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1 | INTRODUCTION

Animal movement is a complex behavioural trait that affects
the survival of populations and species across taxa (Berg, 1983;
Dingle, 2014). Long- and short-distance movements can follow
predictable environmental constraints, allowing populations to
take advantage of seasonal food resources (e.g. migration), or
more opportunistic, such as in the case of dispersal behaviours
aimed at avoiding predators or finding potential mates (Giuggioli &
Bartumeus, 2010). Thus, wild animals make decisions often based on
environmental cues that lead to movement patterns characteristic
of different populations across the landscape (Dodge et al., 2014;

Nathan et al., 2008). However, obtaining a comprehensive

1. Agent-based modelling (ABM) shows promise for animal movement studies. However,
a robust, open-source and spatially explicit ABM coding platform is currently lacking.

. We present abmR, an R package for conducting continental-scale ABM simula-
tions across animal taxa. The package features two movement functions, each
of which relies on the Ornstein-Uhlenbeck (OU) process.

3. The theoretical background for abmR is discussed and the main functionalities

are illustrated using example populations.

4. Potential future additions to this open-source package may include the ability

to specify multiple environmental variables or to model interactions between
agents. Additionally, updates may offer opportunities for disease ecology and

integration with other R movement modelling packages.

animal migration, ecology, open-source, R programming, simulations

understanding of large-scale animal movement behaviour and pop-
ulation occurrence under climate change scenarios or habitat loss
has proven to be a challenge (Araujo & Guisan, 2006). Moreover,
while the research toolbox in movement ecology studies has seen
a considerable expansion over the last two decades due to techno-
logical advancements of the tracking devices and molecular mark-
ers (Cushman & Lewis, 2010; Williams et al., 2020), the limitation
of scaling up individual data to population-level inferences is still a
substantial obstacle (Hawkes, 2009; but see Holdo & Roach, 2013).
A promising research approach that may overcome the limitations
of wildlife movement studies hindered by small sample sizes is rep-
resented by computer simulations within an agent-based modelling
(ABM) framework (Bridge et al., 2017; Tang & Bennett, 2010).
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The core principle of ABM is to simulate a set of entities, called
agents, which are defined by intrinsic properties as well as be-
havioural rules governing their interactions with the environment
(Grimm & Railsback, 2013). That is, agents are described by their
inherent attributes while dynamically interacting with external con-
ditions such as the co-occurrence of other agents and/or changing
features of their environmental setting. Thus, ABM is used in many
areas, including biology, disease risk, social sciences, and economics
(Grimm & Railsback, 2013; Klimek et al., 2015; Polhill et al., 2008;
Willem et al., 2017) with the unifying goal of investigating and pre-
dicting the dynamics of complex systems (Grimm et al., 2005). In par-
ticular, wildlife studies have adopted the ABM approach to simulate
population growth, reproduction, mortality rate, energy budget, and
migration ecology, just to cite a few (Aurbach et al., 2020; Brown &
Robinson, 2006; Goldstein et al., 2021; Lustig et al., 2019). However,
we currently lack a robust and spatially explicit ABM coding platform
for the implementation of large-scale animal movement investiga-
tions (but see Chubaty & Mclntire, 2021; Thiele et al., 2012). Here,
we present a novel ABM framework in R programming language (R
Core Team, 2022) for applications in animal behaviour and move-

ment ecology.

2 | PACKAGE OVERVIEW

abmR allows for both computation and visualization of agent move-
ment trajectories through a set of behavioural rules based on envi-
ronmental parameters. The two movement functions, moveSIM and
energySIM, provide the central functionality of the package, allow-
ing the user to run simulations using an Ornstein-Uhlenbeck move-
ment model (Uhlenbeck & Ornstein, 1930; hereafter OU). Additional
functions provide a suite of visualization and data summarization
tools intended to reduce the effort needed to go from results to
presentation-ready figures and tables (Table 1). The package is cur-
rently available on the Comprehensive R Archive Network (CRAN) at
https://cran.r-project.org/web/packages/abmR/index.html.

