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1  |  INTRODUC TION

Animal movement is a complex behavioural trait that affects 
the survival of populations and species across taxa (Berg,  1983; 
Dingle,  2014). Long- and short-distance movements can follow 
predictable environmental constraints, allowing populations to 
take advantage of seasonal food resources (e.g. migration), or 
more opportunistic, such as in the case of dispersal behaviours 
aimed at avoiding predators or finding potential mates (Giuggioli & 
Bartumeus, 2010). Thus, wild animals make decisions often based on 
environmental cues that lead to movement patterns characteristic 
of different populations across the landscape (Dodge et al.,  2014; 
Nathan et al.,  2008). However, obtaining a comprehensive 

understanding of large-scale animal movement behaviour and pop-
ulation occurrence under climate change scenarios or habitat loss 
has proven to be a challenge (Araujo & Guisan,  2006). Moreover, 
while the research toolbox in movement ecology studies has seen 
a considerable expansion over the last two decades due to techno-
logical advancements of the tracking devices and molecular mark-
ers (Cushman & Lewis,  2010; Williams et al.,  2020), the limitation 
of scaling up individual data to population-level inferences is still a 
substantial obstacle (Hawkes, 2009; but see Holdo & Roach, 2013). 
A promising research approach that may overcome the limitations 
of wildlife movement studies hindered by small sample sizes is rep-
resented by computer simulations within an agent-based modelling 
(ABM) framework (Bridge et al., 2017; Tang & Bennett, 2010).
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Abstract
1.	 Agent-based modelling (ABM) shows promise for animal movement studies. However, 

a robust, open-source and spatially explicit ABM coding platform is currently lacking.
2.	 We present abmR, an R package for conducting continental-scale ABM simula-

tions across animal taxa. The package features two movement functions, each 
of which relies on the Ornstein–Uhlenbeck (OU) process.

3.	 The theoretical background for abmR is discussed and the main functionalities 
are illustrated using example populations.

4.	 Potential future additions to this open-source package may include the ability 
to specify multiple environmental variables or to model interactions between 
agents. Additionally, updates may offer opportunities for disease ecology and 
integration with other R movement modelling packages.
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The core principle of ABM is to simulate a set of entities, called 
agents, which are defined by intrinsic properties as well as be-
havioural rules governing their interactions with the environment 
(Grimm & Railsback,  2013). That is, agents are described by their 
inherent attributes while dynamically interacting with external con-
ditions such as the co-occurrence of other agents and/or changing 
features of their environmental setting. Thus, ABM is used in many 
areas, including biology, disease risk, social sciences, and economics 
(Grimm & Railsback, 2013; Klimek et al., 2015; Polhill et al., 2008; 
Willem et al., 2017) with the unifying goal of investigating and pre-
dicting the dynamics of complex systems (Grimm et al., 2005). In par-
ticular, wildlife studies have adopted the ABM approach to simulate 
population growth, reproduction, mortality rate, energy budget, and 
migration ecology, just to cite a few (Aurbach et al., 2020; Brown & 
Robinson, 2006; Goldstein et al., 2021; Lustig et al., 2019). However, 
we currently lack a robust and spatially explicit ABM coding platform 
for the implementation of large-scale animal movement investiga-
tions (but see Chubaty & McIntire, 2021; Thiele et al., 2012). Here, 
we present a novel ABM framework in R programming language (R 
Core Team,  2022) for applications in animal behaviour and move-
ment ecology.

2  |  PACK AGE OVERVIE W

abmR allows for both computation and visualization of agent move-
ment trajectories through a set of behavioural rules based on envi-
ronmental parameters. The two movement functions, moveSIM and 
energySIM, provide the central functionality of the package, allow-
ing the user to run simulations using an Ornstein-Uhlenbeck move-
ment model (Uhlenbeck & Ornstein, 1930; hereafter OU). Additional 
functions provide a suite of visualization and data summarization 
tools intended to reduce the effort needed to go from results to 
presentation-ready figures and tables (Table 1). The package is cur-
rently available on the Comprehensive R Archive Network (CRAN) at 
https://cran.r-proje​ct.org/web/packa​ges/abmR/index.html.

