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Abstract

A set of constitutive model parameters along with crystallography governs
the activation of deformation mechanisms in crystal plasticity. The consti-
tutive parameters are typically established by fitting of mechanical data,
while microstructural data is used for verification. This paper develops
a Pareto-based multi-objective machine learning methodology for efficient
identification of crystal plasticity constitutive parameters. Specifically, the
methodology relays on a Gaussian processes-based surrogate model to limit
the number of calls to a given crystal plasticity model, and, consequently,
to increase the computational efficiency. The constitutive parameters per-
taining to an Elasto-Plastic Self-Consistent (EPSC) crystal plasticity model
including a dislocation density-based hardening law, a backstress law, and
a phase transformations law are identified for two materials, a dual phase
(DP) steel, DP780, subjected to load reversals and a stainless steel (SS),
316L, subjected to strain rate and temperature sensitive deformation. The
latter material undergoes plasticity-induced martensitic phase transforma-
tions. The optimization objectives were the quasi static flow stress data for
the DP steel case study, while a set of strain-rate and temperature sensi-
tive flow stress and phase volume fraction data for the SS case study. The
procedure and results for the two case studies are presented and discussed
illustrating advantages and versatility of the developed methodology. In par-
ticular, the efficiency of the developed methodology over an existing genetic
algorithm methodology is discussed. Additionally, the parameters identified
for the SS case study were utilized to simulate three biaxial tensile loading
paths using a finite element implementation of EPSC for further verification.

Keywords— Crystal plasticity; Machine learning; Numerical algorithms; Pa-
rameter identification



1 Introduction

To attain a solution for the balance of linear momentum governing equation un-
der the action of applied deformation in continuum mechanics, a constitutive law
describing the material strength is needed. The sought solution in terms of stress
and strain fields is commonly obtained numerically using methods such as the self-
consistent (SC) scheme [1] or the finite element (FE) method [2]. Accuracy of the
sought solution is dependent on the accuracy and flexibility of a selected constitu-
tive law. Constitutive laws based on crystal plasticity theory are known as more
accurate than phenomenological laws because they are based on crystallography
of deformation mechanisms and they account for microstructure and texture evo-
lution during deformation. These laws are multi-scale in nature because they link
the constituent grain level deformation response to the that of a polycrystalline
aggregate. Although known as more accurate, these models are yet to be adopted
by practical users because of the prohibitive computational effort and time in-
volved in such simulations and because specialized expertise is required for model
parameters identification for successful simulations.

With the appropriate model parameters identification, crystal plasticity mod-
els (CPMs) can simulate monotonic or strain-path change deformations while ac-
counting for texture, dislocation density, and phase evolution [3, 4, 5, 6], reveal
underlying deformation mechanisms [7, 8, 9, 10], and define new experimental
procedures for understanding materials [11, 12, 13]. CPMs are being constrained
with rich data including the diffraction techniques which provide robust datasets
[14, 15, 16, 17]. No matter how complex the data is, a particular parameter is
usually constrained with the specific portion of the data. Moreover, essential in
the identification process is to ensure that the identified parameters are physical,
else the model will not be able to extrapolate the predictive characteristics. In
summary, effective crystal plasticity simulations, extrapolating the predictive ca-
pabilities to high strains, high strain-rates, complex geometries [18, 19, 20], and
maximizing learning and experimental impact [21, 22] are only possible with ap-
propriately constrained model parameters.

CPMs have traditionally been calibrated by changing parameters manually to
fit a representative dataset. Such process requires expertise and significant time.
Identification of CPM parameters from mechanical data using automated opti-
mization schemes [23] and multivariant analysis [18] have been attempted in the
past. A methodology optimizing the crystal elastic moduli and plasticity param-
eters were implemented recently [24, 25| by matching discrete spherical harmonic
modes of lattice strain pole figures from simulated and measured high energy x-ray
diffraction data. Bandyopadhyay et al. [26] developed an algorithm to calibrate
CPM parameters by utilizing GA to estimate the uncertainty quantification in the
output of the models. Recently, Proper Generalized Decomposition (PGD) has
been used for material model calibration [27]. Pareto-based multi-objective opti-
mization schemes have also been used to optimize parameters of damage models
such as the Gurson-Tvergaard-Needleman model [28, 29, 30].