The abmR package is built to facilitate customization of movement
model parameters within the R environment (Figure 1). Parameters

affecting agent behaviour can be obtained from real-world

Function Usage

moveSIM
environmental data

Runs agent-based model movement simulations based on

observations (e.g. GPS data) or approximated from the literature and
then manually entered as arguments into abmR functions. Thus, if
the user knows beforehand the behaviour and the ecological con-
straints of the agents, such as land-cover preferences (e.g. vegetation
composition and structure) or movement direction and average dis-
tance travelled per day, they may transfer this knowledge into abmR
to study changes in energy consumption, mortality rate or alternative
routes across different environmental conditions (e.g. raster layers).
Alternatively, for simulations of ‘synthetic species’ designed to com-
pare relative mortality rates across habitats, for example, the user
may develop an analytical framework within abmR without explor-
ing the ecology of a particular organism. In this case, the movement
parameters may not be realistic, but selected with the unique goal
of comparing a set of scenarios (e.g. movements in predicted future
land-use changes) while studying the emerging properties of the sys-
tem (Yin et al., 2022). Finally, abmR functionalities can be integrated
with other approaches, such as a step-selection function (Thurfjell
et al., 2014) and/or Bayesian statistics to estimate movement param-
eters and explore migration patterns or habitat occupancy of a partic-
ular set of agents (Cullen et al., 2022; Joo et al., 2020).

Both movement functions used by abmR rely on the same OU
approach. The OU process is described by the following stochastic
differential equation:

dX, = k(60 = X,)dt + adW,

where W, is a standard Brownian motion on t € [0, ), k is a positive
constant that controls the rate of reversion to the long-term mean, 6,
of the OU process (see Blomberg et al., 2020), and a>0 is a constant
controlling the volatility of the Brownian motion. In abmR, given the
current agent location (x,, y,), agent location at the subsequent time-

step (X,,4, ¥¢,4) is modelled according to the following equations:

Xep1 =X + 6 X Zy + by X (0, = X,), 1

Vi1 = Ve + 0 XZ, + b, X (0, — Vi) (2)

Here, o is a user-specified multiplier on the random terms Z, and Zw two
numbers drawn from the Normal (0,1) distribution. In addition, ¢, and

¢, are movement motivation or attraction strength for the OU process

TABLE 1 Functions contained in

the abmR package (v. 1.0.6). For more
complete function descriptions, consult
the abmR manual.

moveVIZ Creates a plot or table of moveSIM() results

energySIM Runs agent-based model movement and energy budget simulations
based on environmental data

energyVIZ Creates a plot or table of energySIM() results

tidy_results Prints results from moveSIM() or energySIM() in an easier-to-read table

get_ex_data Downloads data that is used in examples in vignette and
documentation

as.species Creates object of class ‘species’ for input into moveSIM() or

energySIM()
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Workflow 1 Workflow 2 Arguments
Study system Synthetic system replicates, origin x (longitude), and origin y (latitude)
(real species) (ideal species)
I L
Parameiers ohiained Virtual parameters for days, optimgm Yalues, deslinat.ion (l.atitu.de an.d longitude),
from the literature comparatiye analyses motivation, search radius, direction, sigma
Select environmental raster, single or multiple raster layers
Environment
|
initial energy, energy adjustment (gain/penalty),
Run . .
number of failures and failure threshold
abmR
I
i movement visualization, energy visualization,
RESULTS summary results, data output

FIGURE 1 abmR workflow from data input to result exploration. The black box and black arrows (workflow 1, left) show the sequence

of the analytical steps, starting with the identification of the study system (species or population), followed by the acquisition of the
movement parameters from previous observations or the literature. After selecting the environmental conditions (e.g. raster layers), users
can run a suite of abmR functions to study movements, changes in energy consumption or mortality rate. The blue box and blue arrows
(workflow 2, right) show an alternative analytical workflow in which users can create synthetic species for comparative analyses across
predicted ecological and environmental scenarios (e.g. loss of migratory behaviour and habitat fragmentation). The panel to the right of both
workflows shows a list of the relative arguments that can be entered in abmR across each step of the analysis.

