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Abstract— Due to its distributed nature, federated learning is
vulnerable to poisoning attacks, in which malicious clients poison
the training process via manipulating their local training data
and/or local model updates sent to the cloud server, such that
the poisoned global model misclassifies many indiscriminate test
inputs or attacker-chosen ones. Existing defenses mainly leverage
Byzantine-robust federated learning methods or detect malicious
clients. However, these defenses do not have provable security
guarantees against poisoning attacks and may be vulnerable to
more advanced attacks. In this work, we aim to bridge the gap
by proposing FLCert, an ensemble federated learning framework,
that is provably secure against poisoning attacks with a bounded
number of malicious clients. Our key idea is to divide the clients
into groups, learn a global model for each group of clients using
any existing federated learning method, and take a majority vote
among the global models to classify a test input. Specifically,
we consider two methods to group the clients and propose two
variants of FLCert correspondingly, i.e., FLCert-P that randomly
samples clients in each group, and FLCert-D that divides clients
to disjoint groups deterministically. Our extensive experiments on
multiple datasets show that the label predicted by our FLCert
for a test input is provably unaffected by a bounded number of
malicious clients, no matter what poisoning attacks they use.

Index Terms—Federated learning, provable security, poisoning
attack, ensemble method.

I. INTRODUCTION

Federated learning (FL) [18], [23] is an emerging machine
learning paradigm, which enables clients (e.g., smartphones,
IoT devices, and organizations) to collaboratively learn a
model without sharing their local training data with a cloud
server. Due to its promise for protecting privacy of the clients’
local training data and the emerging privacy regulations such
as General Data Protection Regulation (GDPR), FL has been
deployed by industry. For instance, Google has deployed
FL for next-word prediction on Android Gboard. Existing
FL methods mainly follow a single-global-model paradigm.
Specifically, a cloud server maintains a global model and each
client maintains a local model. The global model is trained
via multiple iterations of communications between the clients
and server. In each iteration, three steps are performed: 1) the
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server sends the current global model to the clients; 2) the
clients update their local models based on the global model
and their local training data, and send the model updates to
the server; and 3) the server aggregates the model updates and
uses them to update the global model. The learnt global model
is then used to predict labels of test inputs.

However, such single-global-model paradigm is vulnerable
to poisoning attacks. In particular, an attacker can inject
fake clients to FL or compromise genuine clients, where
we call the fake/compromised clients malicious clients. For
instance, an attacker can use a powerful computer to simulate
many fake smartphones. Such malicious clients can corrupt
the global model via carefully tampering their local training
data or model updates sent to the server. As a result, the
corrupted global model has a low accuracy for the normal test
inputs [6], [10] (known as untargeted poisoning attacks) or
certain attacker-chosen test inputs [2], [3] (known as targeted
poisoning attacks). For instance, in an untargeted poisoning
attack, the malicious clients can deviate the global model
towards the opposite of the direction along which it would
be updated without attacks by manipulating their local model
updates [10]. In a targeted poisoning attack, when learning
an image classifier, the malicious clients can re-label the cars
with certain strips as birds in their local training data and scale
up their model updates sent to the server, such that the global
model incorrectly predicts a car with the strips as bird [2].

Various Byzantine-robust FL methods have been proposed
to defend against poisoning attacks from malicious clients.
[4], [5], [32]. The main idea of these methods is to mitigate
the impact of statistical outliers among the clients’ model
updates. They can bound the difference between the global
model parameters learnt without malicious clients and the
global model parameters learnt when some clients become
malicious. However, these methods cannot provably guarantee
that the label predicted by the global model for a test input
is not affected by malicious clients. Indeed, studies showed
that malicious clients can still substantially degrade the test
accuracy of a global model learnt by a Byzantine-robust
method via carefully tampering their model updates sent to
the server [3], [6], [10].

Our work: In this work, we propose FLCert, the first
FL framework that is provably secure against poisoning at-
tacks. Specifically, given n clients, we define N groups, each
containing a subset of the clients. In particular, we design
two methods to group the clients, which corresponds to two
variants of FLCert, i.e., FLCert-P and FLCert-D, where P and
D stand for probabilistic and deterministic, respectively. In
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FLCert-P, each of the N groups consists of k clients sampled
from the n clients uniformly at random. Note that there are a
total of

(︁
n
k

)︁
possible groups and thus N could be as large as(︁

n
k

)︁
in FLCert-P. In FLCert-D, we divide the n clients into N

disjoint groups deterministically.
For each group, we learn a global model using an arbitrary

FL algorithm (called base FL algorithm) with the clients in the
group. In total, we train N global models. Given a test input
x, we use each of the N global models to predict its label.
We denote ni as the number of global models that predict
label i for x and define pi = ni

n , where i = 1, 2, · · · , L.
We call ni label frequency and pi label probability. Our
ensemble global model predicts the label with the largest label
frequency/probability for x. In other words, our ensemble
global model takes a majority vote among the N global models
to predict label for x. Since each global model is learnt using a
subset of the clients, a majority of the global models are learnt
using benign clients when most clients are benign. Therefore,
the majority-vote label among the N global models for a test
input is unaffected by a bounded number of malicious clients
no matter what poisoning attacks they use.

Theory: Our first major theoretical result is that FLCert
provably predicts the same label for a test input x when the
number of malicious clients is no larger than a threshold,
which we call certified security level. Our second major
theoretical result is that we prove our derived certified security
level is tight, i.e., when no assumptions are made on the base
FL algorithm, it is impossible to derive a certified security
level that is larger than ours. Note that the certified security
level may be different for different test inputs.

Algorithm: Computing our certified security level for
x requires its largest and second largest label frequen-
cies/probabilities. For FLCert-P, when

(︁
n
k

)︁
is small (e.g., the

n clients are dozens of organizations [17] and k is small), we
can compute the largest and second largest label probabilities
exactly via training N =

(︁
n
k

)︁
global models. However, it is

challenging to compute them exactly when
(︁
n
k

)︁
is large. To

address the computational challenge, we develop a randomized
algorithm to estimate them with probabilistic guarantees via
training N ≪

(︁
n
k

)︁
global models. Due to such random-

ness, FLCert-P achieves probabilistic security guarantee, i.e.,
FLCert-P outputs an incorrect certified security level for a test
input with some probability that can be set to be arbitrarily
small. For FLCert-D, we train N global models and obtain
the label frequencies deterministically, making the security
guarantee of FLCert-D deterministic.

Evaluation: We empirically evaluate our method on five
datasets from different domains, including three image clas-
sification datasets (MNIST-0.1 [20], MNIST-0.5 [20], and
CIFAR-10 [19]), a human activity recognition dataset (HAR)
[1], and a next-word prediction dataset (Reddit) [2]. We
distribute the training examples in MNIST and CIFAR to
clients to simulate FL scenarios, while the HAR and Reddit
dataset represent real-world FL scenarios, where each user is a
client. We also evaluate five different base FL algorithm, i.e.,
FedAvg [23], Krum [4], Trimmed-mean [32], Median [32],
and FLTrust [5]. Moreover, we use certified accuracy as our

evaluation metric, which is a lower bound of the test accuracy
that a method can provably achieve no matter what poisoning
attacks the malicious clients use. For instance, our FLCert-D
with FedAvg and N = 500 can achieve a certified accuracy
of 81% on MNIST when evenly distributing the training
examples among 1,000 clients and 100 of them are malicious.

In summary, our key contributions are as follows:
• We propose FLCert, an FL framework with provable se-

curity guarantees against poisoning attacks. Specifically,
FLCert-P provides probabilistic security guarantee while
FLCert-D provides deterministic guarantee. Moreover, we
prove that our derived certified security level is tight.

• We propose a randomized algorithm to compute our
certified security level for FLCert-P.

• We evaluate FLCert on multiple datasets from different
domains and multiple base FL algorithms. Our results
show that FLCert is secure against poisoning attacks both
theoretically and empirically.

All proofs appear in the Appendix.

II. RELATED WORK

A. Federated Learning (FL)

Suppose we have n clients C = {C1, C2, · · · , Cn} and a
server, where each client Ci (i = 1, 2, · · · , n) holds a local
training dataset Di. Each client also has a unique user ID as-
signed when the client registers in the FL system. These clients
aim to use their local training datasets to collaboratively learn
a model that is shared among all clients, with the help of the
server. We call such shared model global model. For simplicity,
we use w to denote the model parameters of the global model.
The parameters w are often learnt by solving the following
optimization problem w = argminw′

∑︁n
i=1 ℓ(Di;w

′), where
ℓ is a loss function, and ℓ(Di;w

′) is the empirical loss on the
local training dataset Di of the ith client.

The clients and the server collaborate to solve the optimiza-
tion problem iteratively. Specifically, in each iteration of the
training process, the following three steps are performed: 1)
the server broadcasts the current global model to (a subset
of) clients; 2) the clients initialize their local models as the
received global model, train the local models using stochastic
gradient descent, and send the local model updates back to the
server; 3) the server aggregates the local model updates and
updates the global model.

