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ABSTRACT

Observational power spectra of the photospheric magnetic field turbulence, of the quiet-sun, were presented in a recent paper by
Abramenko & Yurchyshyn. Here, I focus on the power spectrum derived from the observations of the Near InfraRed Imaging
Spectrapolarimeter operating at the Goode Solar Telescope. The latter exhibits a transition from a power law with index —1.2 to
a steeper power law with index —2.2, for smaller spatial scales. This paper presents an interpretation of this change. Furthermore,
this interpretation provides an estimate for the effective width of the turbulent layer probed by the observations. The latter turns

out to be practically equal to the depth of the photosphere.
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1 INTRODUCTION

Quite recently, Abramenko & Yurchyshyn (2020) measured the line-
of-sight magnetic fields and derived magnetic power spectra of the
quiet sun photosphere. The data were obtained from magnetograms
of the Helioseismic and Magnetic Imager (HMI) on-board the Solar
Dynamic Observatory, and the Near Infrared Imaging Spectrapo-
larimeter (NIRIS) operating at the Goode Solar Telescope of the
Big Bear Solar Observatory. The authors computed one-dimensional
power spectra of the observed line-of-sight turbulent magnetic field.
For data from both observatories, the power spectra inertial range was
considerably shallower than the Kolmogorov spectrum characterized
by an index of —5/3. (Kolmogorov 1941).

An interesting feature is revealed in the NIRIS power spectrum
(Abramenko & Yurchyshyn 2020, fig. 6) derived from measurements
using the Fel 15650 A. While the inertial range on spatial scales
larger than (0.8 = 0.9) Mm has a logarithmic slope of —1.2, the
logarithmic slope on smaller scales is —2.2. The NIRIS data extend
down to spatial scale of ~0.3 Mm. The above transition is not present
in the HMI data, as the HMI resolution is about 2.4 Mm.

The magnetometer data originate from an integral along the line of
sight of the emitted near-infrared radiation. The Zeeman splitting of
emission lines is used to obtain the line-of-sight magnetic field. For
more details on such measurements, see Abramenko et al. (2001) and
references therein. The focus of this paper is on the two logarithmic
slopes in the power spectrum of the NIRIS data.

It is worth noting that several authors addressed the issue of power
spectra of quantities that are the result of integration along the line
of sight (see e.g. Stutzki et al. 1998; Goldman 2000; Lazarian &
Pogosyan 2000; Miville-Deschénes, Levrier & Falgarone 2003).
They concluded that when the lateral spatial scale is much smaller
than the depth of the layer, the logarithmic slope steepens exactly
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by —1 compared to its value when the lateral scale is much larger
than the depth.

This behaviour was indeed found in observational power spectra
of Galactic and extra Galactic turbulence (e.g. Elmegreen, Kim &
Staveley-Smith 2001; Miville-Deschénes et al. 2003; Block et al.
2010; Contini & Goldman 2011).

Here, the same turbulence phenomenon is addressed in the context
of the solar photosphere, where the measured magnetic field follows
from the sum of the infrared radiation emanating from various depths.

In Section 2, the theoretical 1D power spectrum of a line-of-sight
integrated data is explicitly derived.

In Section 3, the asymptotic behaviour of the power spectrum
in the small and large wavenumber limits is obtained analytically.
In Section 4, the numerical results for the specific case under
consideration here are obtained. One interesting implication is an
estimate of effective width of the photospheric turbulent layer that is
probed by the detector. Conclusions are presented in Section 5.

2 THE 1D POWER SPECTRUM OF
LINE-OF-SIGHT INTEGRATED DATA

We are interested in the power spectrum of a quantity n(x, D) (Where
x is straight line in a lateral direction) that is an integral along the
line-of-sight z of a underlying physical quantity, f(x, z).

D
n(x,D):/ f(x,2)dz (D
0

with D denoting the effective width of the region that contributes
to the observed n(x, D). It is termed ‘effective’ because it is tacitly
assumed in equation (1) that the weight of f(x, z) is independent of
z. An ideal case is when the observed quantity is some radiation
intensity emanating from a optically thin slab of width D. It is also
‘effective’ because in real situations D can differ for different x
values.
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We are interested in the one-dimensional power spectrum of n(x,
D) which depends also on the value of the depth D.

E(k,, D) = / ” " C,(x, D)dx 2)

o0

with C,(x, D) being the 2-point autocorrelation of the fluctuating n(x,
D) [mean of n(x, D) = 0].

C,(x, D) = (n(x', D)n(x’ + x, D))

D D
=/ / (f& D+ x, 2)) dzdZ 3)
0 0

with the () brackets denoting ensemble average. Assuming isotropy
and homogeneity the 2-point autocorrelation of f(x, z) is CAx, z —
7 = (X, 2)(fX + x, 2)).