Higher Attraction

Medium Attraction

¢ |
't'A'A'A'A'A'

Lower Attraction

< |
W

FIGURE 2 The Ornstein-Uhlenbeck (OU) model given in (1)
and (2) performs like a spring-coil: Agents further from their target
location experience higher attraction (and travel further), while
agents closer to their destination experience lesser attraction (and
travel less far).

Dist. from Optimum Location

in the longitude and latitude coordinates, respectively, while 6, and 6,
are optimal x (longitude) and y (latitude) coordinates, respectively. It is
assumed that the origin point (x,, y,) is known. The OU model given
in (1) and (2) performs similarly to a spring-coil (Figure 2). Greater dis-
tance from optimal coordinates 6, and 6, acts like a compressed spring

to propel distant agents towards 6, and 6,. On the other hand, agents
closer to 6, and 6, will travel a shorter distance on that timestep.
However, the length of movement also depends on ¢, and ¢,, because
these motivations serve as a multiplier on (6, — x;) and (6, —y,), re-
spectively (Equations 1 and 2).

While the two movement functions are distinct (see below), each
follows the same basic two steps. The first, large-scale searching, is
illustrated in Figure 3 and follows an elliptical pattern, as opposed
to a circular distribution, to account for directional migratory im-
pulses (e.g. genetically controlled migratory behaviours or seasonal
Zugunruhe; Merlin & Liedvogel, 2019). This step finds the ‘optimum’
location for each agent (6, and 6, coordinates from Equations 1 and
2). The coordinates 6, and 6, are determined according to an algo-
rithm that selects the location whose observed environmental value
has the least possible difference from the user-specified optimal
raster value. For moveSIM, this user-specified optimal raster value is
supplied directly, while for energySIM it is the average of the lower
and upper bounds of a user-specified optimum range. The optimum
value or range of values specified depends on the modelling scenario
and the type of environmental raster that is used (e.g. vegetation,
temperature, etc.).

Agents will move towards the selected optimum location.
However, if the attraction strength (¢, and ¢, in Equations 1 and
2) is less than 1, agents will have a ‘target’ location short of the
optimal location. Thus, agents find an ‘optimum’ location within the
semi-circular search region and then a ‘target’ location that lies on
the line between the ‘current location’ and the ‘optimum’ location.
Moreover, agents will move towards this target location with some
variance, which is generated by sampling two numbers from the
standard normal distribution and multiplying by o, as specified by
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Z, ~N(0,1)

Current location

FIGURE 3 lllustration of large-scale searching specified by the OU model of Equations (1) and (2). Agents find an ‘optimum’ location
within the semi-circular search region and then a ‘target’ location that lies on the line between the ‘current location’ and the ‘optimum’
location. If there is a tie between multiple potential ‘optimum’ cells, one is randomly selected from the list of tied cells to serve as the
optimum. Random variance is added by independently sampling Z, and Zy from a standard normal distribution. Here,s = 1and ¢, = ¢, < 1
, Where ¢ is the multiplier on the random error and ¢, and ¢, are the motivations in the x and y directions, respectively. Bounding box
represents the most probable samples from the N(0,1) distribution.