B. Poisoning Attacks to FL

Recent works [2], [3], [6], [10], [24], [27] showed that FL is
vulnerable to poisoning attacks. Based on the attacker’s goal,
poisoning attacks to FL can be grouped into two categories:
untargeted poisoning attacks [6], [10], [24], [27] and targeted
poisoning attacks [2], [3].

Untargeted poisoning attacks: The goal of untargeted
poisoning attacks is to decrease the test accuracy of the learnt
global model. The attacks aim to increase the indiscriminate
test error rate of the global model as much as possible, which
can be considered as Denial-of-Service (DoS) attacks. De-
pending on how the attack is performed, untargeted poisoning
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attacks have two variants, i.e., data poisoning attacks [27] and
local model poisoning attacks [6], [10]. Data poisoning attacks
tamper with the local training data on the malicious clients
while assuming the computation process maintains integrity.
They inject fake training data points, delete existing training
data points, and/or modify existing training data points. Local
model poisoning attacks tamper with the computation process
on the malicious clients, i.e., they directly tamper with the
malicious clients’ local models or model updates sent to
the server. Note that in FL, any data poisoning attack can
be implemented by a local model poisoning attack. This is
because on each malicious client, we can always treat the local
model trained using the tampered local training dataset as the
tampered local model.

Targeted poisoning attacks: Targeted poisoning attacks aim
to force the global model to predict target labels for target
test inputs, while its performance on non-target test inputs is
unaffected. The target test inputs in a targeted poisoning attack
can be a specific test input [3], some test inputs with certain
properties [2], or test inputs with a particular trigger embeded
[2]. A targeted poisoning attack is also known as a backdoor
attack if its target test inputs are trigger-embedded test inputs.
A backdoor attack aims to corrupt the global model such that
it predicts the attacker-chosen target label for any test input
embedded with the predefined trigger.

C. Defenses against Poisoning Attacks to FL

Many defenses [8], [14]–[16], [21], [22], [26], [28]–[30]
have been proposed against data poisoning attacks in cen-
tralized learning scenarios. However, they are insufficient to
defend against poisoning attacks to FL. In particular, the
empirical defenses [8], [22], [30] require knowledge about
the training dataset, which is usually not available to the FL
server for privacy concerns. Moreover, the provably secure
defenses [14]–[16], [21], [26], [28], [29] can guarantee that
the label predicted for a test input is unaffected by a bounded
number of poisoned training examples. However, in FL, a
single malicious client can poison an arbitrary number of its
local training examples, breaking their assumption.

Byzantine-robust FL methods [4], [5], [32] leverage
Byzantine-robust aggregation rules to resist poisoning attacks.
They share the idea of alleviating the impact of statistical
outliers caused by poisoning attacks when aggregating the
local model updates. For instance, Krum [4] selects a single
model update that has the smallest square-Euclidean-distance
score as the new global model update; Trimmed-mean [32]
computes the coordinate-wise mean of the model update
parameters after trim and updates the global model using
corresponding mean values; Median [32] updates the global
model by computing the coordinate-wise median of the local
model updates; FLTrust [5] leverages a small clean dataset
to compute a server update and uses it as a baseline to
bootstrap trust to local model updates. These methods all suffer
from a key limitation: they cannot provide provable security
guarantees, i.e., they cannot ensure that the predicted labels of
the global model for testing inputs remain unchanged when
there exists a poisoning attack.

Another type of defenses focused on detecting malicious
clients and removing their local models before the aggregation
[10], [25], [33]. Shen et al. [25] proposed to perform clustering
on local models to detect malicious clients. Fang et al. [10]
proposed two defenses that use a validation dataset to reject
potentially malicious local models based on their impact on
the error rate or the loss value evaluated on the validation
dataset. Zhang et al. [33] proposed to detect malicious clients
via checking their model-updates consistency. These defenses
showed some empirical effectiveness in detecting malicious
clients. However, they cannot provide provable security guar-
antees, either.

Wang et al. [28] proposed a certified defense against back-
door attacks. A recent work [31] extended this method to FL
and called it CRFL. CRFL aims to certify robustness against a
particular backdoor attack [2], where all malicious clients train
their local models using backdoored local training datasets,
and scale their model updates before sending them to the
server simultaneously in one iteration of FL. They showed that
the accuracy of the learned global model under such specific
attack could be certified if the magnitude of the change in
malicious clients’ local training data is bounded. However, a
malicious client can arbitrarily change its local training data.
Therefore, a single malicious client can break their defense by
using poisoning attacks other than the considered particular
backdoor attack. On the contrary, our FLCert is provably
secure no matter what attacks the malicious clients perform.

III. PROPOSED FLCERT

A. Overview

Figure 1 illustrates FLCert, where there are n = 5 clients
and N = 3 groups. In FLCert-P, each group contains k = 3
clients randomly sampled from the n clients, while in FLCert-
D, the clients are divided into N disjoint groups. We denote the
N groups as G1,G2, · · · ,GN . We learn a global model for
each group of clients using a determinized base FL algorithm.
We determinize the base FL algorithm such that we can derive
the provable security of FLCert. Since we have N groups, we
learn N global models in total. We ensemble the N global
models to predict labels for test inputs. Specifically, we take a
majority vote among the N global models to predict the label
of a test input.

B. Grouping the Clients

In FLCert, the clients are assigned to N groups. Consid-
ering the provable security and communication/computation
overhead, the grouping should satisfy two constraints: 1) a
malicious client should influence a small number of groups,
which enables FLCert to be secure against more malicious
clients, and 2) a client should belong to a small number of
groups, which reduces the communication and computation
overhead for clients. To satisfy the two constraints, we propose
two ways to divide the clients, which corresponds to two
variants of FLCert, i.e., FLCert-P and FLCert-D. Specifically,
in FLCert-P, we randomly sample k clients as a group. In
FLCert-D, we divide the n clients into N disjoint groups using
hash values of their user IDs.
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Fig. 1: Illustration of FLCert.

1) FLCert-P: In FLCert-P, the server samples k clients
uniformly at random as a group, which results in

(︁
n
k

)︁
possible

groups in total. When
(︁
n
k

)︁
is small, we can obtain all possible

groups and train one global model for each group. In this case,
each client belongs to

(︁
n−1
k−1

)︁
groups. However, when

(︁
n
k

)︁
is

large, we may not be able to train all global models for every
possible group. Therefore, in practice, we sample N ≪

(︁
n
k

)︁
groups instead, and each client is expected to belong to a small
number (i.e., kN

n ) of groups. A malicious client can only affect
the groups it belongs to.

2) FLCert-D: In FLCert-D, the server assigns each client
to a group by hashing the client’s user ID. Therefore, each
client belongs to only one group and a malicious client can
only influence the group it belongs to. We use clients’ user
IDs because they cannot be changed after registration, which
means that malicious clients cannot change which groups they
belong to. Formally, we use a hash function with output range
[1, N ] to compute the hash values of the clients’ user IDs;
and the clients with hash value i form the ith group, where
i = 1, 2, · · · , N .

C. Ensemble Global Model

After the server assigns the clients into N groups, each
group learns a global model using a determinized base FL
algorithm f . In particular, we determinize a base FL algorithm
via fixing the seed of the pseudo-random number generator
used by the algorithm f . We denote by fg(Gg) the global
model for the gth group. Note that FLCert allows different
groups to use different determinized base FL algorithms, e.g.,
different groups may use the same base FL algorithm with
different fixed seeds for the pseudo-random number generator,
and different groups may use different base FL algorithms.

Since there are N groups, we have N global models
f1(G1), f2(G2), · · · , fN (GN ) in total. Our FLCert ensem-
bles the N global models to predict labels for test inputs.
Specifically, given a test input x, we first use each global
model to predict its label, i.e., fg(Gg,x) is the label predicted
by the gth global model. Then, we compute label frequency
nj(x) for each label j, which is the number of global models
that predict j for x. Formally, nj(x) is defined as follows:

nj(x) =
∑︂

g∈[1,N ]

1fg(Gg,x)=j , (1)

where 1 is the indicator function and 1fg(Gg,x)=j = 1 if
fg(Gg,x) = j, otherwise 1fg(Gg,x)=j = 0. The sum of
the label frequencies is N . Moreover, we define the label
probability of label j as pj(x) =

nj(x)
N . Our FLCert takes

a majority vote among the N global models to predict the
label for x, i.e., FLCert predicts the label with the largest
label frequency/probability for x. For convenience, we use
label probability for FLCert-P and label frequency for FLCert-
D in the rest of this paper. We denote our ensemble learning
based FLCert algorithm as F . The ensemble of the N global
models is called ensemble global model. Moreover, we denote
by F (C,x) the label predicted for x by our ensemble global
model learnt by F on the clients C. Formally, we have:

F (C,x) = argmax
j

nj(x) = argmax
j

pj(x). (2)

When there exist ties, i.e., multiple labels have the same largest
label frequency/probability, we use different tie-breaking
strategies for FLCert-P and FLCert-D. For FLCert-P, we
randomly select a label with the same largest label probability.
Such random tie-breaking strategy works for FLCert-P be-
cause FLCert-P has probabilistic security guarantees anyway.
However, such random tie-breaking strategy invalidates the
deterministic security guarantees of FLCert-D due to the
randomness. While any deterministic tie-breaking strategy can
address this challenge, we adopt one that selects the label with
the smallest class index as the predicted label in FLCert-D. For
instance, when n1(x) = n2(x) > nj(x),∀j ̸= 1 ∧ j ̸= 2, we
have F (C,x) = 1, where ∧ means logical AND.

