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 Radiation-coupled simulation of a turbulent jet is reported focusing on the performances of PN 
and DOM

 PN is tested up to the order of 7; DOM is tested up to 8x8 discrete angles
 The convergence mechanisms of PN and DOM with respect to the angular approximation is 

studied in a 1-D slab with a wide range of optical thicknesses
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Abstract

In this study, we systematically compared the accuracy and computational cost of two pop-

ular solution methods for the radiative transfer equation (RTE): the spherical harmonics

method (PN) and the discrete ordinates method (DOM). We first investigated convergence

characteristics of different orders of PN and DOM in a series of 1D homogeneous configura-

tions with varying optical thicknesses. Both solvers perform better for more optically thick

cases. The accuracy of PN methods increases with its order, N, but the gain in accuracy

reduces with the increase in N, i.e., improvement of P7 over P5 is less than that of P3 over

P1. This decreasing trend becomes more prominent as the optical thickness decreases. On

the other hand, DOM’s accuracy increases almost linearly with the increase in the number

of ordinates (or polar angles in this study) in all cases. While comparing the directional

profile of radiative intensity, both solvers perform better when the radiative intensity is

more isotropic. These solvers were then connected with a full spectrum k-distribution

(FSK) spectral model and used to perform radiation-coupled simulations of a turbulent jet

flame in an axi-symmetric cylindrical domain. Results are obtained from P1 to P7 approxi-

mations for PN, and 2ˆ4, 4ˆ4, 4ˆ8, 8ˆ8 finite angles for DOM are compared with that from

an optically thin model, and a reference solution from line-by-line (LBL) photon Monte
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Carlo (PMC) method. The choice of radiation solver shows a noticeable impact on the tem-

perature distribution of the flame. The PN solvers lead to slightly higher radiant fractions

and the DOM solvers lead to slightly lower radiant fractions than the PMC benchmark

solution. Finally, the computational costs of each of these solvers are also reported and an

intermittent evaluation / time blending scheme to improve the computational efficiency of

radiation solvers in radiation-coupled simulations are also demonstrated.

Keywords: Radiative transfer, Spherical harmonics method, Discrete ordinates method,

Turbulent jet flame

1. Introduction1

Thermal radiation is an important mode of heat transfer in combustion [1, 2]. Since ra-2

diation is a volumetric phenomenon, its importance in larger combustion systems such as3

boilers and furnaces is critically important [3, 4]. However, even in small combustion sys-4

tems, including benchtop combustion experiments, the importance of radiation cannot be5

neglected. In laboratory-scale laminar flames, thermal radiation affects the flame temper-6

ature, the flame speed, and the extinction limits [5, 6]. The radiative heat loss also changes7

the local temperature distribution, which in turn affects the production of pollutants such8

as soot and NOx [7, 8]. In turbulent flames the effect of radiation goes beyond the heat9

loss: The interaction between turbulent structures and radiation, known as turbulence-10

radiation interaction or TRI, affects the combustion dynamics significantly [9, 10]. Despite11

of its importance, the modeling of radiative transfer in combustion or relevant conditions12

are sometimes oversimplified primarily due to the computational complexity associated13

with radiation modeling.14

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725
with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the
article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so,
for US government purposes. DOE will provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
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Radiative intensity is calculated by solving the radiative transfer equation (RTE), which15

is an integro-differential equation with spectral (i.e., variation of properties with wave-16

length), spatial, and angular dependencies. The difficulties in modeling radiative transfer17

in combustion are twofold [11]: a) the highly oscillating spectral dependence of radiative18

properties of the participating media, and b) the coupled spatial-angular dependence of19

the RTE.20

The spectral dependence of radiative transfer is modeled by spectral models which21

are broadly classified as gray (i.e., no spectral variation) and nongray models. While gray22

models are simple and computationally cheap, they are also grossly inaccurate [1]. Spectral23

models are a field of active research and excellent reviews of some popular spectral models24

such as weighted sum of grey gas (WSGG), full-spectrum k-distribution (FSK), spectral25

line weighted-sum-of-gray-gases (SLW) models, `-distribution model, statistical narrow26

band (SNB) methods, and line-by-line model (LBL) can be found in the literature [12, 13].27

The accuracy and complexity of spectral models vary significantly and some researchers28

have compared the accuracy of different spectral models in various contexts [14, 15].29

The solution of the RTE, after accounting for spectral modelling, can be done in either30

a deterministic or stochastic way. Most deterministic RTE solvers attempt to solve RTE by31

decoupling the angular dependence of the radiative intensity from its spatial dependence,32

whereas stochastic RTE solvers often follow a ray-tracing-based Monte Carlo approach.33

The two most common family of deterministic RTE solvers are the spherical harmonics34

method and the discrete ordinates method (DOM).35

The spherical harmonics method, or the PN method, approximates the angular distri-36

bution by a truncated series of spherical harmonics, where the order N indicates the order37

of truncation. The spherical harmonics method was first formulated by astrophysicists38

to describe radiative transfer in stars [16], and was then further studied and developed39

for neutron-transport theory [17, 18]. Mark [19, 20] and Marshak [21] developed two40

different approaches to formulate the boundary condition of the PN method. Arpaci and41
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Gozum [22] applied the P3 and P5 methods to the Bénard problem (natural convection42

studies between horizontal parallel plates) and found that the results of P3 and P5 are43

increasingly more accurate than P1, although the accuracy improvement of P5 is unex-44

pectedly small. Higenyi [23] extended and applied PN to 1-D problems in cylindrical45

coordinates and similarly found great improvements for the P3 approximation over the46

P1 approximation and less improvements for P5. In addition, the PN approximations in47

cylindrical and spherical coordinates were shown to be less accurate than in Cartesian48

coordinates. From these early examples, it can be seen that the convergence characteris-49

tics of the PN series with respect to the truncation order N is problem dependent, even50

though theoretically, the PN method converges to the exact solution with an infinitely-51

large order N. In general, the standard PN method may suffer from slower convergence52

when the intensity field is more anisotropic [24]. Detailed derivations of the general 3-D53

formulation in Cartesian coordinates have been given by Davison [18] and Cheng [25].54

However, the number of equations and unknowns as well as the mathematical complexity55

of the method increases rapidly with the order in multidimensional problems, so that the56

order of approximation has mostly been limited to P3 in thermal radiative transfer [26–57

28] and in neutron transport [29] in real applications. More recent developments of 3-D58

formulations come from McClarren et al. [30] and Modest et al. [31–34], independently.59

McClarren et al. [30] developed a semi-implicit linear discontinuous Galerkin method for60

solving the time-dependent PN equations with Mark’s boundary conditions. Modest and61

Yang [31, 32] and Modest [33] have developed a general three-dimensional PN formulation62

consisting of NpN` 1q{2 second-order elliptic PDEs and their Marshak’s boundary condi-63

tions for arbitrary 3-D geometries, which has been implemented in OpenFOAM R© [35, 36] for64

radiation-coupled combustion simulations.65

The discrete ordinate method is arguably the most popular method for solving RTE.66

The basic idea of DOM was also first proposed for stellar radiation in the 1960s [37] and67

was initially adopted for neutron transport [38]. It was later adapted and modified by68
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numerous researchers for heat transfer [39–41]. In DOM, the directional dependence of69

the RTE is resolved by performing an angular/directional discretization followed by an70

integral over the solid angle via numerical quadrature. In simple geometries and without71

any scattering or reflection effects the DOM results in a series of first-order linear partial72

differential equation [12]. Because of the simplicity of this system of equations, extensions73

to higher order approximations of DOM is straightforward. There are several ways in74

which the angular discretization can be performed for DOM. The traditional approach75

uses a finite difference scheme, i.e., the RTE is solved over discrete directions spanning76

the entire 4π solid angle. Instead of discrete directions (i.e., finite differencing), one of the77

popular variations of DOM uses finite solid angles leading to what is often referred as the78

finite volume method (FVM) for radiation. This FVM for radiation was first proposed in79

the 1990s [42–45]. The name finite volume method for radiation can be confusing owing to80

the existence of unrelated spatial finite volume discretization schemes in flow problems.81