A recent work reported in [31] utilized an advanced methodology involving
an expensive function optimization strategy for constructing a surrogate model.
Searching a response surface with a genetic algorithm (GA) along with updat-
ing the response surface, parameters were identified using mechanical data with
limited number of calls on the compiled executable of the model. The primary
limitation of the procedure reported in [31] was relying only on the mechanical
data. Additionally, the procedure in [31] approximated the response surface using
second-order polynomial with up to four-way interactions, preventing the use of
material models with more than just a few parameters to fit. A more recent multi-
objective GA (MGA) procedure reported in [32] considered not only mechanical
data but also microstructural evolution data to constrain the models being fit more
rigorously. Incorporating more than mechanical data as objectives was found es-



sential in improving the parameter identification. However, the MGA procedure
in [32] was computationally demanding because of a large number of model calls
and also required advanced computational platforms [32]. The aim of the present
work is to combine advantages of these prior works [31, 32, 33], and to take a sig-
nificant step further. This work deploys a budgeted sequential infilling algorithm
that allows a user to set a fixed budget, where a budget is a number that caps
the amount of runs of an expensive black-box function and infilling is a procedure
to find new candidate points. The infill points are sets of parameters added as
new potential solutions. To this end, the novel procedure advances [32] by incor-
porating a machine learning based surrogate model to limit calls (i.e., assign a
fixed budget) to the material model and, consequently, to increase computational
efficiency.

The development and applications of machine learning tools in various aspects
of material science research have recently been reviewed in [34]. Advantages of
integrating machine learning tools and CPMs are being recognized in creating
efficient constitutive models for polycrystalline simulations and integrated compu-
tational materials engineering applications [35, 36, 37]. In particular, polynomial
approximation of response surfaces and canonical correlation analyses were used
in sensitivity and parameter identification studies [31, 18]. Gaussian process (GP)
models, also known as Kriging, have been used in constructing structure-property
linkages [38], more recently, in fluid dynamics simulation [39], and in linking crystal
plasticity results to part scale simulations [33]. Barton et al. used a metric-tree
database for course-scale queries, which explores a pre-determined region, and
Kriging as an adaptive scheme to search for optimal points under some threshold
[33]. In our work, Kriging models are fitted to the responses where the inputs are
from Latin hypercube sampling and the subsequent infillings. In a sense, these are
like course-scale queries. The goal of our sequential search via GP-based infilling is
to hone in on optimal points under a budget restriction. The present work utilizes
GP models to develop a Pareto-based multi-objective machine learning method-
ology for efficient identification of crystal plasticity constitutive parameters. To
this end, a budgeted sequential infilling procedure is developed based on GP sur-
rogate models and shown that it is able to identify optimal model parameters,
while significantly reducing the amount of computation time relative to GA-based
procedures. The novel procedure and results for several case studies are presented
and discussed in this paper illustrating advantages, versatility, and computational
efficiency.

2 Methods

The goal of optimization is improvement of given objectives in each iteration.
Complex systems with multiple objectives can have multiple optima; one such
system is the identification of model parameters in CPMs. Selecting any one
of the calculated optima can be an acceptable solution to reproduce the data.
However, the identified parameters must be in the range of their physical values.
Therefore, there is an extra step upon completing the optimization iterations,
which is selecting a final optimum set of model parameters from evaluated optima.
The multi-objective optimization formulation is:

Minimize y(x) = {y(l)(w),y@)(a:), . ,y(‘I)(:c)}T, (1)

where & € D and y)(x) is the j-th objective function to be minimized. D is the
space of the vector & representing a set of parameter.

This work deploys a budgeted sequential infilling algorithm that allows a user
to set a fixed budget. The budget (the number of simulations runs) is a number
that caps the amount of runs of an expensive black-box function. Suppose that
for each simulation run there are N objectives. Since each objective requires a



run of an executable, the result is B*N runs of the executable. In our work, y(x)
is the black-box function consisting of objectives calculated based on a selected
CPM. A sequential search of the parameter space finds new points (called infill
points) for objective/fitness function evaluations—the error between the black-
box function and its true value (experimental measurements)—and updates the
Gaussian process (GP) surrogate model, accordingly, as explained next. While the
GP surrogate model establishes suitable infill points, the objectives are exclusively
evaluated upon running the selected CPM.

2.1 Gaussian processes

GP or Kriging originated as a geostatistical interpolation method, which was ex-
tended to the design and analysis of computer experiments [40]. A GP is a collec-
tion of random variables where any finite number of them have a joint Gaussian
or multivariate normal distribution [41]. It is a general approximation method for
an unknown deterministic black-box function f(x). The general model setup for
GP is:

f(x) =v(z) + Z(z), (2)

where € € D, v : @ € D — v(x) € R is a deterministic trend and Z(x) is a
centered-stationary random GP with zero mean and a stationary covariance kernel
(or covariance function) expressed as:

K(z,z*) = Cov(Z(x), Z(x*)) = 0*R (z,z*,0), (3)

where x, x* € D, 02 is the variance parameter, R is the correlation function, and
0 is a vector of characteristic length-scales consisting of hyperparameters [39]. In
this work, the Matern 5/2 kernel is used to get the correlation function:

d
Rz, z*) = [[(1+ v56:m: + g@?m?)el‘p(—\/gﬁimi) , (4)
i=1
where z; and ] are the i-th components of & and x*, respectively, m; =| x; —x} |,
and d is the dimension of D.

