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Abstract: Resilient infrastructure, which better withstands, adapts, and recovers from disasters, can limit disaster impacts, such as disrup-
tions to infrastructure services and time and efforts needed for recovery. However, in the context of a disaster, the impacts on infrastructure are
not evenly distributed across different communities. Thus, we need to account for such disparities (or inequalities) when assessing infra-
structure resilience. To address this need, this paper proposes a social-welfare—based infrastructure resilience assessment (SW-Infra-RA)
model for quantifying the collective resilience of infrastructure serving multiple communities. This model accounts for (1) disaster
inequality—the unequal distributions of disaster impacts on infrastructure across different communities; and (2) disaster vulnerability—
the disaster impacts on the infrastructure of communities that suffer from the most severe impacts—both of which have impacts on the
collective resilience of infrastructure. A set of hypothetical and real case studies were conducted to illustrate the use of the proposed model
in quantitatively assessing infrastructure resilience. This study contributes to the body of knowledge by providing a new infrastructure resil-
ience assessment model that accounts for disaster inequality and vulnerability. The proposed model has the potential to support the development
and investment of infrastructure in a more equitable manner; it facilitates equitable resilience in future infrastructure planning and development.
DOI: 10.1061/(ASCE)NH.1527-6996.0000597. © 2022 American Society of Civil Engineers.
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Introduction

From meeting everyone’s basic needs to supporting trade,
economy, and technology advancement, infrastructure services are
the key enablers of human well-being and development. With cli-
mate change and the growth in intensities and frequencies of natural
hazards, there are increasing urgency and priority on investing in
and developing resilient infrastructure (Hallegatte et al. 2019). A
resilient infrastructure with high-quality and robust structural com-
ponents can potentially limit the impacts of natural hazards in terms
of physical damage, economic losses, and functional disruptions
(Braese et al. 2019). Over the last two decades, significant efforts
have been made for the investment, development, and maintenance
of resilient infrastructure to better withstand, adapt to, and rapidly
recover from disaster impacts. However, in the context of a disaster,
large disparities may exist in the levels of damage and/or recovery
processes of the infrastructure across various communities. Such
disparities may be caused by the differences in the severity of
disaster exposure, and they may also be caused by the variations
in the quality and adequacy of infrastructure services across
different communities (Coleman et al. 2020). Some communities
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(e.g., wealthier communities) may have more investment in the
development and rehabilitation of existing infrastructure (Hirsch
et al. 2017; Nexus 2017). In contrast, some disaster-vulnerable
communities, referring to those communities that suffer from the
most severe disaster impacts, may struggle with unmet infrastruc-
ture needs, such as unreliable electric power systems, lack of
adequate water and sanitation systems, overstrained transportation
networks, and degraded school buildings, even before the disaster
(Huang and Taylor 2019; Hallegatte et al. 2019). Underinvestment,
insufficient maintenance, and mismanagement are some of the key
factors that result in inadequate infrastructure services in these
vulnerable communities (Hallegatte et al. 2019). In addition,
research (e.g., SMASHA 2017; Ward and Shively 2016; Yoon
2012; Flanagan et al. 2011) shows that such disaster vulnerability
is associated with social vulnerability. Socially vulnerable com-
munities may include those with higher percentages of eco-
nomically disadvantaged, racial and ethnic minorities, elderly,
uninsured, homeless, disabled, those with chronic health condi-
tions, and those with language barriers (Rao et al. 2019; AIMC
2006). These communities often have the fewest resources for
disaster preparedness, are located in disaster-prone areas, and lack
the social, political, and economic capital needed to withstand,
adapt to, and recover from a disaster. As a result, they are more
likely to suffer from severe disaster impacts (e.g., higher percent-
ages of power outages or traffic disruptions, longer recovery time)
(Hallegatte et al. 2019; SAMSHA 2017). Due to the unequal dis-
tributions of disaster impacts and more severe impacts on the infra-
structure of disaster-vulnerable communities, there is sorely a need
to systematically integrate disaster inequality and vulnerability with
infrastructure resilience assessment.

Despite such a need, we have identified a number of knowledge
gaps in the domain of infrastructure resilience assessment. Over the
last two decades, many research studies (e.g., Panteli et al. 2017,
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Tonn et al. 2020; Cimellaro et al. 2010; Mao and Li 2018;
Yang et al. 2018) have focused on developing models or frame-
works to measure or assess infrastructure resilience. Various ap-
proaches or methods have been used in resilience assessment,
such as simulation-based approaches (e.g., Hossain et al. 2019),
mathematical approaches (e.g., Cimellaro et al. 2010), index-based
approaches (e.g., Fisher and Norman 2010), and data-driven
approaches (e.g., Zhu et al. 2017). These studies have provided
valuable contributions toward advancing the understanding and
facilitating infrastructure resilience. However, there remains limited
research that integrates the disparity and vulnerability in disaster
impacts with infrastructure resilience assessment. In other words,
there is a lack of studies that (1) measure the unequal distributions
of disaster impacts (e.g., infrastructure functional loss, infrastruc-
ture recovery time) across different communities and potentially
more severe impacts on vulnerable communities; and (2) investigate
how they would impact the collective resilience of infrastructure
that serves multiple communities.

To address these knowledge gaps, we propose a social-welfare—
based infrastructure resilience assessment (SW-Infra-RA) model
that assesses the collective resilience of infrastructure serving
multiple communities by accounting for (1) disaster inequality—
the unequal distributions of disaster impacts on infrastructure
across various communities; and (2) disaster vulnerability—the dis-
aster impacts on the infrastructure of the communities that suffer
from the most severe impacts. The proposed model is theoretically
grounded on the social welfare theory and social welfare functions.
It also adapts the methods from Bruneau et al.’s (2003) resilience
triangle framework and Cutter et al.’s (2003) Social Vulnerability
Index. The proposed model aims to address the following research
questions: How to quantitatively measure the unequal distributions
of disaster impacts on infrastructure across different communities?;
How to quantitatively measure the potentially more severe disaster
impacts on the infrastructure of vulnerable communities?; and How
to mathematically integrate the disparity and vulnerability in dis-
aster impacts with infrastructure resilience assessment? This paper
focuses on presenting and discussing the conceptual notions and
mathematical functions in the SW-Infra-RA model. The remainder
of the paper first reviews and discusses the relevant literature.
It then presents the SW-Infra-RA model, including all the math-
ematical functions in the model. At the end, it discusses two sets
of case studies (including a hypothetical and a real case study) to
illustrate the use of the SW-Infra-RA model in determining the col-
lective resilience of infrastructure serving multiple communities.

Literature Review

Infrastructure Resilience Assessment in Disaster
Literature

Over the last two decades, the concept of infrastructure resilience
has gained significant attention from scientific scholars and re-
searchers around the world (Karamouz et al. 2019; Cimellaro
et al. 2010). The concept of “resilience” was first introduced by
Holling (1973) to describe the “persistence of relationships within
a system” and the ability of the system to “absorb changes of state
variables, driving variables, and parameters, and still persist”
(Holling 1973). Holling (1996) also explained the difference be-
tween engineering resilience and ecological resilience. Ecological
resilience measures how a system can persist by absorbing changes
and disturbances, while engineering resilience measures the capac-
ity of the system to recovery to its original functional level after a
disturbance. Integrating these definitions, infrastructure resilience
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is typically defined as the ability of infrastructure to anticipate
and absorb the shock, adapt to, and quickly recover to its original
functional level (Berkeley et al. 2010).

Over the years, many resilience assessment frameworks have
been proposed to assess the resilience of different types of infra-
structure, such as transportation infrastructure (e.g., Tonn et al.
2020), electric power infrastructure (e.g., Hossain et al. 2019),
water and sanitation infrastructure (e.g., Assad et al. 2019), and
telecommunication infrastructure (e.g., Mawgoud et al. 2021).
These studies used different approaches to assess infrastructure
resilience, including simulation-based approaches (e.g., Hossain
et al. 2019; Hosseini and Barker 2016; Lam and Tai 2018), math-
ematical approaches (e.g., Cimellaro et al. 2010; Shin et al. 2018;
Bruneau et al. 2003), index-based approaches (e.g., Rehak et al.
2019; Petit et al. 2012; Fisher and Norman 2010), and data-driven
approaches (e.g., MacKenzie and Barker 2013; Zhu et al. 2017).