IV. SECURITY ANALYSIS

We prove that the label predicted by FLCert for a test input
is unaffected by a bounded number of malicious clients no
matter what poisoning attacks they use.

A. Certified Security Level

Recall that C is the set of n clean clients. For convenience,
we denote by C′ the set of clients including the malicious
ones. We define the certified security level m∗ of a test input x
as the maximum number of malicious clients that FLCert can
tolerate without predicting a different label for x. Formally,
m∗ is the largest integer m that satisfies the following:

F (C′,x) = F (C,x),∀C′, |C′ −C| ≤ m, (3)
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where |C′ −C| is the number of malicious clients in C′,
compared to C. Note that the certified security level m∗ may
be different for different test inputs.

B. Deriving Certified Security Level

Next, we derive the certified security level m∗ for a
test input x. Suppose that when there are no malicious
clients, FLCert predicts label y for the test input x, i.e.,
y = F (C,x) = argmaxj nj(x) and y has the largest label
frequency. Moreover, we assume z = argmaxj ̸=y nj(x) is the
label with the second largest label frequency. We denote by
py and pz respectively their label probabilities. Moreover, we
denote by n′

y and n′
z respectively the label frequency, and p′y

and p′z respectively the label probabilities for y and z in the
ensemble global model when there are malicious clients.

1) FLCert-P: When
(︁
n
k

)︁
is small (e.g., several hundred),

we can create all possible groups and train N =
(︁
n
k

)︁
global

models. Suppose m clients become malicious. Then, 1− (n−m
k )
(nk)

fraction of groups include at least one malicious client. In the
worst-case scenario, for each global model learnt using a group
including at least one malicious client, its predicted label for x
changes from y to z. Therefore, in the worst-case scenario, the
m malicious clients decrease the largest label probability py

by 1− (n−m
k )
(nk)

and increase the second largest label probability

pz by 1− (n−m
k )
(nk)

, i.e., we have p′y = py−(1−
(n−m

k )
(nk)

) and p′z =

pz + (1 − (n−m
k )
(nk)

). Our ensemble global model still predicts

label y for x, i.e., F (C′,x) = F (C,x) = y, once m satisfies
the following inequality:

p′y > p′z ⇐⇒ py − pz > 2− 2

(︁
n−m
k

)︁(︁
n
k

)︁ . (4)

In other words, the largest integer m that satisfies the inequal-
ity (4) is our certified security level m∗ for the test input
x. The inequality (4) shows that our certified security level
is related to the gap py − pz between the largest and second
largest label probabilities in the ensemble global model trained
on the clients C. For instance, when a test input has a larger
gap py − pz , the inequality (4) may be satisfied by a larger
m, which means that our ensemble global model may have a
larger certified security level for the test input.

However, when
(︁
n
k

)︁
is large, it is computationally challeng-

ing to compute the exact label probabilities via training
(︁
n
k

)︁
global models. For instance, when n = 100 and k = 10, there
are already 1.73 × 1013 global models, training all of which
is computationally intractable in practice. Therefore, we also
derive certified security level using a lower bound py of py
(i.e., py ≤ py) and an upper bound pz of pz (i.e., pz ≥ pz).
We use a lower bound py of py and an upper bound pz of pz
because our certified security level is related to the gap py−pz
and we aim to estimate a lower bound of the gap.

The lower bound py and upper bound pz may be estimated
by different methods. We propose a Monte Carlo algorithm
to estimate a lower bound py and an upper bound pz via
only training N of the

(︁
n
k

)︁
global models. Specifically, we

𝑝𝑧 𝑝𝑦 𝑝y𝑝
𝑧

𝑝
𝑧
∙ 𝑛

𝑘
𝑛
𝑘
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𝑛
𝑘

𝑛
𝑘

}

1
𝑛
𝑘

Fig. 2: An example to illustrate the relationships between

py, py , and ⌈py·(nk)⌉
(nk)

as well as pz, pz , and ⌊pz·(
n
k)⌋

(nk)
.

sample N groups, each of which includes k clients sampled
from the n clients uniformly at random, and we use them
to train N global models f1(G1), f2(G2), · · · , fN (GN ). We
use the N global models to predict labels for x and count the
frequency of each label. We treat the label with the largest
frequency as the predicted label y. Recall that, based on the
definition of label probability, a global model trained on a
random group with k clients predicts label y for x with the
label probability py . Therefore, the frequency Ny of the label
y among the N global models follows a binomial distribution
B(N, py) with parameters N and py . Thus, given Ny and N ,
we can use the standard one-sided Clopper-Pearson method [9]
to estimate a lower bound py of py with a confidence level
1 − α. Specifically, we have py = B (α;Ny, N −Ny + 1),
where B(q; v, w) is the qth quantile from a beta distribution
with shape parameters v and w. Moreover, we can estimate
py = 1− py ≥ 1− py ≥ pz as an upper bound of py .

Next, we derive our certified security level based on the
probability bounds py and pz . One way is to replace py and
pz in inequality (4) as py and pz , respectively. Formally, we
have the following inequality:

py − pz > 2− 2

(︁
n−m
k

)︁(︁
n
k

)︁ . (5)

If an m satisfies inequality (5), then the m also satisfies
inequality (4), because py − pz ≤ py − pz . Therefore, we
can find the largest integer m that satisfies the inequality (5)
as the certified security level m∗. However, we found that the
certified security level m∗ derived based on inequality (5) is
not tight, i.e., our ensemble global model may still predict
label y for x even if the number of malicious clients is larger
than m∗ derived based on inequality (5). The key reason is
that the label probabilities are integer multiplications of 1

(nk)
.

Therefore, we normalize py and pz as integer multiplications
of 1

(nk)
to derive a tight certified security level. Specifically,

we derive the certified security level as the largest integer m
that satisfies the following inequality (formally described in
Theorem 1):⌈︂

py ·
(︁
n
k

)︁⌉︂(︁
n
k

)︁ −
⌊︁
pz ·

(︁
n
k

)︁⌋︁(︁
n
k

)︁ > 2− 2 ·
(︁
n−m
k

)︁(︁
n
k

)︁ . (6)

Figure 2 illustrates the relationships between py, py , and
⌈py·(nk)⌉
(nk)

as well as pz, pz , and ⌊pz·(
n
k)⌋

(nk)
. When an m satisfies

inequality (5), the m also satisfies inequality (6), because

py−pz ≤
⌈py·(nk)⌉
(nk)

− ⌊pz·(
n
k)⌋

(nk)
. Therefore, the certified security

level derived based on inequality (5) is smaller than or equals
the certified security level derived based on inequality (6).
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Note that when py = py and pz = pz , both (5) and (6) reduce
to (4) as the label probabilities are integer multiplications of
1

(nk)
. The following theorem formally summarizes our certified

security level.

Theorem 1. Given n clients C, an arbitrary base federated
learning algorithm f , a group size k, and a test input x, we
define an ensemble global model F as Equation (2). y and z
are the labels that have the largest and second largest label
probabilities for x in the ensemble global model. py is a lower
bound of py and pz is an upper bound of pz . Formally, py and
pz satisfy the following conditions:

max
i ̸=y

pi = pz ≤ pz ≤ py ≤ py. (7)

Then, F provably predicts y for x when at most m∗ clients
in C become malicious, i.e., we have:

F (C′,x) = F (C,x) = y,∀C′, |C′ −C| ≤ m∗, (8)

where m∗ is the largest integer m (0 ≤ m ≤ n − k) that
satisfies inequality (6).

Our Theorem 1 is applicable to any base federated learning
algorithm, any lower bound py of py and any upper bound pz
of pz that satisfy (7). When the lower bound py and upper
bound pz are estimated more accurately, i.e., py and pz are
respectively closer to py and pz , our certified security level
may be larger. The following theorem shows that our derived
certified security level is tight, i.e., when no assumptions on
the base federated learning algorithm are made, it is impossible
to derive a certified security level that is larger than ours for
the given probability bounds py and pz .

Theorem 2. Suppose py + pz ≤ 1. For any C′ satisfying
|C′ −C| > m∗, i.e., at least m∗ + 1 clients are malicious,
there exists a base federated learning algorithm f∗ that
satisfies (7) but F (C′,x) ̸= y or there exist ties.

