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It has been suggested that late-Universe dark matter decays can alleviate the tension between
measurements of H0 in the local Universe and its value inferred from cosmic microwave background
fluctuations. It has been suggested that decaying dark matter can potentially account for this discrepancy as
it reshuffles the energy density between matter and radiation and as a result allows dark energy to become
dominant at earlier times. In this work, we show that the low multipole amplitude of the cosmic microwave
background anisotropy power spectrum severely constrains the feasibility of late-time decays as a solution
to the H0 tension.
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I. INTRODUCTION

The standard Λ cold dark matter (CDM) model has been
established during the past decades as the standard cos-
mological model consisting of 70% dark energy in the form
of a cosmological constant Λ, 25%CDM, and 5% baryonic
matter. It has been very successful at describing the
evolution of the Universe by accounting for a large range
of observations, from cosmological scales (cosmic micro-
wave background (CMB) measurements [1], baryon acous-
tic oscillations (BAO)[2], and redshift space distortions [3])
to galactic rotation curves [4] and galaxy cluster dyna-
mics [5]. Despite the success of ΛCDM, as experimental
measurements have improved, two prominent tensions
have arisen. The first is the Hubble tension between
early-time cosmology with cosmic microwave background
[1] measurements and local late-time cosmology from
type Ia supernova [6,7]. The second is the early [1] and
late [8] cosmic variance measurements of the matter density
field characterized by the value of σ8.
The discrepancy between the CMB measurement of H0

and the distance ladder estimates from supernova (SN) Ia
calibrated primarily using Cepheid stars evolved in the last
few years from 2.5σ [9] to 4.4σ [7]. While the ladder is a
direct measurement of the expansion rate of the Universe
today, CMB estimations are model dependent, having to
extrapolate present-day values from a cosmological model
that fits the CMB power spectra at the redshift of recombi-
nation. That is the reason why this tension is so important:

it could potentially be an indication of new physics and thus
deviations from the standard ΛCDM cosmological model.
As with any tension, multiple probes are needed to help

clarify the origin of the observed discrepancy. Such an
additional probe is the improved inverse distance ladder
measurement by the dark energy survey (DES) [10]. In this
case, the distances of SNIa are calibrated using BAOs, and
the deduced value of H0 is found to be consistent with the
measurements inferred directly from the CMB [1]. The
recent results from the Atacama Cosmology Telescope [11]
confirmed the Planck measurements leaving little room for
instrumental systematic errors. In contrast, an independent
inverse distance ladder measurement using quasars as an
anchor by H0LiCOW [12] is in agreement with the local
measurement [7], fuelling the tension between early- and
late-time Universe. Yet another independent measurement
of H0 was made possible based on the tip of the red giant
branch [13] finding anH0 value laying midway in the range
defined by the current Hubble tension. A similar midrange
value was obtained using gravitational waves produced
from a binary neutron star merger [14,15]. Such gravita-
tional wave “standard siren” measurements of H0 are
extremely important because they do not rely on light,
and they are governed by different systematic errors,
though the observation of more events is needed to reduce
the uncertainty to the percent level [16–21].
The origin of this discrepancy is still under debate.

Potential systematics at play were claimed as an explan-
ation [22–25], however, recently it was shown that the
tension exists between all late- and early-Universe datasets
at high significance [26] regardless of the dataset used.
There have been multiple attempts to relieve the data
tension by introducing new physics and extensions to
ΛCDM by modifying either the behavior of dark energy
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or dark matter. The work of Knox and Millea [27] points
towards early-Universe solutions to be the least unlikely,
but such solutions fail to be in agreement with large scale
structure observations as shown in [28–30].
Dark energy modifications to the standard cosmological

model include a negative cosmological constant model
[31], though later proven insufficient to solve the tension
[28], and a dynamical dark energy equation of state [32,33].
Another promising proposal has been based on an early
period of dark energy domination that changes the size of
the acoustic horizon [34–36], while others include vacuum
phase transitions [37–39], interacting dark energy [40–43],
as well as quintessence field models [44,45], and axion
dark energy [46].
Modifications to the dark matter sector include partially

acoustic dark matter models [47], charged dark matter with
chiral photons [48], dissipative dark matter models [49],
cannibal dark matter [50], nonthermal dark matter [51],
and axions [52]. Decaying dark matter models were also
considered, especially, because of their properties of
solving some small scale structure formation problems
[53–61]. Finally, modifications to the general theory of
relativity were also proposed [62–66]. Nevertheless, none
of the aforementioned models have been completely
successful on relieving the tension.
The tension in the amplitude of the variance on scales of

