
Integrating Social Equity and Vulnerability with Infrastructure Resilience Assessment 
 

Sunil Dhakal1 and Lu Zhang, Ph.D., A.M.ASCE2 

 
1Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Florida International Univ., 
Miami, FL. Email: sdhak003@fiu.edu 
2Assistant Professor, Moss Dept. of Construction Management, Florida International Univ., 
Miami, FL (corresponding author). Email: luzhang@fiu.edu 
 
ABSTRACT 

 
Resilient infrastructure, which better withstands, adapts, and recovers from disasters, plays an 

important role in mitigating the impacts of natural hazards to the communities. However, 
disparities exist in infrastructure damage and recovery across communities with different 
socioeconomic backgrounds. Socially vulnerable communities experience more severe 
infrastructure damage and require longer time to repair and resume infrastructure services. Thus, 
there is a need to systematically integrate social equity with infrastructure resilience assessment. 
To address this need, this paper proposes a social welfare-based infrastructure resilience 
assessment framework that accounts for (1) the unequal distribution of infrastructure damage and 
recovery across communities with different socioeconomic statuses and (2) the potentially higher 
infrastructure damage and longer recovery time in socially vulnerable communities. The proposed 
model can facilitate equitable resilience in infrastructure planning and recovery by allowing for a 
better understanding and assessment on how infrastructure in different communities is equally or 
unequally affected by disasters. 
 
Keywords: Infrastructure resilience, Resilience assessment, Social welfare theory, Social equity, 
Disaster vulnerability 

 
INTRODUCTION 

 
Critical infrastructure plays an essential role in natural hazards. Sufficient and high-quality 

infrastructure, such as power, water, and transportation systems, can limit the impacts natural 
hazards cause in terms of loss of life and economic damage (Godschalk 2003). Over the last 
decade, significant efforts have been made for the development and maintenance of infrastructure 
to withstand, adapt, and quickly recover from disasters. However, disparities exist in the 
investment and maintenance of infrastructure across different communities. Such disparities 
potentially result in varying levels of infrastructure damage across different communities during 
disasters. Previous research shows that communities with higher socioeconomic status (e.g., higher 
income, better education, higher housing value) typically receive more investment in building new 
or rehabilitating existing infrastructure (Nexus 2017). As a result, these communities tend to 
recover faster from disasters with minimal loss of infrastructure services (Masozera et al. 2006). 
On the contrary, infrastructure in socially vulnerable communities is frequently of insufficient 
quality. Socially vulnerable communities are communities with high percentages of populations 
who are not able to withstand adverse impacts from various stressors. Some examples of 
vulnerable populations include the elderly, the disabled, the economically disadvantaged, and the 
racial and ethnic minorities (AJMC 2006). These communities typically experience more severe 
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physical damage on their infrastructure and/or require a longer time to resume infrastructure 
services. Due to the unequal distribution of disaster impacts on infrastructure, there is a need to 
systematically integrate such inequality with infrastructure resilience assessment. This is 
especially important to large infrastructure systems that serve multiple communities, such as 
interstate highway systems, electric substation and transmission lines, and municipal water supply 
systems. A quantitative measure on the collective resilience of infrastructure systems may guide 
equitable disaster recovery and resilience planning for future infrastructure.  

Despite the need for and importance of integrating social equity with infrastructure resilience 
assessment, a number of knowledge gaps are identified in the infrastructure resilience literature. 
Many studies (e.g., Cimellaro et al. 2010, Rehak et al. 2019, Mao and Li 2018, Makropoulos et al. 
2018, Yang et al. 2018) have proposed different resilience assessment frameworks or methods to 
measure the resilience of different types of infrastructure systems. For example, Cimellaro et al. 
(2010) proposed a comprehensive model including a loss estimation model and a recovery model 
to quantify the resilience of the network of hospital systems. Rahek et al. (2019) presented an 
infrastructure resilience assessment method that involves assessment of robustness, capacity to 
adapt to, and ability to recover from disruptive events. Makropoulos et al. (2018) proposed a 
methodological framework to assess the resilience of urban water systems. Yang et al. (2018) 
developed a resilience assessment framework that quantitatively evaluates the resilience of power 
transmission systems considering the impacts of disruptive events. These studies offered valuable 
contributions to infrastructure resilience evaluation. They, however, did not account for the 
unequal distribution of disaster impacts on infrastructure systems that serve multiple communities. 
They also did not consider the severe impacts on socially vulnerable communities.  

