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We study the application of machine learning techniques for the detection of the astrometric signature of
dark matter substructure. In this proof of principle, a population of dark matter subhalos in the Milky Way
will act as lenses for sources of extragalactic origin such as quasars. We train RESNET-18, a state-of-the-art
convolutional neural network to classify angular velocity maps of a population of quasars into lensed and
nonlensed classes. We show that an SKA-like survey with extended operational baseline can be used to
probe the substructure content of the Milky Way and demonstrate how axiomatic attribution can be used to
localize substructures in lensing maps.
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I. INTRODUCTION

The Standard Cosmological Model with 70% dark
energy in the form of a cosmological constant, 25% of
cold dark matter, and 5% of baryonic matter, has been quite
successfully tested in recent years from galactic scales to
cosmological scales [1–5]. However, one of its main
components, dark matter, has only been observed through
its gravitational effects despite all the efforts through direct
and indirect detection [6–19] and colliders like the Large
Hadron Collider [20,21] to observe weakly interacting
massive particles or other popular candidates like axions
[22–25]. While the efforts continue, the null results high-
light the necessity of finding alternative gravitational
signatures that would shed light on the elusive nature of
dark matter.
A very promising way to probe various dark matter

models gravitationally is to study their effects on the
distribution of dark matter on subgalactic scales, an idea
that has been studied thoroughly in the literature. Several
methods have been proposed, including the utilization of
tidal streams [26–31], astrometric observations [32–35],
pulsar timing array observations [36], stellar wakes [37],
and images of strongly lensed background galaxies or
quasars [38–52] looking for dark subhalos. For most of the
aforementioned methods, the expected signal is small and
difficult to observe.
With the increase of computational power and the

improvement of machine learning algorithms, there have
been multiple attempts to involve neural network–based

approaches for such analyses. In the last few years, machine
learning has been used in an array of problems in
cosmology [53] as well as in other problems in the physical
sciences [54]. Examples include applications in large-scale
structure [55], the cosmic microwave background [56–58],
the cosmological 21 cm signal [59], and lensing studies
[60–68]. In the search for dark matter, supervised machine
learning algorithms have been trained to identify substruc-
ture properties with simulated galaxy-galaxy strong lensing
images. More recently, convolutional neural networks
(CNNs) have been used for classification of different
subhalo mass cutoffs [69], classifying dark matter (DM)
halos with and without substructure [70,71], to distinguish
dark matter models with disparate substructure morphology
[70], and also inference of population level properties for
DM substructure [72].
In this work, we investigate the possibility of applying

machine learning techniques and in particular a CNN, to
detect the presence of lensing effects from dark matter
substructure on a population of quasars in astrometric data
from future surveys based on simulated data as a proof of
principle. We also demonstrate how axiomatic attribution
can be used to localize substructures in lensing maps. In
Sec. II, we outline the formalism followed in order to
simulate the lensing signal followed by a description of
creating simulated data maps. We discuss the implementa-
tion of the CNN in Sec. III and our results in Sec. IV, and
our conclusions are shown in Sec. V.

II. ASTROMETRIC LENSING

A. Formalism

We begin by considering the lensing effect of a dark
matter halo on the astrometric parameters of a background
source (position, velocity, and acceleration), similar in
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spirit to Refs. [33,34]. We utilize a modified version of the
code provided in Ref. [34] to extract the astrometric signal
in a suite of models that are used to create the simulated
data set used in deep learning model training.
The system we consider is shown in Fig. 1; a source i

moving with velocity vi is lensed by a lens lwith velocity vl
as seen by an observer with velocity v⊙. The distance from
observer to a lens isDl and from observer to a source isDi.
Both are assumed to be constant, and thus all vectors
involved in the calculation are two dimensional lying on the
celestial sphere.
For such a system, the deflection angle Δθil between the

real position and the position of the image of the source is
given by

Δθil ¼ −
!
1 −

Dl

Di

"
4GNMðbilÞ

c2bil
b̂il; ð1Þ

whereGN is Newton’s Gravitational constant, c is the speed
of light, bil is the impact parameter vector pointing toward
the center of the lens, andMðbilÞ is the enclosed lens mass,
which, given a spherically symmetric density profile ρðrÞ
for the lens, can be calculated as