Argument

Replicates
Days
modelled_species
env_rast
Optimum
optimum_lo
optimum_hi
dest_x
dest_y
mot_x
mot_y

search_radius

Direction

Sigma
Mortality
fail_thresh

n_failures

init_energy
energy_adj
single_rast
write_results
X

Y

Function
M, E
M, E
M, E
M, E
M

=

E
M, E
M, E
M, E
M, E
M, E

M, E
M, E

M, E
M, E

Usage

# of agents to model

# of timesteps

Species object from as.species()
Environmental raster

Optimal environmental value
Lowest optimum environmental value
Highest optimum environment value
Destination Longitude

Destination Latitude

Motivation (x direction)

Motivatitm (y direction)

Radius of semi-circular search region
(km)

Movement direction: N, S, E, W, or R
(Random)

Randomness parameter
Incorporate agent mortality? T or F

Deviation from optimum constituting
failure

Allowable # of failures before agent
death

Initial energy

Energy gain/penalty vector
Using a single-layer raster? T or F
Saveresultsasa.csv? Tor F
Origin longitude

Origin latitude

TABLE 2 List of arguments used

in moveSIM (M), energySIM (E), or
as.Species (S). F, false; SD, standard
deviation; T, true. In text, these arguments
are presented in italics. For a more
complete list of argument descriptions,
see the abmR documentation.
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the user (in Figure 3, o is 1). Because the support of the normal
distribution consists of all real numbers, large deviations from the
‘target’ point are possible. However, because the normal distribu-
tion has low density at the extreme tails, outcomes are most likely
to fall within a certain area of the target, as illustrated in Figure 3.
This first step corresponds to the OU model of Equations (1) and (2).

The second step is small-scale searching. Here, agents select
the ‘best’ of the 8 neighbouring cells (queen's case or Moore neigh-
bourhood) after performing step 1, discussed above and in Figure 3.
Again, ‘best’ here means the cell with the environmental raster value
closest to the agent's user-defined optimum range. These two steps
are then repeated for each timestep until the agent dies or proceeds
through all timesteps. Each timestep will use different environmen-
tal raster layers. Users may choose to supply a raster stack to simu-
late changes in environment over time (see for example Section 3.1).

For the moveSIM function, agent death occurs when agents fail
to achieve suitable environmental raster values for more than a user-
specified number of consecutive timesteps. Here, what constitutes
a ‘suitable’ cell is determined by the optimum value and an allow-
able deviation proportion, both also specified by the user. For the
energySIM function, agent death occurs when energy reaches zero.
For both functions, users may choose to disable agent mortality.
In the following subsections, we present the differences between
moveSIM and energySIM functions and their underlying algorithms.

2.1 | Simulation function: moveSIM

The function moveSIM runs an OU movement simulation based on envi-
ronmental conditions provided by the user (e.g. raster), optionally includ-
ing agent mortality and adjusted motivation according to user-specified
parameters. The function operates according to the following algorithm.
Here, terms in italics are moveSIM function arguments (see Table 2).
The following algorithm applies when the argument direction is
‘N’, ‘S, ‘E’, or ‘W’. For random movement (direction = ‘R’) agents sim-
ply select a random point from a circle of radius search_radius for
each timestep (Step 2). Here, let env_rast (x4, ;,1) be the value of
env_rast at the point (x,,4, ¥;,4). The core algorithm shown here as-

sumes that env_rast contains no undefined (N/A) grid cells.

1. Specify (x,, y,) using x and y contained in modelled_species,
set failures = O.
2. For day t in 1:(days-1)
a. Define search area semicircle (radius = search_radius) facing
direction and centered at (x,, y;)
b. Determine (6,, 6,) as location within the search area with env_
rast value closest to optimum.
(i) If (dest_x, dest_y) in search area, set (9,, 6,) = (dest_x, dest_y)
c. Large scale searching: find (X;,4, Y1), according to (1) and (2).
d. Small-scale searching: set (.1, ¥:,1) as location within eight
neighbouring cells (queen's case) of (X, 4, 1), With the value

closest to optimum.

Perform (e)-(f) if mortality = True.
a. If observed env_rast (X 1,¥sy1) = optimum>optimum*fail_
thresh, set failures = failures + 1. If not, set failures = 0.
b. If failures > n_failures agent dies. End loop.
3. Return dataframe with days rows and 2 columns movement
track data.