Hence, it has also been referred as Finite Angle Method (FAM) [12]. In this work we use82

the term FAM instead of FVM to avoid confusion. The FAM-based DOM has been used83

in complex geometries [46, 47] and in combined heat transfer problems [48, 49]. The finite84

angle method was found to outperform traditional (i.e., finite difference-based) DOM in85

various configurations [50–52].86

Despite the long existence of different RTE solvers, there have been very few studies87

that compared them on an equal footing on simple and complex problems. The FAM for-88

mulation of DOM was compared with discrete transfer method (DTM) [53] for combustion89

configurations and FAM was found to perform better than DTM [54, 55]. Mishra et al. [56]90

compared traditional DOM and FAM with DTM for laser transport in participating media91

and reported comparable results from all. Frank et al. [57] compared P1 method with92

SP1 (simplified P1 [58]) and moment methods for radiation in simple configurations and93

showed that they all perform comparably. A comparison of P1 and DOM completed for94

steam furnace also showed practically no difference between the solvers when used with95
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a WSGG model [59]. Roy et al. [60, 61] compared FAM-based DOM and PN in frozen96

field calculations for a turbulent flame and showed that lower-order DOM is slightly more97

accurate than lower order PN. Sun et al. [49] compared P1, DOM, and SP3 in conjugate98

conduction-radiation problems in 2D and showed that for lower optical thickness DOM99

performs better than the other two. However, there has not been any systematic study,100

to our knowledge, that compares these different orders of PN and DOM either in simple101

configurations or in coupled combustion simulations. This work attempts to fill that gap102

in the literature. We present a comparison of PN (N “ 1, 3, 5, 7) and FAM (with differ-103

ent angular discretizations) in a simple 1D configuration, where an analytical solution is104

available, and in a 3D coupled turbulent jet flame simulation. It is noted here that the105

scope of this work is limited to comparison of radiation models and is not focused on106

detailed validation of the jet flame simulation, which would require further tweaking and107

validation of the turbulence model and chemical kinetics model.108

The rest of the paper is organized as follows. In Section 2, we describe the basic109

formulations of the PN method and DOM used in this study, and their couplings to the110

reacting flow equations. In this work, we use the FAM formulation for DOM discretization.111

Hence, unless otherwise specified, for the rest of the document, we will use the name FAM112

to indicate the FAM-based DOM formulation.113

In Section 3.1, the PN and FAM are applied to a 1D homogeneous problem. The exact114

solution is obtained for this simple geometry. With this simple example, we look at115

the different convergence characteristics of the PN method and FAM for different optical116

thicknesses. In Section 3.2, a turbulent jet flame is simulated with both PN and FAM117

along with an optically thin model and a Monte Carlo model for benchmarking. The118

computational cost and global characteristics of the flame is compared across all the119

radiation models. For radiative properties of combustion gases, we use an FSK look-120

up table [62] as the spectral model with the PN and FAM in the flame simulations. An121

accurate line-by-line (LBL) spectral model is used with Monte Carlo RTE solver, while for122
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the optically thin model, the Planck-Mean absorption coefficient is used.123

2. Solution Methods124

2.1. Radiative transfer equation125

Thermal radiation is heat transfer via electromagnetic wave and therefore occurs at a126

timescale much faster than that of the reacting flow in conventional combustion systems,127

so much so that a quasi-steady approximation for radiative transport is adequate. The128

impact of radiation is included in the energy transport via a source term in the energy129

conservation equation in combustion systems, which may be written as130

Bρh
Bt

` Bρhui

Bxi
“ ´BJh

i

Bxi
` Dp

Dt
` τi j

Bu j

Bxi
` Srad . (1)

In Eq. (1), Srad denotes the radiative source term; ρ indicates density; h denotes enthalpy;

ui denotes ith component of velocity vector; Jh
i indicates the effective enthalpy flux; p is

the total pressure; τi j is the stress tensor component, while t and xi are time and spatial

coordinates, respectively. The radiative source term (Srad), which is also the negative of the

divergence of the radiative heat flux (q), is the net balance of emission (Semi) and absorption

(Sabs), i.e.,

Srad ” ´∇ ¨ q “ Semi ` Sabs , (2)

Semi “ ´4κPσT4 , (3)

Sabs “
ż 8

0
κηGηdη , (4)

Gη “
ż

4π
IηdΩ , (5)

here Iη is the spectral radiative intensity, and the subscript η denotes wavenumber indi-

cating spectral dependence. κη is the absorption coefficient at the wavenumber η, κP is the

Planck-mean absorption coefficient, and σ is the Stefan-Boltzmann constant. Gη denotes

the spectral incident radiation. The spectral radiative intensity (i.e., radiative intensity

at wavenumber η), Iη is obtained by solving a quasi-steady spectral radiative transfer
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equation, which is a five-dimensional integro-differential equation:

dIη
ds

“ κηIbη ´ κηIη ´ σsηIη `
σsη

4π

ż

4π
IηΦηpŝi, ŝqdΩi . (6)

Here radiative intensity Iηpr, ŝq is the dependent variable; r and ŝ are the spatial and131

directional dimensions of the RTE; ση is the scattering coefficients of the medium at the132

wavenumber η; Ibη is the blackbody intensity; Φηpŝi, ŝq is the scattering phase function133

between directions ŝi and ŝ; Ωi is the solid angle. Quantities with a subscript η vary along134

the electromagnetic spectrum, indicating the spectral nature of the RTE. The left hand side135

of the equation is the spatial derivative of radiative intensity Iηpr, ŝq, and each term on the136

right hand side corresponds to an augmentation or attenuation of radiative energy due to137

emission, absorption, and scattering.138

2.2. Spherical Harmonics Method139

In the spherical harmonics method, also known as the PN approximation, the radiative140

intensity is approximated as a finite series of spherical harmonics as141

Iηpr, ŝq “
Nÿ

n“0

nÿ

m“´n

Im
n prqYm

n pŝq, (7)

where Im
n prq is the intensity coefficient with respect to the corresponding spherical har-142

monics basis Ym
n pŝq, so that the spatial and directional dependencies of the intensity Iηpr, ŝq143

are decoupled. The spherical harmonics Ym
n pŝq, or Ym

n pψ, θq, satisfy Laplace’s equation in144

spherical coordinates, and their real forms are defined as,145

Ym
n pψ, θq “

$
’&
’%

cospmψqPm
n pcosθq for m ě 0

sinp|m|ψqPm
n pcosθq for m ă 0

, (8)

where θ and ψ are polar and azimuthal angles, respectively; Pm
n pcosθq are associated146

Legendre polynomials [63], given by147

Pm
n pµq “ p´1qm p1´ µ

2q|m|{2
2nn!