Simulation-based approaches were mostly employed in the
resilience assessment of system networks, such as water supply net-
works (e.g., Assad et al. 2019), electric grid networks (e.g., Hossain
et al. 2019), and transportation networks (e.g., Hosseini and Barker
2016). In these studies, Bayesian networks, Monte Carlo simula-
tion, and Fuzzy models were commonly used for the analysis. For
example, Hossain et al. (2019) employed Bayesian networks to
quantitatively assess the resilience of electric infrastructure sys-
tems. Similarly, Hosseini and Barker (2016) built a resilience as-
sessment framework to quantify the resilience capacity of an inland
waterway network using Bayesian networks. Nogal et al. (2017)
proposed a resilience assessment framework to estimate the resil-
ience of a transportation network impacted by extreme events using
the Monte Carlo simulation method. Lam and Tai (2018) used a
Fuzzy modeling approach to model the interdependencies between
entities in infrastructure networks by simulating the effects of
disruptions.

Using mathematical approaches, the resilience of infrastructure
can be assessed through mathematical structures, notions, or
equations. The mathematical approaches can be classified into
deterministic (e.g., Bruneau et al. 2003; Cimellaro et al. 2010)
and probabilistic (e.g., Deco et al. 2013; Nogal et al. 2017) ap-
proaches. The deterministic approach utilizes the value of the input
parameters to obtain a precise outcome without accounting for
uncertainties. In contrast, the probabilistic approach can model
the uncertainties that exist in the inputs of metrics to obtain the
distributions of infrastructure failure and recovery (Mottahedi
et al. 2021). For example, Cimellaro et al. (2010) proposed a com-
prehensive conceptual model that includes a loss estimation model
and a recovery model to quantitatively assess the seismic resilience
of a network of health care facilities. Deco et al. (2013) used a prob-
abilistic approach to assess the seismic resilience of bridges.

Using index-based approaches, a resilience index is developed
by identifying and aggregating a set of indicators that represent the
characteristics of infrastructure resilience. The resilience index can
then be used to compare or rank the resilience of several infrastruc-
ture alternatives by collecting the data of each infrastructure alter-
native. To frame the resilience index, both qualitative (measured
with ordinal or nominal scales) and quantitative indicators (mea-
sured with interval or ratio scales) can be used (Cardoni et al.
2020). Multiple resilience indexes have been developed over the
years, such as the Resilience Star developed by the Department
of Homeland Security (Kangior 2013), the US Resiliency Council
(USRC) Building Rating System (USRC 2021), the Resilience-
based Earthquake Design Initiative (REDi) rating system (ARUP
2021), and the Resilience Action List (RELi) rating system
(GBCI 2021). Similarly, many researchers have used index-based
approaches to develop different infrastructure resilience assessment
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frameworks. For example, Yang et al. (2018) developed the
Resilience Index Considering Duration of events (RICD), which
assesses the resilience of power transmission systems under the ty-
phoon weather. Argyroudis et al. (2021b) built a cost-based resil-
ience index that quantifies the seismic resilience of bridges.
Cardoni et al. (2020) developed the Power Resilience Index (PRI)
that assesses the seismic resilience of urban electric power distri-
bution systems.

Data-driven approaches refer to those methods that rely on col-
lecting, analyzing, and interpreting data to derive insight, knowl-
edge, or solutions. This approach can be used to develop new
models to calibrate and reduce uncertainties when assessing infra-
structure resilience (Argyroudis et al. 2021a). By deriving knowl-
edge from a large amount of data, the data-driven approach may
provide a high level of reliability that cannot be achieved through
other conventional scientific approaches (Maass et al. 2018). In the
last decade, with the advancement of data analytics techniques,
there has been a growing tendency of adopting data-driven
approaches for resilience assessment. For example, Argyroudis
et al. (2021a) proposed a data-driven resilience assessment frame-
work for critical transportation infrastructure that is exposed to
multiple hazards by interactively analyzing multiscale monitoring
data (e.g., terrestrial data, airborne data), crowd data, and environ-
mental measurements. Chandramouleeswaran and Tran (2018)
used a data-driven approach for quantitatively assessing the resil-
ience of air transportation networks using publicly available data
(e.g., total cancellation flights, average flight delay).

The existing research has offered valuable contributions to ad-
vance the understanding and methods of assessing infrastructure
resilience. However, one of the major concerns that lie behind
the demand for better resilience assessment is the need to pay more
attention to equity and vulnerability in resilience assessment
(Meerow et al. 2019; Meerow and Newell 2019). Much of the resil-
ience assessment literature focuses on evaluating the performance
of a whole (e.g., a complete infrastructure network) while lacking
consideration of the inequalities and trade-offs among different
parts that compose the whole. Some resilience assessment studies
(e.g., RF 2021; GBCI 2021) proposed to integrate equity as one
dimension or a characteristic of resilience. These studies tend to
mix the conceptualizations of equity and resilience and simplify
their relationships. Although disaster resilience and equity are in-
terconnected, they are not the same. Integrating equity with resil-
ience requires us to explicitly assess the unequal distributions of
disaster impacts on various communities and evaluate the different
levels of vulnerability that these communities face (Wescoat et al.
2018). There is, thus, a need to develop a new resilience assessment
framework that assesses the collective infrastructure resilience
while accounting for the disparities among the communities and
potentially severe impacts on the infrastructure of vulnerable
communities.

Resilience Triangle Framework

The resilience triangle framework was based on the work by
Bruneau et al. (2003), who defined and quantitatively measured
the seismic resilience of communities. According to Bruneau et al.
(2003), a resilient system has three key characteristics: (1) reduced
failure probabilities, (2) reduced consequences from the failures,
and (3) reduced time to recovery. They then proposed to measure
the resilience of a community by defining and measuring the area of
a resilience triangle (Fig. 1). In the resilience triangle, the vertical
axis represents the quality of infrastructure in a community [Q(t)],
which varies with time. Q(t) ranges from 0% to 100%, where 100%
represents no degradation in infrastructure quality or service, and
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Fig. 1. A conceptual diagram of a resilience triangle. [M. Bruneau,
S. E. Chang, R. T. Eguchi, G. C. Lee, T. D. O’Rourke, A. M. Reinhorn,
M. Shinozuka, K. Tierney, W. A. Wallace, and D. Von Winterfeldt,
“A framework to quantitatively assess and enhance the seismic resili-
ence of communities.” Earthquake spectra 19 (4): 125-131, © 2003 by
SAGE, reprinted by permission of SAGE Publications, Ltd.]

0% means no infrastructure service is available. An earthquake
occurring at time t, would cause damage to infrastructure so that
the quality of infrastructure service is immediately reduced. Resto-
ration of infrastructure is a process that takes time, and the quality
of infrastructure gradually increases as the restoration process goes
on. The infrastructure is completely recovered to its original func-
tional level at time t,. Therefore, the community loss of resilience is
determined by aggregating the degradation of the quality of infra-
structure over the total recovery time (t, — t,).

Over the last two decades, many research studies have been
conducted to apply or adapt Bruneau et al.’s (2003) framework
in assessing the resilience of various types of infrastructure, such
as healthcare facilities (Shang et al. 2020), electric power systems
(Ouyang and Duenas-Osorio 2014), and transportation infrastruc-
ture (Argyroudis et al. 2021b). The framework has also been
adapted to analyze disruptions caused by disasters other than earth-
quakes, such as hurricanes (e.g., Ouyang and Duenas-Osorio 2014)
and flooding (e.g., Zamanian et al. 2020).