8h−1 Mpc, σ8 appears to be well defined in observations
[1,8,67–73], however, it is not as robust as the H0

discrepancy since its significance varies only from 1.5σ
to 2.5σ, depending on which late-time probe one compares
with the CMB-derived estimates. Despite that, there have
already been multiple attempts in the literature to address
the tension. A quite popular topic has been the introduction
of self-interactions in the dark sector, most notably by
introducing self-interaction in dark energy [74–78] in an
attempt to erase structure in the late Universe and relax the
tension. Additionally, dark radiation and dark matter self-
interactions have been proposed [79,80] trying to solve the
problem in a similar manner while others take a different
approach, for example, by introducing a model with dark
matter-neutrino interactions [81] or modifications to grav-
ity [82]. On the other hand, models invoking a viscous dark
matter [83], an effective cosmological viscosity [84], or
neutrino self-interactions [85] attempt to solve both ten-
sions simultaneously.
It has been proposed that decaying dark matter can be a

possible solution to not only the Hubble tension [53] but
also to the σ8 controversy because it has the characteristic
of erasing structure in the late Universe, which is what is
needed to save both problems. In general, constraints on
decaying dark matter models have been constrained by
various methods [86–95]. In this work, we expand on the
simplified treatment of the effects of decaying dark matter
in [53] to investigate the impact of a two-body decaying

dark matter model on the power spectrum of the cosmic
microwave background, specifically for decays that can
alleviate the H0 and σ8 tensions. In Sec. II we review the
basic properties of two-body decays and its cosmological
implications. In Sec. III we describe the CMB constraints
of such a model, and we conclude in Sec. IV.

II. DECAYING DARK MATTER AND
COSMOLOGY

In this section we discuss the physical properties and
cosmological characteristics of a two-body decaying dark
matter scenario. In the rest of the section, we assume the
default parameters of our cosmology software CLASS [96],
consistent with the best fit to the Planck 2013 + WP
(WMAP Polarization) results [97]: the peak scale param-
eter 100θs ¼ 1.042143, the baryon density today Ωbh2 ¼
0.022032, the dark matter density today, assuming a
nondecaying cosmology ΩCDMh2 ¼ 0.12038, the redshift
of reionization zreio ¼ 11.357, the matter power spectrum
value at pivot scale As ¼ 2.215 × 10−9, and the scalar tilt
ns ¼ 0.9619, where the pivot scale is k ¼ 0.05. These
parameters were used both for demonstration of the
properties of the decaying dark matter model, as well as
for the comparison with ΛCDM.

A. Two-body decays

The decaying dark matter model we consider consists of
a single cold unstable parent particle created in the early
Universe, which decays into two daughter particles as
ψ → γ0 þ χ: one massless (e.g., a dark photon [98–100])
and one massive particle. The model is characterized by
only two parameters: the decay width Γ and the fraction ϵ
of rest mass energy of the parent particle transferred to the
massless particle γ0. From here on, we use subscripts 0, 1,
and 2 corresponding to the parent massless daughter and
massive daughter to identify quantities related to each
species, respectively. Following the work in Ref. [53,101],
we can write the cosmological evolution of the densities of
all species as

_ρ0 ¼ −3
_a
a
ρ0 − Γρ0; ð1Þ

_ρ1 ¼ −4
_a
a
ρ1 þ ϵΓρ0; ð2Þ

_ρ2 ¼ −3ð1þ w2Þ
_a
a
ρ2 þ ð1 − ϵÞΓρ0; ð3Þ

where ρi is the energy density of species i, derivatives are
with respect to time, and a the scale factor. The quantity
w2ðaÞ is the dynamical equation of state of the massive
daughter particle, and it is given by (see [101])
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w2ðaÞ ¼
1

3

Γβ22
e−Γt⋆ − e−Γt

Z
a

a⋆

e−ΓtDd lnðaDÞ
HD½ða=aDÞ2ð1 − β22Þ þ β22&

;

ð4Þ

where β ¼ ϵ=ð1 − ϵÞ is the velocity in units of c of χ
particles at production, and t ¼ tðaÞ, the time that corre-
sponds to scale factor a. The constant t⋆ sets the initial
conditions ρ1ðt ¼ t⋆Þ ¼ ρ2ðt ¼ t⋆Þ ¼ 0 and ρ0ðt ¼ t⋆Þ ¼
ρcritΩDM with ρcrit being the critical density and ΩDM, the
initially assumed dark matter density. Unlike Ref. [53], a⋆
is set to the early Universe, well before matter domination
and, therefore, for late decays (Γt⋆ ≪ 1), such as what we
consider here, the effects of decays in the early Universe are
negligible. The quantities aD and HD are the scale factor
and the corresponding Hubble parameter at scale factor aD
(and time tD ¼ tðaDÞÞ of decaying particles. The physical
picture behind this expression is that due to conservation
of momentum, the massive daughter is produced with a
nonzero velocity that later redshifts away as the Universe
expands, and the particles cool down.
A key feature that distinguishes this model from other