To address the gaps, this paper proposes a new model that measures the collective resilience 
of infrastructure serving multiple communities by integrating (1) unequal distribution of disaster 
impacts on infrastructure serving different communities, and (2) more severe disaster impacts on 
infrastructure in socially vulnerable communities. The proposed model is theoretically grounded 
in social welfare theory and social welfare functions. It also adapts the concept of resilience 
triangle proposed by Bruneau et al. (2003) and social vulnerability index introduced by Cutter et 
al. (2003). The paper focuses on presenting the functions of the proposed model. A preliminary 
hypothetical case study was conducted to illustrate the use of the model.  

 
SOCIAL WELFARE THEORY AND SOCIAL WELFARE FUNCTION  
 

Social welfare theory studies the aggregated or collective welfare of a society or a group of 
individuals (Clarke and Islam 2003, Zhang and Sanake 2020). A social welfare function is a 
function that analyzes and ranks the welfare states of the society (Arrow 1963). This function can 
be utilized by the governments to identify solutions that facilitate optimal resource distribution, 
thus allowing the whole society to achieve the maximum collective welfare. Over the last several 
decades, many social welfare functions (SWFs) were proposed to measure the welfare of a group 
or a society. There are two major approaches for determining the welfare of a society: Utilitarian 
approach and Rawlsian approach. In Utilitarian SWFs, the social welfare is calculated as the sum 
of welfare of individual members (Schneider and Kim 2020, Harsanyi 1955). With this approach, 
a growth in welfare of any individuals in a society would result in increased total welfare of the 
society. Rawlsian approach, on the other hand, focuses on distributing the resources to aid the least 
fortunate individuals of a society with the goal to increase the collective welfare of the society 
(Schneider and Kim 2020, Rawls 1971). In Rawlsian approach, the welfare of a society is defined 
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based on the welfare of the worst-off individuals in the society. The distribution of welfare 
presented by Utilitarian SWF differs with the one presented by Rawlsian SWF. To account for 
inequality of welfare distribution in a society, Sen (1997) proposed a SWF that integrates an 
inequality index, Gini coefficient, to measure the unequal distribution of welfare in a society. To 
account for the individuals who receive the minimum welfare in a society, Atkinson and Brandolini 
(2010) proposed a SWF that integrates a poverty indicator. This indicator is crucial as it accounts 
for the welfare of the worst-off individuals for determining the collective welfare of a society. 

In recent years, social welfare theory and functions have been adapted to solve problems in the 
architecture, engineering, and construction (AEC) domain. For example, Mostafa and El-Gohary 
(2014) proposed a sustainable construction SWF that analyses the collective environmental, social, 
and economic benefits that infrastructure project alternatives provide to the stakeholders. Zhang 
and Sanake (2020) proposed a social welfare-based comfort analysis model for measuring the 
comfort level of a group of occupants in the indoor environments.  

 
PROPOSED INFRASTRUCTURE RESILIENCE EVALUATION FRAMEWORK  

 
In our study, we propose to adapt social welfare theory and functions into the area of 

infrastructure resilience assessment. As discussed in the previous section, the social welfare 
function is generally defined as a measure of the aggregated welfare of a group based on the 
allocation of one or more well-being requisites among the individuals of that group. In the context 
of infrastructure resilience assessment, the collective resilience of an infrastructure system serving 
multiple communities can be defined based on the resilience of infrastructure in each individual 
community. In our proposed model, functional loss and recovery time of infrastructure were 
selected as two indicators of infrastructure resilience. Here, functional loss is defined as the loss 
of infrastructure services due to disaster damage, such as percentage of power outages, percentage 
of communication service outages, and percentage of road and highway closures. Recovery time 
is the amount of time required for the infrastructure to be recovered to its full functional level, such 
as time required to resume electric power services, and time required to resume road services. The 
data for both indicators can be collected directly from public or private sources, including but not 
limited to Department of Transportation, Department of Emergency Management, and electric 
power companies. To determine the collective resilience of infrastructure serving multiple 
communities, we account for both inequality and vulnerability in disaster impacts across different 
communities. The following paragraphs offer detailed explanation and discussion.  