Social Welfare Functions

Welfare economics is the study of how the distribution of resources
and goods impacts social welfare; it evaluates well-being (welfare)
at the aggregate level (Deardorff 2016). In welfare economics,
several functions were proposed to evaluate or compare alternative
social states (e.g., income distributions, life expectancy, literacy
rate), and these functions are called social welfare functions
(SWFs) (Weymark 2016). An SWF can be thus defined as a func-
tion that measures or ranks the collective welfare of the society in
different social states (Arrow 1963). It can be used to determine
the optimal distribution of well-being among individuals to achieve
the maximum well-being for the whole society (Arrow 1963).
In an SWF, well-being is generally expressed in terms of utilities
(e.g., incomes, benefits) or preferences.

In welfare economics literature, SWFs can be generally classi-
fied into (1) the Bergson—Samuelson SWFs, (2) the Arrow SWFs,
and (3) Cardinal SWFs. The Bergson—Samuelson SWFs determine
the social preference (in the form of social ordering or ranking) of
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alternative social states (Weymark 2016) based on individual util-
ities (e.g., income, life expectancy). Through the functions, the
individual utilities in alternative social states are first determined
and further aggregated to determine the collective social preference.
With the Arrow SWFs, the social preference of alternative social
states is determined as a function of individual preferences (Weymark
2016). Unlike the Bergson—Samuelson SWFs, the Arrow SWFs only
use information about individual preferences to determine social
preferences.

Cardinal SWFs, on the other hand, are functions that determine
the collective welfare (in the form of numerical value) based on
individual utilities. They do not necessarily require comparisons
among individual utilities in alternative social states, and they yield
a numerical representation of the collective welfare for each social
state. Some of the Cardinal SWFs found in the literature include
Utilitarian SWF (Harsanyi 1955), Rawlsian SWF (Rawls 1971),
Bernoulli-Nash SWF (Jagtenberg 2017), Sen’s SWF (Sen 1997),
and Atkinson and Brandolini SWF (Atkinson and Brandolini
2010). The Utilitarian SWF measures social welfare as the average
welfare of the individuals in the society. With the Utilitarian SWF,
the collective social welfare of a society increases if the welfare of
any individual increases and none decreases, with everyone indif-
ferent (Harsanyi 1955; Schneider and Kim 2020). This function
does not account for the equality of welfare (e.g., fair distributions
of income) among the individuals in a society. With the Rawlsian
SWFE, the welfare of the society is determined by the welfare of
the individuals with the lowest welfare in a society (Rawls 1971).
According to the Rawlsian SWF, social welfare increases if the wel-
fare of the poorest individuals increases; it does not consider the
welfare of other individuals in the society. Similar to Ultilitarian
SWEF, the Rawlsian SWF does not consider equality in welfare dis-
tributions in a society. The Bernoulli-Nash SWF, in general, can be
seen as the mixture of the Rawlsian and the Utilitarian SWFs. With
the Bernoulli-Nash SWEF, the collective social welfare is calculated
as the product of all individual welfare (Jagtenberg 2017).

To account for inequality in welfare distributions, Sen (1997)
proposed an SWF (Sens’s SWF) that accounts for unequal distri-
butions of welfare across the individuals in a society. In Sen’s SWF,
a Gini coefficient is used to measure welfare inequality. Sen’s SWF
determines social welfare as the product of the average welfare of
all individuals and an inequality indicator. According to Sen’s
SWEF, social welfare increases if the fairness in distributing the wel-
fare increases. However, with Sen’s SWEF, it is possible that the total
amount of welfare increases at the expense of increased equality
and reduced average welfare. In other words, social welfare could
increase by allowing all individuals to be equally poorer (Mostafa
and El-Gohary 2014). Thus, to account for poverty in social wel-
fare, a poverty line is defined based on the minimum amount of
income an individual or a household needs to meet their basic needs
(Callan and Nolan 1991). The individual or household whose in-
come falls below the poverty line is considered as being poor.
Leveraging the poverty line, Atkinson and Brandolini (2010) pro-
posed an SWF that accounts for the poorest individuals with the
minimum welfare in a society.

Over the year, scholars in the domains of social science and eco-
nomics have used the SWFs to solve various problems, such as
reducing health inequalities (Dolan and Robinson 2001), assessing
climate policies (Fiissel 2006), and improving cost-benefit analysis
(Adler 2017). In recent years, the SWFs have been further adapted
to address issues in other domains, such as transportation, archi-
tecture, engineering, and construction. For example, Zhang and
Sanake (2020) proposed a social welfare-based group comfort
analysis model to measure the collective comfort level of a group
of individuals in indoor environments. Kinjo and Ebina (2017)
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developed a mathematical model based on Utilitarian SWF and
Nash SWF to determine autonomous vehicle (AV) driving behav-
iors by evaluating individual utilities of passengers inside the AV
and pedestrians on a street. Mostafa and El-Gohary (2014) pre-
sented a social welfare—based sustainability benefit analysis model
that evaluates the distribution of benefits of infrastructure project
alternatives to their stakeholders by accounting for both equality
and poverty in benefit distributions.

Social Inequality Measurements

Inequality refers to an absence of equal distributions of goods,
services, opportunities, rights, and/or dignity (UNCTAD 2021). In-
equality is often measured by assigning a certain value to a specific
distribution in order to facilitate direct and objective comparisons
across different distributions (UNCTAD 2021). There are multiple
methods to measure inequality, and these methods can be catego-
rized as using “ratios” or using “indices.”

Measuring inequality through “ratios” is a relatively easy and
straightforward method. The most commonly used ratios for meas-
uring inequality are the 20/20 ratio and the Palma ratio. The 20/20
ratio represents the ratio of the average income of the richest 20%
of the population to the average income of the poorest 20% of the
population (Afonso et al. 2015; UNCTAD 2021). Palma ratio is
defined as the ratio of the total income of the richest 10% of house-
holds to the poorest 40% of households (Afonso et al. 2015;
UNCTAD 2021). Although ratios are relatively easy to understand,
these methods do not measure how social welfare (e.g., income)
is equally or unequally distributed across the population. For
example, they do not consider the welfare (e.g., income) distribu-
tions within the highest and lowest percentiles of the population
(Trapeznikova 2019).

As compared to “ratios,” “indices” are more commonly used to
measure inequality. Some of the popular indices are Atkinson’s in-
dex (Afonso et al. 2015), Hoover index (Hoover 1941), Theil index
(Theil 1967), and Gini index (Trapeznikova 2019). Atkinson’s in-
dex is a welfare—based measure of inequality, and it represents the
percentage of total income that could be sacrificed to have more
equal shares of income among individuals without reducing social
welfare (Afonso et al. 2015). The Hoover index, also known as the
Schutz index, defines inequality as the share of total income that
needs to be redistributed from the population with income above
mean to those with income below the mean to achieve income
equality (Afonso et al. 2015). A higher value of the Hoover index
indicates a higher level of inequality, and more redistributions
are needed to achieve equality. The Theil index belongs to general
entropy (GE) measures; it measures an entropic “distance” the
population is away from the ideal equitable state, in which all indi-
viduals have the same income (Concei¢do and Ferreira 2000).
Since the Theil index is not a relative measure of inequality, the
values of this index are not always comparable across different
groups and sizes of populations (Trapeznikova 2019). The Gini in-
dex is the most widely used and recognized measure of inequality
(Trapeznikova 2019). It can be used to measure the inequality of
any distribution. One of the benefits of using the Gini coefficient is
to allow for direct comparisons of inequality states across different
groups of populations, irrespective of their sizes (Afonso et al.
2015). A higher Gini coefficient value indicates higher inequality.
The Gini coefficient has been used in measuring inequality in vari-
ous domains, such as energy consumption (Jacobson et al. 2005),
water consumption (Wang et al. 2012), indoor environmental qual-
ity (Zhang and Sanake 2020), and healthcare resource allocation
(Jian et al. 2015).
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In our study, we chose to adapt the Gini coefficient in measuring
the inequality of disaster impacts for the following reasons: (1) it
allows for the measurement of distributions of disaster impacts
across multiple communities, (2) it allows for comparisons of dis-
tributions of disaster impacts across communities with different
sizes of population, (3) it is not affected by the characteristics
(e.g., poverty) of the communities, and (4) it is relatively straight-
forward and easy to interpret.