An initial construction of the GP model is done through a design of exper-
iments (DOE) methodology. Latin hypercube sampling (LHS) is a technique
used in the DOE as a space-filling design for this work. Let a collection of
n (typically, n = 10 x the number of parameters) observations from LHS be
X, = {x1,...,zn} C D, and let the data be D, = (X,, f(X,)). The n ob-
servations is modeled as having a multivariate normal (MVN) distribution since
there is a finite number of realizations of the GP—i.e., evaluations of f(X). The
characteristics of the observations are completely described by their n-vector mean,
pn = ((x1), ..., (xy)) (where u(x) = E[f(x)] = E[v(x)]), and n x n covariance
matrix, 3, = K(X,, X,). The conditional distribution f(X)|D,, (or the poste-
rior)—which, again, is a multivariate normal distribution—explains what random
function realizations could have generated the observed values. Interpolation of
f(x) is done by sampling from the posterior distribution. For example, assume
the mean function is zero and let X, C D be m new observations, then we have
the following:

F(Xon)| Dy ~ N (p", 27, (5)
where p* = K(Xom, Xn) X, 1 f(X,), and
S = K(Xm, Xm) — K(Xom, Xn) 2, LK (X, X)) 7.
The procedure for sequential searching of infill points is called the infilling

criterion, as described next. New infill points will be considered until the budget
is exhausted.



2.2 Infilling criterion

The infilling criterion such as the efficient global optimization (EGO) algorithm of
Jones et al. [42] is based on expected improvement (EI). Let f(x) be GP for the
mono-objective case, and suppose we have n GP outputs y1, ..., y, at our inputs
x1,...,x,, then the EI is defined as:

Bi(@) = & [max (0. iy (5~ () ) | F@1) = n..ooo @) = e

1<i<n

(6)

While for the multi-objective case, scalarization—i.e., mapping a vector of
objectives to a scalar —can be invoked to utilize EI, it may not work well without
additional assumptions [43]. Techniques such as those proposed by Jones et al. [42]
improve on this by estimating the improvement brought on by a potential solution
(from the surrogate model) to the set of non-dominated points, as elaborated in
the next section.

In the multi-objective settings, infill points (a set of parameters) are chosen
based on a set of GP models as described in the prior section. The goal is to
identify infill points yielding better objectives/fitness, i.e., smaller error. For the
multi-objective case, there are more than one GP model—one for each objective.
It should be noted that it is possible to use even a more complex multivariate GP
(i.e., CoKriging). However, there is little to gain with the additional complexity
based on empirical data as elaborated in [44, 45]. The set of optimal solutions in
the multi-objective case is called the Pareto optimal points—this forms the Pareto
front.

The S-metric Selection Efficient Global Optimization (SMS-EGO) approach is
an improvement function which computes the hypervolume added to the current
Pareto front by the lower confidence bound of the prediction at @ [46]. The S-
metric or hypervolume indicator is a method to evaluate how close a point set is
to the Pareto front. For a given reference point, 7, the hypervolume indicator of
a set S is the volume of all points which weakly-dominate r, and we use H(S)
to denote it [47]. The reference point can be determined from the evaluations
of the black-box functions of the initial design—i.e., the maximum value of each
objective.

SMS-EGO uses the surrogate GP models to search for new candidate points.
The best candidates are selected by maximizing the improvement of hypervol-
ume indicator of the Pareto set after being combined with the potential solution.
In general, hypervolume contribution of a set X to S—i.e., the improvement in
hypervolume indicator by incorporating X—is defined as [47]:

H(X,S)=H(XUS)-H(S/X) (7)
The goal is to find the set of non—dominated or Pareto—optimal points—i.e.
{z],...,z;,} CD,

where m is the number of points in the Pareto set (which varies) and none of these
points is superior to any other points in this set in terms of all objectives. With
the new potential solution, the black-box function (CPM) is evaluated, and the
GP models are also updated by adding new points. This procedure repeats until
the budget is exhausted.

Figure 1 shows a flowchart that describes the infilling algorithm:



Figure 1: Flowchart showing the budgeted sequential infilling algorithm.

2.3 From Genetic Algorithm to sequential infilling al-
gorithm for crystal plasticity modeling

In an MGA-based procedure, a compiled CPM is run for each objective per popula-
tion to compute the simulated results given a set of parameters for each generation.
The algorithm stops once the maximum number of generations is reached or when
there are no appreciable improvements in comparison with the previous generation
of parameters, which is usually controlled via a parameter [43].

GA generates an initial population in the first generation randomly and ap-
proaches better solutions over generations. The new solutions are generated via
genetic mutations and breeding algorithms which mimic the process of natural
selection.

Since a CPM usually takes a few minutes to run, the run-time adds up quickly.
For each population in the generation, the GA has to run the model once for
each independent case. Some unreasonable combinations of parameters may also
cause the model to fail to converge and hang the process indefinitely until it is
automatically terminated by the batch process when a maximum time is reached.
Fortunately, the model can be executed independently on separate CPUs allowing
for parallelization to speed up the optimization process.