decay scenarios is the dynamical properties of the massive
daughter particle χ’s equation of state, w2. The left panel of
Fig. 1 shows the equation of state for 4 different sets of
lifetimes of particle decays and the parameter ϵ. Particles
at creation are behaving as warm dark matter, with
nonzero equation of state, that “slow down” as the
Universe expands. The initial amplitude of w2 is deter-
mined by the value of ϵ: the velocity of the particle at
decay is v2 ∼ β2 and as w2 ∼ β22=3 ∼ ϵ2=3ð1 − ϵÞ2. As ϵ
takes values between 0 and 1=2, we see that the range of

values of w2 at decay is between 0 and 1=3—see [101] for
more details.
At any given time, the equation of state of all daughter

particles is collectively encapsulated by w2; for example, if
one were to calculate the equation of state today, the
aforementioned determination of w2 includes all particles
that decayed in the past (and whose velocity has been
redshifted, i.e., slowed down), as well as particles that are
decaying currently. The weight of each population (from
the past to the present) is completely determined by the
decay width Γ, which governs the input rate of new
particles with a given speed in the dark matter fluid. At
small values of Γ, the injection of new particles is sustained
for longer, and the equation of state remains constant
regardless of the initial speed. Conversely, at larger values
of Γ most of the massive daughter particles are produced
early on, and their speeds have more time to redshift away
to small values (unless, of course, the particles are born
nonrelativistic). An additional subtle consequence of vary-
ing Γ is that it controls _w2, i.e., the time derivative of the
equation of state. For example, if Γ is of order the inverse of
the matter-dark energy equality timescale, then _w2 is larger
compared to a Γ that is much smaller.

B. Effect of decays on HðzÞ
A very important consequence of the introduction of the

dark matter decay model is the effect on the expansion rate
of the Universe as decays can change the relative amount
of relativistic and nonrelativistic components that enter in
the calculation of the Hubble parameter as a function of
redshift [53],

FIG. 1. Left: Evolution of w2 for fΓ=Gyr−1; ϵg ¼ f0.01; 0.45g, f0.1; 0.45g, f1; 0.45g, and f1; 0.4g shown as a thin green, medium
blue, thick red, and thick dashed red lines, respectively. The decay width Γ controls the time and the amount that w2 changes state while ϵ
controls the absolute magnitude by correlation to the initial velocity of the massive decay products—see text for discussion. Right:
A consequence of the introduction of the two-body dark matter decay model is the effect on the expansion rate of the Universe [53]. The
right panel shows the ratio of the expansion rate in the presence of decays over a baseline ΛCDMUniverse as described at the beginning
of Sec. II for the same three models as figure to the left. The most important feature is an increase of the expansion rate of the Universe
compared to ΛCDM at late times, while we see a smaller in magnitude decrease on earlier times.
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H2ðaÞ≡
!
_a
a

"
2

¼ 8πG
3

X

i

ρiðaÞ; ð5Þ

where
X

i

ρiðaÞ ¼ ρ0ðaÞ þ ρ1ðaÞ þ ρ2ðaÞ

þ ρrðaÞ þ ρνðaÞ þ ρbðaÞ þ ρΛ: ð6Þ

Here, ρ0, ρ1, and ρ2 correspond to the energy densities of
the parent dark matter particle, and the massless and
massive daughters, respectively, and ρr, ρν, ρb, and ρΛ
are the energy densities of photons, neutrinos, baryons, and
dark energy, respectively. Note that in the decaying dark
matter case we study here, all dark matter densities (ρ0, ρ1,
and ρ2) in Eq. (6) are not only scale factor dependent but
also depend on time, according to Eqs. (1)–(3).
The right panel of Fig. 1 shows the ratio of the expansion

rate in the presence of decays over a baseline ΛCDM
Universe, as described at the beginning of Sec. II.
Qualitatively, decays manifest themselves in the value of
the expansion rate as a decrement at redshifts z≳ 1 and as
an increment at redshifts z≲ 1.
The initial deceleration at redshifts z≳ 1 is caused

because during matter domination a fraction of dark matter
(the exact amount governed by Γ and ϵ) transitions to
radiation, with energy density evolution governed by Eq. (2).
The pressure, due to radiation transfer, effectively acts as a
break to the expansion rate. This effect explains why larger
values of ϵ, as well as higher decay rates Γ, cause a larger
dip; the higher the values, the larger the amount of energy
that is transferred between the two species.
This transfer of energy into radiation is also the same

reason we observe an acceleration in later times. As matter
is depleted into radiation, the matter-dark energy equality is
shifted to earlier redshifts, allowing for a higher value ofH0

at late times. As before, larger values of ϵ and Γ cause a
more dramatic effect as the decays become more effective
during the lifetime of the Universe. This very characteristic
makes this model a promising candidate to solve the H0

tension by matching the extrapolated value from early-
Universe estimations to the late-Universe measurements as
was shown in [53].