The abmR package is built to facilitate customization of movement 
model parameters within the R environment (Figure 1). Parameters 
affecting agent behaviour can be obtained from real-world 

observations (e.g. GPS data) or approximated from the literature and 
then manually entered as arguments into abmR functions. Thus, if 
the user knows beforehand the behaviour and the ecological con-
straints of the agents, such as land-cover preferences (e.g. vegetation 
composition and structure) or movement direction and average dis-
tance travelled per day, they may transfer this knowledge into abmR 
to study changes in energy consumption, mortality rate or alternative 
routes across different environmental conditions (e.g. raster layers). 
Alternatively, for simulations of ‘synthetic species’ designed to com-
pare relative mortality rates across habitats, for example, the user 
may develop an analytical framework within abmR without explor-
ing the ecology of a particular organism. In this case, the movement 
parameters may not be realistic, but selected with the unique goal 
of comparing a set of scenarios (e.g. movements in predicted future 
land-use changes) while studying the emerging properties of the sys-
tem (Yin et al., 2022). Finally, abmR functionalities can be integrated 
with other approaches, such as a step-selection function (Thurfjell 
et al., 2014) and/or Bayesian statistics to estimate movement param-
eters and explore migration patterns or habitat occupancy of a partic-
ular set of agents (Cullen et al., 2022; Joo et al., 2020).

Both movement functions used by abmR rely on the same OU 
approach. The OU process is described by the following stochastic 
differential equation:

where Wt is a standard Brownian motion on t ∈ [0, ∞), k is a positive 
constant that controls the rate of reversion to the long-term mean, θ, 
of the OU process (see Blomberg et al., 2020), and α > 0 is a constant 
controlling the volatility of the Brownian motion. In abmR, given the 
current agent location (xt, yt), agent location at the subsequent time-
step (xt+1, yt+1) is modelled according to the following equations:

Here, � is a user-specified multiplier on the random terms Zx and Zy, two 
numbers drawn from the Normal (0,1) distribution. In addition, �x and 
�y are movement motivation or attraction strength for the OU process 

dXt = k
(

� − Xt

)

dt + �dWt

(1)xt+1 = xt + � × Zx + �x ×

(

�x − xt
)

,

(2)yt+1 = yt + � × Zy + �y ×

(

�y − yt
)

.

Function Usage

moveSIM Runs agent-based model movement simulations based on 
environmental data

moveVIZ Creates a plot or table of moveSIM() results

energySIM Runs agent-based model movement and energy budget simulations 
based on environmental data

energyVIZ Creates a plot or table of energySIM() results

tidy_results Prints results from moveSIM() or energySIM() in an easier-to-read table

get_ex_data Downloads data that is used in examples in vignette and 
documentation

as.species Creates object of class ‘species’ for input into moveSIM() or 
energySIM()

TA B L E  1  Functions contained in 
the abmR package (v. 1.0.6). For more 
complete function descriptions, consult 
the abmR manual.
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in the longitude and latitude coordinates, respectively, while �x and �y 
are optimal x (longitude) and y (latitude) coordinates, respectively. It is 
assumed that the origin point (x1, y1) is known. The OU model given 
in (1) and (2) performs similarly to a spring-coil (Figure 2). Greater dis-
tance from optimal coordinates �x and �y acts like a compressed spring 

to propel distant agents towards �x and �y. On the other hand, agents 
closer to �x and �y will travel a shorter distance on that timestep. 
However, the length of movement also depends on �x and �y, because 
these motivations serve as a multiplier on 

(

�x − xt
)

 and 
(

�y − yt
)

, re-
spectively (Equations 1 and 2).