4. Repeat (1)-(3) replicates times.

2.2 | Simulation function: energySIM

The function energySIM builds on moveSIM by allowing for dy-
namic agent energy levels that are affected by the quality of
environmental values achieved. These initial user-defined en-
ergy levels then serve as a driver of mortality and movement
distance per timestep. The energy thresholds range from O to 1
and represent proportion deviations from the optimum. These
thresholds are arbitrarily divided into 10 even increments (0.1,
0.2, etc.), but users can change the energy gain or penalty for
attaining each of the thresholds. It operates according to the
following algorithm. Here, terms in italics are energySIM func-
tion arguments (see Table 2) or calculated variables (e.g. opti-
mum, energy).

The following algorithm applies when the argument direction
is ‘N, ‘S’, ‘E’, or ‘W’. For random movement (direction = ‘R’) agents
simply select a random point from a circle of radius search_ra-
dius for each timestep (Step 3). Here, let env_rast (x.,4,Y;,1) be
the value of env_rast at the point (x.,1,Y..1). The core algorithm
shown here assumes that env_rast contains no undefined (N/A)
grid cells.

1. Specify (x,, y,) using x and y contained in modeled_species.
2. Compute optimum as (optimum_hi - optimum_lo)/2 and set
energy = init_energy
3. Forday tin 1:(days-1)
a. If mortality = True, update search_radius as search_ra-
dius = search_radius * (energy/init_energy).
b. Define search area semicircle(radius = search_radius) facing
direction and centered at (x, y; ).
c. Determine (0,, 6,) as location within the search area with env_
rast cell value closest to optimum.
(i) If (dest_x, dest_x) in search area, set (6, 6,) = (dest_x, dest_y)
d. Large-scale searching: find (xHi, yt+1)O according to (1) and (2).
e. Small-scale searching: set (x;,4,Ys,1) as location within eight
neighbouring cells (queen's case) of (X;,1,Ys1), With the cell
value closest to optimum.
f. Update energy level according to deviation of env_rast
(Xt41, Vesq) from optimum.
g. If mortality = True and energy = 0, the agent dies. End loop.
4. Return dataframe with days rows and 2 columns movement track
data.
5. Repeat (1)-(4) replicates times.
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BOX 1 R code used for performing the simulations presented in Figure 4. First, as.species is called to initialize two
populations with different origin locations. Then, energySIM is called to perform a movement simulation for each
population; parameters that differ between the two simulations are printed in red, functions in blue, and objects in
bold. For argument descriptions, see Table 2 and the package manual.

Population 1
am.pop.1 =as.species(x = -105.7,y = 48.2)
sim.move <- energySIM(
replicates = 250,
days =14,
env_rast = as.raster.stack.ndvi.sep,
search_radius = 150,
sigma = 0.1,
dest_x = 999,
dest_y = 999,
mot_x = 0.95,
mot_y = 0.95,
modeled_species = am.pop.1,
optimum_lo = 0.2,
optimum_h1 = 0.5,
init_energy = 100,
direction = “S”,
mortality = F,
Energy_adj = (20, 10, 8, 5, 2,0, -2, -5, -8, -10, -20),
write_results =T,

single_rast = F)

3 | EXAMPLE APPLICATIONS

abmR can be used to construct ABM simulations for any desired agent
across the globe. In the following examples, we demonstrate the com-
putation capabilities of the energySIM function, although a similar
workflow also applies for moveSIM. In the first example, we show how
energySIM can be used to compare movements and differential energy
allocations of two synthetic populations of 250 agents each (Box 1;
Supporting Information S2). In the second example, we replicate the
movement pattern of the Painted Bunting Passerina ciris, a well-studied
migratory songbird occurring in North America and Mexico.