C. Effect of decays on the matter power spectrum

Measurements of the growth of structure provide a
wealth of information regarding the abundance and proper-
ties of dark matter and dark energy and are complimentary
to distance measurements, such as baryon acoustic oscil-
lations and supernovae. The time dependence of the growth
of structure using the matter power spectrum is sensitive to
the temporal evolution of dark matter and, as such, current
(e.g., DES and eBOSS) [8,102] and future experiments
(LSST, PFS, Euclid, and WFIRST) [103–106] are able to

constrain properties of dark matter, modifications to grav-
ity, as well as the time dependence of dark energy.
We can quantify the effects of dark matter decays on the

growth factor in the following way. Given a scale invariant
power spectrum, the growth of linear matter fluctuations
(defined as δ ¼ δρ=ρ ≪ 1) is governed by

δ̈þ 2H _δ − 4πGρMδ ¼ 0; ð7Þ

where the derivatives are with respect to time, G is
Newton’s constant, and ρM is the matter density, where
in the case of decaying dark matter it is given by

ρM ¼ ρ0 þ ð1 − 3w2Þρ2 þ ρb; ð8Þ

where w2 is given by Eq. (4). The solution of Eq. (7)
provides the growth factor, defined as DðaÞ ¼ δðaÞ=
δða ¼ 1Þ, normalized to unity today (a ¼ 1). A change
in the time evolution of ρM in Eq. (7) changes both, the
second and third terms, and it is the competition between
these two terms that sets the net effect of dark matter decays
on the growth factor.
Figure 2 shows the fractional deviations in the growth

factor in the presence of dark matter decays compared to a
fiducial ΛCDM model as described above for the four
examples of decaying dark matter scenarios discussed
earlier. At early times (z ≫ 1), before dark matter decays
become important (i.e., ρ1 ≪ ρ0), the Universe is matter
dominated and, therefore, δðaÞ ∼ a as in the case of
ΛCDM. As decays take over, the dark energy-matter
equality is reached earlier than in ΛCDM, and the growth
of the structure is suppressed. This effect is more prominent
at late times: (z≲ 1). As with the evolution of the
expansion rate HðzÞ, larger values of Γ and ϵ cause larger

FIG. 2. Evolution of the fractional linear growth factor D(z)
changes in the presence of the two-body decaying dark matter
over the same baseline ΛCDM model and the same four models
as Fig. 1. At late times the decaying dark matter scenario erases
structure which, for part of the parameter space of the model, can
be probed by the Dark Energy Spectroscopic Instrument [107].
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deviation from ΛCDM as more of the matter energy budget
is transformed into radiation, a nonsurprising result since
the growth factor itself is obtained (partly) by the integral
of HðzÞ.
An additional way to characterize the linear growth of

structure is by looking at the matter power spectrum PðkÞ,
on a scale k, defined as the 2-point correlation function
of over densities hδkδk0i ¼ ð2πÞ3δðk − k0ÞPðkÞ. The vari-
ance of mass fluctuations at a physical scale R is then
obtained from

σRðaÞ ¼
1

2π

Z
∞

0
k3Pðk; aÞW̃2

RðkÞd ln k; ð9Þ

where W̃R is the Fourier transform of the top-hat window
function. Equation (9) gives the variance of the amplitude
of fluctuations over a sphere with radius R at scale factor
a ¼ 1=ð1þ zÞ. It is customary to quote a value of the
variance over a sphere of radius 8h−1 Mpc, commonly
referred to as σ8.
The amplitude of the power spectrum around k∼

1hMpc−1 (the scale probed by σ8) characterizes rare events
on the tail of the distribution, and as such, it is very
sensitive on the cosmological parameters. Observationally,
it is accessible through measurements of the galaxy cluster
mass function in optical surveys [8], as well as through the
Sunyaev-Zel’dovich effect on the CMB [1]. Introducing
decaying dark matter has the effect of a time dependence
decrease on the matter density [Eq. (8)] and a resulting
increase in ρ1 that behaves as radiation. The result is a
reduction in the value of σ8 [108]. One of the reasons that
late-Universe dark matter decays received interest in
explaining the H0 tension is due to this side effect—
the reduction of σ8 and thus reducing also the tension
that exists between the values of σ8 deduced by CMB
measurements and cluster number counts from optical
surveys [53].