Given a test set D, Algorithm 1 shows our algorithm to
compute the predicted labels and certified security levels for
all test inputs in D. The function SAMPLE&TRAIN randomly
samples N groups with k clients and trains N global models
using the base federated learning algorithm f . We use 1−pŷt

as an upper bound for pẑt because we want to limit the
probability of incorrect bound pairs (pẑt

, pŷt
) within α/|D|.

Given the probability bounds pŷt
and pẑt

for a test input
xt, the function SEARCHLEVEL finds the certified security
level m̂∗

t via finding the largest integer m that satisfies (6).
For example, SEARCHLEVEL can simply start m from 0 and
iteratively increase it by one until finding m̂∗

t .
In Algorithm 1, since we estimate the lower bound pŷt

using the Clopper-Pearson method, there is a probability that
the estimated lower bound is incorrect, i.e., pŷt

> pŷt
. When

the lower bound is estimated incorrectly for a test input xt,
the certified security level m̂∗

t output by Algorithm 1 for xt

may also be incorrect, i.e., there may exist an C′ such that
|C′ −C| ≤ m̂∗

t but F (C′,xt) ̸= ŷt. In other words, our
Algorithm 1 has probabilistic guarantees for its output certified
security levels. However, in the following theorem, we prove

Algorithm 1 Computing Predicted Label and Certified Secu-
rity Level in FLCert-P

1: Input: C, f , k, N , D, α.
2: Output: Predicted label and certified security level for

each test input in D.
3: f1(G1), · · · , fN (GN )← SAMPLE&TRAIN(C, f, k,N)
4: for xt in D do
5: counts[i] ←

∑︁N
l=1 I(fl(Gl,xt) = i), i ∈ {1, 2, · · · , L}

6: /* I is the indicator function */
7: ŷt ← index of the largest entry in counts
8: pŷt

← B
(︂

α
|D| ;Nŷt

, N −Nŷt
+ 1

)︂
9: pẑt

← 1− pŷt

10: if pŷt
> pẑt

then
11: m̂∗

t ← SEARCHLEVEL(pŷt
, pẑt

, k, |C|)
12: else
13: ŷt ← ABSTAIN, m̂∗

t ← ABSTAIN
14: end if
15: end for
16: return ŷ1, ŷ2, · · · , ŷd and m̂∗

1, m̂
∗
2, · · · , m̂

∗
d

the probability that Algorithm 1 returns an incorrect certified
security level for at least one test input is at most α.

Theorem 3. The probability that Algorithm 1 returns an in-
correct certified security level for at least one testing example
in D is bounded by α, which is equivalent to:

Pr(∩xt∈D(h(C′,xt) = ŷt, ∀C
′,M(C′) ≤ m̂∗

t |ŷt ̸= ABSTAIN))
≥ 1− α. (9)

Note that when the probability bounds are estimated de-
terministically, e.g., when

(︁
n
k

)︁
is small and the exact label

probabilities can be computed via training N =
(︁
n
k

)︁
global

models, the certified security level obtained from our Theo-
rem 1 is also deterministic. When there are many clients or
N is too small, it is possible that not all clients participate
in training the N global models. However, our probabilistic
guarantee still holds in this case.

2) FLCert-D: FLCert-D still predicts label y for x after
attacks if the following condition is satisfied:

n′
y(x) > n′

z(x) or (n′
y(x) = n′

z(x) ∧ y < z), (10)

where FLCert-D still predicts label y when (n′
y(x) = n′

z(x)∧
y < z) holds because of our tie-breaking strategy. Next, we
derive a lower bound of n′

y(x) and an upper bound of n′
z(x),

which depend on m, the number of malicious clients in C′.
The largest m, for which the lower bound of n′

y(x) and the
upper bound of n′

z(x) satisfy Equation (10), is our certified
security level m∗ for x.

If a group G′
g (g = 1, 2, · · · , N ) after attack does not

include malicious clients, then we know that G′
g and Gg

include the same clients, i.e., G′
g = Gg . Moreover, since our

base FL algorithm for each group is determinized, the global
models learnt for G′

g and Gg predict the same label for x,
i.e., we have fg(G

′
g,x) = fg(Gg,x). If a group G′

g includes
at least one malicious client, the global model learnt for this
group changes its predicted label for x from y to z after attack
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in the worst case. In other words, when a group includes
malicious clients, the label frequency n′

y(x) decreases by 1
and the label frequency n′

z(x) increases by 1. According to
our grouping strategy, m malicious clients influence at most
m groups. Therefore, we have the following bounds in the
worst case:

n′
y(x) ≥ ny(x)−m, n′

z(x) ≤ nz(x) +m. (11)

The condition in Equation (10) is satisfied, i.e., F (C′,x) =
F (C,x) = y, when m is bounded as follows:

m ≤ ny(x)− [nz(x) + 1z<y]

2
. (12)

Therefore, we have our certified security level m∗ =⌊︂
ny(x)−[nz(x)+1z<y]

2

⌋︂
for a test input x. We summarize our

provable security of FLCert in the following theorem.

Theorem 4. Given n clients C that are divided into N groups
by hashing their user IDs, a determinized training algorithm
for each group, and a test input x. y and z are the labels that
have the largest and second largest label frequencies for x,
where ties are broken by selecting the label with the smallest
class index. Then, F provably predicts label y for x when at
most m∗ clients become malicious, i.e., we have:

F (C′,x) = F (C,x) = y,∀C′, |C′ −C| ≤ m∗, (13)

where m∗ =
⌊︂
ny(x)−[nz(x)+1z<y]

2

⌋︂
.

V. COMMUNICATION/COMPUTATION COST ANALYSIS

We compare the communication and computation cost of
our FLCert with the conventional single-global-model setting
in which the base FL algorithm is used to learn a single
global model for all the clients. Note that, for each client, its
communication and computation cost is linear to the number
of global iterations the client involves in. Therefore, in the
following analysis, we focus on the average number of global
iterations a client involves in for our FLCert and the single-
global-model setting.

Suppose we are given a base FL algorithm f . In the single-
global-model setting, f is used to learn a single global model
with all the clients. Assume f performs T global iterations
between the clients and server to learn the global model. In
each global iteration, the server randomly selects β fraction
of the clients and sends the current global model to them; the
selected clients update their local models and send the updated
local models to the server; and the server aggregates the local
models as a new global model. β is often set to be smaller than
1 to save communication cost per global iteration. Therefore,
the communication and computation cost for a client is O(βT )
on average in the single-global-model setting.

In FLCert, we use a base FL algorithm to train a global
model for each group of clients. When learning a global
model for a group of clients, the server randomly selects βe

fraction of the clients in the group in each global iteration.
Assume each global model is learnt via Te global iterations
between the corresponding clients and the server. Each client
is involved in kN

n global models on average in FLCert-P, while

each client is involved in only one global model in FLCert-
D. Therefore, the communication and computation cost for a
client is O(kNβeTe

n ) for FLCert-P and O(βeTe) for FLCert-D.
We note that each global model in our FLCert is learnt

to fit local training data on a group of clients, while the
global model in the single-global-model setting is learnt to
fit local training data on all the clients. Therefore, learning
each global model in our FLCert may require fewer global
iterations, i.e., Te < T . Moreover, when setting kN = n and
Te = βT/βe, our FLCert and the single-global-model setting
have the same communication and computation cost for the
clients. In other words, compared to the single-global-model
setting, our FLCert can provide provable security against
malicious clients without incurring additional communication
and computation cost for the clients.

VI. EVALUATION

A. Experimental Setup

1) Datasets: We use multiple datasets from different do-
mains for evaluation, including three image classification
datasets (MNIST-0.1, MNIST-0.5, and CIFAR-10), a human
activity recognition dataset (HAR), and a next-word predic-
tion dataset (Reddit). By default, we use MNIST-0.5 unless
otherwise mentioned.

MNIST-0.1: We follow [10] to distribute the training exam-
ples to the clients. In their work, a parameter called degree of
Non-iid is proposed to control the distribution of data among
clients, where a larger value indicates the data are further
from independently and identically distributed (IID). We set
the degree of Non-iid to 0.1 in MNIST-0.1, which indicates
IID data among clients.

MNIST-0.5: Clients in FL often have non-IID local training
data. Therefore, in MNIST-0.5, we set the degree of Non-iid
to 0.5 when distributing the training examples to clients to
simulate non-IID local training data.

CIFAR-10: Like MNIST-0.5, we set the degree of Non-iid to
0.5 when distributing training examples to clients to simulate
non-IID local training data.

Human Activity Recognition (HAR): HAR [1] is a real-
world dataset consisting of human activity data collected from
30 users. The task is to predict a user’s activity among
six possible activities (e.g., WALKING, STANDING, and
LAYING), given the sensor signal data collected from the
user’s smartphone. There are in total 10,299 examples in HAR
dataset. We randomly select 75% of each user’s examples as
the training dataset and use the rest of examples as the test
dataset. In HAR, each user is considered as a client naturally.

