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e Radiation-coupled simulation of a turbulent jet is reported focusing on the performances of PN
and DOM

e PN is tested up to the order of 7, DOM is tested up to 8x8 discrete angles

e The convergence mechanisms of PN and DOM with respect to the angular approximation is
studied in a 1-D slab with a wide range of optical thicknesses
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Abstract

In this study, we systematically compared the accuracy and computational cost of two pop-
ular solution methods for the radiative transfer equation (RTE): the spherical harmonics
method (Py) and the discrete ordinates method (DOM). We first investigated convergence
characteristics of different orders of Py and DOM in a series of 1D homogeneous configura-
tions with varying optical thicknesses. Both solvers perform better for more optically thick
cases. The accuracy of Py methods increases with its order, N, but the gain in accuracy
reduces with the increase in N, 1.e., improvement of P; over Ps is less than that of P5 over
P;. This decreasing trend becomes more prominent as the optical thickness decreases. On
the other hand, DOM’s accuracy increases almost linearly with the increase in the number
of ordinates (or polar angles in this study) in all cases. While comparing the directional
profile of radiative intensity, both solvers perform better when the radiative intensity is
more isotropic. These solvers were then connected with a full spectrum k-distribution
(FSK) spectral model and used to perform radiation-coupled simulations of a turbulent jet
flame in an axi-symmetric cylindrical domain. Results are obtained from P to P; approxi-
mations for Py, and 2 x4, 4x4, 4x8, 8x8 finite angles for DOM are compared with that from

an optically thin model, and a reference solution from line-by-line (LBL) photon Monte
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Carlo (PMC) method. The choice of radiation solver shows a noticeable impact on the tem-
perature distribution of the flame. The Py solvers lead to slightly higher radiant fractions
and the DOM solvers lead to slightly lower radiant fractions than the PMC benchmark
solution. Finally, the computational costs of each of these solvers are also reported and an
intermittent evaluation / time blending scheme to improve the computational efficiency of

radiation solvers in radiation-coupled simulations are also demonstrated.

Keywords: Radiative transfer, Spherical harmonics method, Discrete ordinates method,

Turbulent jet flame

1 1. Introduction

2 Thermal radiation is an important mode of heat transfer in combustion [1, 2]. Since ra-
s diation is a volumetric phenomenon, its importance in larger combustion systems such as
s+ boilers and furnaces is critically important [3, 4]. However, even in small combustion sys-
s tems, including benchtop combustion experiments, the importance of radiation cannot be
s neglected. In laboratory-scale laminar flames, thermal radiation affects the flame temper-
7 ature, the flame speed, and the extinction limits [5, 6]. The radiative heat loss also changes
s the local temperature distribution, which in turn affects the production of pollutants such
o as soot and NOx [7, 8]. In turbulent flames the effect of radiation goes beyond the heat
10 loss: The interaction between turbulent structures and radiation, known as turbulence-
1 radiation interaction or TRI, affects the combustion dynamics significantly [9, 10]. Despite
12 of its importance, the modeling of radiative transfer in combustion or relevant conditions
13 are sometimes oversimplified primarily due to the computational complexity associated

1+ with radiation modeling.

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-000R22725
with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the
article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so,
for US government purposes. DOE will provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
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15 Radiative intensity is calculated by solving the radiative transfer equation (RTE), which
16 is an integro-differential equation with spectral (i.e., variation of properties with wave-
17 length), spatial, and angular dependencies. The difficulties in modeling radiative transfer
18 in combustion are twofold [11]: a) the highly oscillating spectral dependence of radiative
19 properties of the participating media, and b) the coupled spatial-angular dependence of
20 the RTE.

21 The spectral dependence of radiative transfer is modeled by spectral models which
22 are broadly classified as gray (i.e., no spectral variation) and nongray models. While gray
s models are simple and computationally cheap, they are also grossly inaccurate [1]. Spectral
2« models are a field of active research and excellent reviews of some popular spectral models
s such as weighted sum of grey gas (WSGG), full-spectrum k-distribution (FSK), spectral
2 line weighted-sum-of-gray-gases (SLW) models, {-distribution model, statistical narrow
2z band (SNB) methods, and line-by-line model (LBL) can be found in the literature [12, 13].
s The accuracy and complexity of spectral models vary significantly and some researchers
20 have compared the accuracy of different spectral models in various contexts [14, 15].

30 The solution of the RTE, after accounting for spectral modelling, can be done in either
a1 a deterministic or stochastic way. Most deterministic RTE solvers attempt to solve RTE by
2 decoupling the angular dependence of the radiative intensity from its spatial dependence,
s whereas stochastic RTE solvers often follow a ray-tracing-based Monte Carlo approach.
s The two most common family of deterministic RTE solvers are the spherical harmonics
s method and the discrete ordinates method (DOM).

36 The spherical harmonics method, or the Py method, approximates the angular distri-
& bution by a truncated series of spherical harmonics, where the order N indicates the order
ss of truncation. The spherical harmonics method was first formulated by astrophysicists
ss to describe radiative transfer in stars [16], and was then further studied and developed
w for neutron-transport theory [17, 18]. Mark [19, 20] and Marshak [21] developed two

» different approaches to formulate the boundary condition of the Py method. Arpaci and
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22 Gozum [22] applied the P; and Ps methods to the Bénard problem (natural convection
s studies between horizontal parallel plates) and found that the results of P; and Ps are
x4 increasingly more accurate than P;, although the accuracy improvement of Ps is unex-
s pectedly small. Higenyi [23] extended and applied Py to 1-D problems in cylindrical
s coordinates and similarly found great improvements for the P; approximation over the
s Py approximation and less improvements for Ps. In addition, the Py approximations in
s cylindrical and spherical coordinates were shown to be less accurate than in Cartesian
s coordinates. From these early examples, it can be seen that the convergence characteris-
so tics of the Py series with respect to the truncation order N is problem dependent, even
st though theoretically, the Py method converges to the exact solution with an infinitely-
2 large order N. In general, the standard Py method may suffer from slower convergence
ss when the intensity field is more anisotropic [24]. Detailed derivations of the general 3-D
s« formulation in Cartesian coordinates have been given by Davison [18] and Cheng [25].
ss However, the number of equations and unknowns as well as the mathematical complexity
ss of the method increases rapidly with the order in multidimensional problems, so that the
sz order of approximation has mostly been limited to P; in thermal radiative transfer [26—
ss 28] and in neutron transport [29] in real applications. More recent developments of 3-D
so formulations come from McClarren et al. [30] and Modest et al. [31-34], independently.
oo McClarren et al. [30] developed a semi-implicit linear discontinuous Galerkin method for
&1 solving the time-dependent Py equations with Mark’s boundary conditions. Modest and
e Yang [31,32] and Modest [33] have developed a general three-dimensional Py formulation
es consisting of N(N + 1)/2 second-order elliptic PDEs and their Marshak’s boundary condi-
e« tions for arbitrary 3-D geometries, which has been implemented in OpenFOAM® [35, 36] for
s radiation-coupled combustion simulations.