D. Effect of decays on CMB anisotropies

The CMB power spectrum is an imprint of the conditions
of the Universe at the epoch of recombination, as well as
an encoder of all processes that can alter that spectrum
between recombination and today. The power spectrum is
written as a linear combination of physical processes.
These include (among others) the intrinsic photon temper-
ature fluctuations at recombination, fluctuations due to
perturbations in the gravitational potential (known the
Sachs-Wolfe effect), a Doppler effect due to the acoustic
motion of the photon-baryon fluid, as well as the relative
motion between the observer and the last scattering surface,
and temperature anisotropies that arise from the time-
dependent gravitational potential integrated along the line
of sight, known as the Integrated Sachs-Wolfe (ISW)
effect. [109]

The ISW effect is present if there is residual radiation
during recombination, in which case potentials inside the
horizon can decay. This is known as the early-ISW effect
and leaves an imprint on scales smaller than the horizon at
recombination. The late-ISW effect arises as light travels
from the last scattering surface through time-dependent
potentials. It appears once the Universe is no longer matter
dominated (i.e., dark energy begins to dominate) and
manifests itself on large angular scales due to the proximity
of the origin of the effect and the large horizon size at dark
energy domination.
In the absence of anisotropic stresses the scalar temper-

ature anisotropy ΘISWðp̂Þ, due to the ISW effect along a
direction p̂, is

ΘISWðp̂Þ≡ ΔTðsÞðp̂Þ
T

∼
Z ∂Φ

∂η dη: ð10Þ

Here, Φ is the Newtonian potential perturbation to the
metric, the derivative is with respect to conformal time η,
and the limits of integration are from recombination to the
present time. Expansion of Eq. (10) in spherical harmonic
gives the anisotropy in a direction p̂ as

Θðp̂Þ ∼
X∞

l¼0

Xl

m¼−l
il
Z ∂Φ

∂η jlmðkηÞYlmðp̂ÞY'
lmðk̂Þdηdk;

ð11Þ

where jlmðkηÞ is the spherical Bessel function. The integral
is evaluated from the last scattering surface to the present.
Most of the Bessel function contribution to the integrant
comes from scales that are of order l ∼ kη, which means as
η increases larger scales become more dominant. This
explains the fact that the late-ISW effect appears on large
scales compared to the horizon size at recombination.
Using the orthogonality of spherical harmonics and

the potential as given by Poisson’s equation, we can get
the angular power spectrum in the case of decaying dark
matter,

Cl ¼ hΘlmΘ'
lmi

∼
Z

dkPðkÞ
#Z

dηa2
!∂λ
∂ηþ 2Hλ

"$
2

: ð12Þ

Here, PðkÞ is the matter power spectrum (assumed of the
form PðkÞ ∼ kn, with n ≈ −1), λ ¼ ρMδ, and H is the
conformal Hubble parameter.
In the limit where decays are not present, i.e., the matter

density scales as ρM ∼ a−3, the term in the parentheses in
Eq. (12) reduces to the known result ∼ðf − 1ÞDHjlðkηÞ,
where D is the growth factor, and f ≡ d lnD=d ln a (note
that, in principle, Eq. (12) contains a factor of e−τ, where τ
is the optical depth to the last scattering surface, which we
assume here to be e−τ ≈ 1 for late-Universe decays).
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The qualitative effects on decaying dark matter on the
power spectrum can be understood in the following way.
Increasing the decay width of dark matter Γ, pushes the
dark-energy-matter radiation to higher redshifts, i.e., earlier
times, thus, power is increased on low-l scales, with
progressively larger values of l affected. An increase in
ϵ corresponds to a larger branching ratio to radiation and a
massive daughter particle with increasing initial velocity.
Both of these effects result in an earlier shift to dark energy
domination and again an increase of power on low-l’s. The
top two panels of Fig. 3 shows these effects on the
temperature power spectrum for the four representative
cases we use as an example.
In addition to the scalar temperature fluctuations,

decaying dark matter also leaves an imprint on the
polarization of the CMB [109]. The CMB polarization is
produced as photons experience Thompson scattering off
free electrons. The majority of these interactions occur
near the surface of last scattering and produce the large
anisotropic peaks above l > 100. Since these interactions
occur around recombination, dark matter has yet to decay

(in late-Universe decays), and the process is identical to the
ΛCDM model for typical decay properties.
However, Thompson scattering can also take place much

later during the epoch of reionization. The cumulative level
of scattering interactions is typically quantified by the
integrated reionization optical depth [1],

τ ¼ nHð0ÞcσT
Z

zmax

0
dzxeðzÞ

ð1þ zÞ2

HðzÞ
; ð13Þ

where xeðzÞ ¼ nreione ðzÞ=nHðzÞ is the free electron fraction,
nreione ðzÞ as the free electron number density, and nHðzÞ is
the hydrogen nuclei number density. The quantities σT and
c are the Thompson scattering cross section and the speed
of light, respectively. As noted in Ref. [1], reionization
results in a suppression factor of order e−2τ to the
anisotropies above l ≈ 10.
In addition to the expected suppression on large scales,

Thompson scattering at reionization creates polarization
anisotropies for l ≤ 30 that appear as a bump in the