While the two movement functions are distinct (see below), each 
follows the same basic two steps. The first, large-scale searching, is 
illustrated in Figure 3 and follows an elliptical pattern, as opposed 
to a circular distribution, to account for directional migratory im-
pulses (e.g. genetically controlled migratory behaviours or seasonal 
Zugunruhe; Merlin & Liedvogel, 2019). This step finds the ‘optimum’ 
location for each agent (�x and �y coordinates from Equations 1 and 
2). The coordinates �x and �y are determined according to an algo-
rithm that selects the location whose observed environmental value 
has the least possible difference from the user-specified optimal 
raster value. For moveSIM, this user-specified optimal raster value is 
supplied directly, while for energySIM it is the average of the lower 
and upper bounds of a user-specified optimum range. The optimum 
value or range of values specified depends on the modelling scenario 
and the type of environmental raster that is used (e.g. vegetation, 
temperature, etc.).

Agents will move towards the selected optimum location. 
However, if the attraction strength (�x and �y in Equations 1 and 
2) is less than 1, agents will have a ‘target’ location short of the 
optimal location. Thus, agents find an ‘optimum’ location within the 
semi-circular search region and then a ‘target’ location that lies on 
the line between the ‘current location’ and the ‘optimum’ location. 
Moreover, agents will move towards this target location with some 
variance, which is generated by sampling two numbers from the 
standard normal distribution and multiplying by �, as specified by 

F I G U R E  1  abmR workflow from data input to result exploration. The black box and black arrows (workflow 1, left) show the sequence 
of the analytical steps, starting with the identification of the study system (species or population), followed by the acquisition of the 
movement parameters from previous observations or the literature. After selecting the environmental conditions (e.g. raster layers), users 
can run a suite of abmR functions to study movements, changes in energy consumption or mortality rate. The blue box and blue arrows 
(workflow 2, right) show an alternative analytical workflow in which users can create synthetic species for comparative analyses across 
predicted ecological and environmental scenarios (e.g. loss of migratory behaviour and habitat fragmentation). The panel to the right of both 
workflows shows a list of the relative arguments that can be entered in abmR across each step of the analysis.

F I G U R E  2  The Ornstein–Uhlenbeck (OU) model given in (1) 
and (2) performs like a spring-coil: Agents further from their target 
location experience higher attraction (and travel further), while 
agents closer to their destination experience lesser attraction (and 
travel less far).
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F I G U R E  3  Illustration of large-scale searching specified by the OU model of Equations (1) and (2). Agents find an ‘optimum’ location 
within the semi-circular search region and then a ‘target’ location that lies on the line between the ‘current location’ and the ‘optimum’ 
location. If there is a tie between multiple potential ‘optimum’ cells, one is randomly selected from the list of tied cells to serve as the 
optimum. Random variance is added by independently sampling Zx and Zy from a standard normal distribution. Here, � = 1 and 𝜙x = 𝜙y < 1

, where � is the multiplier on the random error and �x and �y are the motivations in the x and y directions, respectively. Bounding box 
represents the most probable samples from the N(0,1) distribution.

Argument Function Usage

Replicates M, E # of agents to model

Days M, E # of timesteps

modelled_species M, E Species object from as.species()

env_rast M, E Environmental raster

Optimum M Optimal environmental value

optimum_lo E Lowest optimum environmental value

optimum_hi E Highest optimum environment value

dest_x M, E Destination Longitude

dest_y M, E Destination Latitude

mot_x M, E Motivation (x direction)

mot_y M, E Motivatitm (y direction)

search_radius M, E Radius of semi-circular search region 
(km)

Direction M, E Movement direction: N, S, E, W, or R 
(Random)

Sigma M, E Randomness parameter

Mortality M, E Incorporate agent mortality? T or F

fail_thresh M Deviation from optimum constituting 
failure

n_failures M Allowable # of failures before agent 
death

init_energy E Initial energy

energy_adj E Energy gain/penalty vector

single_rast M, E Using a single-layer raster? T or F

write_results M, E Save results as a .csv? T or F

X S Origin longitude

Y S Origin latitude

TA B L E  2  List of arguments used 
in moveSIM (M), energySIM (E), or 
as.Species (S). F, false; SD, standard 
deviation; T, true. In text, these arguments 
are presented in italics. For a more 
complete list of argument descriptions, 
see the abmR documentation.
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the user (in Figure  3, � is 1). Because the support of the normal 
distribution consists of all real numbers, large deviations from the 
‘target’ point are possible. However, because the normal distribu-
tion has low density at the extreme tails, outcomes are most likely 
to fall within a certain area of the target, as illustrated in Figure 3. 
This first step corresponds to the OU model of Equations (1) and (2).