66 The discrete ordinate method is arguably the most popular method for solving RTE.
&7 The basic idea of DOM was also first proposed for stellar radiation in the 1960s [37] and

s was initially adopted for neutron transport [38]. It was later adapted and modified by
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so numerous researchers for heat transfer [39-41]. In DOM, the directional dependence of
70 the RTE is resolved by performing an angular/directional discretization followed by an
7 integral over the solid angle via numerical quadrature. In simple geometries and without
72 any scattering or reflection effects the DOM results in a series of first-order linear partial
73 differential equation [12]. Because of the simplicity of this system of equations, extensions
74 to higher order approximations of DOM is straightforward. There are several ways in
75 which the angular discretization can be performed for DOM. The traditional approach
76 uses a finite difference scheme, i.e., the RTE is solved over discrete directions spanning
77 the entire 47 solid angle. Instead of discrete directions (i.e., finite differencing), one of the
s popular variations of DOM uses finite solid angles leading to what is often referred as the
7o finite volume method (FVM) for radiation. This FVM for radiation was first proposed in
so the 1990s [42-45]. The name finite volume method for radiation can be confusing owing to
&1 the existence of unrelated spatial finite volume discretization schemes in flow problems.
&2 Hence, it has also been referred as Finite Angle Method (FAM) [12]. In this work we use
ss the term FAM instead of FVM to avoid confusion. The FAM-based DOM has been used
s in complex geometries [46, 47] and in combined heat transfer problems [48, 49]. The finite
ss angle method was found to outperform traditional (i.e., finite difference-based) DOM in
ss various configurations [50-52].

&7 Despite the long existence of different RTE solvers, there have been very few studies
s that compared them on an equal footing on simple and complex problems. The FAM for-
so mulation of DOM was compared with discrete transfer method (DTM) [53] for combustion
o configurations and FAM was found to perform better than DTM [54, 55]. Mishra et al. [56]
sr compared traditional DOM and FAM with DTM for laser transport in participating media
2 and reported comparable results from all. Frank et al. [57] compared P; method with
s SP; (simplified P; [58]) and moment methods for radiation in simple configurations and
« showed that they all perform comparably. A comparison of P; and DOM completed for

s steam furnace also showed practically no difference between the solvers when used with
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s a WSGG model [59]. Roy et al. [60, 61] compared FAM-based DOM and Py in frozen
o7 field calculations for a turbulent flame and showed that lower-order DOM is slightly more
s accurate than lower order Py. Sun et al. [49] compared P;, DOM, and SP; in conjugate
% conduction-radiation problems in 2D and showed that for lower optical thickness DOM
10 performs better than the other two. However, there has not been any systematic study,
101 to our knowledge, that compares these different orders of Py and DOM either in simple
12 configurations or in coupled combustion simulations. This work attempts to fill that gap
s in the literature. We present a comparison of Py (N = 1,3,5,7) and FAM (with differ-
14 ent angular discretizations) in a simple 1D configuration, where an analytical solution is
15 available, and in a 3D coupled turbulent jet flame simulation. It is noted here that the
16 scope of this work is limited to comparison of radiation models and is not focused on
107 detailed validation of the jet flame simulation, which would require further tweaking and
s validation of the turbulence model and chemiical kinetics model.

109 The rest of the paper is organized as follows. In Section 2, we describe the basic
1o formulations of the Py method and DOM used in this study, and their couplings to the
11 reacting flow equations. In this work, we use the FAM formulation for DOM discretization.
112 Hence, unless otherwise specified, for the rest of the document, we will use the name FAM
s to indicate the FAM-based DOM formulation.

114 In Section 3.1, the Py and FAM are applied to a 1D homogeneous problem. The exact
115 solution is obtained for this simple geometry. With this simple example, we look at
16 the different convergence characteristics of the Py method and FAM for different optical
17 thicknesses. In Section 3.2, a turbulent jet flame is simulated with both Py and FAM
1s along with an optically thin model and a Monte Carlo model for benchmarking. The
119 computational cost and global characteristics of the flame is compared across all the
120 radiation models. For radiative properties of combustion gases, we use an FSK look-
121 up table [62] as the spectral model with the Py and FAM in the flame simulations. An

122 accurate line-by-line (LBL) spectral model is used with Monte Carlo RTE solver, while for
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the optically thin model, the Planck-Mean absorption coefficient is used.

2. Solution Methods

2.1. Radiative transfer equation

Thermal radiation is heat transfer via electromagnetic wave and therefore occurs at a
timescale much faster than that of the reacting flow in conventional combustion systems,
so much so that a quasi-steady approximation for radiative transport is adequate. The
impact of radiation is included in the energy transport via a source term in the energy

conservation equation in combustion systems, which may be written as

oph  Ophu; " Dp ou;
7+a—m——a—%+ﬁ+’[i]'a—.’g+srud. (1)

In Eq. (1), S;.4 denotes the radiative source term; p indicates density; & denotes enthalpy;
u; denotes i™ component of velocity vector; ] indicates the effective enthalpy flux; p is
the total pressure; 7;; is the stress tensor component, while ¢ and x; are time and spatial
coordinates, respectively. The radiative source term (S,,s), which is also the negative of the
divergence of the radiative heat flux (q), is the net balance of emission (S,,;) and absorption

(Sabs)/ i-e-/

Sraa = =V - q= Semi + Savs (2)
Semi = _4KPUT4 s (3)
0
Sabs = f K,]quﬂ 7 (4)
0
G, = f I,dQ2, ©)
4rn

here I, is the spectral radiative intensity, and the subscript 17 denotes wavenumber indi-
cating spectral dependence. «, is the absorption coefficient at the wavenumber 7, xp is the
Planck-mean absorption coefficient, and ¢ is the Stefan-Boltzmann constant. G, denotes
the spectral incident radiation. The spectral radiative intensity (i.e., radiative intensity

at wavenumber 1), I, is obtained by solving a quasi-steady spectral radiative transfer
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equation, which is a five-dimensional integro-differential equation:

dI, Osn

a = KﬂIb'? — K’YITI — 0577177 + in L Iq®n(§i/ é)sz . (6)

Here radiative intensity I,(r,5) is the dependent variable; r and § are the spatial and
directional dimensions of the RTE; o, is the scattering coefficients of the medium at the
wavenumber 7; I, is the blackbody intensity; ®,(s;,3) is the scattering phase function
between directions $; and 3; €); is the solid angle. Quantities with a subscript 17 vary along
the electromagnetic spectrum, indicating the spectral nature of the RTE. The left hand side
of the equation is the spatial derivative of radiative intensity I,(r, ), and each term on the
right hand side corresponds to an augmentation or attenuation of radiative energy due to

emission, absorption, and scattering.
2.2. Spherical Harmonics Method

In the spherical harmonics method, also known as the Py approximation, the radiative
intensity is approximated as a finite series of spherical harmonics as
N &

L $) = 2, 2, B, 7)
where I}(r) is the intensity coefficient with respect to the corresponding spherical har-
monics basis Y7/ (8), so that the spatial and directional dependencies of the intensity I, (7, 3)
are decoupled. The spherical harmonics Y'(8), or Y/'(, 0), satisfy Laplace’s equation in

spherical coordinates, and their real forms are defined as,

cos(my)Pp(cos0) for m =0
Y (¥, 0) = , 8)
sin(|m|¢)P}}(cos0) for m <0

where 60 and 1 are polar and azimuthal angles, respectively; P}/(cos 0) are associated