Proposed Infrastructure Resilience Evaluation
Framework

The proposed SW-Infra-RA model aims to define the collective
resilience of infrastructure that serves multiple communities by
integrating (1) disaster inequality—the unequal distributions of
disaster impacts on infrastructure across the various communities;
and (2) disaster vulnerability—the disaster impacts on the infra-
structure of the communities that suffer from the most severe im-
pacts. The framework is grounded in the social welfare theory and
functions. It also adapts the methods from Bruneau et al.’s (2003)
resilience triangle framework and Cutter et al.’s (2003) Social
Vulnerability Index. The model assesses the collective resilience
of infrastructure in five main steps, including (1) determining dis-
aster impacts on individual communities, (2) modeling inequality
of disaster impacts, (3) modeling vulnerability in disaster impacts,
(4) measuring collective disaster impacts, and (5) assessing collec-
tive infrastructure resilience. The following sections discuss each
step in detail.

Determining Disaster Impacts on Individual
Communities

Disasters may cause severe damage to infrastructure, resulting in
the reduction of its functionality, and it may take weeks or months
to restore the infrastructure to its original functional level. Accord-
ing to Bruneau et al.’s (2003) resilience triangle framework, such
characterization of infrastructure performance during a disaster
leads to a broader conceptualization of resilience. Resilience can
be understood as the ability of infrastructure (1) to reduce the pos-
sibility or extent of disaster impacts; and (2) to recover rapidly after
a disaster (Bruneau et al. 2003). Such conceptualization of resil-
ience is widely adopted in different disaster studies (e.g., Cimellaro
et al. 2010; Rehak et al. 2019; Yang et al. 2018). Benchmarking the
resilience triangle framework, two main types of indicators were
identified to determine the disaster impacts on individual commun-
ities. These indicators include those that represent (1) the functional
loss of infrastructure (e.g., percentage of power outages, percentage
of road closures); and (2) the recovery time of infrastructure
(e.g., time required to resume electric power services, time required
to reopen roads).

Depending on the time of analysis, the selected disaster, the
level of analysis (e.g., state level, county level, city level, commu-
nity level), and data availability, there are two main methods for
collecting the data for these indicators (i.e., functional loss and re-
covery time of infrastructure). For analyzing infrastructure resil-
ience in the context of historical disasters, we can extract the
relevant data that are available in public or private sources; the data
can be collected directly from (1) public sources, such as state,
county, or local Department of Emergency Management, Depart-
ment of Transportation, Office of Communications Commission, or
Office of Insurance Regulations; or (2) private sources, such as
electric power companies and telecommunication companies. The
data then need to be tabulated by the level of analysis (e.g., state,
county, city, and community levels). For analyzing infrastructure
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resilience in the context of ongoing disasters, we need to collect
firsthand data on infrastructure damage and recovery works by
following damage assessment procedures and using the relevant
tools and methods. For example, according to Federal Emergency
Management Agency (FEMA)’s Preliminary Damage Assessment
Guide (FEMA 2021), damage information of infrastructure needs
to be captured by visually and technically inspecting and confirm-
ing the conditions of damaged infrastructure and identifying and
documenting relevant disaster impacts (FEMA 2021).

In general, damage assessment is conducted using either a
rapid approach or a detailed approach (Kwasinski 2011; Massarra
2012). Rapid damage assessment usually takes place as soon as
conditions allow inspectors to operate after the occurrence of a
disaster. It aims to generally estimate the nature and magnitude
of damage and quickly inspect and assess the damage conditions.
Thus, rapid assessment typically relies on an exterior observation
and investigation of the structures. The magnitude of damage
recorded on damage assessment forms (e.g., FEMA 2021) is typ-
ically a general estimate of the percentage of damage without ac-
curate measurements (Massarra 2012). In recent years, many
technologies have been proposed to facilitate the efficiency of rapid
damage assessment. For example, GIS-based hazard modeling plat-
forms (e.g., HAZUS) can be used to estimate potential damage
from disasters, such as hurricanes and floods (CCSF 2021). Remote
sensing technologies, which detect and monitor the physical char-
acteristics of an area by measuring its reflected and emitted radi-
ation from a certain distance, can be used to quickly estimate
locations, causes, and severity of disaster damage conditions (Hao
et al. 2020). If more detailed information is required regarding
the damage conditions, rapid assessment should be followed by de-
tailed assessments. Detailed damage assessment usually takes place
about two to four weeks after the occurrence of a disaster (Massarra
2012). Detailed damage assessment aims to collect more thorough
and accurate information regarding the impacts of a disaster,
including estimation of loss value, determination of recovery pro-
gresses, and identification of recovery needs (Planitz 1999).
Detailed damage assessment is based on the inspection of both
structural (e.g., girder, column) and nonstructural components
(e.g., railing, coating) of infrastructure (Massarra 2012). In our re-
search context, both rapid and detailed assessments can be used to
collect the data for determining disaster impacts on individual
communities. The selection of the methods depends on the level
of detail that is needed for infrastructure resilience analysis.

Modeling Inequality in Disaster Impacts

In our research context, disaster inequality refers to the unequal
distributions of disaster impacts (i.e., functional loss, recovery
time) on infrastructure of various communities. The unequal
distribution of disaster impacts is analogous to the welfare inequal-
ity in a society, which is commonly measured through the Gini
coefficient (Atkinson and Brandolini 2010). Thus, we adapted the
Gini coefficient into the domain of infrastructure resilience assess-
ment to measure the unequal distributions of disaster impacts
(i.e., functional loss and recovery time) on infrastructure that serves
multiple communities.

A Gini coefficient ranges from 0 to 1. A Gini coefficient of 0
means complete equality in disaster impacts—the infrastructure of
all communities of analysis has the same level of functional loss,
and/or it takes the same length of time for recovery. A Gini coef-
ficient of 1 means complete inequality in disaster impacts—the
infrastructure of only one community has the highest level of func-
tional loss and requires the longest time in recovery. Graphically,
the Gini coefficient can be represented through the Lorenz curve
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Fig. 2. A Lorenz curve for the distribution of infrastructure functional
loss.

(Fig. 2). As per Fig. 2, it is measured by dividing the area
between the Lorenz curve and the line of complete equality
(i.e., Area X) by the area covered under the line of complete equal-
ity (i.e., Areas X +Y) (Wodon and Yitzhaki 2008; Mostafa and
El-Gohary 2014). In the SW-Infra-RA model, the Lorenz curve il-
lustrates the percentage of cumulative infrastructure functional loss
(or recovery time) experienced by the percentage of communities in
the analysis. For example, as per Fig. 2, a point on the Lorenz curve
represents a statement such as, “the bottom 40% of all communities
suffered from 10% of the total disaster impacts (e.g., functional
loss, recovery time).” A Lorenz curve is always bowed downward
from the line of equality or coincides with the line of equality if
there exists complete equality among the individuals of analysis.
The Lorenz curve being farther away from the line of equality in-
dicates a higher level of inequality (i.e., the value of the Gini co-
efficient becomes closer to 1) and vice-versa. The Gini coefficient
can also be defined through Egs. (1) and (2), which are mathemati-
cally equivalent to the Lorenz curve. Egs. (1) and (2) define the
Gini coefficients that measure the unequal distributions of func-
tional loss and recovery time (i.e., two main indicators of disaster
impacts), respectively

Py 2oy [FLj — FLy|

_ i=1 Jj=1
Gurr) = S FLy (1)
i

where Gy r1) = Gini coefficient for functional loss of a group k of
multiple communities; FL;; = functional loss of infrastructure in an
individual community i of group k; F'L j, = functional loss of infra-
structure in an individual community j of group k; and n = total
number of communities in group k

Py 2201 |RTy — RT

2ny 1 RTy

Girry = (2)

where Gy ry) = Gini coefficient for the recovery time of a group k
of multiple communities; RT;; = recovery time of infrastructure in
an individual community i of group k; RT j; = recovery time of
infrastructure in an individual community j of group k; and n =
total number of communities in group k.