dn`|m|

dµn`|m| pµ2 ´ 1qn . (9)
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Exploiting the orthogonality of the spherical harmonics, one obtains a system of pN ` 1q2148

first-order PDEs for the intensity coefficients. The number of governing equations can149

be further reduced by eliminating the odd-order intensity coefficients by their relation150

to the gradients of the even-order ones, which transforms the governing equations from151

pN ` 1q2 first-order PDEs into NpN ` 1q{2 second-order elliptic PDEs [31, 32]. For the152

axi-symmetric flame simulation in this study, the two-dimensional axisymmetric PN for-153

mulation described in [36] is used, which consists of pN ` 1q2{4 elliptic PDEs, and their154

corresponding Marshak’s boundary conditions.155

2.3. Discrete Ordinates Method156

In the discrete ordinates method (DOM) following the FAM approach, the directional157

component of the RTE ŝ is discretized into a finite set of N solid angles representing N158

ordinates. Each ordinate is denoted ŝi where i “ 1, 2, . . . ,N and has a corresponding159

quadrature weight. Equation (6) is then transformed into a set of N first order PDEs given160

by161

dIi,η

dsi
“ κηIbη ´ κηIi,η ´ σηIi,η `

ση
4π

Nÿ

j“1

I j,ηpŝ jqΦηpŝ j, ŝiqdΩi . (10)

This system is solved for N partial intensities Ii,η. Then, numerical quadrature using162

the partial intensities and the quadrature weights can be employed to approximate the163

radiative intensity Iη, radiative heat flux q, and incident radiation G. The directional164

variable ŝ is discretized along both the polar (θ) and azimuthal (φ) directions. Thus, the165

discretization that is used in this implementation of FAM is specified by nθ ˆ nφ where166

nθ is the number of polar angles and nφ is the number of azimuthal angle. The order of167

accuracy of the FAM is directly related to the total number of ordinates N “ nθ ˆ nφ. The168

computational expense of FAM is also expected to be correlated with N since N PDEs must169

be solved.170

Usually at least 4 azimuthal angles are used in practice as any less leads to worse results171

unless the configuration is optically very thick [64]. In the flame simulation of this work,172

FAM with 2 ˆ 4, 4 ˆ 4, 4 ˆ 8, and 8 ˆ 8 ordinates are used. Since the most complicated173
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combustion configuration that is investigated in this work is also rotationally invariant,174

the axisymmetric formulation of FAM and corresponding rotational invariant boundary175

conditions are used [65].176

2.4. Optically thin and photon Monte Carlo methods177

The optically thin (OT) approach and photon Monte Carlo (PMC) approach are the two178

extremes of RTE solution methods. In OT, the medium is assumed to be optically thin, i.e.,179

it does not absorb any incident radiation and only loses energy by emission. In this case,180

the RTE does not need to be solved as the radiative source term is simply181

Srad,OT “ ´4κPσT4 . (11)

As evident, the OT approach is the simplest, but also the least accurate as it does not182

capture any reabsorption of radiation.183

The PMC method is, on the other hand, the most accurate method to solve RTE. In184

PMC, the radiative transfer is solved by tracking a large number of radiation rays or185

photon bundles through the participating medium. Each bundle carries a finite amount of186

energy which gets absorbed by the medium it passes through. By keeping track of energy187

deposition by these rays one can resolve the net radiative transfer process. More details188

of the PMC can be found in the literature [12]. As is with any Monte Carlo approach,189

PMC require a large number of rays and is computationally very costly. However, with190

appropriately large number of rays, the PMC solution approaches the exact solution.191

Hence PMC is usually used as the benchmark solution when exact solution of RTE is not192

obtainable by analytical means.193

2.5. Spectral models194

In the flame simulation part of this work (Section 3.2), CO2, H2O, and CO are treated195

as participating species. For radiative properties of these participating species we have196

used three approaches: a) the Planck-mean gray absorption coefficients [12], b) line-by-line197

(LBL) model, and c) full-spectrum k-distribution (FSK) model.198
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The LBL model captures the entire thermal radiation spectra of the participating species199

in terms of individual spectral lines. This leads to several hundreds of thousands to200

millions of spectral lines for each species. The spectra for the participating species are201

calculated from the spectroscopic databases [66, 67]. The details of the LBL model used in202

this work is described in [68].203

The LBL calculation requires tremendous amounts of computational resources, which204

is still impractical for multi-dimensional flame simulations except for the Monte Carlo205

solvers. To take advantage of the fact that the oscillatory absorption coefficient κη has the206

same value at many different wavenumbers, the k-distribution method has been developed207

to reorder the absorption coefficients into much smoother k-distributions. Different varia-208

tions of the k-distribution model exist. Based on the band models, the k-distribution can be209

classified as the narrow band k-distribution model [69, 70], the wide band k-distribution210

model [71], or the full-spectrum k-distribution model [72]. For nonhomogeneous media, an211

assumption is needed for the spectral absorption coefficients and it is often assumed that ei-212

ther they obey some scaling law or are well-correlated [72–74] at the application conditions.213

The original FSCK method [72], or the FSCK-1 method, works well for ideally correlated214

media, but does not preserve emission in strongly uncorrelated media. To overcome this215

difficulty, different FSCK methods with emission conservation are formulated, indepen-216

dently by Cai and Modest [73] (FSCK-2), and Solovjov et al. [74] (FSCK-3), which make217

FSCK applicable to more challenging conditions. Regarding assembling k-distribution for218

mixture, different approaches have been studied, including the superposition method [75],219

Modest-Riazzi mixing model [76], correlation fitting, or using pre-calculated database [62].220

In this study, the full-spectrum correlated-k-distribution look-up table [62] based on FSCK-221

2 [73] is used as the spectral model for flame simulations in this study. The integration of222

spectral intensities over the whole spectrum is then replaced by the sum of a numerical223

quadrature with N1 quadrature points with weights w1,224
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Srad “ ´
N1ÿ

w1k1p4πa1Ib ´ G1q , (12)

where a1 is the stretching function. Using Gauss quadrature, the FSK is able to reduce the225

number of required RTE evaluations from over one million required by the LBL method to226

less than ten [62]. The RTE solvers are connected to the FSK spectral model via a look-up227

table for radiation-coupled flame simulations. This implementation of FSK look-up table228

has been shown to produce very accurate results when compared with LBL calculations229

in simple one-dimensional configurations and in a turbulent jet flame relevant to the one230

studied in this work [61, 62]. An eight-quadrature-point scheme is used in the flame231

simulation in this study.232

2.6. Radiation-coupled combustion simulation233

As demonstrated in Fig. 1, the radiation-coupled flame simulations are two-way cou-234

pled, i.e., flow solution serves as an input for radiation calculation whereas radiation235

provides a source term for flow equations. Turbulence-radiation interaction is not con-236

sidered in this study because the focus is the performance of RTE solvers, and only mean237

flow fields and mean radiative heat source are discussed in this study. Both the PN, and238

FAM solvers are implemented and coupled to the reacting flow solvers in OpenFOAM R©
239

software environment. At each time step, the scalars from the flow, species mass fractions240

(Y), temperature (T), and pressure (P), are passed to the spectral module. In the spectral241

calculation, k1, a1 are interpolated from the pre-calculated FSK look-up table. Using them,242

the governing equations of PN or FAM are solved for each FSK quadrature point. The243

integrated radiative heat source, Srad, is then fed back to the energy equation for the next244

time step.245

With radiation-coupled simulation, it can be seen how the accuracy of different RTE246

solvers affect the resulting flow predictions. From an overall energy balance, it is expected247

that adding the radiative heat source to the energy equation would result in a flame with248

lower temperature. The secondary effects (which are due to the temperature changes) are249
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Figure 1: Diagram of the coupling between the flow and radiation.

more difficult to analyze due to the complexity of combustion processes. The temperature250

changes due to radiation would affect the reaction rates and the resulting combustion251

products, as well as the thermodynamic properties of the gas mixture, which would in252

turn return different radiative properties for the RTE solvers.253

3. Results and discussions254

3.1. Homogeneous medium between two infinitely large plates255

The convergence characteristics regarding the angular approximations of the PN and256