Reddit: Reddit [2] is a next-word prediction dataset con-
sisting of posts collected from Reddit in a randomly chosen
month (November 2017). Given a sequence of words, the task
is to predict which word will appear next. For Reddit dataset,
each Reddit user is a client. There are 80,000 users in total
and each user has 247 posts on average.
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(a) MNIST-0.1
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(b) MNIST-0.5
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(c) CIFAR-10
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(d) HAR

0 100 200 300 400
number of malicious clients m

0.000

0.025

0.050

0.075

0.100

0.125

0.150

ce
rti

fie
d 

ac
cu

ra
cy

 @
 m single-global-model

CRFL
FLCert-P
FLCert-D
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Fig. 3: Comparing FLCert with single-global-model and CRFL on different datasets when FedAvg is the base FL algorithm.

2) Evaluated Base FL Algorithms: FLCert can use any base
FL algorithm. To show such generality, we evaluate multiple
popular base FL algorithms, including FedAvg [23], Krum
[4], Trimmed-mean [32], Median [32], and FLTrust [5]. These
base FL algorithms essentially use different aggregation rules
to aggregate the clients’ local model updates and update the
global model in each global iteration. For FLTrust, we assume
the server has a small clean dataset with 100 training examples
randomly sampled from the training dataset, as suggested by
the authors [5]. By default, we use FedAvg in our experiments
unless otherwise mentioned.

3) Global Model Architectures: To show the generality of
our FLCert, we use different neural network architectures
as the global models on different datasets. Specifically, we
borrow the CNN from [7] for MNIST-0.1 and MNIST-0.5.
For CIFAR-10, we use the popular ResNet20 [12] architecture.
For HAR, we use a fully connected neural network with two
hidden layers, each of which includes 256 neurons and uses
ReLU activation. For Reddit, we follow [13] to use a 2-layer
LSTM as global model.

4) Evaluation Metrics: We use certified accuracy (CA) to
evaluate the provable security of FLCert against poisoning
attacks. Given a test dataset and a number of malicious clients
m, we define the certified accuracy CA@m as the fraction of
test inputs that 1) are correctly classified by the FL algorithm
and 2) have certified security levels no smaller than m. For
untargeted attacks, the test dataset includes the normal test
examples. For backdoor attacks, the test dataset includes the
test examples embedded with a pattern trigger. CA@m is a
lower bound of test accuracy that a method can achieve no
matter what poisoning attacks the malicious clients use once
there are at most m of them.

Moreover, for both FLCert and the single-global-model
setting, we also use the standard test accuracy and attack
success rate to evaluate the empirical performance against an
existing untargeted poisoning attack [10] and backdoor attack
[2], respectively. Attack success rate is the fraction of trigger-
embedded test inputs that are classified as the attacker-chosen
target label. We note that CA@0 reduces to the standard test
accuracy when there are no attacks in deterministic scenarios,
i.e., for FLCert-D and if we can train all

(︁
n
k

)︁
global models

for FLCert-P. However, when
(︁
n
k

)︁
is too large and we sample

N groups of clients in FLCert-P, the empirical test accuracy
may be different from CA@0.

5) Existing Poisoning Attacks: To calculate the standard
test accuracy and attack success rate, we need existing poison-
ing attacks. For untargeted attacks, we use the full-knowledge

attacks proposed by Fang et al. [10], i.e., Krum attack for
Krum, and Trim attack for Trimmed-mean, Median, and
FLTrust. For FedAvg, since a single malicious client can
arbitrarily manipulate the global model [32], we use an attack
that forces the aggregated model update to be 0. In other
words, a global model will learn nothing from the training
process if there is any malicious client in its training process.
For backdoor attacks, we consider the same trigger as proposed
by Gu et al. [11] and set 0 as the target label for MNIST-0.1
and MNIST-0.5. For CIFAR-10, we use the same pixel-pattern
trigger and the target label “bird” in [2]. For HAR, we design
our trigger by setting a feature value to 0 for every 20 features
and we choose “WALKING UPSTAIRS” as the target label.
For Reddit, we consider the text trigger “pasta from Astoria
is” and the target label “delicious” as proposed in [2].

6) Parameter Settings: We consider different numbers of
clients for different datasets to show generality of FLCert.
Specifically, we assume 1,000 clients for MNIST-0.1 and
MNIST-0.5 datasets. For CIFAR-10 dataset, we assume 100
clients. For HAR and Reddit, each user is considered as
a client naturally, which results in 30 and 80,000 clients,
respectively. In FLCert-D, we randomly generate a 64-bit
user ID for each client and use the Python built-in hash()
function to divide clients into N groups based on user IDs for
each dataset. In FLCert-P, we choose k = n

N such that the
expected communication/computation cost for each client is
the same as FLCert-D; and we set α = 0.001, i.e., given a test
dataset, FLCert-P outputs an incorrect certified security level
for at least one test input in 1 out of 1,000 runs on average.
Moreover, we use the same fixed seed for a base FL algorithm
when learning the global models for different groups.

In FLCert, unless otherwise mentioned, we set βe = 1 (i.e.,
the server selects all the clients in a group in each global
iteration when learning a global model for the group) in all the
datasets except Reddit as the groups are small in these datasets.
For Reddit, we set βe = 0.025, i.e., 2.5% of clients in a group
are chosen in each global iteration when learning a global
model for the group. A base FL algorithm uses 200, 200, 200,
200, and 1,000 global iterations when learning a global model
in either FLCert or the single-global-model setting for MNIST-
0.1, MNIST-0.5, CIFAR-10, HAR, and Reddit, respectively. In
each global iteration, each client trains its local model for 5, 5,
40, 5, and 12 local iterations using stochastic gradient descent
with learning rates 0.001, 0.001, 0.01, 0.001, and 20 as well
as batch sizes 32, 32, 64, 32, and 64 for the five datasets,
respectively. We set N = 500, 500, 20, 15 and 500 for the
five datasets, respectively. We consider different parameters for
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(a) FLCert-P
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(b) FLCert-D

Fig. 4: Impact of N on certified accuracy of FLCert.

different datasets because of their different data characteristics.
7) Equipment and Environment: We run our experiments

on a server with Intel Xeon Gold 6230R Processor and 10
NVIDIA Quadro RTX 6000 GPUs. We train our models using
the MXNet GPU framework.

B. Experimental Results

1) Certified Accuracy: We first show results on certified
accuracy.
Comparing FLCert with single-global-model and
CRFL: We compare the two variants of FLCert with
two baselines, i.e., single-global-model FL and CRFL [31].
For CRFL, we use their default parameter settings, i.e., the
clipping threshold ρ = 15, standard deviation σ = 0.01,
and sample size M = 1, 000. Figure 3 shows the results on
all five datasets, where FedAvg is the base FL algorithm.
We observe that when there are no malicious clients (i.e.,
m = 0), single-global-model FedAvg and CRFL have larger
certified accuracy than FLCert. However, single-global-model
FedAvg and CRFL have 0 certified accuracy when just
one client is malicious. This is because a single malicious
client can arbitrarily manipulate the global model learnt by
FedAvg [32], reducing the certified accuracy of single-global-
model FedAvg to 0, and its local training data, reducing the
certified accuracy of CRFL to 0.

Moreover, we notice that there is a trade-off between the two
variants of FLCert for MNIST-0.1, MNIST-0.5, and Reddit,
where N is large. Specifically, when m is small, FLCert-D
has higher certified accuracy. This is because in FLCert-P, we
estimate the label probabilities, which reduces the gap between
the largest and the second largest label probabilities. On the
contrary, when m is large, FLCert-P achieves higher certified
accuracy, which is because FLCert-P can naturally certify
more malicious clients than FLCert-D in the extreme cases if
we compare Equation 6 with Equation 12. However, FLCert-P
cannot certify any malicious client on CIFAR-10 and HAR.
This is because the number of groups N is small for these two
datasets, e.g., N = 15 for HAR, which results in inaccurate
estimation of label probabilities. A possible solution is to
design probability estimation methods that are more accurate
with a small number of samples. We also found that if we
increase N to 500 while keeping k = 2, the certified accuracy
of FLCert-P is still larger than 0 when up to 8 out of 30 clients
are malicious for HAR. However, FLCert-P incurs a much
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Fig. 5: Certified accuracy of FLCert against untargeted attacks
and backdoor attacks.
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Fig. 6: Impact of seeds in the hash function used to group
clients and the base FL algorithm on the certified accuracy of
FLCert, where dataset is MNIST-0.5, N = 500, and FedAvg
is the base FL algorithm. We repeat the experiments for 50
times, each of which uses a distinct seed for the hash function
and a distinct seed for FedAvg. The solid line shows the mean
certified accuracy of the 50 trials and the shade represents the
standard deviation.

larger communication/computation overhead than FLCert-D in
such scenario.