Modeling Vulnerability to Disaster Impacts

In our research context, vulnerable communities in a disaster refer
to those communities that suffer from the most severe impacts of a
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disaster. The concept of vulnerability to disaster impacts is analo-
gous to the concept of poverty in welfare economics. Thus, bench-
marking the methods for measuring poverty in welfare economics,
we proposed a “line of vulnerability” to define and measure vul-
nerability in the SW-Infra-RA model. The line of vulnerability is a
benchmark that indicates the vulnerability level of infrastructure
serving different communities. If the value of disaster impacts
(i.e., infrastructure functional loss and recovery time) is above
the line of vulnerability, the community is identified as one of
the vulnerable communities in the disaster. However, unlike the
poverty line that has been extensively studied, there are no estab-
lished methods to measure the line of vulnerability in the disaster
domain. In our research, we adapted Cutter et al.’s (2003) work
on social vulnerability. Cutter et al. (2003) constructed a social vul-
nerability index (SoVI) for all the counties in the United States
based on county-level socioeconomic and demographic data.
The counties with SoVI scores greater than the average plus stan-
dard deviation are identified as the most vulnerable counties. In our
proposed model, the line of vulnerability can be defined as the sum
of the mean and the standard deviation of infrastructure functional
loss (or recovery time) experienced by the communities of analysis.
Egs. (3) and (4) define the line of vulnerability for functional loss
and recovery time, respectively

1 n
LV (), = ;Z FLj + oS,y (3)
i=1

where LV pg), = line of vulnerability for functional loss of infra-
structure serving a group k of multiple communities; F'L;; = func-
tional loss of infrastructure serving an individual community i of
group k; n = total number of communities in group k; S,; = stan-
dard deviation for the functional losses of infrastructure serving a
group k of multiple communities; and « = a coefficient that controls
the line of vulnerability (0 <a <1)

l n
LVgr), = > RTy+ BSu (4)
P

where LV gy = line of vulnerability for the recovery time of infra-
structure serving a group k of multiple communities; RT;; = recov-
ery time of infrastructure serving an individual community i of
group k; n = total number of communities in group k; S,,; = stan-
dard deviation for the recovery time of infrastructure serving a
group k of multiple communities; and /3 = a coefficient that controls
the line of vulnerability (0 < 3 < 1).

Depending on the context of analysis, users of the model have
the flexibility to define and control the line of vulnerability
through the coefficients of o and 3. If the value of « (or J) is close
to 0, the line of vulnerability is close to the average value. This
means the criterion or benchmark for vulnerability is stringent,
i.e., approximately half of the communities whose damage (or re-
covery time) is above the average will be accounted as vulnerable
communities. If the value of « (or (3) is close to 1, the line of vul-
nerability is close to the average value plus standard deviation.
This means the criterion or benchmark for vulnerability is loose
as a relatively smaller number of communities will be accounted
as vulnerable communities. Defining such a line of vulnerability
is important in identifying those communities that experience
the most severe impacts during a disaster, and this could allow de-
cision makers to prioritize efforts and investments in those com-
munities in disaster assistance, recovery, and/or future mitigation
efforts.
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Measuring Collective Disaster Impacts

The SW-Infra-RA model measures the collective disaster impacts
on infrastructure that serves multiple communities based on the dis-
tribution of impacts among individual communities. If we want to
reduce the overall impact of a disaster, attention must be given to
improving the overall equity and reducing the sensitivity of vulner-
able communities to disasters (Nicholson 2014). Previous studies
(e.g., Tselios and Tompkins 2019; Ward and Shively 2016) also
show that higher inequality is associated with worse losses from
disasters. Thus, when modeling the collective disaster impacts,
we can assume that inequality and vulnerability are both unfavor-
able situations. Inequality and vulnerability will then be accounted
for as factors that will further augment the collective disaster
impacts.

In the SW-Infra-RA model, the function of collective disaster
impacts includes the collective functional loss (CFL) function
[Eq. (5)] and the collective recovery time (CRT) function [Eq. (6)].
Both functions incorporate the unequal distributions of disaster
impacts on infrastructure serving multiple communities and the po-
tentially severe impacts on infrastructure in vulnerable commun-
ities. These two functions are developed by adapting the SWFs
(e.g., Mostafa and El-Gohary 2014; Zhang and Sanake 2020).
The equation for the CFL function is presented as

1 n
CFL; = ;Z FLj % (1 +7Gyrr))
i=1

1<
+ 622 maX[O, (FLik — LV(FL)A)] (5)
i=1

where CFL, = the CFL of the infrastructure that serves a group k
of multiple communities; F'L;, = the functional loss of the infra-
structure that serves an individual community i of group k; n =
the total number of communities; Gy ) = the Gini coefficient
for the functional loss of group k; LV ;) = the line of vulnerabil-
ity for functional loss of infrastructure serving a group k of multiple
communities; -y = a coefficient that controls the degree of account-
ing for inequality in augmenting the disaster impacts (0 < vy < 1);
and 6 = a coefficient that controls the degree of accounting for vul-
nerability in augmenting the disaster impacts (0 < 6 < 1).
Similarly, the equation for the CRT function is presented as

1 n
CRT, = ZZ RTj x (14 AGy(rp))
i=1

1 n
+ we Z max [0, (RT — LV (gp), )] (6)
=1

where CRT, = the CRT of the infrastructure that serves a group k of
multiple communities; RT';;, = the recovery time of the infrastruc-
ture that serves an individual community 7 of group k; n = the total
number of communities; Gy ) = the Gini coefficient for the re-
covery time of group k; LV (gr), = the line of vulnerability for
the recovery time of infrastructure serving a group k of multiple
communities; A = a coefficient that controls the degree of account-
ing for inequality in augmenting the disaster impacts (0 < A < 1);
and . = a coefficient that controls the degree of accounting for vul-
nerability in augmenting the disaster impacts (0 < 1 < 1).

Each of the CFL and the CRT functions consist of a subfunction
for inequality and a subfunction for vulnerability. The inequality
subfunction penalizes the unequal distributions of disaster impacts
across different communities. In other words, inequality further
augments the collective disaster impacts on these communities.
The inequality is measured through the Gini coefficient [Gy(ry),
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Gyrr)] using Eq. (1) or Eq. (2). Additionally, a coefficient y
(or \) is introduced to allow users to adjust the degree of penalizing
unequal distributions of disaster impacts. The value of v (or \)
ranges from O to 1, where v (or A\) = | represents the full extent
of penalization, and + (or A) = O represents no penalization at
all. Thus, users of the model have the flexibility in determining
to what extent they want to account for the inequality factor in
infrastructure resilience assessment.

The vulnerability subfunction acknowledges that the potentially
severe disaster impacts on the infrastructure of vulnerable commun-
ities could compromise the overall infrastructure resilience and
should be penalized when assessing the collective resilience of in-
frastructure. In other words, more severe impacts on some vulner-
able communities further augment the collective disaster impacts
on all communities of analysis. In this function, a coefficient §
(or p) is introduced, and it allows users to control the degree of
accounting for vulnerability in collective disaster impacts. The
value of ¢ (or ) ranges from O to 1, where 6 (or 1) = 1 represents
the full extent of penalization, and ¢ (or 1) = 0 represents no penali-
zation at all. Thus, users may have the flexibility in determining to
what extent they want to account for the vulnerability factor in
infrastructure resilience assessment.

Assessing Collective Infrastructure Resilience

The collective infrastructure resilience assessment function aims to
measure the collective infrastructure resilience based on the collec-
tive disaster impacts—CFL and CRT. The function was developed
by adapting Bruneau et al.’s (2003) Resilience Triangle framework.