FAM methods depend on many factors, such as optical thickness, homogeneity of the257

media, boundary condition, and geometry. A spatially one-dimensional problem is used258

to verify the PN and FAM solvers, as well as to study the basic convergence features of both259

methods. The 1-D problem represents the radiative transfer between two infinitely large260

parallel plates L distance away from one another, as shown in Fig. 2. An exact solution261

by direct integration is available for this type of 1-D radiative transfer problems [12] and,262

therefore, used to evaluate the accuracy of the PN and FAM methods for different optical263

thicknesses.264

In OpenFOAM R© 1-D slab problems are solved by treating boundaries at two suppressed265
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z

τ = 10.0, 1.0, 0.5, 0.001

I(z,θ)

θ

cold and black

cold and black

Figure 2: Diagram of the radiative transfer between two infinitely large parallel plates.

dimensions as symmetry/empty boundaries. The lower and upper walls are assumed to266

be cold and black (Iw “ 0.0, ε “ 1.0). A 1 ˆ 1 ˆ 101 slab is employed and four optical267

thicknesses (τ “ 10, 1, 0.5, 0.001) are selected to test the accuracy of different orders of the268

PN methods up to order of 7 and FAM with different numbers of angular discretizations269

for these optical thicknesses.270

The numerical results in terms of normalized quantities are presented in Figs. 3–7 for271

both the PN and FAM. Since the medium is homogeneous, the resulting incident radiation,272

G, radiative heat source, ´∇ ¨ q, and the intensity, I, are normalized by 4πIb, 4πκIb and Ib,273

respectively. In common applications, only the incident radiation (G) and the radiative274

heat source (´∇ ¨ q) are of interest. However, to show the convergence characteristics275

in terms of angular radiative intensity profiles of the PN and FAM for different optical276

thicknesses, the angular distribution of the normalized intensity at the center (i.e., at τ{2)277

is also presented together with the exact angular distributions of the normalized intensity278

calculated from direct integration [12]. For the PN methods, the angular distribution of279

intensity I is reconstructed by summing up the truncated spherical harmonics expansion,280

as described by Eqs. (7-9). For FAM, the I is reconstructed from the discrete ordinates and281
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the corresponding weights.282
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Figure 3: Comparison of numerical solutions from PN (a)(b) and FAM (c)(d) to the exact solutions for the 1-D
slab example with homogeneous medium for optical thickness τ=10; (a)(c) normalized incident radiation
G{4πIb and normalized radiative heat source ´∇ ¨ q{4πκIb, and (b)(d) normalized radiative intensity I{Ib.

For the case of τ “ 10, which is shown in Fig. 3, all orders of the PN method give283

solutions close to the exact solution except that the normalized incident radiation and284

radiative heat source of P1 are slightly off next to boundaries (Fig. 3(a)). This is because the285

angular distributions of the intensities are almost isotropic for optically thick conditions,286

as shown in Fig. 3(b) for the normalized intensity at the center as a sampling point. On287
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the FAM side, the results from FAM with more than two polar angles (nθ “ 4, 8, 16) are288

accurate, but FAM with nθ “ 2 fails to match the exact solution except at the center of the289

domain. The comparison of FAM with different azimuthal discretizations is also given in290

the inset of Fig. 3(c). It is confirmed that for this 1-D problem, FAM results only depend291

on the polar angle as the configuration is azimuthally symmetric. At the optical thickness292

of 10, the normalized radiative heat source is almost zero close to the center (from z{L=0.3293

to 0.7), which reflects the physics that the photons emitted close to the center are absorbed294

locally so that the net heat exchange at the center is a small portion of the total emission.295

There is more energy escaping from the medium to the cold black walls for the case with296

τ “ 1 because the photons can travel ten times longer distances than the case with τ “ 10297

before getting absorbed, as shown in Fig. 4. The results in Fig. 4(a) show that P1 incurs298

large errors in predicting the normalized incident radiation and radiative heat source. P3299

increases the accuracy significantly over P1 while the results from P5 and P7 are very close300

to the exact solution. The angular distribution of intensity at the center in Fig. 4(b) is301

anisotropic since the emission path is longer close to θ “ 90˝ (parallel to the surfaces) than302

that from θ “ 0˝ (perpendicular to the surfaces). And P1 predicts the angular distribution303

of intensity to be isotropic at the center since the expansion of spherical harmonics of order304

1 has only the I0
0Y0

0 term at the center (where Im
1 =0). As is shown in Fig. 4(b), increasing305

the order of PN consistently improves the accuracy of the PN method until the intensity306

predicted by P7 at the center almost captures the exact angular distribution. The FAM307

results with nθ “ 8 and 16 show comparable accuracy compared to P5 and P7, respectively,308

while FAM with nθ “ 16 slightly outperform P7. However, FAM with nθ “ 2 and 4 seem to309

perform much worse than P1 and P3, with nθ “ 2 case predicting an isotropic and smaller310

angular distribution of intensity at the center.311

We further decrease the optical thickness to τ “ 0.5. At the optical thickness of 0.5,312

even P7 fails to catch the peak of radiative intensity as shown in Fig. 5(b). The angular313

distribution of intensities at the center predicted by P1 and FAM with nθ “ 2 are isotropic at314
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the center, as expected, which fails to capture the anisotropic feature of the exact intensity315

distribution. The gradually improving results in Fig. 5 for higher order PN and FAM316

with more discrete angles are consistently closer to the exact solution. Oscillations in317

the angular distributions are observed for the high-order PN methods in Fig. 5(b). The318

high order spherical harmonics Ym
n represent high-frequency bases of a function, and319

therefore, higher-order spherical harmonics expansions are able to closely approximate320

the exact anisotropic angular distributions but also introduces oscillations to the solution321

with regard to angular distributions of intensity.322

The root mean squared (rms) relative error of the τ “ 1 and 0.5 cases for both methods323

are shown in Fig. 6. The rms relative error is calculated as324

ε “
gffe 1

M

Mÿ

i“1

ˆ
G̃i ´ Gi

Gi

˙2

, (13)

where M is the number of grid points where radiation is evaluated, G̃ is the approximate325

solution, and G is the exact solution. Both the PN and FAM solvers perform better in the326

optically thicker case (τ “ 1) than in the τ “ 0.5 case, as expected. The rms relative errors327

of P1 and P3 are smaller than the errors from FAM with nθ “ 2 and 4, respectively. P5328

shows a comparable performance to FAM with nθ “ 8, with much closer rms relative329

errors between the two solvers. FAM with nθ “ 16 outperforms P7, with a much larger330

margin for the optically thinner case (τ=0.5). Performances of the PN and FAM essentially331

depend on the number of equations that need to be solved. For a general 3-D problem,332

NpN`1q{2 equations need to be solved for the PN method and nθˆnφ equations need to be333

solved for the FAM. For this 1-D case, the numbers of equations required can be reduced334

to nθ for FAM, and pN` 1q{2 for PN. Limited to this example, it can be seen that low-order335

PN methods performs better than DOM with less discrete ordinates, but high-order PN336

gradually loses its advantages over FAM with more discrete ordinates.337

Figure 7 shows the results for the condition of an optically thin case with τ “ 0.001. Both338

PN method and FAM show some relative error for incident radiation under the optically339
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thin condition due to the small value of G in this case. The error reduction using higher340

order PN becomes much less effective than in the τ “ 0.5 case. As shown in Fig. 7(a) and341

(b), the improvements from applying a higher order PN become less and less with the342

increase in order. It implies that a much higher order of PN is necessary to predict the343

correct incident radiation for such an optically thin case. Even though FAM also fails to344

predict the correct incident radiation, as shown in Fig. 7(c) and (d), the improvements from345

adding more ordinates seem to be linear. This is due to the highly anisotropic angular346

profiles of the intensity, which are shown in Fig. 7(b) and (d). Since discrete ordinates347

follow along specific solid angles (some of which will align with the anisotropic intensity),348