N achieves a trade-off between accuracy and provable
security: We explore the impact of the number of groups
N on FLCert. Figure 4 shows the results. We observe that
N controls a trade-off between accuracy under no attacks
(i.e., m = 0) and provable security. Specifically, FLCert with
a larger N has a lower accuracy under no attacks but can
tolerate more malicious clients. This is because when N is
larger, the average number of clients in each group becomes
smaller. Therefore, the accuracy of each individual global
model becomes lower, leading to a lower accuracy for the
ensemble global model under no attacks. Meanwhile, since
the number of groups is larger, our FLCert can tolerate more
malicious clients.

Untargeted attacks vs. backdoor attacks: We evaluate the
certified accuracy for both untargeted attacks and targeted
attacks. Figure 5 shows the results. We observe that the
certified accuracy of both FLCert-P and FLCert-D against
untargeted attacks is similar to that against backdoor attacks.
The reason is that the trigger in a backdoor attack is often
small to be stealthy, and thus a clean global model’s predicted
label for a test input is unaffected by the trigger.

Impact of seeds in hashing and base FL algorithms: Recall
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Fig. 7: Test accuracy (Acc) against untargeted attacks and attack success rate (ASR) against backdoor attacks for the single-
global-model settings and FLCert when different base FL algorithms are used for MNIST-0.5 and N = 200. A higher test
accuracy and a lower ASR mean better empirical performance.
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(b) FLCert-D

Fig. 8: FLCert with different base FL algorithms.

that we use the built-in Python hash() function with seeds to
divide clients into groups for FLCert-D and we determinize a
base FL algorithm via fixing the seed for both FLCert-P and
FLCert-D. We study the impact of the seeds on the certified
accuracy of FLCert. Specifically, we generate 50 pairs of seeds
for the hash() function and base FL algorithm. Then, we run
our FLCert for 50 times on a dataset, each of which uses
a distinct pair of seeds. In each run, we use the same seed
for different groups. Figure 6 shows the certified accuracy
of FLCert with N = 500 on MNIST-0.5 when the base FL
algorithm is FedAvg. We observe that the standard deviation
is relatively small compared to the average certified accuracy,
which means that our FLCert is insensitive to the seed in the
hash() function used to group clients and the seed in the base
FL algorithm.

FLCert with different base FL algorithms: We explore
FLCert with different base FL algorithms, where the dataset
is MNIST-0.5 and N = 200. We do not use the default
N = 500 because when N = 500, the (expected) number of
clients in each group is 2, for which Krum, Trimmed-mean,
and Median are not defined. Figure 8 shows the results. We
notice that the certified accuracy of FLCert is similar when
FedAvg, Trimmed-mean, or Median is used as the base FL
algorithm, and is better than the certified accuracy when the
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Fig. 9: (a) The communication/computation-security trade-
off of FLCert. The vertical line shows the setting of the
number of global iterations, where our FLCert has the same
communication/computation cost for the clients as the single-
global-model setting. (b) Convergence of learning the global
model in the single-global-model setting and learning a global
model for a certain group in FLCert. The dataset is MNIST-
0.5 and base FL algorithm is FedAvg.

base FL algorithm is Krum. This is because Krum selects a
single local model as the new global model while the other
base FL algorithms consider all the received local models
to update the global model. As a result, the global models
learnt by Krum are less accurate than the global models learnt
by the other base FL algorithms. Therefore, the ensemble
global model of our FLCert has a lower certified accuracy
when the base FL algorithm is Krum. Moreover, we observe
that FLTrust achieves the highest certified accuracy when the
number of malicious clients m is small. This is because the
server is assumed to hold a small clean dataset in FLTrust,
which helps learn more accurate global models with small
groups of clients.

2) Test Accuracy and Attack Success Rate: Figure 7 shows
the test accuracy against existing untargeted attacks and at-
tack success rate against existing backdoor attacks for the
conventional single-global-model settings and FLCert when
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different base FL algorithms are used, for MNIST-0.5 dataset.
We use N = 200 as Krum, Trimmed-mean, and Median are
not defined when N = 500. The numbers for the untargeted
poisoning attacks represent test accuracy and a larger test
accuracy indicates a better FL method. The numbers for the
backdoor attacks represent attack success rate and a smaller
number indicates a better FL method.

We notice that in general, the single-global-model setting
achieves comparable or higher test accuracy and lower attack
success rate than FLCert when there are no malicious clients
or the number of malicious clients is small. However, our
FLCert becomes better when the number of malicious clients
is larger. An exception is when FLTrust is the aggregation
rule, where both single-global-model and FLCert are robust
against different attacks. Our results indicate that FLCert can
tolerate more malicious clients against empirical attacks than
single-global-model.

3) Communication/Computation-Security Trade-off: Sup-
pose the base FL algorithm uses Te global iterations when
learning each global model. Figure 9a shows the certified
accuracy of FLCert for MNIST-0.5 as Te increases, where
FedAvg is the base FL algorithm, βe = 1, N = 500, and
m = 100. Our certified accuracy increases as Te increases and
converges after Te is large enough. Suppose the single-global-
model setting uses the default parameter setting T = 1, 000
and β = 0.1. The vertical line in Figure 9a corresponds to
the setting of Te with which our FLCert has the same com-
munication/computation cost for a client as the single-global-
model setting, i.e., Te = βT/βe = 0.1 × 1000/1 = 100. We
notice that with such setting of Te, our FLCert-P and FLCert-
D can already achieve a high certified accuracy. For instance,
FLCert-D achieves a certified accuracy of 0.73, which is 99%
of 0.74, the largest certified accuracy FLCert-D can achieve
by using a large Te. Our results show that, compared to the
single-global-model setting, our FLCert can achieve provable
security against a bounded number of malicious clients without
additional communication and computation cost for the clients.

One reason is that learning a global model for a group in
FLCert converges faster than learning a global model for all
clients in the single-global-model setting. Figure 9b shows
the test accuracy under no attacks in the single-global-model
setting and a global model for a certain group in FLCert-P
and FLCert-D as the number of global iterations increases.
We observe that the global model in the single-global-model
setting converges with roughly 1,000 global iterations, while
a global model for a group in our FLCert converges with less
than 100 global iterations. The reason is that the global model
in the single-global-model setting aims to fit the local training
data on all clients, while a global model in our FLCert aims
to fit the local training data on only a group of clients.

We note that FLCert incurs some cost at inference time.
Specifically, we need to store the parameters of N global
models. Moreover, we need to query the N global models
to make a prediction for a given input. However, we note that
such cost is affordable. First, we have shown that a moderate
N (e.g., N=500) is enough to achieve a high certified accuracy.
Second, we can leverage model compression techniques to
further reduce the model size. Third, the N global models can

make predictions in parallel.

VII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we propose FLCert, an ensemble FL frame-
work that provides provable security guarantees against poi-
soning attacks from malicious clients. We propose two variants
FLCert-P and FLCert-D based on how the clients are grouped
and derive their theoretical security guarantees. Moreover, we
design a randomized algorithm to compute the certified secu-
rity level for FLCert-P in practice. Our empirical results on
multiple datasets show that our FLCert can effectively defend
against poisoning attacks with provable security guarantees.

One limitation of our work is that we do not leverage any
prior knowledge on the learning task or the base FL algorithm
when deriving our certified security levels. It is an interesting
future work to involve such prior knowledge when deriving
certified security guarantees.
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PROOF OF THEOREM 1

We first define a subsample as a set of k clients sampled
from the n clients uniformly at random without replace-
ment. We further define the space of all subsamples of k
clients from C as OC = {S(C, k)} and the space of all
possible subsamples from C′ as O′

C = {S(C′, k)}. Let
Oo = {S(C ∩ C′, k)} = OC ∩ O′

C denote the space of all
possible subsamples from the set of normal clients C ∩ C′,
and O = {S(C∪C′, k)} = OC ∪O′

C denote the space of all
possible subsamples from either C or C′. Figure 10 illustrates
OC ,O

′
C , and Oo. We use a random variable X to denote a

subsample S(C, k) and Y to denote a subsample S(C′, k) in

𝑜

Fig. 10: Illustration of OC ,O
′
C , and Oo.