Inequality in Disaster Impacts. In a society with ideal social equity conditions, all 
communities are expected to experience similar level of damage during disasters and require 
similar length of time in recovery after disasters, if they are exposed to the same or similar disaster 
threat level (e.g., wind threat level, rainfall threat level). However, in reality, disparities exist in 
the distribution of infrastructure functional loss and recovery time across different communities 
even these communities are exposed to the same disaster threat level. The unequal distributions of 
functional loss and recovery time are analogous to welfare inequality in a society. Thus, we 
propose to adapt Gini coefficient to measure such unequal distribution. Gini coeffect is one of the 
most commonly used indicators to measure inequality of social welfare (Atkinson and Brandolini 
2010). In our proposed model, Gini coefficient is a measure of the unequal distribution of 
functional loss and recovery time of infrastructure serving different communities. The value of 
Gini coefficient ranges from 0 to1. A Gini coefficient of 0 indicates complete equality in functional 
loss and recovery time – the infrastructure systems across all communities experience the same 
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level of functional loss and require the same length of time for recovery. Gini coefficient of 1 
indicates complete inequality in disaster impacts – the infrastructure of only one community 
experiences the maximum level of functional loss and requires the longest time in recovery. 
Graphically, Gini coefficient can be represented though a Lorenz curve (Figure 1). 

 

 
 

Figure 1. Lorenz Curve for distribution of infrastructure functional loss. 
 

As per Figure 1, Gini coefficient can be measured by dividing the area between Lorenz curve 
and the line of complete equality (Area X) by the total area covered under the line of complete 
equality (Area X+Y). In our proposed model, Lorenz curve illustrates the percentage of cumulative 
infrastructure functional loss (or recovery time) experienced by the percentage of communities 
under consideration. The Lorenz curve being farther away from the line of complete equality 
indicates a higher level of inequality, and vice versa. 

Vulnerability to Disaster Impacts. Vulnerability to disaster impacts is influenced by many 
socioeconomic and demographic factors, including age, income, and community characteristics 
(Flanagan et al. 2011). Socially vulnerable communities typically experience more severe damage 
to their infrastructure and often require longer time for recovering the infrastructure services to the 
pre-disaster level (Masozera et al. 2007). In mitigating the disaster impacts on vulnerable 
communities, it is necessary to identify and document those communities that suffer from the most 
severe infrastructure damage and spend the longest time in recovery. Thus, in our proposed model, 
we propose to define a “line of vulnerability” by adapting the work of Cutter et al. (2003) on social 
vulnerability. The “line of vulnerability” is a benchmark line that indicates the level of 
vulnerability. If the value of infrastructure functional loss and recovery time of a community is 
above this line, the community can be identified as one of the vulnerable communities. 
Mathematically, the line of vulnerability is defined as the sum of the mean and standard deviation 
of infrastructure functional loss (recovery time) experienced by all communities under 
consideration. Eq. (1) and Eq. (2) represent the equations for line of vulnerability for functional 
loss and recovery time, respectively:  

𝑙𝑣𝐹𝐿 =  
1

𝑛
 ∑ 𝐹𝐿𝑖𝑗

𝑛
𝑖=1 +  𝑆𝑛.       (1) 
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where lvFL = line of vulnerability for functional loss; FLij = functional loss of an infrastructure that 
serves an individual community i of group j; n = total number of individual communities; 𝑆𝑛 = 
standard deviation for the functional loss of infrastructure serving a group j of communities. 