MðbilÞ ¼ 2π
Z

þ∞

−∞
dx

Z
bil

0
db0b0ρð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b02

p
Þ: ð2Þ

Because all the components of the system are nonsta-
tionary, the impact parameter vector bil is itself time
dependent, and as a consequence, the deflection vector
Δθil has a time dependence as well. To calculate the lensing
induced velocity, we take the time derivative of Eq. (1),
resulting in

u ¼ _Δθil

¼ −
!
1 −

Dl

Di

"
4GN

c2

$
M0ðbilÞ _jbilj

bil
b̂il

þMðbilÞ
b2il

½vil − 2 _jbiljb̂il&
%

ð3Þ

with M0 the derivative of the enclosed mass with respect to
the impact factor. The quantity vil is the effective velocity
of the lens defined as

vil ¼ vl −
!
1 −

Dl

Di

"
v⊙ −

Dl

Di
vi; ð4Þ

where vl is the velocity vector of the lens, vi is the velocity
vector of the source, and v⊙ is the velocity vector of the
observer. The time derivative of the magnitude of the
impact factor is given by

_jbilj ¼ b̂il · vil: ð5Þ

Similarly, we take the time derivative of Eq. (3) to
calculate the lensing induced acceleration as

a ¼ Δ̈θil

¼ −
!
1 −

Dl

Di

"
4GN

c2

$
M00ðbilÞ _jbilj

2

bil
b̂il

þM0ðbilÞ
b2il

½2 _jbiljvil þ ̈jbiljbil − 4 _jbilj
2b̂il&

−
2MðbilÞ

b3il
½2 _jbiljvil þ ̈jbiljbil þ 3 _jbilj

2b̂il&
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ð6Þ

with M00 the second derivative of the enclosed mass with
respect to the impact factor and

̈jbilj ¼
vil · ðbilvil − _jbiljbilÞ

b2il
: ð7Þ

In order to compute the deflection angle, velocity, and
acceleration [Eqs. (1), (3), and (6), we need to specify the
distribution of matter in the lens, i.e., lens density profile
ρðrÞ. We assume that the density profile of the halos is
described by the Navarro-Frenk-White (NFW) profile [73]

ρðrÞ ¼ ρs
ð rrsÞð1þ

r
rs
Þ2
; ð8Þ

where rs is the characteristic scale and ρs is the character-
istic density of the profile.
In order to demonstrate the aforementioned effects,

Fig. 2 shows an example of induced deflections, velocities,
and accelerations in arbitrary units (see also Ref. [33]). The
lens is located at the origin moving toward theþŷ direction

FIG. 1. Astrometric lensing of a source i by a lens l moving
with velocities vi and vl, respectively, as observed by an observer
moving with velocity v⊙. The impact parameter vector bil is
shown in gold, and Δθil is the induced angular deflection. All
vectors are two dimensional, and the distances Dl and Di are
considered constant.
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in all three plots. The left panel depicts the angular
deflection. The maximum angular deflection occurs for
impact parameters approximately equal to the characteristic
scale, as for bil < rs the enclosed massMð< bilÞ decreases
rapidly. On the other hand, if bil ≫ rs, the enclosed mass
approaches a constant, and therefore the deflection
decreases as ∼1=bil. The middle panel in Fig. 2 shows
the corresponding induced velocity; the largest amplitude
in the velocity vector occurs near the center and in a
direction opposite to the direction of motion of the lens
with a dipolelike behavior in the far-field limit. Finally, the
right panel of Fig. 2 shows the acceleration pattern which
exhibits a quadrupolelike behavior in the far field.1 All
these characteristics are in agreement to what has been
demonstrated in Ref. [33].

B. Population of lenses

We now proceed to simulate the lensing effect on a
population of sources by a population of lenses. Following
Ref. [34], we choose to simulate the lens population as
NFW subhalos in the Milky Way that follow a mass
function of the form

dN
dM

¼ A0M−1.9 ð9Þ

normalized so that there are 150 subhalos in the mass range
108–1010 M⊙ [74], consistent with results from recent
hydrodynamical simulations [75,76].
We then define the spatial distribution of the subhalos,

taking into account the tidal disruption due to the gradient

of the Galactic potential toward the Galactic Center that
depletes the fraction of mass bound in substructures in this
region, by assuming an Einasto profile fitted to the results
of the Aquarius simulation [77]

ρgðrÞ ¼ exp
$
−
2

γε

&!
r
rε

"
γε
− 1

'%
: ð10Þ

with rε ¼ 199 kpc and γε ¼ 0.678. We use this distribution
to sample the radii at which the subhalos lie.
The next ingredient for defining a lens population is the

dark matter velocity distribution. We assume that in the
Galactic frame and far away from the Sun’s gravitational
potential the dark matter velocity distribution is described
by the Standard Halo Model as

f∞ðvÞ ¼ N
!