O. We know that X and Y have the following probability
distributions:

Pr(X = a) =

{︄
1

(nk)
, if a ∈ OC

0, otherwise,
(14)

Pr(Y = a) =

{︄
1

(nk)
, if a ∈ O′

C

0, otherwise.
(15)

Assume that a federated learning algorithm f takes a subsam-
ple a and a test input x as its input and outputs a label f(a,x).
We have the following equations:

py = Pr(f(X,x) = y) (16)
= Pr(f(X,x) = y|X ∈ Oo) · Pr(X ∈ Oo)

+ Pr(f(X,x) = y|X ∈ (OC −Oo))

· Pr(X ∈ (OC −Oo)), (17)
p′y = Pr(f(Y,x) = y) (18)

= Pr(f(Y,x) = y|Y ∈ Oo) · Pr(Y ∈ Oo)

+ Pr(f(Y,x) = y|Y ∈ (O′
C −Oo))

· Pr(Y ∈ (O′
C −Oo)). (19)

Note that we have:

Pr(f(X,x) = y|X ∈ Oo) = Pr(f(Y,x) = y|Y ∈ Oo), (20)

Pr(X ∈ Oo) = Pr(Y ∈ Oo) =

(︁
n−m

k

)︁(︁
n
k

)︁ , (21)

where m is the number of malicious clients. Therefore, we
know:

Pr(f(X,x) = y|X ∈ Oo) · Pr(X ∈ Oo)

=Pr(f(Y,x) = y|Y ∈ Oo) · Pr(Y ∈ Oo). (22)

By subtracting (17) from (19), we obtain:

p′y − py

=Pr(f(Y,x) = y|Y ∈ (O′
C −Oo)) · Pr(Y ∈ (O′

C −Oo))

−Pr(f(X,x) = y|X ∈ (OC −Oo)) · Pr(X ∈ (OC −Oo)). (23)

Similarly, we have the following equation for any i ̸= y:

p′i − pi

=Pr(f(Y,x) = i|Y ∈ (O′
C −Oo)) · Pr(Y ∈ (O′

C −Oo))

−Pr(f(X,x) = i|X ∈ (OC −Oo)) · Pr(X ∈ (OC −Oo)). (24)
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Therefore, we can show:

p′y − p′i

=py − pi + (p′y − py)− (p′i − pi) (25)
=py − pi

+
[︁
Pr(f(Y,x) = y|Y ∈ (O′

C −Oo))

− Pr(f(Y,x) = i|Y ∈ (O′
C −Oo))

]︁
· Pr(Y ∈ (O′

C −Oo))

− [Pr(f(X,x) = y|X ∈ (OC −Oo))

− Pr(f(X,x) = i|X ∈ (OC −Oo))] · Pr(X ∈ (OC −Oo)).
(26)

Note that we have:

Pr(f(Y,x) = y|Y ∈ (O′
C −Oo))

− Pr(f(Y,x) = i|Y ∈ (O′
C −Oo)) ≥ −1, (27)

Pr(f(X,x) = y|X ∈ (OC −Oo))

− Pr(f(X,x) = i|X ∈ (OC −Oo)) ≤ 1, (28)

Pr(Y ∈ (O′
C −Oo))

=Pr(X ∈ (OC −Oo))

=1−
(︁
n−m
k

)︁(︁
n
k

)︁ . (29)

Therefore, (26) gives:

p′y − p′i ≥ py − pi + (−1) ·

[︄
1−

(︁
n−m

k

)︁(︁
n
k

)︁ ]︄
−

[︄
1−

(︁
n−m

k

)︁(︁
n
k

)︁ ]︄
(30)

= py − pi −

[︄
2− 2 ·

(︁
n−m

k

)︁(︁
n
k

)︁ ]︄
(31)

=

⌈︁
py ·

(︁
n
k

)︁⌉︁(︁
n
k

)︁ −
⌊︁
pz ·

(︁
n
k

)︁⌋︁(︁
n
k

)︁ − 2

[︄
1−

(︁
n−m

k

)︁(︁
n
k

)︁ ]︄
(32)

≥

⌈︂
py ·

(︁
n
k

)︁⌉︂(︁
n
k

)︁ −
⌊︁
pz ·

(︁
n
k

)︁⌋︁(︁
n
k

)︁ − 2

[︄
1−

(︁
n−m∗

k

)︁(︁
n
k

)︁ ]︄
(33)

> 0, (34)

which indicates F (C′,x) = y.

PROOF OF THEOREM 2
We prove Theorem 2 by constructing a federated learning

algorithm f∗ such that F (C′,x) ̸= y or there exist ties.
We follow the definitions of O,OC ,O

′
C ,Oo,X, and Y in

the previous proof. Next, we consider four cases (Figure 11
illustrates them).
Case 1: m ≥ n− k.
In this case, we know Oo = ∅. Let OA ⊆ OC and OB ⊆
OC such that |OA| =

⌈︂
py ·

(︁
n
k

)︁⌉︂
, |OB | =

⌊︁
pz ·

(︁
n
k

)︁⌋︁
, and

OA ∩OB = ∅. Since py + pz ≤ 1, we have:

|OA|+ |OB | =
⌈︃
py ·

(︃
n

k

)︃⌉︃
+

⌊︃
pz ·

(︃
n

k

)︃⌋︃
(35)

≤
⌈︃
py ·

(︃
n

k

)︃⌉︃
+

⌊︃
(1− py) ·

(︃
n

k

)︃⌋︃
(36)

=

⌈︃
py ·

(︃
n

k

)︃⌉︃
+

(︃
n

k

)︃
−
⌈︃
py ·

(︃
n

k

)︃⌉︃
(37)

=

(︃
n

k

)︃
= |OC |. (38)

𝐴
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(d) Case 4

Fig. 11: Illustration of OC ,O
′
C ,Oo,OA, and OB in the four

cases.

Therefore, we can always find such a pair of disjoint sets
(OA,OB). Figure 11a illustrates OA,OB ,OC , and O′

C . We
can construct f∗ as follows:

f∗(a,x) =

⎧⎪⎨⎪⎩
y, if a ∈ OA

z, if a ∈ OB ∪O′
C

i, i ̸= y and i ̸= z, otherwise.
(39)

We can show that such f∗ satisfies the following probability
properties:

py = Pr(f∗(X,x) = y) =
|OA|
|OC |

=

⌈︂
py ·

(︁
n
k

)︁⌉︂(︁
n
k

)︁ ≥ py, (40)

pz = Pr(f∗(X,x) = z) =
|OB |
|OC |

=

⌊︁
pz ·

(︁
n
k

)︁⌋︁(︁
n
k

)︁ ≤ pz. (41)

Therefore, f∗ satisfies the probability condition (7). However,
we have:

p′z = Pr(f∗(Y,x) = z) = 1, (42)

which indicates F (C′,x) = z ̸= y.

Case 2: m∗ < m < n − k, 0 ≤ py ≤ 1 − (n−m
k )
(nk)

, and 0 ≤

pz ≤
(n−m

k )
(nk)

.

Let OA ⊆ OC − Oo such that |OA| = ⌈py ·
(︁
n
k

)︁
⌉. Let

OB ⊆ Oo such that |OB | = ⌊pz ·
(︁
n
k

)︁
⌋. Figure 11b illustrates

OA,OB ,OC ,O
′
C , and Oo. We can construct a federated

learning algorithm f∗ as follows:

f∗(a,x) =

⎧⎪⎨⎪⎩
y, if a ∈ OA

z, if a ∈ OB ∪ (O′
C −Oo)

i, i ̸= y and i ̸= z, otherwise.
(43)
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We can show that such f∗ satisfies the following probability
conditions:

py = Pr(f∗(X,x) = y) =
|OA|
|OC |

=

⌈︂
py ·

(︁
n
k

)︁⌉︂(︁
n
k

)︁ ≥ py, (44)

pz = Pr(f∗(X,x) = z) =
|OB |
|OC |

=

⌊︁
pz ·

(︁
n
k

)︁⌋︁(︁
n
k

)︁ ≤ pz, (45)

which indicates f∗ satisfies (7). However, we have:

p′y − p′z = Pr(f∗(Y,x) = y)− Pr(f∗(Y,x) = z) (46)

= 0− |OB |+ |O′
C −Oo|

|O′
C |

(47)

= −
⌊︁
pz ·

(︁
n
k

)︁⌋︁(︁
n
k

)︁ − 1 +

(︁
n−m
k

)︁(︁
n
k

)︁ (48)

< 0, (49)

which implies F (C′,x) ̸= y.

Case 3: m∗ < m < n−k, 0 ≤ py ≤ 1− (n−m
k )
(nk)

, and (n−m
k )
(nk)

≤
pz ≤ 1− py .
Let OA ⊆ OC −Oo and OB ⊆ OC −Oo such that |OA| =
⌈py ·

(︁
n
k

)︁
⌉, |OB | = ⌊pz ·

(︁
n
k

)︁
⌋ −

(︁
n−m
k

)︁
, and OA ∩OB = ∅.

Note that |OC −Oo| =
(︁
n
k

)︁
−
(︁
n−m
k

)︁
, and we have:

|OA|+ |OB |

=

⌈︄
py ·

(︄
n

k

)︄⌉︄
+

⌊︄
pz ·

(︄
n

k

)︄⌋︄
−

(︄
n−m

k

)︄
(50)

≤

⌈︄
py ·

(︄
n

k

)︄⌉︄
+

⌊︄
(1− py) ·

(︄
n

k

)︄⌋︄
−

(︄
n−m

k

)︄
(51)

=

⌈︄
py ·

(︄
n

k

)︄⌉︄
+

[︄(︄
n

k

)︄
−

⌈︄
py ·

(︄
n

k

)︄⌉︄]︄
−

(︄
n−m

k

)︄
(52)

=

(︄
n

k

)︄
−

(︄
n−m

k

)︄
. (53)

Therefore, we can always find a pair of such disjoint sets
(OA,OB). Figure 11c illustrates OA,OB ,OC ,O

′
C , and Oo.