The number of runs of CPM for GA depends on the number of generations,
the populations size, and the size of an individual (number of parameters). The
number of runs of CPM for the infilling algorithm is the size of the initial design
plus the budget size, which is much less than with GA, as will be shown later.
While the number of simulation runs needed may be high, one of the main advan-
tages of GA is that it scales well with the use of parallelism. It is also known to
be a robust method for a wide variety of problems [48].

For CPM, a budgeted sequential infilling algorithm can identify suitable pa-
rameters with a small number of simulations, as will be shown. There are two
major differences between the two methodologies. GA runs CPM for all candidate
points, and select the next generation from them. In contrast, our methodology
runs CPM only for the selected infill points. The other difference is the stopping
criteria. Our methodology is based on a budget; GA’s stopping criteria can be
based on convergence (e.g., no improvements in the population for some number
of iterations), hard stop after some number of generations, or the objective func-



tion satisfies some tolerance level. The latter was used in the previous work [32].
It will be shown later that we were able to identify suitable CPM parameters with
a small number of simulation runs with our methodology compared to GA. In
theory, computing the variance-covariance matrix for Kriging when the training
set is large can potentially become a computational bottleneck. But it is not an
issue in our study. The advantage of using a stopping criteria such as with an
objective function that satisfies some tolerance level, is that it allows the user to
specify how well of a fit they want, at the expense of high number of simulation
runs. In our methodology, a budget size is the only constraint. A larger budget
will yield more accurate solution.

2.4 Summary of the CPM objectives

This work combines the GP-based surrogate model and multi-objective optimiza-
tion to efficiently identify the constitutive parameters of an Elasto-Plastic Self-
Consistent (EPSC) CPM. The EPSC model embeds a dislocation density-based
hardening law along with a backstress law and a martensitic phase transformations
law to model mechanical behaviors of steel alloys. The formulation is summarized
in appendix A.

The optimization scheme was first applied to search a parameter space and
identify a set of optimized Pareto parameters for 1.4 mm sheets of a dual phase
(DP) advanced high strength steel (AHSS), DP780 [49]. The material contains
34% of martensite, while the other phase present in the microstructure is ferrite
(66%). The steel had a typical orthotropic rolled initial texture, which was repre-
sented with 500 weighted orientations [50, 51, 52]. Appendix B shows the initial
texture. The steel was tested experimentally in cyclic tension-compression strain
paths under a nominal strain-rate of 5e~*s~! at room temperature [49]. In addi-
tion to the hardening law parameters for slip, the complete list of parameters to
optimize includes those of the backstress law in order to capture the load-reversal
deformation behavior of the steel. The objectives were the experimental flow stress
data recorded during the cyclic testing. In the model, we compute the objective
as the root-mean-square error (RMSE) between the simulated and experimental
curves.

The parameters to be identified for slip are the initial slip resistance, 7', trap-
ping rate coefficient, x{', drag stress, D, and activation barrier for de-pinning, g,
per phase (ferrite and o/-martensite). The superscript o enumerates slip modes/-
families, while s enumerates the individual slip systems per mode. The slip modes
available to accommodate plastic strains in the body-centered cubic (BCC) steel
phases of ferrite and o/-martensite are a=1 for {110} and a=2 for {112}. The pa-
rameters are assumed identical for both slip modes. While 7y influences the initial
yielding, ~{ governs primarily the initial hardening rate and D® and g govern
the subsequent hardening rates. Additionally, the initial state of forest disloca-
tion density influencing the initial yielding of the steel, P0, For» Was allowed to vary
for each phase. Simultaneously with the hardening law parameters, the backstress
law parameters for ferrite need fitting. These include the saturation for backstress,
Tlf:t, asymmetry factor, Aps, and coefficients v and ;. These parameters are fit to
obtain the unloading and asymmetric yield at load reversals.

The optimization scheme was subsequently applied to identify parameters for
modeling of 1.2 mm sheets of SS316L austenitic steel undergoing strain-induced
martensitic phase transformations. The slip mode available to accommodate plas-
tic strains in the face-centered cubic (FCC) austenite phase is {110} octahedral
slip, while that of the hexagonal close-packed (HCP) e-martensite phase is {0111}
pyramidal slip. The o/-martensite phase is BCC, whose slip modes were already
defined. The initial material also had a rolled texture [53, 54], which was rep-
resented with 500 weighted orientations for simulations. Appendix B shows the
initial texture. The experiments to acquire mechanical and phase fractions data



