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Abstract

In order to better understand how our visual system processes information, we must understand
the underlying brain connectivity architecture, and how it can get reorganized under visual
deprivation. The full extent to which visual development and visual loss affect connectivity is not
well known. To investigate the effect of the onset of blindness on structural connectivity both at
the whole-brain voxel-wise level and at the level of all major white-matter tracts, we applied two
complementary Diffusion-Tension Imaging (DTI) methods, TBSS and AFQ. Diffusion-weighted
brain images were collected from three groups of participants: congenitally blind (CB), acquired
blind (AB), and fully sighted controls. The differences between these groups were evaluated on

a voxel-wise scale with Tract-Based Spatial Statistics (TBSS) method, and on larger-scale with
Automated Fiber Quantification (AFQ), a method that allows for between-group comparisons at
the level of the major fiber tracts. TBSS revealed that both blind groups tended to have higher
FA than sighted controls in the central structures of the brain. AFQ revealed that, where the three
groups differed, congenitally blind participants tended to be more similar to sighted controls than
to those participants who had acquired blindness later in life. These differences were specifically
manifested in the left uncinated fasciculus, the right corticospinal fasciculus, and the left superior
longitudinal fasciculus, areas broadly associated with a range of higher-level cognitive systems.

Background

A powerful recent technique for understanding the effect of visual experience on brain
organization is the Diffusion-Tensor Imaging (DTI). Visual deficits can lead to changes

in both gray and white matter of the brain, and neurophysiological differences between
these populations have long been used as a model for explaining the influence of visual
experience on brain structure. Though much of this previous work has focused on brain
function changes, past studies have also shown that there are differences in connectivity
(both functional and anatomical) between blind and sighted individuals [1-5]. Additionally,
there are differences in cortical activation and connectivity between congenitally blind
participants who became blind later in life [6-13]. However, the extent of the differences
between these two groups are not entirely clear; some studies find only minor atrophy of
white matter tracts in late blind participants, while other studies show similar atrophy in the
brains of congenitally blind and late blind participants (for review see Rokem et al. 2017
[14]). Because of the inconsistencies across results, the nature and extent of the differences
in white matter structure across blind and sighted groups is still unclear, and in need of
further investigations.
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Additionally, previous studies have not looked at differences at the level of major white
matter tracts. These tracts are associated with specific higher-level function, and thus
defining changes for congenitally blind and acquired blind groups could give us important
insights into neuroplastic changes potentially related to cognitive processes. Both functional
and connectivity similarities and differences related to cognition across the whole spectrum
of visual function development — from the congenitally blind (who have never had visual
function), acquired blind (who lost vision function later in life), severe low vision and
(temporarily) blindfolded-sighted participants - have been systematically studied in our
laboratory. In particular, training-driven brain reorganization in function and connectivity
was investigated by fMRI and Granger Causal connectivity [15-21]. The current work
seeks to characterize the structural connectivity changes as a function of visual system
development and status, that might be further associated with neuroplastic reorganization
of higher-order cognitive systems, as well as to shine light onto the macro-level structural
connectivity differences in these important clinical populations.

The goal of the current study is to address the questions: 1) does the effect of blindness

on white matter structure depend on the onset of this condition? and 2) are these changes
detectable at the structural level of major white matter pathways? In order to determine

the effects of the time of onset of blindness, the present study used two advanced analysis
methods to compare congenitally blind (CB) with acquired blind (AB) participants, as well
as with sighted control participants (SC).

The first method used is known as Tract-Based Spatial Statistics (TBSS), a method
allowing for whole-brain, voxel-wise comparisons. This method allowed us to make direct
comparisons to previous work by Wang et al. [22] showing a more widespread decrease in
white matter in late blind compared to congenitally blind participants. However, as opposed
to our study, the Wang et al. study was restricted to classifying white matter properties at a
local, rather than large-scale level. Some work has been done to attempt to classify changes
at a larger scale - specifically thalamocortical structures - but failed to find differences [23].