FAM results seem to improve faster than PN with an increase of respective orders in case of349

highly anisotropic profiles such as this case. It is important to point out that the radiative350

heat source before normalization is what will eventually matter, and if one looks at the351

total scale of energy absorbed in Fig. 7(a), which is around 0.2-0.4% of the emitted energy,352

the error of the PN method actually can be safely ignored. Even an optically thin solution353

will be sufficient for this homogeneous optically thin example. However, the argument354

that the errors from radiation calculation is not relevant in optically thin conditions is355

only valid for this type of simple homogeneous cases. For non-homogeneous scenarios,356

which is usually the case in combustion simulations, the optical thickness significantly357

vary locally. It is, therefore, much more difficult to predict the performances of the RTE358

solvers in actual combustion simulation based on just 1-D calculation results.359

3.2. Turbulent flame360

3.2.1. Target flame361

Sandia Flame D is a turbulent piloted jet flame [77] with a Reynolds number of362

ReD=22,400. The fuel from the main jet is a mixture of methane and air with a ratio363

of 1:3 by volume. The main jet with a diameter of d j “ 7.2 mm at the center is surrounded364

by an annular pilot with a diameter of 2.62d j to stabilize the main jet. The precise and365

careful measurement of Sandia Flame D provided a series of high quality experimental366

data that makes it a standard benchmark of a turbulent jet flame to validate combustion367
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Table 1: Sizes of the main jet, and the pilot and the inlet velocities for the original and scaled Sandia Flame D

Sandia Flame D Sandia Flame Dˆ4
d (mm) u (m/s) d (mm) u (m/s)

main jet 7.2 49.89 28.8 12.4725
pilot 18.864 10.57 75.456 2.6425

co-flow 258.2 0.90 1032.8 0.2250

models.368

The effects of radiative transfer for the simulation of Sandia Flame D have been stud-369

ied by Li [78], and Pal [79] previously. The importance of radiation and its interaction370

with turbulence (TRI) have been established by comparing the simulation results and the371

experimental measurements. Pal [79] also found that different spectral models and RTE372

solvers yield similar results because of the relatively small size of Sandia Flame D. For this373

case, the P1 RTE solver with a FSK spectral model is sufficient for the radiation calcula-374

tions (though the small differences in predicted temperature resulted in totally different375

predictions of NO) [79]. Since the size of turbulent jet flames in real applications tends to376

be much larger, Sandia Flame D was numerically scaled four times (Sandia Flame Dˆ4)377

to study the effects of radiation for thicker turbulent jet flames [78, 79]. This scaling is378

done in such a way that the diameter of the main jet and the outer diameter of the pilot379

are quadrupled while decreasing the exit velocity of the mixture out of the jet and pilot to380

keep the Reynolds number unchanged. In this work, we use the scaled up Sandia Flame381

Dˆ4 as our target flame. The geometric sizes of the main jet and the pilot and the inlet382

velocities of the original Sandia Flame D and Sandia Flame Dˆ4 are shown in Table 1. The383

co-flow represents the environmental air entering the wind tunnel.384

3.2.2. Problem setup385

In this study, a 10˝ wedge shaped grid consisting of 3325 cells (35 cells along the386

radial direction, or r-axis and 95 cells along the axial direction, or z-axis) is employed387

for radiation-coupled reacting Reynolds-averaged simulation (RAS). The full size of the388

computational domain is 0.516 mˆ 2.88 m and the mesh is optimized to have a finer mesh389
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close to the jet to resolve the large local gradients there, and coarser in the co-flow region390

and downstream of the flame to save computational time. The inlet boundary conditions391

for temperature, velocity and mass fractions of gases are listed in Table 2. Since the PN392

formulation is not able to handle any computational cell with zero absorption coefficient,393

a minimum value of 0.001 m´1 for absorption coefficient is used in simulation. For the394

radiative transfer, the outside boundaries are treated as cold and black and the top and395

bottom walls are treated as symmetry/specular reflection walls.396

Table 2: Inlet boundary conditions of Sandia Flame Dˆ4

main jet pilot co-flow
T (K) 293 1880 291
u (m/s) 12.4725 2.6425 0.2250
YCH4 0.15605 0.0 0.0
YO2 0.1962 0.054 0.23113
YH2O 0.0 0.0942 0.00581
YCO2 0.00045 0.1098 0.00055
YN2 0.6473 0.7377762 0.76251
YCO 0.0 0.00407 0.0
YH2 0.0 0.000129 0.0
YH 0.0 0.0000248 0.0

In this study, a pressure-based algorithm named PIMPLE or merged PISO (Pressure397

Implicit with Splitting of Operator)–SIMPLE (Semi-Implicit Method for Pressure Linked398

Equations) algorithm [80] in OpenFOAM R© 2.2.x, is employed to resolve the coupling between399

pressure and velocity. Since the maximum velocity of the reacting flow in the Sandia400

Flame Dˆ4 is much smaller than a Mach number of 0.3, compressibility of the gases can401

be neglected, and therefore, PIMPLE is suitable for the flow simulation of Sandia Flame402

Dˆ4. A standard two-equation k ´ ε model is employed as the turbulence model. The403

pressure-coupled momentum equation, the energy equation, species transport equations,404

and k ´ ε equations along with the chemical kinetics equations are iterated in sequence405

to calculate the flow fields of the flame. In the k ´ ε model, the Cε1 was increased to406

1.55 for a better representation of the turbulent flow field. A 49 species and 277 reactions407

chemical reaction mechanism for methane, GRI–Mech 2.11 [81], is employed as chemistry408
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mechanism and the SIBS (Semi-Implicit Bulirsch Stoer) ODE solver [82] is used to solve the409

chemical reaction equations. The PaSR (Partially Stirred Reactor) model [83] is employed410

for turbulence-chemistry closure. PaSR is a 0-D reactor inside which the gas is partially411

mixed representing nonhomogeneous thermo-chemical states that evolve under chemical412

reaction and turbulent mixing.413

Radiation models are computationally costly. To save computational time, the sim-414

ulation is run in steps in the following manner. The simulation starts with no-radiation415

reacting flow. After running the no-radiation reacting flow for 2.2 s (about 9.5 flow-through416

times of the main jet or 2 flow-through times of the pilot), radiation models are activated.417

The radiation-coupled reacting flow keeps running for another 1.1 s until a time of 3.3 s. A418

constant time step of 8ˆ10´6 s is used starting from 0 s to the end (3.3 s). Thus, from 2.2 s419

to 3.3 s, during which time the radiation models are considered, there are a total of 137,500420

time steps. One advantage of the FAM and PN methods in radiation-coupled combustion421

simulations is that they are able to use results of previous time steps as initial values for422

iterations at the next time step, which reduces the computational cost of iterations required423

for FAM and PN methods. The governing equations for FAM are not coupled with one424

another for non-scattering media so that the benefit of good initial guess is limited. For425

the high-order PN methods, since the governing equations are strongly coupled, storing426

the results from previous time steps significantly reduces the total numbers of iterations427

required. The computational time for the RTE solvers can be further improved by re-428

ducing the frequency of radiation evaluations for the radiation-coupled simulation. This429

is based on the fact that, in the multi-scale simulation of combustion, the time step is430

often determined by chemical models and, therefore, the change of the flow field may431

be small between time steps leading to only minor changes in the distribution of Srad (or432