 
 𝑙𝑣𝑅𝑇 =  

1

𝑛
 ∑ 𝑅𝑇𝑖𝑗

𝑛
𝑖=1 +  𝑆𝑛      (2) 

 
where lvRT = line of vulnerability for recovery time; RTij = recovery time of an infrastructure that 
serves an individual community i of group j; n = total number of individual communities; 𝑆𝑛 = 
standard deviation for the recovery time of infrastructure serving a group j of communities. 

Defining such vulnerability line could be beneficial for socially vulnerable communities, as 
decision makers can pay special attention to these communities and facilitate the (re)development 
and (re)investment of infrastructure that leads to better equity outcomes.  

Collective Disaster Impacts Measurement. In our study, collective disaster impacts refer to 
the aggregated disaster impacts on infrastructure serving a collection of multiple communities. Our 
proposed model measures the collective disaster impacts on infrastructure serving multiple 
communities by accounting for the inequality in and vulnerability to disaster impacts. The 
collective functional loss and collective recovery time for an infrastructure system are determined 
through two separate functions [Eq. (3) and Eq. (4), respectively] following a similar theoretical 
basis: 

 
𝐹𝐿𝑗 =

1

𝑛
 ∑ 𝐹𝐿𝑖𝑗

𝑛
𝑖=1 × (1 +  γ𝐺𝑗) +  δ 

1

𝑛
 ∑ max [0, (𝐹𝐿𝑖𝑗 − 𝑙𝑣𝐹𝐿)]𝑛

𝑖=1    (3) 
 

where 𝐹𝐿𝑗  = the collective functional loss of an infrastructure system serving a group j of multiple 
communities; FLij = the functional loss of an infrastructure serving an individual community i of 
group j; n = total number of individual communities; Gj = the Gini coefficient for functional loss; 
lvFL = the line of vulnerability for functional loss; γ = a coefficient that controls the degree of 
penalizing unequal distribution of functional loss, 0 ≤ γ ≤ 1; and δ = a coefficient that controls the 
degree of penalizing extremely severe functional loss, 0 ≤ δ ≤ 1. 

 
𝑅𝑇𝑗  =  

1

𝑛
∑ 𝑅𝑖𝑗

𝑛
𝑖=1 × (1 +  γ𝐺𝑗) +  δ 

1

𝑛
 ∑ max [0, (𝑅𝑇𝑖𝑗 −  𝑙𝑣𝑅𝑇)]𝑛

𝑖=1   (4) 
 

where RTj= the collective recovery time of an infrastructure system serving a group j of multiple 
communities; RTij = the recovery time of an infrastructure serving an individual community i of 
group j; n = total number of individual communities; Gj = the Gini coefficient for recovery time; 
lvRT = the line of vulnerability for recovery time; γ = a coefficient that controls the degree of 
penalizing unequal distribution of recovery time, 0 ≤ γ ≤ 1; and δ = a coefficient that controls the 
degree of penalizing extremely long recovery time, 0 ≤ δ ≤ 1. 

Each of the collective functional loss function and collective recovery time function consists 
of two main subfunctions: a subfunction for inequality and a subfunction for vulnerability. The 
inequality subfunction penalizes the unequal distribution of infrastructure functional loss and 
recovery time across different communities. This is based on the assumption that such inequality 
jeopardizes the achievement of overall resilience of the infrastructure system that serves multiple 
communities. A coefficient γ  ranging between 0 and 1, is introduced to allow planners and 
decision makers to adjust the degree of penalization. The vulnerability subfunction penalizes the 
extremely severe infrastructure functional loss and long recovery time experienced by vulnerable 
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communities. Similarly, this is based on the assumption that such vulnerability compromises the 
achievement of the overall resilience of infrastructure systems. To allow practitioners and decision 
makers to control the degree of penalization, a coefficient δ ranging between 0 and 1 is introduced 
to the vulnerability subfunction.  

Infrastructure Resilience Assessment Function. The infrastructure resilience assessment 
function is used to measure the collective resilience of infrastructure systems that serve multiple 
communities. The theoretical foundation of the infrastructure resilience assessment function is 
grounded on the resilience triangle framework proposed by Bruneau et al. (2003). This approach 
is based on the fact that the quality of infrastructure varies with time (Figure 2).  