The second step is small-scale searching. Here, agents select 
the ‘best’ of the 8 neighbouring cells (queen's case or Moore neigh-
bourhood) after performing step 1, discussed above and in Figure 3. 
Again, ‘best’ here means the cell with the environmental raster value 
closest to the agent's user-defined optimum range. These two steps 
are then repeated for each timestep until the agent dies or proceeds 
through all timesteps. Each timestep will use different environmen-
tal raster layers. Users may choose to supply a raster stack to simu-
late changes in environment over time (see for example Section 3.1).

For the moveSIM function, agent death occurs when agents fail 
to achieve suitable environmental raster values for more than a user-
specified number of consecutive timesteps. Here, what constitutes 
a ‘suitable’ cell is determined by the optimum value and an allow-
able deviation proportion, both also specified by the user. For the 
energySIM function, agent death occurs when energy reaches zero. 
For both functions, users may choose to disable agent mortality. 
In the following subsections, we present the differences between 
moveSIM and energySIM functions and their underlying algorithms.

2.1  |  Simulation function: moveSIM

The function moveSIM runs an OU movement simulation based on envi-
ronmental conditions provided by the user (e.g. raster), optionally includ-
ing agent mortality and adjusted motivation according to user-specified 
parameters. The function operates according to the following algorithm. 
Here, terms in italics are moveSIM function arguments (see Table 2).

The following algorithm applies when the argument direction is 
‘N’, ‘S’, ‘E’, or ‘W’. For random movement (direction = ‘R’) agents sim-
ply select a random point from a circle of radius search_radius for 
each timestep (Step 2). Here, let env_rast (xt+1, yt+1) be the value of 
env_rast at the point (xt+1, yt+1). The core algorithm shown here as-
sumes that env_rast contains no undefined (N/A) grid cells.

1.	 Specify (x1, y1) using x and y contained in modelled_species, 
set failures  =  0.

2.	 For day t in 1:(days-1)
a.	 Define search area semicircle (radius =  search_radius) facing 

direction and centered at 
(

xt , yt
)

b.	 Determine (�x, �y) as location within the search area with env_
rast value closest to optimum.
	(i)	If (dest_x, dest_y) in search area, set (�x, �y) = (dest_x, dest_y)

c.	 Large scale searching: find 
(

xt+1, yt+1
)

0
 according to (1) and (2).

d.	 Small-scale searching: set 
(

xt+1, yt+1
)

 as location within eight 
neighbouring cells (queen's case) of 

(

xt+1, yt+1
)

0
 with the value 

closest to optimum.

Perform (e)–(f) if mortality = True.
a.	 If observed env_rast 

(

xt+1, yt+1
)

 − optimum > optimum*fail_
thresh, set failures = failures + 1. If not, set failures = 0.

b.	 If failures > n_failures agent dies. End loop.
3.	 Return dataframe with days rows and 2 columns movement 

track data.
4.	 Repeat (1)–(3) replicates times.

2.2  |  Simulation function: energySIM

The function energySIM builds on moveSIM by allowing for dy-
namic agent energy levels that are affected by the quality of 
environmental values achieved. These initial user-defined en-
ergy levels then serve as a driver of mortality and movement 
distance per timestep. The energy thresholds range from 0 to 1 
and represent proportion deviations from the optimum. These 
thresholds are arbitrarily divided into 10 even increments (0.1, 
0.2, etc.), but users can change the energy gain or penalty for 
attaining each of the thresholds. It operates according to the 
following algorithm. Here, terms in italics are energySIM func-
tion arguments (see Table  2) or calculated variables (e.g. opti-
mum, energy).