∇ ¨ q). Therefore, four different frequencies are chosen for solving radiation, i.e., the PN433

and FAM solvers are only invoked every 1/10/100/250 time steps. This multiscale feature434

of radiation-coupled simulation can also be taken advantage of by a time-blending scheme435
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for the PMC solver. Time-blending reduces the number of photon bundles required to436

be tracked at each time step by retaining the history of previous time steps. With time-437

blending, a relatively small number of photons at each time step is traced, which gives438

the radiative heat source p∇ ¨ qqpkq, and then to blend with previous results with different439

weights to calculate the averaged radiative heat source p∇ ¨ qqpkq for time step k. In this440

study, the PMC calculation employs 5,000 photon bundles per time step with a recursive441

time-blending scheme, as given by:442

p∇ ¨ qqpkq “ p1´ αqp∇ ¨ qqpkq ` αp∇ ¨ qqpk´1q with p∇ ¨ qqp0q “ 0, k “ 1, 2, 3, ¨ ¨ ¨ (14)

with a blending factor α “ 0.98. This scheme is equivalent to employing about 1.25 million443

photon bundles for every 250 time steps (the contribution from the radiation field 250 time444

steps ago is 0.02ˆ p0.98q250 “ 1.28ˆ 10´4). Another scheme with the same blending factor445

but with 10,000 photon bundles per time step is also used as an accuracy validation for446

the former one. All computations are performed on 12 Intel R© Xeon R© X7460 (2.66 GHz)447

processors. Simple domain decomposition into blocks with same number of cells along448

the axial direction is employed.449

3.2.3. Results450

The effects of radiation on the temperature predicted by different RTE solvers in the451

case of Sandia Flame Dˆ4 are demonstrated in Fig. 8 in a 2-D contour plot followed452

by Fig. 9 showing centerline profiles. The PN/FAM+FSK results with different solving453

frequencies are found to be almost the same and are not reproduced here for brevity. The454

PMC+LBL results with different photon bundles per time step are also found to be very455

close to each other. Hence, only one PMC+LBL result is shown as the reference solution456

to be compared with. The profiles of radiative heat source and standard deviations of457

the PMC+LBL method (with 5,000 photon bundles per time step) at three axial locations458

are shown in Fig. 10, as well, for reference. The standard deviation, shown as the error459

bar in PMC results, is obtained by splitting the photon bundles in each time step into 10460
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sampling groups.461

Radiation and reacting flow are fully coupled in the simulations, so that different radi-462

ation models result in different radiative heat sources and, therefore, different temperature463

distributions, which in turn further lead to different chemical reaction rates and species464

concentrations. As expected, adding radiative transfer cools down the flame. It can be465

seen that for Sandia Flame Dˆ4, the choice of radiation model plays a very important466

role. Totally ignoring radiation introduces the largest error by over-predicting the flame467

temperature. The OT approximation ignores absorption and predicts the lowest temper-468

ature distribution; the PN+FSK, FAM+FSK, and PMC+LBL predict considerably higher469

temperatures than the OT due to self-absorption. All FAM+FSK results are found to be470

very close to the PMC+LBL results, and only the temperature contours predicted from471

FAM4ˆ4+FSK and FAM8ˆ8+FSK are shown in Fig. 8 for reference. The small differences472

between the results predicted by FAM8ˆ8+FSK and PMC+LBL are believed to be partly473

due to the errors of FSK. P1+FSK performs much better than OT, but it still under-predicts474

the flame temperatures compared with the results from high-order PN+FSK, FAM+FSK475

and PMC+LBL. P3 only slightly improves the temperature profile compared with P1 while476

P5 and P7 are very close to P3 results. The temperature profiles predicted by high-order477

PN methods are still quite different from the FAM and PMC results. The overall accuracy478

of the PN method in the axi-symmetric flame simulation seem to be worse than they are in479

the 1-D slab case, when compared to the corresponding FAM results, but it is consistent480

with the previous findings comparing PN in Cartesian and cylindrical geometries [23].481

Peak temperatures along the centerline, Tp,c, predicted from different solvers as shown482

in Fig. 9, are summarized in Table 3. By comparing the peak temperatures, one can observe483

a decrease of temperature when employing different radiation models. The emission-only484

OT model predicts a drop of peak temperature of 520 K; the PMC+LBL predicts a drop of485

329 K; the FAM+FSK predict the temperature drops of 330 K, 338 K, 350 K and 353 K with486

an increase in number of discrete ordinates; P1+FSK predicts a drop of 408 K, while the487
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high-order PN+FSK models predict a peak temperature drop of around 386 K.488

Table 3: The peak temperatures along the centerline Tp,c predicted from different solvers at 3.3 s

Radiation Solvers Tp,c (K) ∆Tp,c (K) %
No Rad. 2074 / /
OT 1554 -520 -25.1
P1+FSK 1666 -408 -19.7
P3+FSK 1683 -391 -18.8
P5+FSK 1688 -386 -18.6
P7+FSK 1689 -385 -18.6
FAM 2ˆ4 1744 -330 -15.9
FAM 4ˆ4 1736 -338 -16.3
FAM 4ˆ8 1724 -350 -16.9
FAM 8ˆ8 1721 -353 -17.0
PMC+LBL 1745 -329 -15.9

The radial distributions of two scalars, i.e., temperature (T) and mass fraction of ni-489

trogen monoxide (YNO) at three axial locations z{d j “ 15, z{d j “ 30 and z{d j “ 45 are490

shown in Figs. 11 and 12, respectively. These two plots show the flame structure and dis-491

tribution of the pollutant NO. Formation of NO is very sensitive to the local temperature,492

hence profiles YNO provide an indication how the radiation calculation affects the chem-493

ical reactions indirectly via its impact on temperature distribution. The radial profiles of494

both scalars predicted by FAM+FSK are very close to those from the PMC+LBL. For the495

temperature predictions, at upstream locations of z{d j “ 15 and 30, P1+FSK results are496

shown to be already very close to PMC+LBL results, while at the downstream location497

of z{d j “ 45, the errors of PN methods are larger. As the NO production is very sensitive498

to temperature, larger differences in NO profiles can be seen between different radiation499

solvers. The PN+FSK solvers underpredict the YNO by about 20% at the peak due to the500

slight underprediction of the temperature. Although FAM+FSK results, except the lowest501

resolution one, predict accurate NO mass fractions (Fig. 12) at the the center and close to502

the peaks, there are discrepancies between FAM+FSK and PMC+LBL results at r{d j ą 2503

at z{d j “ 15 in Fig. 12(a), and r{d j ą 2.6 at z{d j “ 30 in Fig. 12(b). Instead, the FAM+FSK504

results are found to be close to the PN+FSK results at these locations.505
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Figure 4: Comparison of numerical solutions from PN (a)(b) and FAM (c)(d) to the exact solutions for the
1-D slab example with homogeneous medium for optical thickness τ=1; (a)(c) normalized incident radiation
G{4πIb and normalized radiative heat source ´∇ ¨ q{4πκIb, and (b)(d) normalized radiative intensity I{Ib.
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Figure 5: Comparison of numerical solutions from PN (a)(b) and FAM (c)(d) to the exact solutions for the 1-D
slab example with homogeneous medium for optical thickness τ=0.5; (a)(c) normalized incident radiation
G{4πIb and normalized radiative heat source ´∇ ¨ q{4πκIb, and (b)(d) normalized radiative intensity I{Ib.
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Figure 7: Comparison of numerical solutions from PN (a)(b) and FAM (c)(d) to the exact solutions for the 1-D
slab example with homogeneous medium for optical thickness τ=0.001; (a)(c) normalized incident radiation
G{4πIb and normalized radiative heat source ´∇ ¨ q{4πκIb, and (b)(d) normalized radiative intensity I{Ib.
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Figure 8: Effects of different RTE solvers on temperature distribution after two flow-through time (at 3.3
s). The movie of the baseline flame simulation without radiation model is provided in the Supplementary
Materials.
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Figure 9: Centerline profiles of temperature.
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Figure 11: Temperature profiles at different axial locations: (a) z{d j “ 15, (b) z{d j “ 30 and (c) z{d j “ 45.
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Figure 12: Mass fraction of NO profiles at different axial locations: (a) z{d j “ 15, (b) z{d j “ 30 and (c)
z{d j “ 45.
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Table 4: The heat release rate from combustion 9QC, total emission 9Qrad, net radiative heat loss 9Qrad, radiation
escape ratio as 9Qrad{ 9Qemi and actual radiant fraction χR “ 9Qrad{ 9QC from different radiation solvers