 

 
 

Figure 2. Collective Infrastructure resilience measurement 
(adapted from Bruneau et al. 2003) 

 
Disasters could possibly cause severe damage and service outages, resulting in the reduction 

of the functionality of infrastructure systems. In general, the functionality of infrastructure is 
expected to be reduced after exposed to unexpected disruptive events (e.g., reduced from 100% to 
60%). However, with the help of recovery efforts over a certain period of time (recovery time), the 
structure and service of infrastructure can be restored to a pre-disaster level. Based on Bruneau et 
al. (2003)’s resilience triangle framework, we define the collective loss of resilience of an 
infrastructure system in the equation below: Eq. (5). 

 
𝐿𝑅𝑗 =  ∫ [𝐹𝐿𝑗  

𝑡𝑡

𝑡0
]𝑑𝑡           (5) 

 
where LRj = collective loss of resilience in an infrastructure system serving a group j of multiple 
communities; FLj = collective functional loss of an infrastructure system serving a group j of 
multiple communities; t0 = time at which disaster occurs; and tt = time at which the infrastructure 
system is fully recovered. 

Assuming the infrastructure system is recovered with a constant speed, the functional loss and 
recovery time of the infrastructure system can be used to form a resilience triangle (Figure 3). 
Thus, the collective functional loss and collective recovery time of the infrastructure system can 
be represented as “height” and “base” of a right-angle triangle. Therefore, the collective loss of 
resilience of the infrastructure system can be simplified as Eq. (6). 
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𝐿𝑅𝑗 =
 𝐹𝐿𝑗 × 𝑅𝑇𝑗

2
          (6) 

where LRj = collective loss of resilience in an infrastructure system serving a group j of multiple 
communities; FLj = collective functional loss of an infrastructure system serving a group j of 
multiple communities; and RTj = collective recovery time of an infrastructure system serving a 
group j of multiple communities. 

 

 
 

Figure 3. Concept of resilience triangle for the measurement of infrastructure resilience 
(adapted from Bruneau et al. 2003) 

CASE STUDY 

To apply our proposed model in analyzing collective infrastructure resilience, a hypothetical 
case study was conducted. Hypothetical case studies are widely used in multiple domains to test 
or illustrate the use and implementation of new models or methods (Balaei et al. 2018, Mosatafa 
and El-Gohary 2014). In our hypothetical case, Hurricane X caused major damage on a 
transportation infrastructure system that serves ten communities, numbered as Community A to 
Community J. The residents of these communities rely on the transportation infrastructure system 
(including highways, bridges, and local roads) to get access to goods, services, and amenities (e.g., 
school, restaurants, grocery stores, and health care facilities). After Hurricane X, the local roads 
and bridges were severely damaged in some communities, and the residents in these communities 
lost transportation accessibility for weeks. Some other communities had only minor damage on 
their road pavement, which caused traffic blockage for only a few days.  

For our hypothetical case, we created a group of individual communities with different 
vulnerability levels. In our study, the vulnerability level indicates the state of being exposed to and the 
possibility of suffering from significant impacts on infrastructure systems from potential disasters. 
These ten communities have different levels of infrastructure damage and required different length of 
time in recovery. For example, Community A has low vulnerability level. Thus, it experienced a lower 
level of damage on its transportation infrastructure, and they resumed roadway and highway functions 
rapidly after the hurricane. On the other hand, Community J experienced a significant damage to their 
transportation infrastructure, and it took more than three weeks to repair and resume highway and 
roadway functions after the hurricane. The functional loss and recovery time of the transportation 
infrastructure in the ten communities are summarized in Table 1. 