1

πv20

"
3=2

e−v
2=v20 ð11Þ

for jvj < vesc and 0 otherwise (however, see also Ref. [78]).
N is a normalization factor to account for the truncation at
vesc, v0 ¼ 220 km=s [79], and the escape velocity is
vesc ¼ 550 km=s [80]. We transform this velocity distri-
bution at the position of Earth (as we are interested in
measurements at the Earth’s frame) by applying a Galilean
transformation from the Galactic frame to the Earth frame,

f⊕ðvÞ ≈ f∞ðv þ v⊙Þ; ð12Þ

where v⊙ ¼ f11; 232; 7g km=s is the velocity of the Sun in
fU⊙; V⊙;W⊙g coordinates [81]. We ignore the annual
modulation due to the motion of the Earth around the Sun
as it is a factor of 10 smaller compared to the velocity
components.
We normalize the density profile of each subhalo in

the following way. The NFW profile is defined by two

FIG. 2. The angular deflection Δθil and its first two time derivatives in arbitrary units induced by a NFW halo centered on the origin
and moving in the þŷ direction. Darker colors correspond to the magnitude of the vector.

1Note that the amplitude of velocity and acceleration decreases
faster than the displacement field as each one of these picks an
additional factor of 1=bil.
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parameters, ρs and rs, or alternatively, the mass of the halo,
M200, and its concentration c200. The concentration is a
measure of the compactness of the halos, defined as
c200 ¼ R200=rs, where R200 is the radius that encloses
M200 whose density is 200 times the critical density of
the Universe ρc ¼ 3H2

0=8πGN . With this definition, the
characteristic density ρs and scale radius rs are obtained
from

M200 ¼
Z

r200

0
dr04πr02ρðr0Þ ¼ 4πρsr3sfðc200Þ; ð13Þ

where

fðxÞ ¼ lnð1þ xÞ − x
1þ x

and [82]

c200ðM200; z ¼ 0Þ ¼
X5

i¼0

ci ×
&
ln
!

M200

h−1 M⊙

"'
i

ð14Þ

with the factors ci having values ci ¼ ½37.5153;−1.5093;
1.636× 10−2;3.66× 10−4;−2.89237× 10−5;5.32× 10−7&.
It is clear that this choice of the description of subhalo

profile parameters is unlikely as subhalos are evolved
systems in the potential well of the Milky Way, while
the prescription we use refers to field halos. Nevertheless,
we make this choice not because it is realistic but because it
can serve as an example to the proof of principle concept
we explore here and also because it leads to a maximal
signal. We plan to explore a thorough study of multiple
other prescriptions of the mass distribution characteristics
of substructure in future work.

FIG. 3. The induced astrometric lensing effect on a population of quasar sources by a population of NFW subhalos distributed in the
Milky Way, under the assumption of pure signal and no instrumental noise. We truncate the effect within 20 deg of the center of each
subhalo. The calculation was done on a HEALPIX map with nside ¼ 128, and we simulate ∼1200 subhalos with masses between 107 and
1010 M⊙. The first row shows the angular displacement Δθil, the second row shows the induced velocity u, and finally the third row
shows the induced acceleration a.
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C. Population of sources

We generate a population of sources with Di ¼ ∞ and
vi ¼ 0 at the center of each pixel of a HEALPIX map
with nside ¼ 128, and we simulate ∼1200 subhalos
between 107 and 1010 M⊙. This approach is similar to
future observations of quasars with the Square Kilometer
Array (SKA), or other instruments with similar capabilities.
In the absence of instrumental noise, the resulting signal
within 20 deg from the center of each halo is shown in
shown in Fig. 3.
In practice, the sensitivity and precision of the instru-

ments play a significant role. For this proof of principle
example, we assume an SKA-like sensitivity [83]. Given
the current forecasts [83] after 10 years of operation, SKA
will be able to observe up to Nq ∼ 108 quasars with a
peculiar velocity uncertainty of σu ≈ 1 μas=yr, which we
label scenario A. Additionally, we consider four more sets
of parameters (scenarios B, C, D, and E) as shown in
Table I. As we will see, the weakness of the signal makes
the significance of detection highly dependent on these two
parameters Nq and σu.