included uniaxial tension in the rolling direction under four strain rates at a con-
stant temperature of 20 °C and four temperatures at a quasi-static strain-rate of
0.001 s~!. The details pertaining to preserving the isothermal condition during
the tests can be found in [53]. The recorded flow stress curves and phase fractions
were used as the objectives. The response as well as the transformed martensite
volume fractions was temperature and strain rate sensitive. Therefore, the initial
slip resistance for SS316L is formulated to be strain rate and temperature depen-
dent, as described in the appendix. Instead of the backstress law parameters, the
phase transformation law parameters were fit for SS316L. These included a slope
for the stacking fault energy, mgrp, an intercept for the stacking fault energy,
CsrE, a slope for the triaxiality effect on phase transformations, xg, and an inter-
cept for the triaxiality effect, Sy. The initial forest dislocation density was fixed to
Po, f OT:SeH for austenite, while the transformed phases inherit the value from par-
ent phase upon nucleation. The optimized parameters for SS316L were then used
to simulate three biaxial tensile loading paths performed on cruciform specimens.
The three paths defined in terms of rolling direction (RD) to transverse direction
(TD) displacement ratios are: 4:4, 2:4, and 0:4, following the experiments reported
in [55].

Table 1 summarizes the data to fit along with the objectives used in the opti-
mization to identify model parameters per material. Table 2 and Table 3 define the
EPSC parameters being optimized and their lower and upper bounds that define
the parameter space, D. The upper and lower bounds are chosen to be the param-
eters’ expected maximum and minimum possible values based on understanding
of the mechanical data, calibration experience using prior manual methods, and
literature. Next section describes a sequential infilling pipeline (or application)
streamlining the process of using the budgeted sequential infilling algorithm for
CPM while highlighting robustness of the system that is configurable and easy to
modify.

Table 1: Summary of data to fit, labeling of the data, and objectives
used in the optimization scheme to identify model parameters for DP780
and SS316L. The DP780 steel was tested experimentally by applying cyclic
tension-compression strain paths under a nominal strain-rate of 5e=*s™!
at room temperature.The stress-strain objective implies about 200 discrete
points for each simple tension curve and about 1000 discrete points for each
cyclic curve. The phase fraction data contains only 3 data points, but these
are critical objectives for fitting the phase transformation parameters.



Case ID  Material

Objective(s)

Test conditions

DP780
DP780

DP780

DP780

DP780

DP780

DP780

DP780

DP780

Stress strain

Stress strain

Stress strain

Stress strain

Stress strain

Stress strain

Stress strain

Stress strain

Stress strain

Compression to 0.1 strain

Strain path: 0.01 prestrain,
unload, then pull to fracture

Strain path: 0.02 prestrain,
unload, then pull to fracture

Strain path: 0.05 prestrain,
unload, then pull to fracture

Strain path: 0.1 prestrain, un-
load, then pull to fracture

Strain path: 0 — 0.02 —
—0.02 — 0.04 — 0 — 0.06

up to fracture with the
strain amplitude of 0.04 and
the mean strain increase of
0.02 per cycle.

Strain path: 0 — 0.02 — 0.04
— 0.02 — 0.06 ... up to frac-
ture with the strain amplitude
of 0.02 and the mean strain in-
crease of 0.02 per cycle.

Strain path: 0 — 0.02 —
—0.02 — 0.03 - —0.01 —
0.04 ... up to fracture with
the strain amplitude of 0.04
and the mean strain increase
of 0.01 per cycle.

Strain path: 0 — 0.02 —
—0.02 — 0.04 - —0.04 —
0.06 ... up to fracture.

AA
BB
CcC
DD

EE

FF

GG

SS316L
SS316L
SS316L
SS316L

SS316L

SS316L

SS316L

Stress strain
Stress strain
Stress strain
Stress strain

Stress strain

Phase fractions

Stress strain

Phase fractions

Stress strain

é1=1le3s7 L Ty =20 °C
gg =1le st Ty =20 °C
ég=1le 257t Ty =20 °C

€4 =5e 357t Ty =20 °C
g1 =1le3s7 L Ty =-15 °C
g1 =1le3s7 L Ty =0°C

é1=1le3s7 T3 =10 °C




Table 2: Parameters to optimize for DP780 within their upper and lower
fitting bounds. The superscripts fer and mart denote the parameters for
ferrite and o/martensite phases, respectively. The backstress parameters are
for ferrite.

DP780 Bounds Description
KT Im [le+8, le+9]

S MY [Le+8, 1e49)

I M Pa) (10, 100]

o™ (M Pa] - [10, 1000]

Rate of dislocation generation

Initial slip resistance

s, fer 92
m le+10,
0 gorm ] [1 e+12] Initial forest dislocation density
Polfer M%) [le+10,
le+12]
goder [0.001, 0.02] o
Activation energy
gmart [0.01, 0.2]
Defer[MPa) (100, 1000]
Drag stress
D™t M Pa]  [100, 1000]
T2 [ M Pal [50, 150] Saturation value
v [50, 150] Forward shear parameter
Vb [0.001, 0.01]  Reverse shear parameter
[

Abs

1, 5] Asymmetric evolution parameter

10



Table 3: Parameters to optimize for SS316L within their upper and lower
fitting bounds. The superscripts aus and mart denote austenite and o'-
martensite phases, respectively.