We capitalized on recently released tools for DTI analysis, which make it possible to classify
differences at the level of all major white matter tracts. These major structures are defined
based on anatomical landmarks and are easily identifiable across individual participants.
This type of analysis is known as Automated Fiber Quantification (AFQ). To our best
knowledge the current study is the first to apply AFQ to blind populations, though AFQ

has already been used successfully to investigate white matter properties in other types of
clinical populations [24]. The AFQ technique allowed us to characterize the differences at a
macro scale and perform more broad comparisons in these important anatomical structures
without requiring spatial coregistration across participants.

The combination of the TBSS and AFQ analyses can provide multilevel insights into the
neuroplastic adjustments that take place in a brain deprived of visual input at different stages
of visual system development.
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Diffusion-weighted images were collected from a total of 13 participants (4 female). Four
were congenitally blind (CB; 2 female, mean age 52), four had acquired blindness (AB;

1 female, mean age 65), and five were controls with normal or corrected-tonormal visual
acuity (SC; 1 female, mean age 49).

Diffusion imaging data were collected on a Siemens Trio 3T and on a Siemens Prisma 3T
using a 2D single-shot Simultaneous MultiSlice (SMS) EPI sequence with 5 b=0 and 64
b=2000 volumes. TR/TE = 3067/70ms, FOV= 220x220x120 mm with 60 contiguous slices
and a 110x110 imaging matrix, resulting in a 2x2x2 mm resolution. The acquisition was
accelerated by a factor of 2 in the slice direction (SMS) and 2 in the phase encoding
direction (GRAPPA). Data was collected from two different scanners with identical
protocols. We corrected for this by scaling the whole-brain data from one scanner using the
difference in mean fractional anisotropy across the two scanners. This method was verified
using two participants who were scanned in both systems.

Analysis: TBSS

Tract-Based Spatial Statistics (TBSS) is a tool from FSL [25, 26]. All data for this analysis
was preprocessed through the FSL DTI preprocessing pipeline and corrected for motion

and eddycurrents. Each fractional anisotropy (FA) image was then aligned to a 1x1x1 mm
standard space; in this case we used the “most typical” participant in the study, a label
automatically defined in the TBSS package. The derived nonlinear transforms were applied
to each participant, allowing for precise inter-participant alignment. The aligned images
were then all combined into a single 4-dimensional data structure, with one structure for
each participant group. The resulting images combine to form a white matter skeleton, using
the package’s default standard threshold of FA = 0.2 to eliminate all other voxels from the
rest of the analysis. This step limits the analysis to voxels containing mostly white matter.

Analysis: AFQ

Automated Fiber Quantification (AFQ) is a toolbox first described in Yeatman et al. [24].
We performed preprocessing separately for this step using the Vista Lab mrDiffusion
toolbox for Matlab (available at http://vistalab.stanford.edu, Stanford University, Stanford,
CA). All data was motion and eddy-current corrected. We then fed each participant’s
whole-brain profile into the AFQ automated segmentation tool, which also identifies ROIs
based on anatomical landmarks. White matter tracts were then segmented into 20 major
fiber groups (see Table 1), between pairs of ROIs identified as the ends of each track. We
used all package default values for removing outlying fibers (maximum distance within 4
standard deviations (SD), maximum length within 4 SD, number of nodes per fiber = 100).
Properties from each of the 20 fiber tracts were then computed based on the means of the
fiber bundles. Some tracts were unidentifiable in some participants following removal of
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the outlying fibers, and these were simply excluded from our analyses. Table 1 shows the
number of participants in each group that were included in each analysis by tract.

Figure 1 shows comparisons of the fractional anisotropy (FA) of the three groups of
participants (congenitally blind (CB), acquired blind (AB), and sighted controls (SC)), using
the TBSS method described above. Thresholds for between-group contrasts were set at 95%.