III. ASTROMETRIC LENSING SIGNAL

A. Characteristics of the signal in simulated data sets

In Fig. 3, we show the expected astrometric signal for the
ideal case with no instrumental noise. We observe quali-
tative characteristics similar to Fig. 2, such as the gradient
of the magnitude of the displacement field as a function of
distance is small compared to the gradient in the velocity
and acceleration fields (due to the 1=bil factors;—see
Footnote 1). In addition, the color bar depicts the magni-
tude of the expected effect. For the displacement field, the
median amplitude is 1 mas, while for the velocity and
acceleration fields the median values are 10−2 nas yr−1 and
5 × 10−10 nas yr−2, respectively.
For the purposes of this work, the velocity vector u is an

adequate probe of substructure lensing as quasars are
stationary in the galactic frame. However, note that the
acceleration can also be used for some halo mass and
concentration functions as was shown in Ref. [33].
In order to apply machine learning methods in our efforts

to extract dark matter substructure from the astrometric
data, we first need to create a library of fake data sets which
we will use in order to test the method outlined above.
While Fig. 3 shows the pure signal effect, we must take into
account instrumental noise. To create simulated data sets,
we distribute the Nq quasars on a HEALPIX grid with
nside ¼ 32 corresponding to 12,288 equal-area pixels.
We assume quasars follow a Poisson distribution among
pixels with a mean value given by the total number of
quasars divided by the total number of pixels.
At each pixel, we sample a longitudinal and latitudinal

velocity component from a normal distribution centered at
the expected value in the presence of lensing and with a

standard deviation σu. With all quasars being assigned a
measured velocity under the assumption that all quasars in
a pixel will experience the same lensing effect, we average
all quasars and assign a single velocity to each pixel.
For the case of only instrumental noise, i.e., no signal, we
follow the same procedure with the normal distribution
always centered at 0. We repeat the process for all five
scenarios of Table I.
Figure 4 shows an example of the simulated data after

taking into account the sensitivity of the instrument for
parameter set C. The upper two projections contain the
lensing signal, while the bottom two projections show the
no-signal, only instrumental noise case.
Next, we will use this method to generate big data sets

for machine learning training and validation data sets. The
hope is that by training a model to distinguish between a
Gaussian noise from the non-Gaussian signal maps it will
be possible to extract information about the underlying
population of lenses in future surveys.

B. Machine learning implementation

The structure of the data leads naturally to an imple-
mentation of a CNN. One can appreciate this from Fig. 4, in
which it is clear that correlations among pixels will likely
serve a key role in helping to distinguish between the
signal and no-signal cases. Given this intuition, we trained
state-of-the-art architecture RESNET-18 [84] as a classifier
between these two classes. We selected RESNET-18 to train
across all our sets after testing other algorithms (VGG [85]
and ALEXNET [86]), as it consistently achieved noticeably
better performance—see Fig. 5.

RESNET-18 differs from a normal CNN in that it has
residual blocks which are characterized by their use of skip
connections, helping to alleviate the problem of vanishing
gradients. One problem, however, is that our simulations
are based on data in HEALPIX format. While there are
architectures that are desinged to be trained on this data
structure, notably graph-based CNN DEEPSPHERE [87], we
instead opt to project our maps to Cartesian coordinates,
allowing us to train on a greater diversity of established
architectures like RESNET.
For each scenario of Table 1, our training set consists

of 25 000 training and 2500 validation images per class
(signal and no-signal cases). With a large number of

TABLE I. Scenarios of astrometric parameters Nq and σu used
in this work.