SS3416L Bounds Description
P [let8, 2ot o .
Rate of dislocation generation
KM MY [1e+8, 3e+8]
goraus 0.1, 0.25] o
Activation energy
ga,mart [O 1 0 4]
D*ess[MPa]  [100, 200]
Drag stress
DemartIM Pa] - [200, 400]
Tow [MPa]  [200, 400] o .
Initial slip resistance coefficient a
o [M Pa] 100, 500
7'00Z pe [0.01, 0.08] Initial slip resistance strain-rate
gy ;)mm"t [0, 0] coefficient, b
Toa MK 200, 400] Initial slip resistance temperature
T(fff“s[K] [le46, le+6]  coefficient, ¢
mgpg[%] [0.01, 0.5] Stacking fault energy slope
Csp E[WT:’Q] 5, 15] Stacking fault energy intercept
Kg (0.1, 0.8] Triaxiality slope
5o (0.1, 0.5] Triaxiality intercept

2.5 Sequential infilling pipeline for EPSC

The pipeline was designed specifically for the purpose of identifying EPSC param-
eters, but it can be adapted for other applications. It was developed using Python
and R, without any dependency on commercial applications like Matlab®; GPareto
is used as a dependency for multi-objective optimization[44] and DiceDesign is used
as a dependency for Latin hypercube sampling [56]. It is called a pipeline because
it streamlines the process of setting up an experiment, running the budgeted se-
quential infilling algorithm, and saving the intermediate data. Since the simulation
calls are expensive, the parameters and results of the simulation calls are saved so
they can be reused or checked for issues.

Parallelization is used whenever possible to speed up the runs. For sequential
infilling, the parallelization distributes the simulation runs across available cores.
In the initial design phase where sampling is done via the space filling design,
this can be processed asynchronously. Therefore, multiple nodes can be used to
process data points from the initial design, such as within a cluster, to speed up
the process. For example, with 9 cases or objectives, the initial training of the
models using data points from Latin hypercube sampling is done in parallel —i.e.,
for 190 data points, all 190 points and the evaluation of the material models for all
9 are done in parallel. With sequential infilling, the candidate points are produced
one at a time. Therefore, for each point, the material models for all 9 are executed
in parallel.

11



In addition, the application has controls in place to terminate EPSC processes
when they run for too long. Figure 2 shows the design of the application.

It is possible to use the pipeline on one node because the number of simulation
runs is a fraction of those needed in a GA-based methodology. With GA, it would
take many days to run on one node, as will be discussed in the next section.

Figure 3 shows a high-level flowchart of the application integrated with EPSC.
While EPSC is selected as a CPM for the work presented here, the figure identifies
several other CPMs including Taylor-type models [57, 58, 59], Taylor-type models
embedded in crystal plasticity finite elements (T-CPFE) [60, 61, 62, 63, 64], self-
consistent (SC) models EPSC/VPSC [65, 66], FE versions of the SC models [33, 67,
68], and efficient versions of the elasto-visco-plastic fast Fourier transform-based
(EVPFFT) models [69, 70, 71, 72], which are also suitable for computationally
less efficient identification of CPM parameters. However, the runtime would vary
depending on the selected model. The optimization involving high fidelity models
such as full-field EVPFFT/CPFE would be more computationally demanding.
The present work selected a lower fidelity mean-field model to demonstrate the
optimization methodology due to the costly runtime of those higher fidelity models.

Figure 2: Flowchart showing architecture of the pipeline application.

Figure 3: Flowchart showing the pipeline interacting with EPSC.
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3 Results and discussion

The EPSC was calibrated for two steels using the above described sequential in-
filling pipeline.

3.1 Application to DP780

The prior work relied on the GA-based procedure with an initial population of 520
for 51 generations and 9 loading cases resulting in 238,680 simulations calls—a little
over 3.6 days on 4 nodes with 32 cores per node (or 128 in total) on a cluster [32].
With a budget of 150, 14 parameters and 9 strain paths, the amount of simulation
calls in the present work was 2,610—around 2 days on a single node with 4 cores.
Evidently, the machine learning-based multi-objective optimization developed in
the present work for identification of crystal plasticity model parameters is about
two orders of magnitude more efficient than the former GA-based procedure.