Benchmarking Bruneau et al. (2003), the SW-Infra-RA model
measures infrastructure resilience by defining and measuring the
area of a collective resilience triangle (Fig. 3). In the collective
resilience triangle, the vertical axis of the triangle represents
the collective functionality of infrastructure, which varies over time.
The collective functionality of infrastructure ranges from 0% to
100%, where 100% means no degradation in functions or services
and 0% means no service is available. A disaster occurring at time t,
could cause damage to the infrastructure that the functionality of
the infrastructure immediately reduced. The extent to which the func-
tionality is reduced can be measured by the CFL function [Eq. (5)].
The recovery of the infrastructure is a process that takes time, and the
infrastructure is completely restored to the original functional level

Disruptive event occurs,
4 and reduction in
functionality of
infrastructure starts

ol l
‘ I

Collective functional loss

____________ | |

Full recovery of infrastructure
and its services to the original
functional level

Functionality of Infrastructure (%)

50
Collective recovery
time
0 : >
t tt
Time (t)

Fig. 3. A conceptual diagram for a collective resilience triangle.
(Adapted from Bruneau et al. 2003.)
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when it is time t;. The collective length of recovery (from time t, to
t,) can be measured through the CRT function [Eq. (6)].

To measure the area of the collective resilience triangle, the col-
lective loss of infrastructure resilience can be measured through
Eq. (7):

CLR, = /"(CFLk)dt (7)
[0

where CLR, = the collective loss of resilience of infrastructure that
serves a group k of multiple communities; CFL, = the CFL of in-
frastructure that serves a group k of multiple communities; 7, = time
at which a disruptive event occurs; and ¢, = time at which the infra-
structure is fully recovered.

If we assume the infrastructure is recovered at a steady pace, the
collective loss of infrastructure resilience (CLR) function can be
further simplified, as shown in Eq. (8)

CLR, — CFL; x CRT;, (8)
2

where CLR; = the collective loss of resilience of infrastructure that

serves a group k of multiple communities; CFL, = the CFL of in-

frastructure that serves a group k of multiple communities; and

CRT = the CRT of infrastructure that serves a group k of multiple

communities.

As per Eq. (8), a higher value of collective loss of resilience
indicates poorer resilience performance of the infrastructure against
disasters. In other words, the infrastructure is more likely to expe-
rience severe damage, resulting in longer disruptions to the func-
tions and services of the infrastructure.

Case Studies

Hypothetical Case Study

A hypothetical case study was first conducted to illustrate the use
of the SW-Infra-RA model in assessing and comparing collective
infrastructure resilience across different communities. Hypothetical
case studies have been widely used in research in different domains
to evaluate or illustrate the use of new methods, models, or frame-
works (Balaei et al. 2018; Mostafa and El-Gohary 2014; Zhang and
Sanake 2020). This case study aims to analyze and compare the
collective resilience of transportation infrastructure in two cities
that are composed of various neighborhoods. In this process, we
account for the inequality in and vulnerability to disaster impacts
among these neighborhoods.

In the case study, Hurricane X caused major damage to the high-
way infrastructure of City A and City B, which were designed as
two hypothetical cities that were composed of 20 neighborhoods
each. The highway infrastructure (e.g., roads, highways, bridges)
of both cities connects the neighborhoods and supports the socio-
economic development of the local communities. In the event of a
disaster, the highway infrastructure plays a vital role by offering
links to emergency services, relief, and evacuation routes. The
highway infrastructure, however, was in different conditions in City
A and City B before being struck by Hurricane X. According to a
report on the quality of highway pavement and bridges of City A,
approximately 22% of the pavement in City A’s highway infrastruc-
ture was in “poor” pavement ride quality, and around 17% of
bridges were inspected as “structurally deficient.” The majority of
the pavement and bridges in poor conditions are located in neigh-
borhoods with lower average household income. Further investiga-
tion found that these neighborhoods received less financial support
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for maintaining, repairing, or rehabilitating their highway infra-
structure over the last decade. For City B, the report shows that
only 4% of the pavement in the city was in “poor” pavement ride
quality, while 56% was in “good” quality, and 40% was in “fair”
quality. Similarly, only 6% of bridges were inspected as “structur-
ally deficient.” The generally good performance of highway infra-
structure in City B is attributed to the higher financial support and
expenses on maintenance and repair, which may be partially due to
relatively better socioeconomic backgrounds (e.g., higher average
income, higher housing prices, higher percentages of educated pop-
ulation) of all the neighborhoods in City B.

In the event of Hurricane X, the highway infrastructure of both
City A and City B suffered from severe disaster impacts, such as
strong wind forces, storm surges, and flash flooding. The damage
on the roads, highways, and bridges ranged from pavement failures
or structural damage to completely washed-off road sections, which
resulted in road and highway closures lasting days to weeks. In City
A, disparities in road and highway damage were observed across
the 20 neighborhoods. Some neighborhoods suffered from more
severe impacts on their highway infrastructure. The roads and
bridges were blocked, damaged, or partially washed away due to
fallen trees, flying debris, strong storm surges, and flash floods.
The road and highway services were disrupted and took three to
four weeks to repair before resuming normal operation. On the
other hand, some neighborhoods had relatively mild damage, such
as erosion of road pavement and poles and trees fallen down on
roads. After removing the debris and repairing the damaged road-
way segments, the highway infrastructure resumed its normal func-
tion. In City B, the road and highway infrastructure across all
neighborhoods experienced a similar level of disaster impact.
Table 1 presents the hypothetical data on the disaster impacts on
the highway infrastructure in the 20 neighborhoods of each city.
The data include (1) the percentage of road closures (functional
loss); and (2) the time required to resume road services (recovery
time).

Utilizing the dataset from Table 1, we followed five steps to as-
sess the resilience of highway infrastructure in Cities A and B. In
Step 1, normalization of the values of functional loss (percentage of
road closures) and recovery time (time required to resume road
services) was conducted to ensure that their units and scales are
comparable (the values range between 0 to 1 after normalization).
In Step 2, the Gini coefficients of functional loss and recovery time
were determined through the Lorenz curve. The Lorenz curves that
represent the distributions of road closures and time required for
road reopening across the 20 neighborhoods in Cities A and B
are depicted in Figs. 4 and 5, respectively. The results of Gini co-
efficients are summarized in Table 2. As per Table 2, although the
average disaster impacts on the highway infrastructure were found
to be similar for both cities, higher inequality in disaster impacts
was found in City A. In Step 3, the lines of vulnerability for disaster
impacts on highway infrastructure were determined using Eqgs. (3)
and (4). In Step 4, the collective disaster impacts on highway infra-
structure in Cities A and B were calculated using Egs. (5) and (6). A
0.5 coefficient y (and \) was employed for the analysis; it repre-
sents a medium extent of penalization on the unequal distributions
of disaster impacts on highway infrastructure across the 20 neigh-
borhoods in each city. Similarly, a 0.5 coefficient § (and p) was
used; it represents a medium extent of accounting for the severe
impacts on the vulnerable neighborhoods in collective impact
analysis. In Step 5, the collective resilience of highway infrastruc-
ture for Cities A and B was calculated using Eq. (8). The results of
lines of vulnerability, collective disaster impacts, and collective loss
of resilience for Cities A and B are summarized in Table 2.
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Table 1. Functional loss and recovery time of highway infrastructure of
City A and City B

Percentage of road  Time required to resume
City Neighborhood  closures (FL) (%) road services (RT) (days)

City A A 78 20
B 68 19
C 85 24
D 82 20
E 96 24
F 6 8
G 20 17
H 14 9
| 10 8
J 21 8
K 95 24
L 92 19
M 97 23
N 88 18
(0] 97 18
P 94 19
Q 18 10
R 28 9
S 13 13
T 44 6