Broadly speaking, we found that at this scale the two blind groups were more similar to
each other (bottom row of Figure 1) than to the sighted controls (top and middle rows of
Figure 1), in that there were overall fewer significantly different voxels between the two
blind groups. When comparing each blind group to the sighted controls, we found that
blind participants tended to have significantly higher FA in central structures, while sighted
controls had higher FA in white matter nearer to cortex, specifically white matter near

the occipital cortex including the optic radiations (top and middle rows of Figure 1). The
acquired blind and congenitally blind groups differed mainly in the central structures, with
AB showing higher FA in these regions (bottom row of Figure 1).

Examples of some of the segmented fiber groups from the automated fiber quantification
(AFQ) toolbox are rendered in Figure 2. Figures 3 and 4 show the general results of

this analysis. Out of the 20 Mori fiber groups analyzed, 2 were excluded due to their

poor segmentation across all participant groups (the left and right cingulum hippocampus
fasciculi), leaving 18 major fiber tracts (see Table 1). Out of those 18, there were 3 that
showed significant results following correction for multiple comparisons (false discovery
rate [27]). Those were the right corticospinal fasciculus comparing between the AB and CB
groups (corrected p < 0.05), the left superior longitudinal fasciculus between AB and CB,
and between AB and SC (corrected p < 0.01), and the left uncinate fasciculus between AB
and SC (corrected p < 0.05). Figure 2 shows an example of the rendered fibers overlaid on
an anatomical image from an SC participant, where each tract is encased in a heat map of
the mean FA along the length of the tract. The group data for mean FA along the length of
each tract is shown in Figure 3. Figure 4 shows the mean FA collapsed across spatial node
for each of the identified tracts.

Discussion

Results from the TBSS analysis revealed a reduction in white matter integrity in both blind
groups when compared with sighted controls, specifically in the optic radiations. We also
showed a general trend toward higher FA in more central white matter structures for the
blind groups, which is in agreement with Wang et al [22]. However, unlike Wang et al., our
TBSS revealed that AB did not have lower FA near the optic radiations than CB; in fact,
we actually found a trend in the opposite direction. This makes intuitive sense as the optic
radiations, which connect the lateral geniculate nucleus to the primary visual cortex, have
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essentially never been used by congenitally blind participants, resulting in higher levels of
atrophy compared to those who became blind in adulthood.

In the AFQ analysis, we found that 3 of the 18 analyzed tracts showed difference between
the three groups: the left uncinate fasciculus, the left superior longitudinal fasciculus, and
the right corticospinal tract. The left uncinate fasciculus, a tract connecting the left temporal
pole with the orbitofrontal cortex, is generally associated with higher cognitive functions,
such as verbal memory, working memory, and name retrieval/recognition [28, 29]. We
found elevated FA in this tract for the acquired blind group, compared to the other two.
Interestingly, this finding is consistent with results from a different brain imaging method,
brain volumetry [30] which showed volumetric differences in “early blind” participants in
the region of the left uncinate, a group more comparable to our congenitally blind group
(except that they allowed for the inclusion of some early visual experience, whereas our
group were all totally blind from birth excluding light perception). We also found that the
AB group had significantly lower FA in the left superior longitudinal fasciculus. This is a
longrange tract, generally associated with language processing and spatial awareness, which
is a cognitive ability of particularly high importance when vision is lost [31]. Finally, we
found a significant difference between the AB and CB groups in the right corticospinal tract,
which connects the spinal column with superior cortical regions such as somatosensory and
motor cortex [32]. This is partially consistent with previous work showing blind participants
of both types generally have higher FA in this tract than sighted controls, with a bigger effect
in AB than CB [22]. We also found that AB had the highest FA in this tract, however unlike
Wang et al., we showed no difference between the CB and SC groups.

This work brings new insights into a larger body of work that have shown connectivity
differences between blind and sighted individuals. We showed a general loss of some
regions of white matter in blind participants when compared to sighted, which is consistent
with Liu et al. 2007 [3]. Importantly, we also showed evidence of compensatory plasticity
in regions important to general functions following sensory loss. We also provided evidence
that neuroplastic changes continue when visual loss occurs later in life, indicating the
existence of a mechanism for unceasing neurophysiological compensation.