Scenario Nq σuðμas=yrÞ
A 108 1
B 108 0.1
C 109 1
D 109 0.1
E 3 × 109 1
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simulated data, cross-validation is unnecessary, as is the
case for a lot of deep learning applications. The cross-
entropy loss was minimized over at most 50 epochs in
batches of 32 with the Adam optimizer where the learning
rate was initialized with a value of 1 × 10−1 and decayed by
a factor of 10 if the validation loss was not improved after
five epochs.
We implement RESNET-18 with the PYTORCH package and

run on four NVIDIATesla V100 GPUs at the Brown Center

for Computation andVisualization. As ametric for classifier
performance, we utilize the well-established Area Under
the receiver operating characteristic (ROC) Curve (AUC).

C. Integrated gradients

Neural networks are often referred to as black boxes—
effectively a magician pulling a rabbit out of their hat.
A true black box, however, would be of little interest. It is
of critical importance if one is to use neural networks, say,
on real data, to garner some understanding of how the
machine comes to making its decision.
One such method that has been developed recently is the

method of attributing a networks prediction to its inputs.
This is most frequently realized by analyzing gradients of
the network output with respect to its input. A popular
method is integrated gradients [88], which is realized as a
path integral of gradients from a baseline to the desired
input,

IGiðx; x0Þ ⩴ ðxi − x0iÞ
Z

1

α¼0

∂Fðx0 þ αðx − x0ÞÞ
∂xi dα: ð15Þ

Here, F corresponds to a trained model (perhaps a classifier
between two types of dark matter), and x corresponds to an
input (perhaps an astrometric lensing image velocity map).
For a two-dimensional image input, one can construct an
assignment map where each pixel is assigned an attribution
score. A positive (negative) attribution score contributes
favorably (negatively) to the final network prediction,
whereas pixels with no attribution do not contribute.
Inputs with the largest magnitude attribution score are
the most influential in the networks final decision.

FIG. 4. Top: the induced astrometric lensing velocity on a population of quasar sources by a population of subhalos distributed in the
Milky Way superimposed with Gaussian noise based on the astrometric parameters Nq ¼ 109 and σu ¼ 1 μas=yr (scenario C in
Table 1). Bottom: similar to top but with no signal (only noise).

FIG. 5. ROC curves of architecture performance between
RESNET-18, ALEXNET, and VGG-11 for set C. The black dashed
line indicates equal true positive and false positive rate
corresponding to the case that a network is guessing in its
classifications.
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IV. RESULTS

In Fig. 6, we present the ROC curves and their
corresponding AUC values for each set of parameters of
Tab. I. This is the main result of this work. The red lines
correspond to σu ¼ 1 μas=yr, while the blue lines are for
σu ¼ 0.1 μas=yr, and the total number of quasars Nq is
designated by the line’s width. As expected, larger Nq and

smaller σu lead to higher AUC values and higher detection
significance since the noise level of each pixel scales as
∼σu=

ffiffiffiffiffinq
p where nq is the number of quasars per pixel.

Additionally, we can see that a decrease in the uncertainty
σu is more impactful than increasing the number of quasars
Nq and thus a more precise survey will be better suited to
detect the signal than a more sensitive one.
Our model trained on an SKA-like survey, realized here

as parameter scenario A, is not sensitive to the signal
induced by substructure after achieving an AUC of ∼0.5;
thus; in this configuration, the data are likely too noise
dominated even for a CNN. However, a more optimistic
survey with ten times more quasars does manage to achieve
limited power at discerning between signal and noise as
evidenced by a marginal AUC score of 0.723 for scenario
C, but this is still not very well equipped to detect dark
matter substructure based on a 10 year operational baseline.
In order to achieve a more robust performance, corre-

sponding to AUC values ≳0.8, we need either the number
of quasars to increase even more by a factor of at least 3
compared to scenario C and/or σu to decrease by
approximately a factor of 10, or some combination of
the above. Encouragingly, it is very promising that the
detection significance improves drastically with parameter
scenario D where Nq ¼ 109 and σu ¼ 0.1 μas=yr, allowing
for almost perfect classification using the RESNET-18

architecture.
In other words, if SKA runs for longer than a decade, it is

possible that the proposed technique can be successfully
applied in the future to detect Milky Way substructure. For
example, doubling its operational time reduces the uncer-
tainty to σu ¼ 0.5 μas=yr, and with the currently planned
Nq ∼ 108 quasars, it is possible to obtain an AUC of ≳0.8

FIG. 6. ROC curves and their corresponding AUC values for
each set of values of Nq and σu as described in Tab. I. The red
lines correspond to σu ¼ 1 μas=yr while the blue lines are for
σu ¼ 0.1 μas=yr and the total number of quasarsNq is designated
by the line’s width. The black dashed line indicates equal True
Positive and False Positive Rate corresponding to the case that a
network is guessing in its classifications.