So that

D D
Cn(x,D)=/ / Cy(x,z—2)dzdZ
0o Jo

D D o0 00 ) ) ,
- / / ( / / Po(ky, k,)e Rex =ik =D g dkz) dzdz,
0 0 —o0 J —00

“

where P, (k,.k,) is the two-dimensional power spectrum. Interchang-
ing the integration order yields,

o [ g [ (sink.D/2)\?
cx =0t [~ [ (Tp/z ) Patk,, k) dk dk,.
()

Consider a two-dimensional power spectrum that is isotropic, homo-
geneous, and in the form of a power law

Poky, ky) = A (K2 +K2) "2, ©6)
where A is a constant and m is the index of the 1D power
spectrum.
Combining equations (2), (5), and (6), one easily identifies
o0 _ in(k.D/2)\>
Ele.D)=M [ (124 82) 02 (SED2AT G, g
D) =M [ +R) o) @

with M a constant. Using a variable n = k,D/2, equation (7) takes
the form

00 . 2
E(k. D)= N / (ke DJ2)? + )"+ (%(”)) o ®
0

with N a constant.

3 ANALYTICAL RESULTS

It follows from equation (8) that for given values of m and N, E(k,, D)
is a function of the dimensionless product k,D/2. We are interested in
the shape of the power spectrum and not its absolute normalization
so the actual value of N does not matter. In what follows we
show analytically that the asymptotic shapes of the power spectrum
are

E(ky, D) «x (kyD/2)™; k,D/2 << 1,

E(ky, D) x (k;D/2)™"; keD/2 >> 1. )
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Figure 1. Thick red curve: E(k,D/2) in arbitrary units as function of k,D/2.
Blue line: slope of —1.2. Green line: slope of —2.2. Yellow line: slope of
—1.7.

To that end note that the [sin (1)/ 17]2 term implies that the integration
upper limit is ~7/2. Therefore,

—(m+1)/2

/2
E(k,. D)~ N / (ke D/2 + 1) dy
0

7 /kx D) 2\ —(m+1)/2
= N(kxD/z)*m/ (14 u?) du (10)
0

with u = n/(k.D/2).

In the limit k,D/2 < <1, the upper integration limit tends to infinity
and the integral is independent of k,D/2. In the limit k,D/2 > >1,
the integral is proportional to (k,D/2)~".

The transition occurs at a transition wavenumber, k;, such that
kD/2 = O(1). The exact value of k.D/2 depends on m and is required
in order to find the value of D. To get the exact value, for the
present case, m = 1.2, equation (8) is solved numerically, using
‘WolframMathematica.

4 NUMERICAL RESULTS

The power spectrum E(k,D/2) for m = 1.2, obtained by the numerical
solution of equation (8), is displayed in Fig. 1.

It is seen that for k,D/2 < <1 the power spectrum has a
logarithmic slope of —1.2 while for k.D/2 > >1 the logarithmic
slope is —2.2, as expected from the analytical analysis presented
above.

A line with a logarithmic slope of —1.7, the mean of the former
two, which is tangent to the curve defines the ‘point of transition’.
One should note that the transition is a smooth one, and not a sharp
break at a point.

From Fig. 1, it follows that the transition wavenumber, , satisfies

kD/2 =2.25+0.05. (11

So a given observational value of k, determines D. Expressing k; by
x, = 2m/ky, the observational transition spatial scale, leads to

D = (22540052, (12)
T

Abramenko & Yurchyshyn (2020) found x, = 0.85 = 0.05 Mm.
Thus,

D = (0.57 £ 0.05) Mm.
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5 CONCLUDING REMARKS

The paper by Abramenko & Yurchyshyn (2020) provided a very
neat power spectrum of the photosphere magnetic field of the
quiet Sun. The high spatial resolution of the NIRIS data enabled
a power spectrum down to spatial scales as small as 0.3 Mm. This
power spectrum exhibits what appears as two inertial ranges with
logarithmic slopes of —1.2 and —2.2, for a spatial scale larger/smaller
than (0.85 = 0.05) Mm, respectively.

The logarithmic slope of —1.2 corresponds to a three-dimensional
power spectrum with a logarithmic slope of —3.2. This is significantly
shallower than the —3.67 value corresponding to Kolmogorov
turbulence. The very interesting issue of the origin of such a power
spectrum was not addressed here.

This paper demonstrates that two inertial ranges actually corre-
spond to a turbulence with a single inertial range with logarithmic
slope equalling —1.2. The two ranges are manifestation of the fact
that the observed infrared emission is an integral along the line of
sight. Since the value of D is within the span of the lateral spatial
scales probed, the transition shows up.

Interestingly, the value of the derived effective width is comparable
to the width of the photosphere itself. This value of D implied by
the NIRIS power spectrum of Abramenko & Yurchyshyn (2020) is
an observational constraint to be faced with theoretical models of
near-IR lines in the quiet solar photosphere.

In this context, a numerical model by Rueedi et al. (1998) yielded
that the Fe115648 A line is formed in the lower part of the
photosphere and extends over a vertical span of about 0.1 Mm. Their
work refers to a sunspot and not to the quiet sun, and also assumes
an absence of macro velocity turbulence. The situation here is
different.
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