Probab.
24 Paper No. 18, 15. MR3925458 https://doi.org/10.1214/19-EJP268

[33] LYZINSKI, V., FISHKIND, D. E. and PRIEBE, C. E. (2014). Seeded graph matching for correlated Erdős-
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