3.1 | Comparisons between populations

In this example, both synthetic populations are characterized by
matching number of replicates and movement timesteps (days),

Population 2
am.pop.2 =as.species(x = -142.7,y = 63.2)
simtwo.move <- energySIM(
replicates = 250,
days =14,
env_rast = as.raster.stack.ndvi.sep.
search_radius = 800,
sigma = 0.1,
dest_x = 999,
dest_y = 999,
mot_x = 0.8,
mot_y = 0.8,
modeled_species = am.pop.2,
optimum_lo = 0.6,
optimum_h1 =0.8,
init_energy = 70,
direction = “S”,
mortality = F,
energy_adj = (20, 10, 8, 5, 2,0, -2, -5, -8, -10, -20),
write_results =T,

single_rast = F)

equal ¢, and the same environmental data provided by a Normalized
Difference Vegetation Index (NDVI) raster stack containing 14 days
of data between 1-14 September 2019 (Vermote, 2019). Both popu-
lations had an unspecified destination (indicated with ‘999’ in the
arguments dest_x and dest_y) and were constrained to move on land.
However, Population 1 (P1) agents started their movements from a
different point (105.7°W; 48.2°N) situated about 2800km from the
origin of Population 2 (P2) agents (142.7°W; 63.2°N). Additionally,
P1 agents had a smaller search radius (150 km) but higher motivation
than P2 agents (P1 motivation = 0.95). P1 agents also had different
optimum ranges (P1 0.2-0.5; P2 0.6-0.8), and different initial energy
units (P1 100; P2 70). These differences in simulation parameteriza-
tion result in clearly dissimilar movement tracks (Figure 4).

While we can compare the movement tracks visually, Table 3
provides a numerical description of the results. In this simulation,
P1 travelled a much smaller average distance (154.6 km) than did P2
(625.5 km). However, P1 travelled more days on average (7.4 days)

FIGURE 4 Movement tracks reveal that Population 1 tended to travel through the Central United States, while Population 2 travelled
mostly throughout western Canada, United States, and Mexico. Overall, Population 1 travelled more distance and exhibited more consistent
paths near the origin than did Population 2. The movement tracks are natively produced by abmR. Inset world map provided for geographic

reference.
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before stopping than P2 (3.8 days). Additionally, P2 had higher en-
ergy consumption than P1; its average remaining energy across
all timesteps was 61.2 units compared to 99.7 units for P1. There
are several possible reasons for this observed pattern. First, P2
began with a smaller initial energy (70 units) than P1 (100 units).
Additionally, P2 had higher optimum NDVI values (0.6-0.8), which
might have been less abundant and generally more difficult to reach
than those of P1 (0.2-0.5). Finally, because they began in different
places, P1 and P2 agents encountered different raster cells along
their journey.

Figure 5 visually compares P1 and P2 movement outputs based
on longitude and latitude. This is not a native abmR figure, but rather
it is produced using the raw data that abmR generates to show the
flexible use of the package. In this figure, P1 movements tended to
be to the east and south of P2. However, P2 trajectory shows a much
wider distribution, with density points extending to the lower values
of latitude.

Finally, Figure 6 provides a density surface plot for P2 describing
agent energy gains (blue) and losses (red) across the landscape. This
surface was created using the inverse distance-weighted interpola-
tion (IDW) function from the R package ‘gstat’ (Pebesma, 2004). IDW
interpolates grid cell values across a surface using a linear combina-
tion of observed (sample) points. When interpolating a cell value, the
value of the sample points closer to that cell carry a higher weight,
while sample points further from that cell carry smaller weight. IDW
is discussed in more detail in Wong (2017). The results from Figure 6
match well with what we observe in Figure 4. Movement tracks for

P2 tend to follow the blue (energy gain) regions.