Legendre polynomials [63], given by

N s e
Pn (H) - <_1) 2nyl dyn+\m|

(u>—1)". )



Journal Pre-proof

148

149

151

152

154

155

156

157

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

Exploiting the orthogonality of the spherical harmonics, one obtains a system of (N + 1)?
tirst-order PDEs for the intensity coefficients. The number of governing equations can
be further reduced by eliminating the odd-order intensity coefficients by their relation
to the gradients of the even-order ones, which transforms the governing equations from
(N + 1)? first-order PDEs into N(N + 1)/2 second-order elliptic PDEs [31, 32]. For the
axi-symmetric flame simulation in this study, the two-dimensional axisymmetric Py for-
mulation described in [36] is used, which consists of (N + 1)?/4 elliptic PDEs, and their

corresponding Marshak’s boundary conditions.
2.3. Discrete Ordinates Method

In the discrete ordinates method (DOM) following the FAM approach, the directional
component of the RTE § is discretized into a finite set of N solid angles representing N
ordinates. Each ordinate is denoted s; where i = 1,2,...,N and has a corresponding

quadrature weight. Equation (6) is then transformed into a set of N first order PDEs given

by
dr;,

N
s, = ol = Kl = 0yl + Z—; E;Ij,n(§j)®n(§j, $)dCY; . (10)
i=

This system is solved for N partial intensities I;;,. Then, numerical quadrature using
the partial intensities and the quadrature weights can be employed to approximate the
radiative intensity I,, radiative heat flux q, and incident radiation G. The directional
variable $ is discretized along both the polar (0) and azimuthal (¢) directions. Thus, the
discretization that is used in this implementation of FAM is specified by ny x 1y where
ng is the number of polar angles and 7 is the number of azimuthal angle. The order of
accuracy of the FAM is directly related to the total number of ordinates N = ny x n4. The
computational expense of FAM is also expected to be correlated with N since N PDEs must
be solved.

Usually at least 4 azimuthal angles are used in practice as any less leads to worse results

unless the configuration is optically very thick [64]. In the flame simulation of this work,

FAM with 2 x 4, 4 x 4, 4 x 8, and 8 x 8 ordinates are used. Since the most complicated

9
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combustion configuration that is investigated in this work is also rotationally invariant,
the axisymmetric formulation of FAM and corresponding rotational invariant boundary

conditions are used [65].
2.4. Optically thin and photon Monte Carlo methods

The optically thin (OT) approach and photon Monte Carlo (PMC) approach are the two
extremes of RTE solution methods. In OT, the medium is assumed to be optically thin, i.e.,
it does not absorb any incident radiation and only loses energy by emission. In this case,

the RTE does not need to be solved as the radiative source term is simply
Srador = —4xpoT*. (11)

As evident, the OT approach is the simplest, but also the least accurate as it does not
capture any reabsorption of radiation.

The PMC method is, on the other hand, the most accurate method to solve RTE. In
PMC, the radiative transfer is solved by tracking a large number of radiation rays or
photon bundles through the participating medium. Each bundle carries a finite amount of
energy which gets absorbed by the medium it passes through. By keeping track of energy
deposition by these rays one can resolve the net radiative transfer process. More details
of the PMC can be found in the literature [12]. As is with any Monte Carlo approach,
PMC require a large number of rays and is computationally very costly. However, with
appropriately large number of rays, the PMC solution approaches the exact solution.
Hence PMC is usually used as the benchmark solution when exact solution of RTE is not

obtainable by analytical means.
2.5. Spectral models

In the flame simulation part of this work (Section 3.2), CO,, H,O, and CO are treated
as participating species. For radiative properties of these participating species we have

used three approaches: a) the Planck-mean gray absorption coefficients [12], b) line-by-line

(LBL) model, and c) full-spectrum k-distribution (FSK) model.

10
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The LBL model captures the entire thermal radiation spectra of the participating species
in terms of individual spectral lines. This leads to several hundreds of thousands to
millions of spectral lines for each species. The spectra for the participating species are
calculated from the spectroscopic databases [66, 67]. The details of the LBL model used in
this work is described in [68].

The LBL calculation requires tremendous amounts of computational resources, which
is still impractical for multi-dimensional flame simulations except for the Monte Carlo
solvers. To take advantage of the fact that the oscillatory absorption coefficient «, has the
same value at many different wavenumbers, the k-distribution method has been developed
to reorder the absorption coefficients into much smoother k-distributions. Different varia-
tions of the k-distribution model exist. Based on the band models, the k-distribution can be
classified as the narrow band k-distribution model [69, 70], the wide band k-distribution
model [71], or the full-spectrum k-distributiori model [72]. For nonhomogeneous media, an
assumption is needed for the spectral absorption coefficients and it is often assumed that ei-
ther they obey some scaling law or are well-correlated [72-74] at the application conditions.
The original FSCK method [72], or the FSCK-1 method, works well for ideally correlated
media, but does not preserve emission in strongly uncorrelated media. To overcome this
difficulty, different FSCK methods with emission conservation are formulated, indepen-
dently by Cai and Modest [73] (FSCK-2), and Solovjov et al. [74] (FSCK-3), which make
FSCK applicable to more challenging conditions. Regarding assembling k-distribution for
mixture, different approaches have been studied, including the superposition method [75],
Modest-Riazzi mixing model [76], correlation fitting, or using pre-calculated database [62].
In this study, the full-spectrum correlated-k-distribution look-up table [62] based on FSCK-
2 [73] is used as the spectral model for flame simulations in this study. The integration of
spectral intensities over the whole spectrum is then replaced by the sum of a numerical

quadrature with N, quadrature points with weights w,,

11
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N,

Spad = — iwgkg(élnaglb -Gy, (12)
where 4, is the stretching function. Using Gauss quadrature, the FSK is able to reduce the
number of required RTE evaluations from over one million required by the LBL method to
less than ten [62]. The RTE solvers are connected to the FSK spectral model via a look-up
table for radiation-coupled flame simulations. This implementation of FSK look-up table
has been shown to produce very accurate results when compared with LBL calculations
in simple one-dimensional configurations and in a turbulent jet flame relevant to the one
studied in this work [61, 62]. An eight-quadrature-point scheme is used in the flame

simulation in this study.
2.6. Radiation-coupled combustion simulation

As demonstrated in Fig. 1, the radiation-coupled flame simulations are two-way cou-
pled, i.e., flow solution serves as an input for radiation calculation whereas radiation
provides a source term for flow equations. Turbulence-radiation interaction is not con-
sidered in this study because the focus is the performance of RTE solvers, and only mean
flow fields and mean radiative heat source are discussed in this study. Both the Py, and
FAM solvers are implemented and coupled to the reacting flow solvers in OpenFOAM®
software environment. At each time step, the scalars from the flow, species mass fractions
(Y), temperature (T), and pressure (P), are passed to the spectral module. In the spectral
calculation, k,, a, are interpolated from the pre-calculated FSK look-up table. Using them,
the governing equations of Py or FAM are solved for each FSK quadrature point. The
integrated radiative heat source, S,y, is then fed back to the energy equation for the next
time step.