The following algorithm applies when the argument direction 
is ‘N’, ‘S’, ‘E’, or ‘W’. For random movement (direction = ‘R ’) agents 
simply select a random point from a circle of radius search_ra-
dius for each timestep (Step 3). Here, let env_rast 

(

xt+1, yt+1
)

 be 
the value of env_rast at the point 

(

xt+1, yt+1
)

. The core algorithm 
shown here assumes that env_rast contains no undefined (N/A) 
grid cells.

1.	 Specify (x1, y1) using x and y contained in modeled_species.
2.	 Compute optimum as (optimum_hi − optimum_lo)/2 and set 

energy = init_energy
3.	 For day t in 1:(days-1)

a.	 If mortality  =  True, update search_radius as search_ra-
dius = search_radius * (energy/init_energy).

b.	 Define search area semicircle(radius  =  search_radius) facing 
direction and centered at 

(

xt , yt
)

.
c.	 Determine (�x, �y) as location within the search area with env_

rast cell value closest to optimum.
	(i)	If (dest_x, dest_x) in search area, set (�x, �y) = (dest_x, dest_y)

d.	 Large-scale searching: find 
(

xt+1, yt+1
)

0
 according to (1) and (2).

e.	 Small-scale searching: set 
(

xt+1, yt+1
)

 as location within eight 
neighbouring cells (queen's case) of 

(

xt+1, yt+1
)

0
 with the cell 

value closest to optimum.
f.	 Update energy level according to deviation of env_rast 

(

xt+1, yt+1
)

 from optimum.
g.	 If mortality = True and energy = 0, the agent dies. End loop.

4.	 Return dataframe with days rows and 2 columns movement track 
data.

5.	 Repeat (1)–(4) replicates times.
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3  |  E X AMPLE APPLIC ATIONS

abmR can be used to construct ABM simulations for any desired agent 
across the globe. In the following examples, we demonstrate the com-
putation capabilities of the energySIM function, although a similar 
workflow also applies for moveSIM. In the first example, we show how 
energySIM can be used to compare movements and differential energy 
allocations of two synthetic populations of 250 agents each (Box  1; 
Supporting Information S2). In the second example, we replicate the 
movement pattern of the Painted Bunting Passerina ciris, a well-studied 
migratory songbird occurring in North America and Mexico.

3.1  |  Comparisons between populations

In this example, both synthetic populations are characterized by 
matching number of replicates and movement timesteps (days), 

equal �, and the same environmental data provided by a Normalized 
Difference Vegetation Index (NDVI) raster stack containing 14 days 
of data between 1–14 September 2019 (Vermote, 2019). Both popu-
lations had an unspecified destination (indicated with ‘999’ in the 
arguments dest_x and dest_y) and were constrained to move on land. 
However, Population 1 (P1) agents started their movements from a 
different point (105.7°W; 48.2°N) situated about 2800 km from the 
origin of Population 2 (P2) agents (142.7°W; 63.2°N). Additionally, 
P1 agents had a smaller search radius (150 km) but higher motivation 
than P2 agents (P1 motivation = 0.95). P1 agents also had different 
optimum ranges (P1 0.2–0.5; P2 0.6–0.8), and different initial energy 
units (P1 100; P2 70). These differences in simulation parameteriza-
tion result in clearly dissimilar movement tracks (Figure 4).

While we can compare the movement tracks visually, Table  3 
provides a numerical description of the results. In this simulation, 
P1 travelled a much smaller average distance (154.6 km) than did P2 
(625.5 km). However, P1 travelled more days on average (7.4 days) 

BOX 1 R code used for performing the simulations presented in Figure 4. First, as.species is called to initialize two 
populations with different origin locations. Then, energySIM is called to perform a movement simulation for each 
population; parameters that differ between the two simulations are printed in red, functions in blue, and objects in 
bold. For argument descriptions, see Table 2 and the package manual.