Radiation Solver 9QC (kW) 9Qemi (kW) 9Qrad (kW) 9Qrad{ 9Qemi χR

No Rad 68.4 / / / /
OT 66.6 40.7 40.7 100 % 61.1 %
P1+FSK 67.3 54.4 22.5 36.7 % 33.4%
P3+FSK 67.3 63.4 20.8 32.8 % 30.9%
P5+FSK 67.3 63.7 20.7 32.4% 30.7%
P7+FSK 67.3 63.8 20.6 32.2% 30.6%
FAM 2ˆ4+FSK 66.6 73.8 17.7 24.0 % 32.0 %
FAM 4ˆ4+FSK 67.0 69.8 17.2 24.7 % 26.6 %
FAM 4ˆ8+FSK 67.0 68.0 18.6 27.4 % 25.8 %
FAM 8ˆ8+FSK 67.0 67.7 18.7 27.7 % 27.8 %
PMC+LBL 67.3 71.3 21.6 30.2 % 28.0 %

The global energy budget of the flame is examined to further study the effects of506

radiation predicted by different RTE solvers. Several quantities that describe the overall507

heat transfer are shown in Table 4. The first quantity of interest is the actual total heat508

release rate from combustion, 9QC. If the combustion is complete, 9QC should equal to the509

chemical energy that is supplied to the flame in the reactants, which are quantified by510

9mF∆hC, where 9mF is the mass flow rate of the fuel and ∆hC is the lower heating value of511

the fuel. For Sandia Flame Dˆ4, 9mF∆HC “ 70.4 kW and the rate of incoming enthalpy512

from the hot pilot is around 6% of that. Two quantities related to radiative transfer are513

the total emission 9Qemi and the net radiative heat loss 9Qrad. The total emission 9Qemi and the514

net radiative heat loss 9Qrad are defined as the integral of the radiative emission Semi and515

negative radiative heat source´Srad over the control volume, respectively. In terms of these516

three quantities, the radiant fraction χR is defined here as the ratio of 9Qrad{ 9QC (instead of517

9Qrad{ 9mF∆HC) and the radiation escape ratio as 9Qrad{ 9Qemi. The radiant fraction χR is a useful518

notion to quantify the ratio of the net radiative energy that escapes to the surroundings to519

the chemical energy released from the combustion and the radiation escape ratio shows520

the ratio of escaped radiation to the emitted.521

These quantities lead to better understanding of the role of radiative transfer on the522

combustion process. In addition to the direct cooling effects of radiation discussed ear-523
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lier, adding radiation is shown to have slightly lowered the total heat release rate from524

combustion 9QC as a secondary effect resulting in less complete combustion. Total radia-525

tive emission is found to be quite large, which is very close to the total heat release from526

combustion with the exception of OT. However, more than two-thirds of the emitted radi-527

ation gets reabsorbed in the flame indicating significant heat redistribution via radiation.528

Comparing global effects from different RTE solvers, as the order of PN and the number of529

angles in FAM increase, both 9Qrad{ 9Qemi and radiant fraction χR approach the LBL-PMC so-530

lution. PN appear to predict slightly higher 9Qrad{ 9Qemi and χR than the FAM solvers, which531

are consistent with the lower temperatures predicted by the PN shown in this section.532

Table 5 summarizes the computational time for both the reacting flow and the radiation533

evaluations including spectral models and RTE solvers. The first column shows the534

average total CPU time per time step for reacting flow including the radiation evaluation.535

For the PN/FAM+FSK solvers, since radiation is evaluated once per 1/10/100/250 time steps,536

the times are collected from each one of the frequency schemes. In the second and third537

columns, the average tRTE ` toverhead and tFSK are shown for runs with radiation evaluated538

once per time step only. The number of second-order elliptic PDEs for the corresponding539

PN methods, the number of first-order PDEs for the corresponding FAM solvers and the540

number of photon bundles traced for the PMC method are also presented in the table.541

Two empirical correlations can be obtained for the time cost of the PN methods and the

FAM for the simulations in which the radiation is evaluated in every time step,

tPN “ 0.0059ˆ nquad ˆ nPDE ` t f low ` tFSK ` toverhead,PN (15)

tFAM “ 0.0015ˆ nquad ˆ nPDE ` t f low ` tFSK ` toverhead,FAM (16)

where nquad is the number of quadrature points for FSK (8 for the above simulations); nPDE542

is the number of PDEs for the corresponding RTE method; t f low “ 0.82 s, tFSK “ 0.06 s,543

toverhead,PN “ 0.07 s and toverhead,FAM “ 0.14 s. It can be seen that by storing intensity coefficients544

Im
n for each time step in coupled simulations, the time cost for different orders of PN545
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Table 5: Average CPU time (including flow, chemistry and radiation calculation) per time step (radiation is
evaluated once per 1/10/100/250 time steps for the PN/FAM+FSK solvers and the average tRTE ` toverhead and
tFSK are only shown for runs with radiation evaluated every time step)

Radiation Solver Average CPU Time (s) tRTE+toverhead (s) tFSK (s)
No Rad 0.82 / /
PMC+LBL 0.87 / / 5,000 with time-blending
PMC+LBL 0.92 / / 10,000 with time-blending

Radiation evaluation freq
1/10/100/250

P1+FSK 0.97/0.85/0.82/0.82 0.09

0.06

1 second-order PDE
P3+FSK 1.05/0.87/0.83/0.83 0.17 4 second-order PDE
P5+FSK 1.36/0.88/0.84/0.84 0.48 9 second-order PDE
P7+FSK 1.64/0.90/0.85/0.85 0.76 16 second-order PDE
FAM 2ˆ4+FSK 1.11/0.86/0.85/0.84 0.23 8 first-order PDE
FAM 4ˆ4+FSK 1.20/0.87/0.85/0.84 0.32 16 first-order PDE
FAM 4ˆ8+FSK 1.42/0.91/0.86/0.86 0.54 32 first-order PDE
FAM 8ˆ8+FSK 1.78/0.94/0.87/0.87 0.9 64 first-order PDE

methods is actually linearly proportional to the number of the second-order PDEs of the546

PN formulation with order N. In principle and especially for this flame, FAM formulation547

results in a system of uncoupled PDEs so that the benefit of storing intensities along each548

discrete ordinate is limited.549

The leftmost number in the first column of Table 5 (corresponding to radiation eval-550

uation frequency of 1) for the deterministic solvers represents the most expensive option551

regarding solution time. The time reported in the first row (0.82 s) is without any radiation552

calculation, i.e., only for flow and chemistry calculations. With their highest orders, which553

are P7 and FAM 8ˆ8, solving the RTE at every time step means the cost of radiation calcu-554

lation (tRTE ` tOverhead ` tFSK) is equal or greater than the solution of the flow and chemistry555

equations (P7: 0.82 s, FAM 8ˆ8: 0.96 s). Reducing the radiation evaluation frequency for556

the PN/FAM+FSK solvers (or applying time blending for the case of PMC+LBL) are shown557

to be able to significantly reduce the overall time cost and make radiation evaluation558

relatively cheap compared to the computational cost of reacting flow simulations. For ex-559

ample, if P7 is evaluated at every 100 time steps, the average cost of the radiation-coupled560

simulation is comparable to the no-radiation simulation. Since the computational cost of561