With radiation-coupled simulation, it can be seen how the accuracy of different RTE
solvers affect the resulting flow predictions. From an overall energy balance, it is expected
that adding the radiative heat source to the energy equation would result in a flame with

lower temperature. The secondary effects (which are due to the temperature changes) are

12
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Figure 1: Diagram of the coupling between the flow and radiation.

more difficult to analyze due to the complexity of combustion processes. The temperature
changes due to radiation would affect the reaction rates and the resulting combustion
products, as well as the thermodynamic properties of the gas mixture, which would in

turn return different radiative properties for the RTE solvers.

3. Results and discussions

3.1. Homogeneous medium between two infinitely large plates

The convergence characteristics regarding the angular approximations of the Py and
FAM methods depend on many factors, such as optical thickness, homogeneity of the
media, boundary condition, and geometry. A spatially one-dimensional problem is used
to verify the Py and FAM solvers, as well as to study the basic convergence features of both
methods. The 1-D problem represents the radiative transfer between two infinitely large
parallel plates L distance away from one another, as shown in Fig. 2. An exact solution
by direct integration is available for this type of 1-D radiative transfer problems [12] and,
therefore, used to evaluate the accuracy of the Py and FAM methods for different optical
thicknesses.

In OpenFOAM® 1-D slab problems are solved by treating boundaries at two suppressed

13
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cold and black
7=10.0, 1.0, 0.5, 0.001
I(z,0)
0
/\
Z T
' cold and black

Figure 2: Diagram of the radiative transfer between two infinitely large parallel plates.

dimensions as symmetry/empty boundaries. The lower and upper walls are assumed to
be cold and black (I, = 0.0,e = 1.0). A 1x 1 x 101 slab is employed and four optical
thicknesses (1 = 10,1, 0.5,0.001) are selected to test the accuracy of different orders of the
Py methods up to order of 7 and FAM with different numbers of angular discretizations
for these optical thicknesses.

The numerical results in terms of normalized quantities are presented in Figs. 3-7 for
both the Py and FAM. Since the medium is homogeneous, the resulting incident radiation,
G, radiative heat source, —V - q, and the intensity, I, are normalized by 4nl;, 4nxl, and I,
respectively. In common applications, only the incident radiation (G) and the radiative
heat source (—V - q) are of interest. However, to show the convergence characteristics
in terms of angular radiative intensity profiles of the Py and FAM for different optical
thicknesses, the angular distribution of the normalized intensity at the center (i.e., at 7/2)
is also presented together with the exact angular distributions of the normalized intensity
calculated from direct integration [12]. For the Py methods, the angular distribution of
intensity I is reconstructed by summing up the truncated spherical harmonics expansion,

as described by Egs. (7-9). For FAM, the I is reconstructed from the discrete ordinates and

14
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Figure 3: Comparison of numerical solutions from Py (a)(b) and FAM (c)(d) to the exact solutions for the 1-D
slab example with homogeneous medium for optical thickness 7=10; (a)(c) normalized incident radiation
G/4nl, and normalized radiative heat source —V - q/47n«xly,, and (b)(d) normalized radiative intensity I/I.

263 For the case of 7 = 10, which is shown in Fig. 3, all orders of the Py method give
2« solutions close to the exact solution except that the normalized incident radiation and
2ss radiative heat source of P; are slightly off next to boundaries (Fig. 3(a)). This is because the
26 angular distributions of the intensities are almost isotropic for optically thick conditions,

27 as shown in Fig. 3(b) for the normalized intensity at the center as a sampling point. On
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the FAM side, the results from FAM with more than two polar angles (1ny = 4,8,16) are
accurate, but FAM with ny = 2 fails to match the exact solution except at the center of the
domain. The comparison of FAM with different azimuthal discretizations is also given in
the inset of Fig. 3(c). It is confirmed that for this 1-D problem, FAM results only depend
on the polar angle as the configuration is azimuthally symmetric. At the optical thickness
of 10, the normalized radiative heat source is almost zero close to the center (from z/L=0.3
to 0.7), which reflects the physics that the photons emitted close to the center are absorbed
locally so that the net heat exchange at the center is a small portion of the total emission.

There is more energy escaping from the medium to the cold black walls for the case with
7 = 1 because the photons can travel ten times longer distances than the case with 7 = 10
before getting absorbed, as shown in Fig. 4. The results in Fig. 4(a) show that P; incurs
large errors in predicting the normalized incident radiation and radiative heat source. P;
increases the accuracy significantly over P; while the results from Ps and Py are very close
to the exact solution. The angular distribution of intensity at the center in Fig. 4(b) is
anisotropic since the emission path is longer close to 0 = 90° (parallel to the surfaces) than
that from 0 = 0° (perpendicular to the surfaces). And P; predicts the angular distribution
of intensity to be isotropic at the center since the expansion of spherical harmonics of order
1 has only the Ing term at the center (where I'=0). As is shown in Fig. 4(b), increasing
the order of Py consistently improves the accuracy of the Py method until the intensity
predicted by P at the center almost captures the exact angular distribution. The FAM
results with 1y = 8 and 16 show comparable accuracy compared to Ps and Py, respectively,
while FAM with ng = 16 slightly outperform P;. However, FAM with ny = 2 and 4 seem to
perform much worse than P; and P;, with ng = 2 case predicting an isotropic and smaller
angular distribution of intensity at the center.

We further decrease the optical thickness to 7 = 0.5. At the optical thickness of 0.5,
even Py fails to catch the peak of radiative intensity as shown in Fig. 5(b). The angular

distribution of intensities at the center predicted by P and FAM with ng = 2 are isotropic at
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the center, as expected, which fails to capture the anisotropic feature of the exact intensity
distribution. The gradually improving results in Fig. 5 for higher order Py and FAM
with more discrete angles are consistently closer to the exact solution. Oscillations in
the angular distributions are observed for the high-order Py methods in Fig. 5(b). The
high order spherical harmonics Y]’ represent high-frequency bases of a function, and
therefore, higher-order spherical harmonics expansions are able to closely approximate
the exact anisotropic angular distributions but also introduces oscillations to the solution
with regard to angular distributions of intensity.

The root mean squared (rms) relative error of the T = 1 and 0.5 cases for both methods

are shown in Fig. 6. The rms relative error is calculated as

M ~._ . 2
(5 o

i=1
where M is the number of grid points where radiation is evaluated, G is the approximate
solution, and G is the exact solution. Both the Py and FAM solvers perform better in the
optically thicker case (7 = 1) than in the T = 0.5 case, as expected. The rms relative errors
of P; and P; are smaller than the errors from FAM with ny = 2 and 4, respectively. Ps
shows a comparable performance to FAM with ng = 8, with much closer rms relative
errors between the two solvers. FAM with ng = 16 outperforms Py, with a much larger
margin for the optically thinner case (7=0.5). Performances of the Py and FAM essentially
depend on the number of equations that need to be solved. For a general 3-D problem,
N(N +1)/2 equations need to be solved for the Py method and n¢ x 1, equations need to be
solved for the FAM. For this 1-D case, the numbers of equations required can be reduced
to ng for FAM, and (N + 1)/2 for Py. Limited to this example, it can be seen that low-order
Py methods performs better than DOM with less discrete ordinates, but high-order Py
gradually loses its advantages over FAM with more discrete ordinates.
Figure 7 shows the results for the condition of an optically thin case with 7 = 0.001. Both