Population 1 Population 2

am.pop.1 = as.species(x = −105.7, y = 48.2) am.pop.2 = as.species(x = −142.7, y = 63.2)

sim.move <− energySIM( simtwo.move <− energySIM(

replicates = 250, replicates = 250,

days = 14, days = 14,

env_rast = as.raster.stack.ndvi.sep, env_rast = as.raster.stack.ndvi.sep.

search_radius = 150, search_radius = 800,

sigma = 0.1, sigma = 0.1,

dest_x = 999, dest_x = 999,

dest_y = 999, dest_y = 999,

mot_x = 0.95, mot_x = 0.8,

mot_y = 0.95, mot_y = 0.8,

modeled_species = am.pop.1, modeled_species = am.pop.2,

optimum_lo = 0.2, optimum_lo = 0.6,

optimum_h1 = 0.5, optimum_h1 = 0.8,

init_energy = 100, init_energy = 70,

direction = “S”, direction = “S”,

mortality = F, mortality = F,

Energy_adj = c(20, 10, 8, 5, 2, 0, –2, –5, –8, –10, –20), energy_adj = c(20, 10, 8, 5, 2, 0, –2, –5, –8, –10, –20),

write_results = T, write_results = T,

single_rast = F) single_rast = F)

F I G U R E  4  Movement tracks reveal that Population 1 tended to travel through the Central United States, while Population 2 travelled 
mostly throughout western Canada, United States, and Mexico. Overall, Population 1 travelled more distance and exhibited more consistent 
paths near the origin than did Population 2. The movement tracks are natively produced by abmR. Inset world map provided for geographic 
reference.
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before stopping than P2 (3.8 days). Additionally, P2 had higher en-
ergy consumption than P1; its average remaining energy across 
all timesteps was 61.2 units compared to 99.7 units for P1. There 
are several possible reasons for this observed pattern. First, P2 
began with a smaller initial energy (70 units) than P1 (100 units). 
Additionally, P2 had higher optimum NDVI values (0.6–0.8), which 
might have been less abundant and generally more difficult to reach 
than those of P1 (0.2–0.5). Finally, because they began in different 
places, P1 and P2 agents encountered different raster cells along 
their journey.

Figure 5 visually compares P1 and P2 movement outputs based 
on longitude and latitude. This is not a native abmR figure, but rather 
it is produced using the raw data that abmR generates to show the 
flexible use of the package. In this figure, P1 movements tended to 
be to the east and south of P2. However, P2 trajectory shows a much 
wider distribution, with density points extending to the lower values 
of latitude.

Finally, Figure 6 provides a density surface plot for P2 describing 
agent energy gains (blue) and losses (red) across the landscape. This 
surface was created using the inverse distance-weighted interpola-
tion (IDW) function from the R package ‘gstat’ (Pebesma, 2004). IDW 
interpolates grid cell values across a surface using a linear combina-
tion of observed (sample) points. When interpolating a cell value, the 
value of the sample points closer to that cell carry a higher weight, 
while sample points further from that cell carry smaller weight. IDW 
is discussed in more detail in Wong (2017). The results from Figure 6 
match well with what we observe in Figure 4. Movement tracks for 
P2 tend to follow the blue (energy gain) regions.

3.2  |  Migration of the Painted Bunting

The Painted Bunting is a migratory songbird that has been intensively 
studied over the past two decades due to its steeply declining popu-
lation trend in the United States and its complex moult-migratory 
behaviour (Thompson,  1991). This species has been the focus of 
pioneering light-level geolocator tags that revealed westward 

post-breeding movements from the southern United States through-
out Mexico (Contina et al., 2013), a system for genetic analysis of 
migratory population connectivity (Battey et al.,  2018; Contina 
et al., 2019) and for candidate genes studies related to the migra-
tory behaviour (Contina et al., 2016). Moreover, Bridge et al. (2016) 
used an ABM approach to model the post-breeding movements of 
a Painted Bunting, investigating the association between large-scale 
vegetation productivity changes and the moult-migratory behaviour. 
Therefore, this species provides a well-studied migratory system 
with ample behavioural and population ecology knowledge against 
which abmR movement predictions can be tested and compared.