Construction Research Congress 2022 305

© ASCE

 Construction Research Congress 2022 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Fl
or

id
a 

In
te

rn
at

io
na

l U
ni

ve
rs

ity
 o

n 
12

/0
9/

22
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



Based on the dataset in Table 1, five steps were taken to perform the resilience assessment. In 
Step 1, to ensure that the indicators in various scales and units are comparable (e.g., between 0 
to1), normalization of the values of functional loss and recovery time was conducted. In Step 2, 
Gini coefficients were determined using the Lorenz curve. The Lorenz curves for functional loss 
and recovery time of transportation infrastructure in the ten communities are shown in Figures 4(a) 
and 4(b), respectively. The Gini coefficients for functional loss and recovery time were calculated 
as 0.47 and 0.45, respectively. In Step 3, the line of vulnerability was determined using Eq. (1) and 
Eq. (2). The lines of vulnerability for functional loss and recovery time were calculated to be 0.89 
and 0.87, respectively. In Step 4, the collective functional loss and the collective recovery time of 
the transportation infrastructure system were calculated using Eq. (3) and Eq. (4), respectively. A 
value of 0.5 was chosen for the coefficients γ and δ, representing a medium level of penalization 
on (a) unequal distribution of functional loss and recovery time, and (b)extreme functional loss 
and recovery time in socially vulnerable communities, respectively. In Step 5, the collective 
resilience of the transportation infrastructure system was calculated using Eq. (5) and Eq. (6). In 
this case study, the recovery of the transportation infrastructure was assumed to follow a constant 
speed. Thus, the collective loss of resilience can be represented as the area of triangle with values 
ranging from 0 to 0.5. A lower value on collective loss of resilience indicates that the infrastructure 
system is more resilient to disruptive events, meaning the infrastructure system has less damage 
and is likely to resume normal operation in a short time. In our hypothetical case, the value of 
collective loss of resilience is equal to 0.17, which indicates the infrastructure system, overall, has 
a better than medium resilience performance.  

 
Table 1. Functional Loss and Recovery Time of a Transportation Infrastructure System 

Serving Multiple Communities 
 

Community Functional 
Loss (%) 

Normalized 
Functional 

Loss 

Recovery 
time (days) 

Normalized 
Recovery 

Time 

Vulnerability 
level 

A 20 0.14 5 0.14 low 
B 12 0.05 4 0.09 low 
C 58 0.55 10 0.38 medium 
D 70 0.68 19 0.81 medium 
E 97 0.98 22 0.95 High 
F 35 0.30 9 0.33 medium 
G 7 0 2 0 low 
H 10 0.03 4 0.09 low 
I 98 0.99 21 0.9 high 
J 99 1 23 1 high 

CONCLUSIONS 

This paper presents a new infrastructure resilience assessment model for measuring the 
collective resilience of infrastructure systems serving multiple communities. The proposed model 
accounts for the unequal distribution of disaster impacts on different communities and the 
potentially extreme impacts experienced by some socially vulnerable communities. The proposed 
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model is theoretically grounded on social welfare theory and social welfare functions. It also adapts 
the concept of resilience triangle by Bruneau et al. (2003) and social vulnerability index proposed 
by Cutter et al. (2003). This study contributes to the body of knowledge by providing a new 
resilience assessment model that determines the collective resilience of infrastructure systems 
serving multiple communities. This study also provides a better understanding on how to quantify 
the unequal distribution of disaster impacts on infrastructure across different communities and the 
potentially severe impacts on the infrastructure of vulnerable communities.  

In the ongoing and future work, the authors will conduct larger scale studies that compare 
the resilience of infrastructure across different groups of communities in various geographical 
conditions (e.g., different states) and further expand the current study to different types of 
infrastructure systems. The authors will conduct the studies based on real data collected in 
previous disasters (e.g., Hurricane Michael, Hurricane Irma). Furthermore, the proposed model 
will be implemented in a prototype system to allow decision makers to easily quantify and 
compare the collective resilience of infrastructure systems while accounting for social equity 
and vulnerability. The proposed model, together with the future work, may allow decision 
makers to better understand the interrelationships between infrastructure resilience and social 
equity, and it may also help decision makers prioritize infrastructure investment for socially 
vulnerable communities. 

 

      
                                       (a)                                                       (b)                                     

 
Figure 4. Lorentz curves for (a) functional loss and (b) recovery time 
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