3.2 | Migration of the Painted Bunting

The Painted Bunting is a migratory songbird that has been intensively
studied over the past two decades due to its steeply declining popu-
lation trend in the United States and its complex moult-migratory
behaviour (Thompson, 1991). This species has been the focus of

pioneering light-level geolocator tags that revealed westward

Variable Mean SD Median Min
Population 1 Day 7.4 4 7 1
Longitude -105.5 4.1 -105.2 -121.1
Latitude 41.6 34 41.9 30.2
Energy 99.7 1.3 100 80
Delta energy -0.04 1.5 0 -20
Distance 154.6 70 154.4 55
Population 2 Day 3.8 3.08 8 1
Longitude -126 17.3 -127.1 -166
Latitude 50.2 10.5 52.2 14.4
Energy 61.2 17.2 60 0
Delta energy 28 9.3 =5 -20
Distance 625.5 294 649.7 5.5

post-breeding movements from the southern United States through-
out Mexico (Contina et al., 2013), a system for genetic analysis of
migratory population connectivity (Battey et al., 2018; Contina
et al., 2019) and for candidate genes studies related to the migra-
tory behaviour (Contina et al., 2016). Moreover, Bridge et al. (2016)
used an ABM approach to model the post-breeding movements of
a Painted Bunting, investigating the association between large-scale
vegetation productivity changes and the moult-migratory behaviour.
Therefore, this species provides a well-studied migratory system
with ample behavioural and population ecology knowledge against
which abmR movement predictions can be tested and compared.
We built a basic ABM movement simulation for the Painted
Buntingin abmR by using the same key parameters adopted by Bridge
et al. (2016) and predicted that a westward migratory movement
would emerge throughout the southern U.S. and the coastal regions
of Mexico in late summer. Bridge et al. (2016) found that Painted
Bunting agents beginning their migratory journey in Oklahoma in
late August and September tend to avoid a direct southern migration
and show a clear pattern towards southwestern movements target-
ing high primary productivity areas in northern Mexico and Sinaloa
(northwestern Mexico). We used the identical model start location
(-98.8°W; 34.8°N) as Bridge et al. (2016), a similar subset of 14 vege-
tation index raster files (NDVI; Vermote, 2019) representing primary
productivity condition during the first 2weeks of September 2011,
and no predefined destination coordinates (indicated with ‘999’ in
the arguments dest_x and dest_y). For the full set of model param-
eters, see Supporting Information S3. While we note that Bridge
et al. (2016) used enhanced vegetation index (EVI) as opposed to
NDVI, a multiyear timeframe (2010-2013), and a complex series of
model parametrization implemented in ArcGlIS, our simulation offers
a basic but useful illustration of the predictive capabilities of abmR.
The outcome of 12 abmR Painted Bunting simulations re-
vealed a movement pattern consistent with our predictions based
on the results presented by Bridge et al. (2016). Most agents in
our simulation (9 out of 12) showed a southwestern movement
towards Sinaloa (Mexico) in mid-September (Figure 7), where

migratory agents utilize a bloom in primary productivity due to

TABLE 3 A numerical comparison of

M R . .
ax ange Populations 1 and 2, created by using
14 13 values across all timesteps for all agents.
-933 278 ‘Day’ summarizes the timestep variable
of the movement tracks. ‘Longitude’ and
47.5 17.3 0 , . .
latitude’ summarize the geographical
100 20 position of agents, while ‘energy’
20 40 summarizes agents' remaining energy.
3167 3111 ‘Delta energy’ corresponds to the change
(gain or loss) of energy between each
14 13 timestep, while ‘distance’ refers to the
-80.3 85.7 distance travelled between each timestep.
63.1 48.7 This table was produced outside of abmR
100 100 using raw movement data returned by the
package.
20 40
1445 1439.4
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FIGURE 5 Graphical comparisons of Population 1 and Population 2 movements. Panels a and (b) show density plots used to individually
compare longitude (panel a) and latitude (panel b) coordinates attained by agents from each population. Panel (c) compares the distance
travelled between each timestep, while panel (d) shows geographical position for all agents in each population across all timesteps.