In multi-objective optimizations multiple Pareto optima exist. These Pareto
optima are the solutions that cannot be ruled out by the Pareto method. Moreover,
the optima are not necessarily equivalently suitable solutions. Further ranking of
these optima is needed. In the case of DP780, the Pareto front set consisted of
40 solutions. To evaluate these solutions, RMSE of all objectives is calculated
to rank the solutions in an ascending order for finally selecting the most physical
solution through visual inspection. Here, we calculate the average over objectives
(each objective is an RMSE between one experimental curve and corresponding
simulated curve discretized into many points) to rank the solutions. Additionally,
we normalize RMSE per objective to get a percent error. The ranking plots are
shown in appendix C. The selected solution is not necessarily the one with the
lowest average error but the most physical one and with as low as possible RMSE.
After sorting the solutions based on the average error of all objectives in the as-
cending order, the best candidates are then visually inspected to select the most
physical solution. While most of the solutions provide good fits, we chose the first
sufficiently physical set that has the lowest error as a solution. The selected solu-
tion is not necessarily the one with the lowest average error. The nature of crystal
plasticity model parameters is that they are not unique. Having a fully automated
procedure for parameter identification is an extremely challenging task. Some hu-
man inspection must be involved based on understanding of the mechanical data,
calibration experience using prior manual methods, and literature. The optimized
set of parameters are shown in Table 4, and the objectives are shown in Figures 4
and 5, where Optimum 1 and Optimum 2 are two different optimal solutions chosen
from a reduced Pareto front set of optima with low RMSE based on the criteria of
the most physical set with lowest error. A physical set of the parameters is defined
as the set providing qualitatively similar calculated curves to the measured curves
in terms of yield stresess and hardening rates, expected values for some of the
parameters like the initial dislocation densities or initial slip resistances, and good
comparisons with available values in the literature for some parameters like in
[49] for DP steels. Optimum 1 is the most physical solution, while Optimum 2 is
presented to show one other solution from the set of multiple optima. While the
main purpose of the DP780 steel data was to provide a direct comparison with the
previous work involving the GA-based optimization (appendix D), we also run a
verification case study. To this end, we adjust the optimization process to consider
cases 1, 2, 3, 4, 6, 7, and 9 as objectives, while cases 5 and 8 are predictions of the
optimized parameters from the other 7 cases. The obtained results were similar to
those with fitting all 9 cases and, therefore, are not shown. Finally, appendix D
shows comparisons between past results from the genetic algorithm optimization
and current results obtained using the optimization developed in the present work.
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Table 4: Two optima of EPSC model parameters for ferrite and martensite
phases of DP780 steel identified using the developed Pareto-based multi-
objective machine learning procedure for efficient identification of crystal
plasticity model parameters. Crystal elastic constants are also necessary
to run the model: C{l = 206 GPa, C’f; = 135 GPa, and 04{4 = 117 GPa
for ferrite and C7} = 282 GPa, C7% = 135 GPa, and CJ} = 117 GPa for
martensite [73, 74].

Ferrite Martensite

Parameters Optimum Optimum Optimum Optimum

1 2 1 2

K& [m™Y 1.33e+4-08 6.35e+08 1.2e4-08 1.71e+08
78 M Pal 61.7 37.8 532 314
0. for [m 2] 1.4e+11 1.5e+11 6.7e+11 6.5e+11
g© 0.00723 0.00899 0.115 0.113
D*[M Pal 560 564 620 622

Backstress parameters for ferrite
T M Pal 54.8 135
v 136 88
Vb 0.00293 0.00472
Aps 3.85 2.63

Figure 4: Comparison between experimental curves taken from [49] (solid
red) and simulated curves (dashed dashed blue), which are based on the
optimum 1 parameters.
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Figure 5: Comparison between experimental curves taken from [49] (solid
red) and simulated curves (dashed blue), which are based on the optimum 2
parameters.

3.2 Application to SS316L

The EPSC model was also calibrated using the sequential infilling pipeline with
experimental SS316L strain rate and temperature sensitive flow stress and phase
fraction data. The ranking plot of the solutions is shown in appendix C. With a
budget of 150, 14 parameters (additional 4 were fixed), and 7 straining conditions,
the total number of simulation calls was 2,700—a little over 2 days on a single
node with 4 cores. Parameters of e-martensite are taken from the prior work [75]
and set as constants because of its negligible volume fraction. The optimized set
of parameters are shown in Table 5, and the objectives are shown in Figures 6-8.
Figures 6 shows that the model is successfully calibrated to capture the effects
of strain rate, while Figure 7 shows that the model is successfully calibrated to
capture the effects of temperature on deformation behavior of the steel.

Figure 8 shows that the adjusted model correctly captures the expected trends
in the evolution of phases, where the increase in temperature suppresses the rate of
transformations. Since the transformed martensite volume fraction is essential for
the deformation behavior of SS316L, we included the three data points as objec-
tives (the one red data point is one objective, while the two green points are another
objective) as shown in Table 1. However, it constitutes only a minor fraction in the
overall error evaluation. Additionally, the difference between the measured data
and the predictions is also attributed to the model formulation. We remind that
the EPSC model formulation is a mean field type, which makes the model compu-
tationally efficient but reduces its predictive characteristics. Model modifications
such as accounting for spreads in the field variables over ellipsoids can improve
the predictions. In the current model formulation, a single value is assumed for a
given field across the entire ellipsoid. The calculations of spreads have been incor-
porated into a visco-plastic SC (VPSC) formulation [76, 77, 78, 79, 80]. These
model improvements are left for future works.
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Table 5: EPSC model parameters for austenite and two martensite phases
of SS316L steel identified using the developed Pareto-based multi-objective
machine learning procedure for efficient identification of crystal plasticity
model parameters. The initial slip resistances, 7y, of two martensite phases
are assumed to be constant so only 7, term is used. The asterisk (*) indi-
cates parameters that were not optimized but set as constants based on prior
fitting efforts [75] to better constrain the model. Crystal elastic constants
for y-austenite, e-martensite, and o/-martensite follow the values reported in
81, 82]: C}; = 209 GPa, C], = 133 GPa, C}, = 121 GPa, C{; = 269 GPa,
C%, = 129 GPa, C%, = 49 GPa, and C% = 234 GPa, C% = 135 GPa, and
gy = 118 GPa.