We built a basic ABM movement simulation for the Painted 
Bunting in abmR by using the same key parameters adopted by Bridge 
et al. (2016) and predicted that a westward migratory movement 
would emerge throughout the southern U.S. and the coastal regions 
of Mexico in late summer. Bridge et al. (2016) found that Painted 
Bunting agents beginning their migratory journey in Oklahoma in 
late August and September tend to avoid a direct southern migration 
and show a clear pattern towards southwestern movements target-
ing high primary productivity areas in northern Mexico and Sinaloa 
(northwestern Mexico). We used the identical model start location 
(−98.8°W; 34.8°N) as Bridge et al. (2016), a similar subset of 14 vege-
tation index raster files (NDVI; Vermote, 2019) representing primary 
productivity condition during the first 2 weeks of September 2011, 
and no predefined destination coordinates (indicated with ‘999’ in 
the arguments dest_x and dest_y). For the full set of model param-
eters, see Supporting Information  S3. While we note that Bridge 
et al. (2016) used enhanced vegetation index (EVI) as opposed to 
NDVI, a multiyear timeframe (2010–2013), and a complex series of 
model parametrization implemented in ArcGIS, our simulation offers 
a basic but useful illustration of the predictive capabilities of abmR.

The outcome of 12 abmR Painted Bunting simulations re-
vealed a movement pattern consistent with our predictions based 
on the results presented by Bridge et al. (2016). Most agents in 
our simulation (9 out of 12) showed a southwestern movement 
towards Sinaloa (Mexico) in mid-September (Figure  7), where 
migratory agents utilize a bloom in primary productivity due to 

Variable Mean SD Median Min Max Range

Population 1 Day 7.4 4 7 1 14 13

Longitude −105.5 4.1 −105.2 −121.1 −93.3 27.8

Latitude 41.6 3.4 41.9 30.2 47.5 17.3

Energy 99.7 1.3 100 80 100 20

Delta energy −0.04 1.5 0 −20 20 40

Distance 154.6 70 154.4 5.5 316.7 311.1

Population 2 Day 3.8 3.08 3 1 14 13

Longitude −126 17.3 −127.1 −166 −80.3 85.7

Latitude 50.2 10.5 52.2 14.4 63.1 48.7

Energy 61.2 17.2 60 0 100 100

Delta energy −2.3 9.3 −5 −20 20 40

Distance 625.5 294 649.7 5.5 1445 1439.4

TA B L E  3  A numerical comparison of 
Populations 1 and 2, created by using 
values across all timesteps for all agents. 
‘Day’ summarizes the timestep variable 
of the movement tracks. ‘Longitude’ and 
‘latitude’ summarize the geographical 
position of agents, while ‘energy’ 
summarizes agents' remaining energy. 
‘Delta energy’ corresponds to the change 
(gain or loss) of energy between each 
timestep, while ‘distance’ refers to the 
distance travelled between each timestep. 
This table was produced outside of abmR 
using raw movement data returned by the 
package.
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the Monsoonal precipitations (Rohwer et al., 2005). Three agents 
showed a southeastern movement, following vegetation changes 
along southeastern United States and the Gulf of Mexico. This 
result is also in line with sporadic but nonetheless documented 

variations in migratory strategies in the Painted Bunting where 
some individuals that breed in south-central United States (e.g. 
western Oklahoma and Arkansas) show southeastern movements 
in late summer (Contina et al., 2013).