We can construct an algorithm f∗ as follows:

f∗(a,x) =

⎧⎪⎨⎪⎩
y, if a ∈ OA

z, if a ∈ OB ∪O′
C

i, i ̸= y and i ̸= z, otherwise.
(54)

We can show that such f∗ satisfies the following probability
conditions:

py = Pr(f∗(X,x) = y) =
|OA|
|OC |

=

⌈︂
py ·

(︁
n
k

)︁⌉︂(︁
n
k

)︁ ≥ py, (55)

pz = Pr(f∗(X,x) = z) =
|OB |+ |Oo|
|OC |

=

⌊︁
pz ·

(︁
n
k

)︁⌋︁(︁
n
k

)︁
≤ pz, (56)

which are consistent with the probability conditions (7). How-
ever, we can show the following:

p′z = Pr(f∗(Y,x) = z) = 1, (57)

which gives F (C′,x) = z ̸= y.

Case 4: m∗ < m < n − k, 1 − (n−m
k )
(nk)

< py ≤ 1, and 0 ≤

pz ≤ 1− py <
(n−m

k )
(nk)

.

Let OA ⊆ Oo and OB ⊆ Co such that |OA| =
⌈︂
py ·

(︁
n
k

)︁⌉︂
+(︁

n−m
k

)︁
−

(︁
n
k

)︁
, |OB | =

⌊︁
pz ·

(︁
n
k

)︁⌋︁
, and OA ∩ OB = ∅. Note

that |Oo| =
(︁
n−m
k

)︁
, and we have:

|OA|+ |OB |

=

⌈︄
py ·

(︄
n

k

)︄⌉︄
+

(︄
n−m

k

)︄
−

(︄
n

k

)︄
+

⌊︄
pz ·

(︄
n

k

)︄⌋︄
(58)

≤

⌈︄
py ·

(︄
n

k

)︄⌉︄
+

(︄
n−m

k

)︄
−

(︄
n

k

)︄
+

⌊︄
(1− py) ·

(︄
n

k

)︄⌋︄
(59)

=

⌈︄
py ·

(︄
n

k

)︄⌉︄
+

(︄
n−m

k

)︄
−

(︄
n

k

)︄
+

[︄(︄
n

k

)︄
−

⌈︄
py ·

(︄
n

k

)︄⌉︄]︄
(60)

=

(︄
n−m

k

)︄
. (61)

Therefore, we can always find such a pair of disjoint sets
(OA, OB). Figure 11d illustrates OA,OB ,OC ,O

′
C , and Oo.

Next, we can construct an algorithm f∗ as follows:

f∗(a,x) =

⎧⎪⎨⎪⎩
y, if a ∈ OA ∪ (OC −Oo)

z, if a ∈ OB ∪ (O′
C −Oo)

i, i ̸= y and i ̸= z, otherwise.
(62)

We can show that f∗ has the following properties:

py = Pr(f∗(X,x) = y) =
|OA|+ |OC −Oo|

|OC |
=

⌈︂
py ·

(︁
n
k

)︁⌉︂(︁
n
k

)︁
≥ py, (63)

pz = Pr(f∗(X,x) = z) =
|OB |
|OC |

=

⌊︁
pz ·

(︁
n
k

)︁⌋︁(︁
n
k

)︁ ≤ pz, (64)

which implies f∗ satisfies the probability condition (7). How-
ever, we also have:

p′y − p′z

=Pr(f∗(Y,x) = y)− Pr(f∗(Y,x) = z) (65)

=
|OA|
|O′

C |
− |OB |+ |O′

C −Oo|
|O′

C |
(66)

=

⌈︂
py ·

(︁
n
k

)︁⌉︂
+
(︁
n−m

k

)︁
−
(︁
n
k

)︁(︁
n
k

)︁ −
⌊︁
pz ·

(︁
n
k

)︁⌋︁
−
(︁
n−m

k

)︁
+
(︁
n
k

)︁(︁
n
k

)︁ (67)

=

⌈︂
py ·

(︁
n
k

)︁⌉︂(︁
n
k

)︁ −
⌊︁
pz ·

(︁
n
k

)︁⌋︁(︁
n
k

)︁ −

[︄
2− 2 ·

(︁
n−m

k

)︁(︁
n
k

)︁ ]︄
. (68)

Since m > m∗, we have:⌈︂
py ·

(︁
n
k

)︁⌉︂(︁
n
k

)︁ −
⌊︁
pz ·

(︁
n
k

)︁⌋︁(︁
n
k

)︁ ≤

[︄
2− 2 ·

(︁
n−m
k

)︁(︁
n
k

)︁ ]︄
. (69)

Therefore, p′y−p′z ≤ 0, which indicates F (C′,x) ̸= y or there
exist ties.
To summarize, we have proven that in any possible cases, The-
orem 2 holds, indicating that our derived certified Byzantine
size is tight.
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PROOF OF THEOREM 3

Based on the Clopper-Pearson method, we have:

Pr(pyt ≤ Pr(f(S(C, k),xt) = yt) ∧ pzt

≥Pr(f(S(C, k),xt) = i),∀i ̸= yt)

≥1− α

d
. (70)

Therefore, for a test input xt, if our algorithm does not abstain
for xt, the probability that it returns an incorrect certified
Byzantine size is at most α

d :

Pr((∃C′ ∈ Ω(C, m̂∗
t ), h(C

′, k,xt) ̸= ŷt)|ŷt ̸= ABSTAIN)

≤α

d
. (71)

Then, we have the following:

Pr(∩xt∈D((∀C′ ∈ Ω(C, m̂∗
t ), h(C

′, k,xt) = ŷt)|
ŷt ̸= ABSTAIN))

= 1− Pr(∪xt∈D((∃C′ ∈ Ω(C, m̂∗
t ), h(C

′, k,xt) ̸= ŷt)|
ŷt ̸= ABSTAIN)) (72)

≥ 1−
∑︂
xt∈D

Pr((∃C′ ∈ Ω(C, m̂∗
t ), h(C

′, k,xt) ̸= ŷt)|

ŷt ̸= ABSTAIN) (73)

≥ 1− d · α
d

(74)

= 1− α. (75)

We have (73) from (72) based on the Boole’s inequality.

Xiaoyu Cao received an B.Eng. degree from the
department of gifted young, University of Science
and Technology of China (USTC), M.Eng. degree
from Iowa State University, and Ph.D degree from
Duke University in 2016, 2019, and 2022, respec-
tively. He is currently a research scientist at Meta
Platforms. His research interests are in the area of
machine learning security and privacy, with special
interest in federated learning security.

Zaixi Zhang received an BS degree from the de-
partment of gifted young, University of Science and
Technology of China (USTC), in 2019. He is cur-
rently working toward the Ph.D. degree in the School
of Computer Science and Technology at USTC. His
main research interests include data mining, machine
learning security & privacy, and graph representation
learning. He has published papers in referred con-
ference proceedings, such as IJCAI, NeurIPS, KDD,
and AAAI.

Jinyuan Jia received an B.Eng. degree from Univer-
sity of Science and Technology of China (USTC),
M.Eng. degree from Iowa State University, and Ph.D
degree from Duke University in 2016, 2019, and
2022, respectively. He is a postdoc at the University
of Illinois Urbana-Champaign and will be an Assis-
tant Professor at The Pennsylvania State University
starting in July 2023. His research involves security,
privacy, and machine learning, with a recent focus
on the intersection among them.

Neil Zhenqiang Gong received an B.Eng. degree
from University of Science and Technology of China
(USTC) in 2010 and Ph.D. in Computer Science
from University of California Berkeley in 2015. He
is currently an Assistant Professor at Duke Univer-
sity. His research interests are cybersecurity, privacy,
machine learning security, and social networks se-
curity. He has received multiple prestigious awards
such as Army Research Office Young Investigator
Program Award and NSF CAREER Award.


	Introduction
	Related Work
	Federated Learning (FL)
	Poisoning Attacks to FL
	Defenses against Poisoning Attacks to FL

	Proposed FLCert
	Overview
	Grouping the Clients
	FLCert-P
	FLCert-D

	Ensemble Global Model

	Security Analysis
	Certified Security Level
	Deriving Certified Security Level
	FLCert-P
	FLCert-D


	Communication/Computation Cost Analysis
	Evaluation
	Experimental Setup
	Datasets
	Evaluated Base FL Algorithms
	Global Model Architectures
	Evaluation Metrics
	Existing Poisoning Attacks
	Parameter Settings
	Equipment and Environment

	Experimental Results
	Certified Accuracy
	Test Accuracy and Attack Success Rate
	Communication/Computation-Security Trade-off


	Conclusion, Limitations, and Future Work
	References
	Biographies
	Xiaoyu Cao
	Zaixi Zhang
	Jinyuan Jia
	Neil Zhenqiang Gong