FIG. 3. The cosmic microwave background TT (top) and EE (bottom) power spectra (left) and fractional changes (right) for the four
examples of decaying dark matter as in Fig. 1. Dark matter decays appear in the CMB power spectrum as increased amplitude in the late-
ISW effect as the dark matter—dark energy equality is moved to earlier times. Additionally, the altered expansion history results in
additional scatterings during reionization, producing larger polarization correlations at low multipoles.
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polarization spectra at low l. The height of the bump is
proportional to τ2 and corresponds to a scale comparable to
the Hubble horizon during the epoch of reionization.
Reference [1] finds that the CMB τ constraint (and thus
the height of the bump) is fairly model independent from
the free electron fraction, xe; however, the shape of the
bump depends on xe [110,111]. Note that there is a
degeneracy between xe and HðzÞ [as is evident in
Eq. (13)]. Late-Universe decaying dark matter changes
the expansion rate [see Fig. 1]. A reduced expansion rate
implies an increased optical depth for the same ionization
fraction. This implies reionization occurs over a longer
period of time and, therefore, scattering interactions
increases, thus changing the shape of the bump of the
polarization anisotropies between 10 < l < 30.
All discussions up to this point have assumed no large

scale structure lensing (i.e., no lensing effects were
included in Fig. 3). As the CMB photons traverse the
Universe, they are gravitationally lensed by foreground
structure resulting in multiple effects. Here, we focus on the
smoothing of small scale anisotropic peaks and troughs as a
result of a convolution between the unlensed spectra and
the lensing potential of large scale structure [112]: the
strength of the lensing potential is directly tied with the
amount of structure present. As the amplitude of lensing
effects are directly related to the amount of intervening
structure (and its growth) along the line of sight, we expect
that as decaying dark matter suppresses the growth of
structure in the Universe, it will in turn reduce the amount
of expected lensing.
In Fig. 4 we show the percent change of the high

multipoles of lensed TT correlations on the CMB in the
decaying dark matter scenario as compared to the lensed
fiducial cosmological model (see the beginning of Sec. II).
As expected, reducing the growth of structure (due to

decays) leads to a reduced lensing effect on the power
spectrum. The deviations from ΛCDM’s lensing spectra are
at percent level for even the most minimal decay parameters
outpacing the deviation from the unlensed spectra alone, as
compared with Fig. 1. The oscillations in the lensed ratio
correspond directly with the oscillations in the unlensed
spectra, with peak differences in the lensed case matching
troughs in the unlensed one.
In summary, the overall effect of decaying dark matter on

CMB anisotropies is an increase in both temperature and
polarization at low l and an increase in the magnitude of
oscillations at high l. These variations at low and high l are
due to changes in the expansion rate at late times and a
decease in the lensing potential, respectively. In the next
section we will use these two physical effects to constrain
the two-body decaying dark matter scenario.

III. CONSTRAINTS

We can constrain the decay width Γ, and fraction of rest
mass energy that goes to radiation ϵ, by performing a
Markov Chain Monte Carlo fit on the decaying dark
model of Sec. II using MONTEPYTHON [113] and the
Planck 2018 TTTEEEþ lowlþ lowPþ lensing data sets,
as well as BAO (SDSS DR7 [114], 6FD [115], MGS [116],
BOSS DR12 [117], eBOSS Ly-α combined correlations
[118,119]), and the Pantheon SNIa catalog [120]. We
choose these data sets as they include all the combinations
of measurements from Planck including lensing, which
potentially can help constrain the effects of the decaying
dark matter on the structure formation. We assume the same
xe history for all models and vary ΛCDM as directed in
Ref. [1] with the addition of the two variables, Γ and ϵ.
We calculate the resulting cosmology and CMB ani-

sotropies with a modified version of CLASS
1 [96]. We

calculate the present-day dark matter density by the
shooting method as described in Ref. [121]. For computa-
tional convenience we follow Ref. [101] for the imple-
mentation of Eq. (4) in CLASS. More specifically, we can
write the equation of state as

w2ðtÞ ¼
1

3
hv22ðaÞi; ð14Þ

where v2 is the speed of the massive daughter particle at
scale factor a that was produced earlier when a ¼ aD. With
ã≡ aD=a, the average speed of the massive daughter can
be written as

hv2ðtÞi ¼
Z

t

t⋆
v2ðãÞ _n2dtD

%Z
t

t⋆
_n2dtD; ð15Þ

where

FIG. 4. The fractional change in the lensed CMB temperature-
temperature power spectrum (TT) for the four cases of decaying
dark matter as Fig. 1. Lensing induces larger variations from
ΛCDM for decaying dark matter as reduction in the growth of
structure reduces the amount of lensing at small scales. 1http://class-code.net/
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v22ðãÞ ¼
ã2β22