Conclusions

To investigate the effect of the onset of blindness on structural connectivity at the whole-
brain, voxel-wise level and at the level of all major white-matter tracts, we applied two
complementary DTI analysis methods, TBSS and AFQ. To our knowledge, this is the first
study to apply AFQ to blind populations, as well as the first to combine AFQ with TBSS in
these clinical populations. The TBSS results were generally consistent with previous work,
however, our study found that the participants who have had functioning vision for much
of their lives (the AB group), tended to have higher FA in the optic radiations than the
participants in the CB group, who have never had visual function. Furthermore, the AFQ
method allowed us to compare for the first time 18 major fiber tracts across populations

of people blind from birth, people who acquired blindness later in life, and people with
normally functioning visual systems. The AFQ tract profiles suggest that, surprisingly,
congenitally blind participants were generally more similar to sighted controls than to
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acquired blind participants in tracts that differed between groups. This inversion, which

is specifically in tracts associated with spatial awareness and working memory, could be
indicative of a higher level of plasticity in the pathways of the readjusting brains of people
who become blind later in life. Generally, the major-tract-based analyses provide important
new insights into plasticity of white matter of the human brain.
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Fractional anisotropy (FA) was compared for all three participant groups. Results are shown

in “glass brains” such that all results are visible simultaneously, as opposed to slice-based
brain representations. The top row shows AB vs sighted controls (SC), where red is FA
higher in AB than SC and blue is FA higher in SC. The middle row shows CB vs SC, where
red is FA higher in CB. The bottom panel shows a comparison of the acquired blind (AB)

vs congenitally blind (CB) participants, where red is FA higher in AB than CB, and blue is
FA higher in CB. Darker reds and blues indicate voxels with between group comparisons p <

0.05, and lighter colors indicate significance closer to p < 0.001.
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Figure 2.
Rendered fibers for 6 of the Mori fiber groups, encased in a visual representation of their

mean fractional anisotropy from a representative SC participant for the Inferior Fronto-
Occipital fasciculi (left), the uncinated fasciculi (middle), and the superior longitudinal
fasciculi (right).
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Mean fractional anisotropy is plotted against spatial tract node for each of the 18 Mori fiber

groups identified using the AFQ algorithm. The data for each of the three groups - acquired

blind (blue lines), congenitally blind (cyan lines), and sighted controls (yellow lines) - are

plotted with solid lines, and the filled in regions between lines represents areas that are

significantly different across groups (p < 0.05 by individual track nodes), where blue fill

designates significant differences between AB vs CB, cyan between CB vs SC, and yellow

between AB vs SC.
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Mean fractional anisotropy is shown for each of the three groups, averaged across spatial

nodes. Error bars are standard error of the means. Single asterisk denotes groups that are

significantly different (corrected, p < 0.05), and those with double asterisks are significantly

different (corrected, p<0.01) corrected for multiple comparisons using false detection rate

(FDR).
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Number of participants from each group with classifiable fibers in each of the 20 major fiber tracts that were

identified using AFQ.
Mori Fiber Group AB | CB | SC
1. Left Thalamic Radiation 4 4 3
2. Right Thalamic Radiation 4 4 3
3. Left Corticospinal 4 4 5
4. Right Corticospinal 4 4 5
5. Left Cingulum Cingulate 4 4 5
6. Right Cingulum Cingulate 4 3 5
7. Left Cingulum Hippocampus 3 0 1
8. Right Cingulum Hippocampus 4 1 1
9. Callosum Forceps Major 4 2 5
10. Callosum Forceps Minor 4 4 4
11. LeftInferior Fronto-Occipital 4 4 5
12. Right Inferior Fronto-Occipital | 4 4 5
13. Left Inferior Longitudinal 4 4 3
14. Right Inferior Longitudinal 4 3 4
15. Left Superior Longitudinal 4 4 5
16. Right Superior Longitudinal 4 4 5
17. Left Uncinate 4 4 4
18. Right Uncinate 4 4 5
19. Left Arcuate 4 4 5
20. Right Arcuate 4 3 5
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