Py method and FAM show some relative error for incident radiation under the optically
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thin condition due to the small value of G in this case. The error reduction using higher
order Py becomes much less effective than in the 7 = 0.5 case. As shown in Fig. 7(a) and
(b), the improvements from applying a higher order Py become less and less with the
increase in order. It implies that a much higher order of Py is necessary to predict the
correct incident radiation for such an optically thin case. Even though FAM also fails to
predict the correct incident radiation, as shown in Fig. 7(c) and (d), the improvements from
adding more ordinates seem to be linear. This is due to the highly anisotropic angular
profiles of the intensity, which are shown in Fig. 7(b) and (d). Since discrete ordinates
follow along specific solid angles (some of which will align with the anisotropic intensity),
FAM results seem to improve faster than Py with an increase of respective orders in case of
highly anisotropic profiles such as this case. It is important to point out that the radiative
heat source before normalization is what will eventually matter, and if one looks at the
total scale of energy absorbed in Fig. 7(a), which is around 0.2-0.4% of the emitted energy,
the error of the Py method actually can be safely ignored. Even an optically thin solution
will be sufficient for this homogeneous optically thin example. However, the argument
that the errors from radiation calculation is not relevant in optically thin conditions is
only valid for this type of simple homogeneous cases. For non-homogeneous scenarios,
which is usually the case in combustion simulations, the optical thickness significantly
vary locally. It is, therefore, much more difficult to predict the performances of the RTE
solvers in actual combustion simulation based on just 1-D calculation results.

3.2. Turbulent flame
3.2.1. Target flame

Sandia Flame D is a turbulent piloted jet flame [77] with a Reynolds number of
Rep=22,400. The fuel from the main jet is a mixture of methane and air with a ratio
of 1:3 by volume. The main jet with a diameter of d; = 7.2 mm at the center is surrounded
by an annular pilot with a diameter of 2.62d; to stabilize the main jet. The precise and
careful measurement of Sandia Flame D provided a series of high quality experimental

data that makes it a standard benchmark of a turbulent jet flame to validate combustion
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Table 1: Sizes of the main jet, and the pilot and the inlet velocities for the original and scaled Sandia Flame D

Sandia Flame D Sandia Flame D x4
d(mm) u(m/s) d(mm) u(m/s)
main jet 7.2 49.89 28.8 12.4725
pilot 18.864  10.57  75.456 2.6425
co-flow  258.2 0.90 1032.8 0.2250

models.

The effects of radiative transfer for the simulation of Sandia Flame D have been stud-
ied by Li [78], and Pal [79] previously. The importance of radiation and its interaction
with turbulence (TRI) have been established by comparing the simulation results and the
experimental measurements. Pal [79] also found that different spectral models and RTE
solvers yield similar results because of the relatively small size of Sandia Flame D. For this
case, the P; RTE solver with a FSK spectral model is sufficient for the radiation calcula-
tions (though the small differences in predicted temperature resulted in totally different
predictions of NO) [79]. Since the size of turbulent jet flames in real applications tends to
be much larger, Sandia Flame D was numerically scaled four times (Sandia Flame D x4)
to study the effects of radiation for thicker turbulent jet flames [78, 79]. This scaling is
done in such a way that the diameter of the main jet and the outer diameter of the pilot
are quadrupled while decreasing the exit velocity of the mixture out of the jet and pilot to
keep the Reynolds number unchanged. In this work, we use the scaled up Sandia Flame
D x4 as our target flame. The geometric sizes of the main jet and the pilot and the inlet
velocities of the original Sandia Flame D and Sandia Flame D x4 are shown in Table 1. The
co-flow represents the environmental air entering the wind tunnel.

3.2.2. Problem setup

In this study, a 10° wedge shaped grid consisting of 3325 cells (35 cells along the
radial direction, or r-axis and 95 cells along the axial direction, or z-axis) is employed
for radiation-coupled reacting Reynolds-averaged simulation (RAS). The full size of the

computational domain is 0.516 m x 2.88 m and the mesh is optimized to have a finer mesh
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close to the jet to resolve the large local gradients there, and coarser in the co-flow region
and downstream of the flame to save computational time. The inlet boundary conditions
for temperature, velocity and mass fractions of gases are listed in Table 2. Since the Py
formulation is not able to handle any computational cell with zero absorption coefficient,
a minimum value of 0.001 m~! for absorption coefficient is used in simulation. For the
radiative transfer, the outside boundaries are treated as cold and black and the top and
bottom walls are treated as symmetry/specular reflection walls.

Table 2: Inlet boundary conditions of Sandia Flame D x4

main jet pilot co-flow
T (K) 293 1880 291
u (m/s) 12.4725 2.6425  0.2250
Yen, 0.15605 0.0 0.0
Yo, 0.1962 0.054 0.23113
Yn,0 0.0 0.0942 0.00581
Yco, 0.00045 0.1098 0.00055
YN, 0.6473 0.7377762 0.76251
Yco 0.0 0.00407 0.0
Yy, 0.0 0.000129 0.0
Yu 0.0 0.0000248 0.0

In this study, a pressure-based algorithm named PIMPLE or merged PISO (Pressure
Implicit with Splitting of Operator)-SIMPLE (Semi-Implicit Method for Pressure Linked
Equations) algorithm [80] in OpenFOAM® 2.2.x, is employed to resolve the coupling between
pressure and velocity. Since the maximum velocity of the reacting flow in the Sandia
Flame D x4 is much smaller than a Mach number of 0.3, compressibility of the gases can
be neglected, and therefore, PIMPLE is suitable for the flow simulation of Sandia Flame
Dx4. A standard two-equation k — € model is employed as the turbulence model. The
pressure—coupled momentum equation, the energy equation, species transport equations,
and k — € equations along with the chemical kinetics equations are iterated in sequence
to calculate the flow fields of the flame. In the k — € model, the C.; was increased to
1.55 for a better representation of the turbulent flow field. A 49 species and 277 reactions

chemical reaction mechanism for methane, GRI-Mech 2.11 [81], is employed as chemistry
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mechanism and the SIBS (Semi-Implicit Bulirsch Stoer) ODE solver [82] is used to solve the
chemical reaction equations. The PaSR (Partially Stirred Reactor) model [83] is employed
for turbulence-chemistry closure. PaSR is a 0-D reactor inside which the gas is partially
mixed representing nonhomogeneous thermo-chemical states that evolve under chemical
reaction and turbulent mixing.