City B a 67 19
b 65 19
c 62 18
d 65 18
e 72 12
f 63 16
g 46 13
h 42 13
i 44 17
j 45 12
k 51 16
1 57 18
m 58 15
n 54 12
o 58 11
p 52 15
q 56 15
r 49 10
s 60 14
t 61 17
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These results indicate that the overall resilience performance of
the highway infrastructure of City B is better than that of City A as
a lower value in loss of resilience represents better resilience per-
formance. The results imply that, collectively, the highway infra-
structure of City B had less damage and was more likely to resume
its services within a short period of time. It is worth noticing that
although the disaster impact data for the 20 neighborhoods of each
city have similar average values, City A receives a higher score on
collective loss of resilience by using the SW-Infra-RA model. This
is mainly due to the inequality or unequal distributions of disaster
impacts across different neighborhoods of City A. As per Table 1,
neighborhoods M, O, and P of City A had much higher percentages
of road closures and also required almost three weeks to fully
resume road services, whereas neighborhoods like F, I, and S of
City A had minimum road closures and resumed road services
within 8 to 10 days. Furthermore, the low resilience performance
of City A could be attributed to the severe impacts on the highway
infrastructure of some vulnerable neighborhoods in City A, further
augmenting the collective disaster impacts. For example, a high
percentage of road pavement and bridges in neighborhoods E,
K, and M of City A were in poor conditions even before the strike
of Hurricane X. Hurricane X further damaged these roads and
bridges that were in vulnerable conditions, resulting in a longer
time for resuming road services. Thus, more neighborhoods were
accounted as vulnerable neighborhoods, as the disaster impacts on
these neighborhoods from Hurricane X were above the line of
vulnerability.

Hurricane Michael Case Study

A real case study on Hurricane Michael was conducted to assess
the collective resilience of electric power systems in 12 counties in
the Florida Panhandle region. Hurricane Michael was a Category 5
hurricane that made landfall in the Florida Panhandle region
on October 10, 2018 (NHC 2019). Twelve counties (Fig. 6) in
this region issued disaster declarations, including Bay, Calhoun,
Franklin, Gadsden, Gulf, Holmes, Jackson, Leon, Liberty, Taylor,
Wakulla, and Washington Counties. Hurricane Michael brought
devastating winds and strong storm surges to these counties, and
it caused massive damage and destruction to the infrastructure
of the local communities (NHC 2019). According to a report
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Fig. 4. Lorenz curves for the distribution of disaster impacts in City A due to Hurricane X: (a) A Lorenz curve for the distribution of road closures
across neighborhoods in City A due to Hurricane X; and (b) a Lorenz curve for the distribution of time required to resume road services across

neighborhoods in City A due to Hurricane X.
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Fig. 5. Lorenz curves for the distribution of disaster impacts in City B due to Hurricane X: (a) A Lorenz curve for the distribution of road closures
across neighborhoods in City B due to Hurricane X; and (b) a Lorenz curve for the distribution of time required to resume road services across
neighborhoods in City B due to Hurricane X.

Table 2. Results of resilience assessment of highway infrastructure of City A and City B

City A City B

Parameter Functional loss Recovery time Functional loss Recovery time
Gini coefficient 0.38 0.35 0.32 0.31
Line of vulnerability 0.76 0.72 0.62 0.71
Collective disaster impact 0.71 0.68 0.61 0.67
Collective loss of resilience 0.24 0.19
(NHC 2019), the inundation height due to the storm surges was not account for inequality in or vulnerability to disaster impacts in
estimated to be 9 to 14 feet above ground level in the Florida the infrastructure resilience assessment. Thus, the coefficients of ,
Panhandle region. It was estimated that Hurricane Michael caused 6, A, and p were assigned to 0, and the coefficients of o and 3 were
$18.4 billion in damage, primarily incurred due to damage to infra- assigned to 1. In Context II, we accounted for disaster inequality
structure (NWS 2018). The strong wind forces and storm surges and vulnerability to a medium extent. Thus, all the coefficients,
caused damage to power substations, resulting in power outages including «, 3, v, 6, A, and p, were assigned to 0.5. In Context
lasting for weeks (FPSC 2021). The physical structures, such as III, we fully accounted for disaster inequality and vulnerability
utility poles and transmission towers, were severely damaged and in our analysis. Thus, the coefficients of -, 0, A\, and p were as-
destroyed due to fallen trees, flying debris, and flash floods (Dhakal signed to 1, and the coefficients of « and 3 were assigned to 0.
et al. 2021; Pathak et al. 2020). Fig. 7 shows the Lorenz curves for the distributions of power

In this case study, we selected two disaster impact indicators for outages and the time required to resume electric power services.
analysis: (1) percentage of electric power outages; and (2) time re- Table 4 summarizes the results of the resilience assessment in
quired for resuming electric power services. The data on electric the three defined contexts.
power systems of the 12 Florida counties that issued disaster dec- As per Table 4, the results of collective loss of resilience are
larations were collected from Florida Public Service Commission 0.25, 0.45, and 0.81 in Contexts I, II, and III, respectively. These
(FPSC 2021). The data are summarized in Table 3. As per Table 3, results show that the performance of the model is sensitive to
Hurricane Michael caused disproportionate impacts on the electric the intensity of accounting for disaster inequality and vulnerability.
power systems of the 12 counties. For example, Calhoun, Gulf, The model is designed in a way that allows users to flexibly choose
Jackson, and Washington Counties suffered from more severe im- the coefficients that control the intensity of accounting for disaster
pacts on their electric power systems, with power outages ranging inequality and vulnerability. For example, if an engineer focuses
from 96.19% to 100%. It took more than three weeks for these solely on analyzing the functional loss and recovery time of infra-
counties to fully resume their electric power services (FPSC 2021). structure systems without emphasis on inequality and vulnerability
On the other hand, Taylor County had a relatively lower percentage among the impacted communities, he/she may assign the coeffi-
of power outages (20.14%), and the county was able to resume cients of 7, A, ¢, and p to 0. Thus, as per Egs. (5)—(8), the collective
power transmission and supply rapidly after the hurricane (FPSC loss of resilience of these counties under study would be only based
2021). on the average disaster impacts on the infrastructure of those

By using the data in Table 3 and following the five steps as counties. On the other hand, if a planner or a mitigation expert
described in the Hypothetical Case Study Section, we performed would like to consider disaster inequality and vulnerability, which
the resilience assessment of the electric power system of the 12 may inform future recovery and mitigation efforts, he/she may
disaster-impacted counties in three contexts. In Context I, we did choose to assign a relatively high value (e.g., 1) for the coefficients
© ASCE 04022043-10 Nat. Hazards Rev.
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FEMA-4399-DR, Florida Disaster Declaration as of 11/15/2018
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Fig. 6. Counties of the Florida Panhandle region that issued disaster declarations. (Reprinted from FEMA 2018; data sources: FEMA, ESRIL.)

Table 3. Functional loss and recovery time of electric power infrastructure
in Hurricane Michael

Percentage of electric ~ Time required to resume electric

County power outages (FL) (%) power services (RT) (days)
Bay 96.6 23
Calhoun 100 27
Franklin 96.79 7
Gadsden 92.12 17
Gulf 99.05 23
Holmes 93.82 12
Jackson 99.78 27
Leon 65.69 14
Liberty 65.94 17
Taylor 20.14 2
Wakulla 93.49 14
‘Washington 96.19 24

of v, A\, 4, and p, thus placing a higher emphasis on the impacts of
disaster disparities and vulnerabilities on the collective loss of
resilience. In this case, the collective loss of resilience would be
augmented as the disproportionate disaster impacts across the
counties and the potentially severe disaster impacts on the vulner-
able counties are considered negative factors that could exacerbate
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the collective loss of resilience. It is thus recommended to use a
consistent set of coefficients when assessing the resilience of a
set of infrastructure alternatives.