1þ β22½ã2 − 1&
; ð16Þ

and _n2 ≡ dn2=dtD is the time derivative of the massive
daughter’s number density. The latter is obtained by setting
_n2 ¼ − _n0, as for every decayed parent particle, there is
one massive particle created and can be written as _n2 ¼
Γρ0ðtDÞ=m0ã3, where the factor ã3 scales the number
density to its value at the time the velocity is calculated.
We use this formulation in order to assist in calculations
during early-time steps when ψ decays are negligible.
With the background evolution defined, we can now turn

our attention on the perturbations. The treatment of the
massive daughter source terms involved in perturbing the
evolution of the Universe is nontrivial, as it is possible for it
to be warm at production, while particles that were
produced earlier may have already “cooled down”. In
order to make the computations in CLASS efficient, we
treat the massive daughter particle contributions with the
assumption they can be separated into a relativistic and
nonrelativistic component, termed hot and cold, respec-
tively, each characterized with an equation of state:

ρ2;hot ¼ 3w2ρ2; ρ2;cold ¼ ð1 − 3w2Þρ2: ð17Þ

An important note to make here is that the massive daughter
particle density ρ2, and its equation of state w2, refer to their
background evolution values calculated as described earlier
and, thus do not take any perturbations into account. While
this approximation may break down for “warmlike” cases,
it is exact for ϵ ¼ 0 and 0.5 as initial velocities are 0 and c,
respectively. As mentioned earlier, the equation of state at
decay scales as w2ðaDÞ ∼ ϵ2=3ð1 − ϵÞ2, however, the equa-
tion of state of a population after a considerable amount
of decays (i.e., timescales of order of the lifetime of the
particle) will always have w2ðaÞ < w2ðaDÞ as the particle
momentum redshifts, due to the expansion of the Universe.
With this we can justify our assumption in Eq. (17) because
as t ≫ Γ−1, w2 → 0, and the massive daughter asymptoti-
cally behaves as cold dark matter, while based on the results
of [53], we should not expect very warm daughter particles
to be favorable.
In Fig. 5 we show the 2-D contours of the posterior

distribution of the free and derived parameters as deter-
mined by the Markov Chain Monte Carlo (MCMC) run.
We assume unbounded flat priors for the base cosmological
parameters; the baryon density parameter Ωb, the acoustic
angular scale 100θs, the primordial comoving curvature
power spectrum amplitude ln 1010As, and the scalar spectral
index ns, while for the reionization optical depth τ and the
initial dark matter density Ωini

cdmh
2 ≡ ρinicdma

3⋆h2=ρcr;0 [121],
we introduce a lower bound of 0.004 and 10−9, respec-
tively. In addition, for the decaying dark matter model
parameters (decay rate Γ and ϵ), we assume flat priors
in logarithmic space with −7 < log10ðΓ=Gyr−1Þ < 1 and

−3 < log10ðϵÞ < −0.3010—recall that ϵ must always be
less than 1=2. Finally, as an additional step to aid the
numerical calculation and to attain convergence in a
reasonable amount of time, we use a ΛCDM covariance
matrix as an input since our numerical tests did not show
any effects of this choice to the results.
The main conclusion from Fig. 5 is that posteriors prefer

a region nearly identical to that ofΛCDM. The introduction
of decaying dark matter has the effect of adding power at
small multipoles (ISW effect), as well as increasing
the amplitude of oscillations at high multipoles (CMB
lensing—see Sec. II). What we see here is that the predicted
effects of two-body decaying dark matter on the CMB are
heavily constrained by the observations of the CMB power
spectrum. With Γ and ϵ being limited to extremely small
values, the decaying dark matter model becomes essentially
degenerate with ΛCDM—for small Γ, the majority of the
parent dark matter particles do not decay and remain cold
for the entire history of the Universe, while for small ϵ,
m2 ≈m0, effectively, just relabelling the particles from ψ to
χ with very little radiation injected and resulting in no
appreciable changes to the evolution. The effects discussed
above are evident in Fig. 5 with the dashed lines represent-
ing the best fit dark matter density Ωm in ΛCDM lying
within the 68% contours of the posterior distribution for the
equivalent parameters in the decaying dark matter model.
We find that ϵ is limited to small values, i.e., the mass

difference between parent particle and massive daughter is
small since δm ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2ϵÞ

p
(in units of parent particle

mass), while Γ is preferred to be Γ≲ 1 Gyr−1, i.e., lifetimes
of order or greater the age of the Universe. For small values
of ϵ the decay width remains unconstrained, while the
opposite is true for small values of Γ. We can approximate
the 95% confidence contour between these two parameters
as ϵ ≈ 0.002ðΓ=Gyr−1Þ−0.8. For ϵ ≈ 0.5, our constraint on
Γ≲ 10−3 Gyr−1 compares well with constraints placed
on late-time dark matter decays to radiation [121]. In the
context of magnetic dipole transitions that lead to such
decays (e.g., super weakly interacting massive particles
(Super WIMPs) or exited fermions that decay to a photon
and a lighter fermion [98–100]), the scale Λγ of such
processes is related to the mass splitting between the parent
and massive daughter particle δm and the rate of decay
through Λγ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δm3=Γ