Radiation models are computationally costly. To save computational time, the sim-
ulation is run in steps in the following manner. The simulation starts with no-radiation
reacting flow. After running the no-radiation reacting flow for 2.2 s (about 9.5 flow-through
times of the main jet or 2 flow-through times of the pilot), radiation models are activated.
The radiation-coupled reacting flow keeps running for another 1.1 s until a time 0of 3.3 s. A
constant time step of 8x107¢ s is used starting from 0 s to the end (3.3 s). Thus, from 2.2's
to 3.3 s, during which time the radiation models are considered, there are a total of 137,500
time steps. One advantage of the FAM and Py methods in radiation-coupled combustion
simulations is that they are able to use results of previous time steps as initial values for
iterations at the next time step, which reduces the computational cost of iterations required
for FAM and Py methods. The governing equations for FAM are not coupled with one
another for non-scattering media so that the benefit of good initial guess is limited. For
the high-order Py methods, since the governing equations are strongly coupled, storing
the results from previous time steps significantly reduces the total numbers of iterations
required. The computational time for the RTE solvers can be further improved by re-
ducing the frequency of radiation evaluations for the radiation-coupled simulation. This
is based on the fact that, in the multi-scale simulation of combustion, the time step is
often determined by chemical models and, therefore, the change of the flow field may
be small between time steps leading to only minor changes in the distribution of S,,; (or
V - q). Therefore, four different frequencies are chosen for solving radiation, i.e., the Py
and FAM solvers are only invoked every 1/10/100/250 time steps. This multiscale feature

of radiation-coupled simulation can also be taken advantage of by a time-blending scheme
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for the PMC solver. Time-blending reduces the number of photon bundles required to
be tracked at each time step by retaining the history of previous time steps. With time-
blending, a relatively small number of photons at each time step is traced, which gives
the radiative heat source (V - q)*®, and then to blend with previous results with different
weights to calculate the averaged radiative heat source (V- q)% for time step k. In this
study, the PMC calculation employs 5,000 photon bundles per time step with a recursive

time-blending scheme, as given by:
V¥ =1-a)V-q® +a(V-@* Y with (V-q)?¥=0k=123,-- (14

with a blending factor & = 0.98. This scheme is equivalent to employing about 1.25 million
photon bundles for every 250 time steps (the contribution from the radiation field 250 time
steps ago is 0.02 x (0.98)*° = 1.28 x 10~*). Another scheme with the same blending factor
but with 10,000 photon bundles per time step is also used as an accuracy validation for
the former one. All computations are performed on 12 Intel® Xeon® X7460 (2.66 GHz)
processors. Simple domain decomposition into blocks with same number of cells along
the axial direction is employed.
3.2.3. Results

The effects of radiation on the temperature predicted by different RTE solvers in the
case of Sandia Flame Dx4 are demonstrated in Fig. 8 in a 2-D contour plot followed
by Fig. 9 showing centerline profiles. The Py/FAM+FSK results with different solving
frequencies are found to be almost the same and are not reproduced here for brevity. The
PMC+LBL results with different photon bundles per time step are also found to be very
close to each other. Hence, only one PMC+LBL result is shown as the reference solution
to be compared with. The profiles of radiative heat source and standard deviations of
the PMC+LBL method (with 5,000 photon bundles per time step) at three axial locations
are shown in Fig. 10, as well, for reference. The standard deviation, shown as the error

bar in PMC results, is obtained by splitting the photon bundles in each time step into 10
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sampling groups.

Radiation and reacting flow are fully coupled in the simulations, so that different radi-
ation models result in different radiative heat sources and, therefore, different temperature
distributions, which in turn further lead to different chemical reaction rates and species
concentrations. As expected, adding radiative transfer cools down the flame. It can be
seen that for Sandia Flame D x4, the choice of radiation model plays a very important
role. Totally ignoring radiation introduces the largest error by over-predicting the flame
temperature. The OT approximation ignores absorption and predicts the lowest temper-
ature distribution; the Py+FSK, FAM+FSK, and PMC+LBL predict considerably higher
temperatures than the OT due to self-absorption. All FAM+FSK results are found to be
very close to the PMC+LBL results, and only the temperature contours predicted from
FAM,,4+FSK and FAMg,s+FSK are shown in Fig. 8 for reference. The small differences
between the results predicted by FAMg,s+FSK and PMC+LBL are believed to be partly
due to the errors of FSK. P;+FSK performs much better than OT, but it still under-predicts
the flame temperatures compared with the results from high-order Py+FSK, FAM+FSK
and PMC+LBL. P; only slightly improves the temperature profile compared with P; while
Ps and P; are very close to P; results. The temperature profiles predicted by high-order
Py methods are still quite different from the FAM and PMC results. The overall accuracy
of the Py method in the axi-symmetric flame simulation seem to be worse than they are in
the 1-D slab case, when compared to the corresponding FAM results, but it is consistent
with the previous findings comparing Py in Cartesian and cylindrical geometries [23].

Peak temperatures along the centerline, T, ., predicted from different solvers as shown
in Fig. 9, are summarized in Table 3. By comparing the peak temperatures, one can observe
a decrease of temperature when employing different radiation models. The emission-only
OT model predicts a drop of peak temperature of 520 K; the PMC+LBL predicts a drop of
329 K; the FAM+FSK predict the temperature drops of 330 K, 338 K, 350 K and 353 K with

an increase in number of discrete ordinates; P1+FSK predicts a drop of 408 K, while the
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s high-order Py+FSK models predict a peak temperature drop of around 386 K.

Table 3: The peak temperatures along the centerline T, . predicted from different solvers at 3.3 s

Radiation Solvers T,. (K) AT, (K) %

No Rad. 2074 / /

oT 1554 -520 -25.1
P1+FSK 1666 -408 -19.7
P3+FSK 1683 -391 -18.8
P5+FSK 1688 -386 -18.6
P7+FSK 1689 -385 -18.6
FAM 2 x4 1744 -330 -15.9
FAM 4 x4 1736 -338 -16.3
FAM 4x8 1724 -350 -16.9
FAM 8x8 1721 -353 -17.0
PMC+LBL 1745 -329 -15.9

489 The radial distributions of two scalars, i.e., temperature (T) and mass fraction of ni-

w0 trogen monoxide (Yno) at three axial locations z/d; = 15, z/d; = 30 and z/d; = 45 are
w1 shown in Figs. 11 and 12, respectively. These two plots show the flame structure and dis-
sz tribution of the pollutant NO. Formation of NO is very sensitive to the local temperature,
w3 hence profiles Yyo provide an indication how the radiation calculation affects the chem-
se4 ical reactions indirectly via its impact on temperature distribution. The radial profiles of
a5 both scalars predicted by FAM+FSK are very close to those from the PMC+LBL. For the
w6 temperature predictions, at upstream locations of z/d]- = 15 and 30, P;+FSK results are
w7 shown to be already very close to PMC+LBL results, while at the downstream location
w8 of z/d; = 45, the errors of Py methods are larger. As the NO production is very sensitive
s to temperature, larger differences in NO profiles can be seen between different radiation
so0 solvers. The Py+FSK solvers underpredict the Yyo by about 20% at the peak due to the
sor - slight underprediction of the temperature. Although FAM+FSK results, except the lowest
sz resolution one, predict accurate NO mass fractions (Fig. 12) at the the center and close to
ss the peaks, there are discrepancies between FAM+FSK and PMC+LBL results at r/d; > 2
s« at z/d; = 15 in Fig. 12(a), and r/d; > 2.6 at z/d; = 30 in Fig. 12(b). Instead, the FAM+FSK

ss  results are found to be close to the Py+FSK results at these locations.
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Figure 4: Comparison of numerical solutions from Py (a)(b) and FAM (c)(d) to the exact solutions for the

1-D slab example with homogeneous medium for optical thickness 7=1; (a)(c) normalized incident radiation
G/4nl, and normalized radiative heat source —V - q/4mn«xl},, and (b)(d) normalized radiative intensity I/I.
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Figure 5: Comparison of numerical solutions from Py (a)(b) and FAM (c)(d) to the exact solutions for the 1-D

slab example with homogeneous medium for optical thickness 7=0.5; (a)(c) normalized incident radiation
G/4nl, and normalized radiative heat source —V - q/47n«xl},, and (b)(d) normalized radiative intensity I/I.
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slab example with homogeneous medium for optical thickness 7=0.001; (a)(c) normalized incident radiation
G/4nl, and normalized radiative heat source —V - q/4mn«xly,, and (b)(d) normalized radiative intensity I/I.