FIG. 7. Example assignment map for positive attributions (left), which has been convolved with a Guassian filter with σ ¼ 3 pixels,
calculated from a simulated lensing map with substructure from scenario D (right). The attribution score and astrometric lensing
velocities have been normalized for convenience. The power of axiomatic attribution is now manifest in this example where it
demonstrates that high, positive attribution scores can be useful in localization of substructure.
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and thus reliably probe the substructure content of the
Milky Way.
With several classifiers in hand, it is possible to peer into

the black box using integrated gradients and extract
information beyond our classification label. In Fig. 7, we
show the assignment map for positive attributions calcu-
lated from an example lensing map with substructure from
scenario D. Since positive attributions correspond to pixels
that voted for the substructure class, in principle they can be
used to localize substructure in a lensing map.
Figure 7 demonstrates the application of integrated

gradients by showing that high attributions are correlated
with substructure locations. Not surprisingly, it is prohibi-
tively difficult to discern such features for data sets with
lower AUC values as the usefulness of an attribution map is
correlated with architecture performance.
We would like to point out that this method for

substructure localization supplements other techniques that
could be applied like image segmentation—for example, in
the context of strong lensing, see Ref. [89]—but should
prove to be computationally more tractable since training is
restricted to classification. As a final note, beyond the
information contained in positive attributions, features in
the negative attribution map should prove critical in
understanding various noise and backgrounds in the data
set in addition to improvements in the quality of data that
may come by longer observation times.

V. CONCLUSION

We investigate the possibility of using supervised deep
learning techniques to detect the astrometric lensing effect
on a population of quasars from dark matter subhalos in the
Milky Way as a proof of principle using simulated data. In
particular, we apply state-of-the-art convolutional neural
network RESNET-18 to our data set, and we show how a
CNN could be used to detect the astrometric lensing signal
from future astrometric surveys provided an architecture
trained on simulations were to be applied to a real data set.
We observe that for the current best velocity sensitivity

estimates for a 10 year run of an SKA-like survey σu ∼
1 μas=yr a total number of Nq ∼ 3 × 109 quasars would be
required for the classifier to detect the signal with an AUC
value > 0.8. Much better performance with an AUC value
of ∼0.96 is achieved for Nq ∼ 108 but with a much smaller
velocity uncertainty of σu ∼ 0.1 μas=yr. We see that a
smaller uncertainty has much higher impact on the ability
of the classifier to detect the dark matter substructure and it

can be achieved by expanding the duration of the survey to
more than a decade. Our results are in qualitative agreement
with the results of Ref. [34], though we cannot quantita-
tively compare since the AUC values used here do not
directly map to the discovery significance shown in Fig. 6
of that work.
We have further shown a method for localizing subhalos

using integrated gradients, a method of axiomatic attribu-
tion. Concretely, we find that the map for positive attribu-
tions, pixels which voted for the substructure class, are
found to be consistent with the location of known strong
lenses in our simulations. While we do not investigate in
detail here, the negative attributions are likely to encode
crucial information about various noise and backgrounds
present in the data set.
While it may be possible that there is an architecture that

could be better suited to tackle the complexity of the data
set at the level of expectations for SKA, it should be pointed
out that the results presented here are based upon an
assumed dark matter model defined by the mass and
distribution of its substructure. It may be the case that
dark matter is something other than the CDM picture
presented here, and thus prospects for detection may differ.
Similar to the spirit of Ref. [90], in which anomaly
detection, a form of unsupervised machine learning, was
used to detect the presence of dark matter substructure in
strong lensing images, it seems natural to extend this work
to the unsupervised scenario where an autoencoder is
trained on sets of images corresponding to SKA measure-
ments with no substructure and qualifying the constraining
power of identifying any DM substructure in SKA data.
In this way, one is taking a theory agnostic approach to the
detection of dark matter—i.e., our classifier performance
will not depend on an arbitrary choice of model and its
various parameters. Additionally, the inclusion of accel-
eration data on top of the velocity maps can further
strengthen the detection of the signal. We leave this for
future work.
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