PMC+LBL solver is proportional to the total number of photon bundles traced for the562
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same mesh, it is not surprising that the time cost of PMC+LBL is small after applying563

the time-blending scheme. Both reducing solving frequency for the deterministic solvers564

and the time-blending scheme for PMC only work for pseudo-steady-state solutions or in565

transient solutions when the time step is extremely small compared to the time scale of566

flow. Usually the PMC is much more expensive compared to the deterministic solvers as a567

large number of photon bundles are needed for each time step for an acceptable statistical568

error. The surprisingly high computational efficiency of PMC+LBL in this particular case569

is due to several factors. The most important factor is time-blending. Since this flame is570

a stationary steady flame, this makes aggressive time-blending possible. In principle, by571

time-blending we are making an assumption that the changes in the scalar field relevant572

for radiation calculation are very small over many time steps. Other factors, such as573

optical thickness, importance sampling strategies, and mesh sizes, are also affecting the574

performance comparisons between deterministic solvers and the PMC+LBL solver. The575

implementation details of PMC are provided in the Appendix A.576

4. Conclusion577

In this work, we present a systematic comparison of several orders of PN and DOM578

(FAM formulation) in 1D homogeneous configuration and in radiation-coupled reacting579

flow simulation of a turbulent jet flame. The 1D homogeneous case was simulated for four580

optical thicknesses (τ “ 10, 1, 0.5, 0.001q. The findings from the homogeneous configura-581

tions are as follows.582

• In 1-D cases homogeneous cases, both low-order PN and FAM (except for nθ “ 2)583

performs well in optically thick (τ “ 10) situation, where the radiative intensity is584

almost isotropic.585

• For optically thin (τ “ 0.001) homogeneous case, both PN and FAM have noticeable586

relative errors in the prediction of the incident radiation. However, FAM’s results587
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improve much faster with the increase of discrete polar angles than that of PN with588

the increase of order.589

• If the homogeneous case is optically medium thick (τ “ 1, 0.5), both PN and FAM590

approaches the exact solution with increase in order or polar angles. In these cases,591

lower order PN performs better than lower order FAM. However, FAM results im-592

prove faster than PN with increase in respective order and higher order FAM performs593

better than higher order PN.594

• As the optical thickness decreases, the solvers’ capability to capture the anisotropic595

intensity profile reduces. Furthermore, PN solvers introduces oscillations in the596

angular intensity profile at high orders.597

A scaled Sandia D flame (Sandia Dˆ4) was used as the target turbulent jet flame for598

radiation-coupled simulations. In these simulations the PN and FAM solvers were used599

with FSK spectral model and the results were compared with an OT model and a PMC+LBL600

model. The key takeaway of the study are as follows.601

• OT and no-radiation provides grossly inaccurate temperature distribution.602

• The choice of RTE solver (and the order of RTE solver) noticeably changes the tem-603

perature distribution. FAM is more accurate than PN in this axi-symmetric flame604

simulation.605

• When compared with the radiant fraction from PMC+LBL simulation, PN+FSK leads606

to a higher value while FAM+FSK leads to a lower value.607

• The use of an intermittent evaluation of radiation by PN and FAM and the use time-608

blending scheme for PMC+LBL can significantly accelerate radiation calculation609

without affecting accuracy.610
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[11] J. R. Howell, M. P. Mengüç, Challenges for radiative transfer 1: towards the effective650

solution of conjugate heat transfer problems, J. Quant. Spectrosc. Radiat. Transf. 221651

(2018) 253–259.652

[12] M. F. Modest, S. Mazumder, Radiative Heat Transfer, 4th Edition, Academic Press,653

New York, 2022.654

[13] V. P. Solovjov, B. W. Webb, F. Andre, Radiative properties of gases, in: F. A. Ku-655

lacki (Ed.), Handbook of Thermal Science and Engineering, Springer International656

Publishing, Cham, 2017.657

39

                  



[14] C. Wang, M. F. Modest, T. Ren, J. Cai, B. He, Comparison and refinement of the658

various full-spectrum k-distribution and spectral line weighted-sum-of-gray-gases659

models for nonhomogeneous media, J. Quant. Spectrosc. Radiat. Transf. 271 (2021)660

107695.661
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[27] M. P. Mengüç, R. Viskanta, Radiative transfer in three-dimensional rectangular en-686

closures containing inhomogeneous, anisotropically scattering media, J. Quant. Spec-687

trosc. Radiat. Transf. 33 (6) (1985) 533–549.688
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Appendix A. Some discussions on the photon Monte Carlo method852

The photon Monte Carlo (PMC) method accounts for the radiative transport by emit-853

ting and tracing a statistically meaningful sample of representative photons bundles or854

rays. For this discussion, let’s consider a ray denoted by its index j. Then the ray’s855

origin (xi
j, y

i
j, z

i
j), direction (θ j, φ j), the wavenumber (η j), and initial energy content Ei0

j to-856

gether completely define the ray. Here the superscript i denotes the index of the finite857

volume computational cell within which the origin point is located indicating that the858

point (xi
j, y

i
j, z

i
j) is located within the extent of the finite volume cell i. The origin and the859

direction are determined from independent random numbers as discussed in [12]. The860

wavenumber of the ray is obtained using another random number as discussed in [84]. The861

energy content of the ray Ei0
j is calculated from the emissive power of the computational862

cell from which the ray originated (i.e., cell i). If the emissive power of cell i is Ei, then the863

initial energy of ray j, which originated from cell i, is given by Ei0
j “ Ei

ni
, where ni is the total864

number of rays emitted from the cell i. The number of rays to be emitted from each cell (ni)865

is determined from distribution of the emissive power such that the higher the emissive866

power of the cell, the more rays it will emit. This ensures that the energy content of the867

rays are similar to one another making each ray statistically equivalent to one another.868

This “adaptive emission” approach makes the scheme statistically more efficient and has869

been discussed in detail in [12] and in [85]. As the ray travels through the computational870

mesh, its energy is attenuated due to absorption. As a ray of wavenumber η j containing871

energy Ek
j enters cell k and passes an optical distance τk

η inside cell k, its energy reduces872

to Ek
je
´τk

η as it deposits an amount of energy ∆Ek
j “ Ek

jp1 ´ e´τ
k
ηq in to the cell. The ray is873

traced until all its energy is attenuated completely or it moves outside the computational874

domain. The radiative source term for the medium is then determined by keeping track875

of the energy deposition and emission in each computational cell.876
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At each time step, a total of Nr rays are emitted and tracked. The Nr rays are organized877

into ns complete statistical sets such that, Nr “ nsˆnr. Here nr is the number of rays emitted,878

per statistical set, from the entire domain such that nr “
ř

i ni and Etotal “
ř

jPnr
Ei0

j , where879

Etotal is the total emissive power of the entire domain, i.e.,Etotal “
ř

iEi. Every statistical set,880

i.e., nr rays, produces one solution of the radiative transport in the entire field. Therefore,881

every time step one obtains ns independent solutions of the radiation field, which are then882

averaged to find the radiation field for that time step. As per the time-blending scheme883

presented in Eq. (14), this averaged radiation field is then blended with previous solutions884

before being fed back to the energy conservation equation (Eq. (1)).885
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