In addition, the results show that in the case of Hurricane
Michael, the impacts of disaster inequality and vulnerability on
the collective loss of resilience of electric power infrastructure were
relatively high. The unequal distributions of disaster impacts on
electric power infrastructure (including both power outages and
time required to resume electric power services) across different
counties in Hurricane Michael can be observed through the rela-
tively high Gini coefficients (Gg = 0.64 and Ggp = 0.63). Such
disparities in disaster impacts could primarily be caused by the
counties’ different levels of disaster exposure. In this case study,
Hurricane Michael impacted a large geographic region. Counties
that are located in close proximity to the hurricane path experienced
much significant wind and storm forces compared to counties
that are relatively farther away. For example, counties including
Calhoun, Gadsden, Gulf, Jackson, and Washington Counties expe-
rienced strong storm surges and had an average windspeed of ap-
proximately 74 mph (Senkbeil et al. 2020). The percentage of
power losses in these counties ranges from 92.12% to 100%.
On the other hand, counties, such as Taylor and Leon counties,
had relatively lower average wind speeds of approximately 39 mph
and 57 mph, respectively (Senkbeil et al. 2020), and their power
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Fig. 7. Lorenz curves for the distribution of disaster impacts due to Hurricane Michael: (a) A Lorenz curve for the distribution of power outages of
Florida Panhandle counties due to Hurricane Michael; and (b) a Lorenz curve for the distribution of time required to resume electric power services

of Florida Panhandle counties due to Hurricane Michael.

Table 4. Results of resilience assessment of electric power infrastructure in Hurricane Michael

Context II Context IIT

Functional loss

Recovery time Functional loss Recovery time

Context I
Parameter Functional loss Recovery time
Gini coefficient 0.64 0.63
Line of vulnerability 1.00 0.93

Collective disaster impact 0.81 0.61
Collective loss of resilience 0.25

0.64 0.63 0.64 0.63
0.96 0.77 0.81 0.61
1.08 0.83 1.44 1.12

0.45 0.81

losses are 20.14% and 65.69%, respectively. Thus, in a large-scale
disaster such as Hurricane Michael, the different levels of disaster
exposure are one of the primary reasons that contribute to the dis-
parities in disaster impacts.

Another hidden reason may be the social inequality of
these counties. The social inequality situation in Florida is among
the worst in the United States and has been getting worse over time
(Johnson 2019). In our case, some of the counties (e.g., Gadsden,
Calhoun, Franklin, Holmes, and Jackson counties) whose electric
power infrastructure suffered from the most severe impacts are also
among the most socially vulnerable counties in the region (CDC/
ASTDR 2022). In addition, previous research by the authors
(Dhakal et al. 2021) has found that the counties with different
socioeconomic and demographic characteristics (e.g., age, race, in-
come, health) experienced different levels of infrastructure damage
and speeds of recovery. Those counties with higher percentages
of socially vulnerable populations experienced a relatively higher
level of damage and required a longer time for recovery (Dhakal
et al. 2021). Research on other disasters (e.g., Ward and Shivley
2016; Yoon 2012; Flanagan et al. 2011) also show that disaster vul-
nerability is interrelated with social vulnerability; many social fac-
tors (e.g., age, gender, income, and education) may impact the
resilience of communities. Under the same level of exposure, com-
munities that are socially vulnerable are more likely to suffer from
severe impacts (e.g., higher power outages, traffic disruptions, and
higher congestion) (Hallegatte et al. 2019). This may be attributed
to the fact that socially vulnerable populations often have the fewest
resources for disaster preparedness, live in disaster-prone areas, and
lack the social, political, and economic capital needed to withstand,
adapt to, and recover from a disaster (SAMSHA 2017).
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Research Limitations

We acknowledge four main limitations of the research work,
which suggests the necessity of future research. First, the proposed
SW-Infra-RA model focuses on assessing infrastructure resilience
by accounting for disparities of disaster impacts on infrastructure
serving multiple communities and potentially more severe impacts
on the infrastructure of vulnerable communities. Although the
case study discusses some potential reasons behind disaster in-
equality and vulnerability, the model currently does not focus
on establishing the links/interrelationships between such disparities
or vulnerabilities and the social or physical factors behind them.
More rigorous and extensive research is needed to further explore
the factors behind disaster inequality and vulnerability. Second, the
proposed SW-Infra-RA model focuses on assessing collective in-
frastructure resilience through aggregating disaster impacts on the
infrastructure of each individual community it serves. It currently
does not account for the interdependencies of infrastructure serving
these communities. Other methods, such as the system of system
approach or the system network analysis, can be used to measure
such interdependencies and can be further integrated into the pro-
posed modeling framework. Third, the SW-Infra-RA model is
designed to assess the collective infrastructure resilience of a single
type of infrastructure. Assessing the resilience of multiple types
of infrastructure may be conducted, depending on the input of the
data. For example, if the collected data on disaster impacts are for
multiple types of infrastructure, it may be possible to derive the
collective resilience of multiple infrastructures. Fourth, the SW-
Infra-RA model was currently implemented in analyzing the resil-
ience of highway infrastructure and electric power systems through
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two case studies—one hypothetical case study and one real case
study—with a limited number of communities. There is a need
to further apply the model in analyzing the resilience of different
types of infrastructure with a larger number of communities in-
volved. Such application would offer more insight and understand-
ing of how inequality in and vulnerability to disaster impacts could
impact infrastructure resilience.

Conclusions and Contributions

This study presents a new social welfare—based infrastructure resil-
ience assessment (SW-Infra-RA) model for assessing the collective
resilience of infrastructure serving multiple communities while ac-
counting for inequality in and vulnerability to disaster impacts. The
SW-Infra-RA model is theoretically grounded on the social welfare
theory and SWFs. The Gini coefficient was adapted to model un-
equal distributions of disaster impacts on the infrastructure of dif-
ferent communities. The line of vulnerability was proposed and
measured by leveraging Cutter et al.’s (2003) work on SoVI to
model disaster vulnerability. The collective disaster impact function
was then defined by aggregating the impacts on the infrastructure
of individual communities while integrating unequal distributions
of disaster impacts and potentially more severe impacts on vulner-
able communities. The collective disaster impacts were then con-
sidered as input into the collective resilience assessment function,
which was developed by adapting Bruneau et al.’s (2003) resilience
triangle framework. The application of the SW-Infra-RA model
was first illustrated through a hypothetical case study that compares
the collective resilience of highway infrastructure of two cities
impacted by the same disaster. A real case study was further con-
ducted to illustrate the use of the model for assessing the collective
resilience of electric power systems in the context of Hurricane
Michael.

Although equity in disasters has been extensively discussed in
existing disaster literature (e.g., Tate et al. 2021; Gooden et al.
2009; Bullard 2007), there are currently limited studies that math-
ematically integrate disaster inequality and vulnerability with infra-
structure resilience assessment. This research addresses this gap by
proposing a new infrastructure resilience assessment framework
that measures the collective resilience of infrastructure serving
multiple communities while accounting for disaster inequality and
vulnerability. It adapted methods from the social science and
economics domain to mathematically measure the unequal distri-
butions of disaster impacts across various communities and pro-
posed new ways of evaluating the severe impacts on vulnerable
communities (through the line of vulnerability). The mathematical
modeling of the concepts of disaster inequality and vulnerability is
the key to creating the quantitative links between infrastructure
resilience and equity, enabling equitable resilience assessment of
infrastructure.

From practical perspectives, the SW-Infra-RA model provides
a theoretical basis for equity-incorporated decision making by
allowing decision makers to quantitatively assess infrastructure
resilience while accounting for inequality and vulnerability. The
results generated using this model can be utilized by decision mak-
ers to better understand the inequalities during extreme events and
to identify the communities that are more vulnerable in such events.
The results may also help practitioners recognize how inequality
and vulnerability may hinder or impact overall resilience. For
example, by applying the model to previous/ongoing disasters,
numerical information about disaster inequality and vulnerability
of the impacted regions can be derived, thus helping decision mak-
ers prioritize disaster assistance, resources for recovery, or future
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infrastructure and resilience investments to certain communities.
By applying the model using simulated data on certain disasters,
the results can help decision makers better understand or predict
the potential consequences of a possible disaster in certain areas,
especially how inequality and vulnerability play their roles in the
disaster. Overall, the model may promote equitable resilience plan-
ning or hazard mitigation by allowing both the decision makers and
the community residents to better understand the links between
resilience planning and equity in their communities.
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