Journal Pre-proof

No Rad.

P1+FSK P3+FSK FAM4x4+FSK FAMS8x8+FSK PMC+LBL
2.8 2.8

2.8

T,K

2.4 24 24

2000
1900

1800

1700

[ 1600
1500

FA] 1400
1300

1200

1100

1000

- 900
800

700

600

500

400

Mlll"lllllll
ylllllll|l

1.6]

o
|

1.2

—— ]

T
N
4||1||||_M|||:|||||

|
|
|

o

i
1
I

-

e e e e e

02 04
r,m r,m r,m r,m r,m

Figure 8: Effects of different RTE solvers on temperature distribution after two flow-through time (at 3.3
s). The movie of the baseline flame simulation without radiation model is provided in the Supplementary
Materials.
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Table 4: The heat release rate from combustion Qc, total emission de, net radiative heat loss de, radiation
escape ratio as de / Qeml and actual radiant fraction yg = de / QC from different radiation solvers

Radiation Solver QC (kW) Qemi (kW) de (kW) Qrad/ Qemi AR

No Rad 68.4 / / / /

oT 66.6 40.7 40.7 100%  61.1%
P1+FSK 67.3 54.4 22.5 36.7%  33.4%
P3+FSK 67.3 63.4 20.8 32.8%  30.9%
P5+FSK 67.3 63.7 20.7 324%  30.7%
P7+FSK 67.3 63.8 20.6 322%  30.6%
FAM 2 x4+FSK 66.6 73.8 17.7 24.0%  32.0%
FAM 4 x4+FSK 67.0 69.8 17.2 247 %  26.6 %
FAM 4 x8+FSK 67.0 68.0 18.6 274 %  25.8%
FAM 8 x8+FSK 67.0 67.7 18.7 277 %  27.8 %
PMC+LBL 67.3 71.3 21.6 302%  28.0%

506 The global energy budget of the flame is examined to further study the effects of
sov radiation predicted by different RTE solvers. Several quantities that describe the overall
ses heat transfer are shown in Table 4. The first quantity of interest is the actual total heat
s9 release rate from combustion, Qc. If the combustion is complete, Qc should equal to the
sto chemical energy that is supplied to the flame in the reactants, which are quantified by
st mpAhc, where myp is the mass tlow rate of the fuel and Ahc is the lower heating value of
sz the fuel. For Sandia Flame Dx4, mpAHc = 70.4 kW and the rate of incoming enthalpy
sz from the hot pilot is around 6% of that. Two quantities related to radiative transfer are
514 the total emission Qemi and the net radiative heat loss de. The total emission Qemi and the
515 net radiative heat loss de are defined as the integral of the radiative emission S,,; and
ste negative radiative heat source —S,,; over the control volume, respectively. In terms of these
sz three quantities, the radiant fraction xr is defined here as the ratio of de / QC (instead of
518 de /mpAHc) and the radiation escape ratio as de / Qemi. The radiant fraction xy is a useful
sie notion to quantify the ratio of the net radiative energy that escapes to the surroundings to
s20 the chemical energy released from the combustion and the radiation escape ratio shows
sz the ratio of escaped radiation to the emitted.

522 These quantities lead to better understanding of the role of radiative transfer on the

s2s combustion process. In addition to the direct cooling effects of radiation discussed ear-
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lier, adding radiation is shown to have slightly lowered the total heat release rate from
combustion Q¢ as a secondary effect resulting in less complete combustion. Total radia-
tive emission is found to be quite large, which is very close to the total heat release from
combustion with the exception of OT. However, more than two-thirds of the emitted radi-
ation gets reabsorbed in the flame indicating significant heat redistribution via radiation.
Comparing global effects from different RTE solvers, as the order of Py and the number of
angles in FAM increase, both de / Qmi and radiant fraction yz approach the LBL-PMC so-
lution. Py appear to predict slightly higher Qy41/Qeni and xx than the FAM solvers, which
are consistent with the lower temperatures predicted by the Py shown in this section.
Table 5 summarizes the computational time for both the reacting flow and the radiation
evaluations including spectral models and RTE solvers. The first column shows the
average total CPU time per time step for reacting flow including the radiation evaluation.
For the Py/FAM+FSK solvers, since radiation is evaluated once per 1/10/100/250 time steps,
the times are collected from each one of the frequency schemes. In the second and third
columns, the average trre + tovernead @0d trsg are shown for runs with radiation evaluated
once per time step only. The number of second-order elliptic PDEs for the corresponding
Py methods, the number of first-order PDEs for the corresponding FAM solvers and the
number of photon bundles traced for the PMC method are also presented in the table.
Two empirical correlations can be obtained for the time cost of the Py methods and the

FAM for the simulations in which the radiation is evaluated in every time step,

tpny = 0.0059 x Mguad X NpDE + tflow + trsk + toverhead,PN (15)

tram = 0.0015 x Mguad X NpDE + tflow + trsk + toverheud,FAM (16)

where 1,,,4 is the number of quadrature points for FSK (8 for the above simulations); nppe
is the number of PDEs for the corresponding RTE method; ts, = 0.82's, trsk = 0.06 s,
toverhead,pn = 0.07 s and tovernead, ram = 0.14s. It can be seen that by storing intensity coefficients

I'" for each time step in coupled simulations, the time cost for different orders of Py
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Table 5: Average CPU time (including flow, chemistry and radiation calculation) per time step (radiation is
evaluated once per 1/10/100/250 time steps for the Px/FAM+FSK solvers and the average trre + toverhead and
trsk are only shown for runs with radiation evaluated every time step)

Radiation Solver ~ Average CPU Time (s) tRTE+H overnead (S)  trsk ()

No Rad 0.82 / /
PMC+LBL 0.87 / / 5,000 with time-blending
PMC+LBL 0.92 / / 10,000 with time-blending

Radiation evaluation freq

1/10/100/250

P1+FSK 0.97/0.85/0.82/0.82 0.09 1 second-order PDE
P3+FSK 1.05/0.87/0.83/0.83 0.17 4 second-order PDE
P5+FSK 1.36/0.88/0.84/0.84 0.48 9 second-order PDE
P7+FSK 1.64/0.90/0.85/0.85 0.76 0.06 16 second-order PDE
FAM 2 x4+FSK 1.11/0.86/0.85/0.84 0.23 ) 8 first-order PDE
FAM 4 x4+FSK 1.20/0.87/0.85/0.84 0.32 16 first-order PDE
FAM 4 x8+FSK 1.42/0.91/0.86/0.86 0.54 32 first-order PDE
FAM 8 x8+FSK 1.78/0.94/0.87/0.87 0.9 64 first-order PDE

methods is actually linearly proportional to the number of the second-order PDEs of the
Py formulation with order N. In principle and especially for this flame, FAM formulation
results in a system of uncoupled PDEs so that the benefit of storing intensities along each
discrete ordinate is limited.