p
. Since δm is solely dependent on ϵ,

we can translate the degeneracy between ϵ and Γ into a
constraint on the scale as Λγ ≳ 1013 GeV for Γ≲ 1 Gyr−1.
Finally, we turn our attention to the two main quantities

of interest, the Hubble parameterH0 and the variance of the
matter power spectrum fluctuations σ8. First, for H0 the
posterior median value (and 95% intervals), in the case of
two-body decays, is H0 ¼ 67.84( 0.84 km=s=Mpc. This
shows clearly that the reshuffling of energy densities (from
dark matter to radiation) in two-body decays cannot
account for the speeding-up of the expansion rate at late
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times as suggested in [53]. Reference [53] found a preferred
region for these two parameters assuming a constant
cosmology during CMB times and using late-time observ-
ables. However, their work did not consider effects that
occur to the CMB at late times like the ISW effect and
lensing, which we have shown here are very important. The
preferred region in Ref. [53] is ruled out in our analysis and
remains such even with a combined analysis of Planckwith
an H0 prior consistent with SH0es’s measurements. [7]
Similarly, for σ8 the posterior median (and 95%

intervals) is σ8 ¼ 0.810( 0.012 (S8 ¼ 0.822( 0.021),

consistent with the value obtained in ΛCDM with values
of 67.82þ0.83

−0.82 km=s=Mpc and 0.810( 0.012 (0.823(
0.021). Therefore, just as with H0, we conclude that the
introduction of the two-body decays cannot relieve the
observed discrepancy between measurements of σ8. Here,
we have also presented S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
constraints for

ease of comparison with other results.
To get a better understanding of the physical reasons

behind the constraining power of the CMB power spectrum
on two-body decays, we can look closely into the physics
of the decaying dark matter model. We have discussed in

FIG. 5. The 2-d contour plot for a subset of parameters in decaying dark matter fit to Planck 2018 TTTEEEþ lowlþ lowP þ
lensingþ BAO þ Pantheon. The preferred region for all ΛCDM parameters are the same as ΛCDM. The preferred region in the Γ − ϵ
contour corresponds to a region where the effects from decays are minimal.
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Sec. II how the effects of the decays scale with the
parameter ϵ. In order for decaying dark matter to be
differentiable from CDM, ϵ must be large; otherwise,
decays will not redistribute enough matter to radiation.
In addition, the slow massive daughter particle effectively
does not amount to any appreciable change in the evolution
of the Universe. The maximum ratio of energy transfer
from matter to radiation is given by the mass difference
between the parent and massive daughter particles δm∼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ϵ

p
, which shows that for small ϵ, δm ≈ ϵ. Even

for the case of large decay width Γ≳ 1 Gyr−1, for which
most of the parent particles will have already decayed by
today, the maximum allowed value for ϵ would be at best of
order 10−2, well within the Planck limits on percent level of
variations off of a ΛCDM cosmology.

IV. CONCLUSION

In summary, we reviewed a decaying dark matter model
of the form ψ → γ0 þ χ, in the context of solving the H0

and σ8 tensions. In the absence of CMB constraints, this
model has been proposed as a solution to these cosmo-
logical problems because it leads to an increase in the
expansion rate at late times and a decrease in the growth of
structure [53]. We find that this late decaying dark matter
scenario is in dire straits due to the constraining power of
the CMB anisotropies on low multiples (ISWeffect) and on
high multipoles (lensing), and we conclude that it cannot
relieve neither the H0 tension or σ8 tensions. These results
are in agreement with the recent work of [122].
A different decaying dark matter model was suggested in

Ref. [123] where, instead of a decaying cold parent particle,
it is a warm dark matter component that decays at around
the time of matter-radiation equality. They showed that
such a model is successful at reducing the tension between
local and cosmological determinations of H0. Other strong

candidates remain, like early dark energy [34,124], neu-
trino self-interactions [85], or any other proposal that shifts
the epoch of recombination to earlier times. Time depen-
dent dark matter (DM) properties also show promise in
relieving the tension. [125]
It seems, however, that no proposal so far has been

uniquely successful in removing the two tensions. It is,
therefore, imperative that more work is needed towards a
solution, together with new probes and data from future
observations.
While our work was under review, [126] performed a

similar analysis with a more rigorous treatment of the
massive daughter perturbations.
In both works (this work and [126]), there are minimal

alterations to the preferences of H0 and S8, completely
consistent with ΛCDM, as stated above. However, [126]
also performs an analysis that includes a prior on S8. It is
only when this additional constraint is included that there is
an observed decrease of S8 (S8 ¼ 0.795þ0.025

−0.015 ). With the S8
prior, we observe a decrease in the preferred value of S8 as
well, S8 ¼ 0.810( 0.009 is statistically consistent with
the results of [126]. Therefore, it seems unlikely that late
decaying dark matter solutions are viable explanations to
the H0 and S8 tensions.
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