the Monsoonal precipitations (Rohwer et al., 2005). Three agents

showed a southeastern movement, following vegetation changes

along southeastern United States and the Gulf of Mexico. This

result is also in line with sporadic but nonetheless documented

variations in migratory strategies in the Painted Bunting where
some individuals that breed in south-central United States (e.g.
western Oklahoma and Arkansas) show southeastern movements

in late summer (Contina et al., 2013).
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4 | CONCLUSIONS AND FUTURE WORK

abmR provides a novel and efficient programming platform for simu-
lating large-scale movements of species across taxa. We ran most
of the initial test simulations on a local machine equipped with an
Intel® Core™ i7-5500U CPU—2.40GHz and 8 GB of RAM and ob-
tained results for 100-1000 agents within minutes. The novelty of
the software includes the capability of concurrently modelling agent
movement trajectories and energy budget. This feature enables a
broader exploration of the ecological constraints that shape animal
dispersal and/or migration. Moreover, abmR built-in arguments, such
as fail_thresh, n_failures, and energy_adj, provide additional flexibility
when evaluating mortality scenarios that depend on baseline en-
vironmental conditions and energy requirement during prolonged
movement bouts (see Table 2 for a full list of arguments affecting
mortality).

Over the last decades, spatially explicit simulations, pattern-
oriented modelling, approximate Bayesian computing, and ABMs
have become more popular in ecological and evolutionary stud-
ies (DeAngelis & Grimm, 2014; Gallagher et al., 2021; Railsback
et al., 2006; van der Vaart et al., 2015). Analytical platforms, such
as INSTREAM, a simulation model approach designed to understand
how stream and river salmonid populations respond to habitat al-
teration (Railsback et al., 2009), or ALMaSS, a predictive modelling
tool for answering environmental policy questions regarding the
effect of changing landscape structure on threatened animal spe-
cies (Topping et al., 2003), allow investigation of specific ecological
systems using ABM. On the other hand, many programming lan-
guages such as Netlogo, R, or Python are widely used to develop
custom and more flexible models that can be adapted to address
complex ecological or evolutionary research scenarios (Chubaty
& Mclntire, 2021; Lustig et al., 2019). However, the use of a pro-
gramming language to develop a flexible ABM from scratch has

FIGURE 6 Energy gradient plot

of Population 2 by timestep. Areas in

red reflect energy loss (less suitable
environmental values) while areas in blue
reflect energy gain (better environmental
values). This plot is produced directly by
energyVIZ. Inset world map added for
geographic reference.

two important drawbacks. First, it requires advanced programming
skills. Second, its reproducibility can be compromised by the idio-
syncrasies of the simulation algorithm written by the user. These
idiosyncrasies, especially if not well documented, can make it diffi-
cult or even impossible for other researchers to replicate findings or
adapt code to suit their modelling scenarios. abmR provides a novel
framework to perform complex movement simulations through
standardized functions and arguments that facilitate model anno-
tation and reproducibility while providing publication-ready visual-
izations at the end of each run.

While we developed and tested abmR as a movement and en-
ergy budget simulation tool, its core software functionalities can
be adapted to explore other processes such as disease outbreak
scenarios (Dougherty et al., 2018). As an example, pathogen vec-
tor movement can be easily simulated within abmR, allowing the
study of areas of confluence where disease transmission is more
probable (Manore et al., 2015). Moreover, potential future updates
will include the ability to specify multiple raster stacks of different
movement predictors and interactions between agents. In abmR,
each simulation output can be used as the input for the next move-
ment model. However, the option of computing agent interactions
affecting movement patterns within the same simulation run is
currently missing. This is a clear area of further package develop-
ment. Additionally, other code expansions might be useful to study
plant seed dispersal, density-dependent scenarios, and altitudinal

movements.
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