The leftmost number in the first column of Table 5 (corresponding to radiation eval-
uation frequency of 1) for the deterministic solvers represents the most expensive option
regarding solution time. The time reported in the first row (0.82 s) is without any radiation
calculation, i.e., only for flow and chemistry calculations. With their highest orders, which
are P; and FAM 8x8, solving the RTE at every time step means the cost of radiation calcu-
lation (fr7e + towernead + trsk) is equal or greater than the solution of the flow and chemistry
equations (P7: 0.82 s, FAM 8x8: 0.96 s). Reducing the radiation evaluation frequency for
the Pn/FAM+FSK solvers (or applying time blending for the case of PMC+LBL) are shown
to be able to significantly reduce the overall time cost and make radiation evaluation
relatively cheap compared to the computational cost of reacting flow simulations. For ex-
ample, if P; is evaluated at every 100 time steps, the average cost of the radiation-coupled
simulation is comparable to the no-radiation simulation. Since the computational cost of

PMC+LBL solver is proportional to the total number of photon bundles traced for the
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sss same mesh, it is not surprising that the time cost of PMC+LBL is small after applying
se+ the time-blending scheme. Both reducing solving frequency for the deterministic solvers
ses and the time-blending scheme for PMC only work for pseudo-steady-state solutions or in
see transient solutions when the time step is extremely small compared to the time scale of
se7  flow. Usually the PMC is much more expensive compared to the deterministic solvers as a
ss large number of photon bundles are needed for each time step for an acceptable statistical
seo error. The surprisingly high computational efficiency of PMC+LBL in this particular case
s is due to several factors. The most important factor is time-blending. Since this flame is
s a stationary steady flame, this makes aggressive time-blending possible. In principle, by
sz time-blending we are making an assumption that the changes in the scalar field relevant
s3 for radiation calculation are very small over many time steps. Other factors, such as
s+ optical thickness, importance sampling strategies, and mesh sizes, are also affecting the
ss  performance comparisons between deterministic solvers and the PMC+LBL solver. The

s implementation details of PMC are provided in the Appendix A.
s7 4. Conclusion

578 In this work, we present a systematic comparison of several orders of Py and DOM
s (FAM formulation) in 1D homogeneous configuration and in radiation-coupled reacting
sso flow simulation of a turbulent jet flame. The 1D homogeneous case was simulated for four
st optical thicknesses (7 = 10,1,0.5,0.001). The findings from the homogeneous configura-

se2  tions are as follows.

583 e In 1-D cases homogeneous cases, both low-order Py and FAM (except for ny = 2)
584 performs well in optically thick (t = 10) situation, where the radiative intensity is
585 almost isotropic.

586 e For optically thin (7 = 0.001) homogeneous case, both Py and FAM have noticeable

587 relative errors in the prediction of the incident radiation. However, FAM’s results
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improve much faster with the increase of discrete polar angles than that of Py with

the increase of order.

e If the homogeneous case is optically medium thick (tr = 1, 0.5), both Py and FAM
approaches the exact solution with increase in order or polar angles. In these cases,
lower order Py performs better than lower order FAM. However, FAM results im-
prove faster than Py with increase in respective order and higher order FAM performs

better than higher order Py.

e As the optical thickness decreases, the solvers’ capability to capture the anisotropic
intensity profile reduces. Furthermore, Py solvers introduces oscillations in the

angular intensity profile at high orders.

A scaled Sandia D flame (Sandia Dx4) was used as the target turbulent jet flame for
radiation-coupled simulations. In these simulations the Py and FAM solvers were used
with FSK spectral model and the results were compared with an OT model and a PMC+LBL

model. The key takeaway of the study are as follows.
e OT and no-radiation provides grossly inaccurate temperature distribution.

e The choice of RTE solver (and the order of RTE solver) noticeably changes the tem-
perature distribution. FAM is more accurate than Py in this axi-symmetric flame

simulation.

e When compared with the radiant fraction from PMC+LBL simulation, Py+FSK leads

to a higher value while FAM+FSK leads to a lower value.

e The use of an intermittent evaluation of radiation by Py and FAM and the use time-
blending scheme for PMC+LBL can significantly accelerate radiation calculation

without affecting accuracy.
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Appendix A. Some discussions on the photon Monte Carlo method

The photon Monte Carlo (PMC) method accounts for the radiative transport by emit-
ting and tracing a statistically meaningful sample of representative photons bundles or
rays. For this discussion, let’s consider a ray denoted by its index j. Then the ray’s
origin (xj., y?, zé.), direction (6, ¢;), the wavenumber (1)), and initial energy content E;O to-
gether completely define the ray. Here the superscript i denotes the index of the finite
volume computational cell within which the origin point is located indicating that the
point (x;, yj., z?) is located within the extent of the finite volume cell i. The origin and the
direction are determined from independent random numbers as discussed in [12]. The
wavenumber of the ray is obtained using another random number as discussed in [84]. The
energy content of the ray E;O is calculated from the emissive power of the computational
cell from which the ray originated (i.e., cell 7). If the emissive power of cell i is [E;, then the
initial energy of ray j, which originated from cell , is given by E;O = ]E—;, where 7, is the total
number of rays emitted from the cell i. The number of rays to be emitted from each cell (1;)
is determined from distribution of the emissive power such that the higher the emissive
power of the cell, the more rays it will emit. This ensures that the energy content of the
rays are similar to one another making each ray statistically equivalent to one another.
This “adaptive emission” approach makes the scheme statistically more efficient and has
been discussed in detail in [12] and in [85]. As the ray travels through the computational

mesh, its energy is attenuated due to absorption. As a ray of wavenumber 7; containing

k

, inside cell k, its energy reduces

energy E’]f enters cell k and passes an optical distance 7
to E’]fe’fﬁ as it deposits an amount of energy AE’]? = E’Jf (1 —e~™) in to the cell. The ray is
traced until all its energy is attenuated completely or it moves outside the computational
domain. The radiative source term for the medium is then determined by keeping track

of the energy deposition and emission in each computational cell.
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877 At each time step, a total of N, rays are emitted and tracked. The N, rays are organized
78 into n; complete statistical sets such that, N, = n; xn,. Here n, is the number of rays emitted,
o per statistical set, from the entire domain such that n, = >}, n; and Ejy = | jens Ej.o, where
80 [Ejq i the total emissive power of the entire domain, i.e., E;r = Y ; ;. Every statistical set,
ss1 1.e., 1, rays, produces one solution of the radiative transport in the entire field. Therefore,
ss2 every time step one obtains 1, independent solutions of the radiation field, which are then
ses averaged to find the radiation field for that time step. As per the time-blending scheme
s« presented in Eq. (14), this averaged radiation field is then blended with previous solutions

sss before being fed back to the energy conservation equation (Eq. (1)).
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