F I G U R E  5  Graphical comparisons of Population 1 and Population 2 movements. Panels a and (b) show density plots used to individually 
compare longitude (panel a) and latitude (panel b) coordinates attained by agents from each population. Panel (c) compares the distance 
travelled between each timestep, while panel (d) shows geographical position for all agents in each population across all timesteps.
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4  |  CONCLUSIONS AND FUTURE WORK

abmR provides a novel and efficient programming platform for simu-
lating large-scale movements of species across taxa. We ran most 
of the initial test simulations on a local machine equipped with an 
Intel® Core™ i7-5500U CPU—2.40GHz and 8 GB of RAM and ob-
tained results for 100–1000 agents within minutes. The novelty of 
the software includes the capability of concurrently modelling agent 
movement trajectories and energy budget. This feature enables a 
broader exploration of the ecological constraints that shape animal 
dispersal and/or migration. Moreover, abmR built-in arguments, such 
as fail_thresh, n_failures, and energy_adj, provide additional flexibility 
when evaluating mortality scenarios that depend on baseline en-
vironmental conditions and energy requirement during prolonged 
movement bouts (see Table 2 for a full list of arguments affecting 
mortality).

Over the last decades, spatially explicit simulations, pattern-
oriented modelling, approximate Bayesian computing, and ABMs 
have become more popular in ecological and evolutionary stud-
ies (DeAngelis & Grimm,  2014; Gallagher et al.,  2021; Railsback 
et al., 2006; van der Vaart et al., 2015). Analytical platforms, such 
as InSTREAM, a simulation model approach designed to understand 
how stream and river salmonid populations respond to habitat al-
teration (Railsback et al., 2009), or ALMaSS, a predictive modelling 
tool for answering environmental policy questions regarding the 
effect of changing landscape structure on threatened animal spe-
cies (Topping et al., 2003), allow investigation of specific ecological 
systems using ABM. On the other hand, many programming lan-
guages such as Netlogo, R, or Python are widely used to develop 
custom and more flexible models that can be adapted to address 
complex ecological or evolutionary research scenarios (Chubaty 
& McIntire, 2021; Lustig et al., 2019). However, the use of a pro-
gramming language to develop a flexible ABM from scratch has 

two important drawbacks. First, it requires advanced programming 
skills. Second, its reproducibility can be compromised by the idio-
syncrasies of the simulation algorithm written by the user. These 
idiosyncrasies, especially if not well documented, can make it diffi-
cult or even impossible for other researchers to replicate findings or 
adapt code to suit their modelling scenarios. abmR provides a novel 
framework to perform complex movement simulations through 
standardized functions and arguments that facilitate model anno-
tation and reproducibility while providing publication-ready visual-
izations at the end of each run.

While we developed and tested abmR as a movement and en-
ergy budget simulation tool, its core software functionalities can 
be adapted to explore other processes such as disease outbreak 
scenarios (Dougherty et al., 2018). As an example, pathogen vec-
tor movement can be easily simulated within abmR, allowing the 
study of areas of confluence where disease transmission is more 
probable (Manore et al., 2015). Moreover, potential future updates 
will include the ability to specify multiple raster stacks of different 
movement predictors and interactions between agents. In abmR, 
each simulation output can be used as the input for the next move-
ment model. However, the option of computing agent interactions 
affecting movement patterns within the same simulation run is 
currently missing. This is a clear area of further package develop-
ment. Additionally, other code expansions might be useful to study 
plant seed dispersal, density-dependent scenarios, and altitudinal 
movements.
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F I G U R E  6  Energy gradient plot 
of Population 2 by timestep. Areas in 
red reflect energy loss (less suitable 
environmental values) while areas in blue 
reflect energy gain (better environmental 
values). This plot is produced directly by 
energyVIZ. Inset world map added for 
geographic reference.
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F I G U R E  7  Outcome of 12 abmR simulations showing a frequent southwestern migration from the breeding ground in Oklahoma (US) 
towards wintering grounds in Sinaloa (Mexico) and southern Mexico. The NDVI map in the background is an average of the raster stack 
object used in abmR, which contained 14 raster layers ranging from September 1 to September 14, 2011.
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