Parameters | 7-Austenite | e-Martensite | o/-Martensite

K¢ [m™] 1.19e+08 0.205e408* 1.12e4-08
g© 0.192 1.0e+06* 0.211
D*[M Pal 132.1 100%* 356.3
To.o[M Pal 351.6 800.0* 449.1
70, 0.032 - -
70| K] 257.3 - -
Phase transformation parameters
msreZ2L] 0.1428 Csri[2%] 12.3507
Kg 0.1883 Bo 0.0603

Figure 6: Comparison between experimental curves taken from [53] (solid
lines) and simulated (dashed lines) curves with four jumps in strain rate at
20 °C.
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Figure 7: Comparison between experimental curves taken from [53] (solid
lines) and simulated (dashed lines) curves at four temperatures under a strain
rate of 0.001 s~

Figure 8: Comparison between experimental (discrete points) and simulated
(dashed lines) fraction of o/-martensite at four temperatures under a constant
strain rate. The fraction of e-martensite is nearly zero.
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3.3 Verification using biaxial tension of SS316L

The calibrated parameters of the EPSC model incorporating the dislocation density-
based hardening law and the phase transformations law for modeling of the SS316L
1.2 mm sheets were used to simulate three biaxial tension cases of cruciform spec-
imens for further verification. The details of the experimental procedures can be
found in [55]. The FE model was an eighth of the specimen used in the exper-
iments after invoking the symmetries in X-Y, X-Z, and Y-Z planes, as shown in
Figure 9. The use of these symmetries is justified because of the typical orthotropic
symmetry exhibited by rolled sheets. The selected mesh is a result of geometry
partitioning and a mesh convergence study that reduced the mesh to 5064 C3D8R
elements with 4 elements through-thickness. A displacement of 3.5 mm is applied
to each arm in the rolling direction (RD) and transverse direction (TD), respec-
tively, for the first simulation case of 4:4 strain path. Displacements of 1.75 mm
and 3.5 mm are applied to the RD and TD arms, respectively, for the second sim-
ulation case of 2:4 strain path. Finally, a displacement of 3.5 mm is applied to the
TD arm, while RD is fixed for the third simulation case of 0:4 strain path.

The underlying model used to simulate the three tests is the EPSC homoge-
nization at the meso-level providing a constitutive response at each FE integration
point, within the boundary value problem solved using the implicit FEM at the
macro-level in Abaqus [83]. A brief summary of the coupled modeling framework is
given in appendix A. The FE-EPSC microstructure sensitive simulations predicted
mechanical fields along with the transformed volume fractions of a’—martensite
and texture evolution. The material at each integration point in the finite element
model is represented with the same 500 grains as in the earlier standalone sim-
ulations using EPSC. The rate of transformations is driven by mechanical fields,
i.e., the local states of stress, strain, and stress-triaxiality (the ratio between mean
stress and von Mises stress), as described in the appendix. Figures 10-12 present
the predicted triaxiality, effective strain, von Mises stress, and volume fraction of
o/-martensite distributions as contours over the meshed model for each of the strain
path cases. The model is mirrored in the X-Z and Y-Z planes for visualization. Al-
though the higher triaxiality regions of the model should promote the transformed
volumes, those regions have stress and strain states underdeveloped in compari-
son with the regions near the notches. Since stress/strain states in grains directly
govern the rate of transformations, as described in the appendix, the high stress
regions develop the highest a’-martensite fractions. Figure 13 shows microstruc-
ture in the steel before and after equi-biaxial deformation at the location indicated
in 10. The data was acquired using electron back-scattered diffraction (EBSD).
The phase map verifies the predicted fraction of a’-martensite after deformation.

Finally, Figure 14a-c compare the experimental and simulated force versus
displacement for each case, while Figure 14d compares the strain path at the
center of the pocket per specimen. The strain path is plotted as the strain in
TD versus the strain in RD. Evidently, these results also show good agreement
between the simulations and the experiments, verifying the model and identified
parameters.
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Figure 9: One-eighth of the cruciform specimen displaying important dimen-
sions to appreciate the scale (L = 75 mm, H = 64 mm, and W = 7.5 mm)
and boundary conditions for meshing in Abaqus. Displacement boundary
conditions are applied on each arm and symmetry boundary conditions are
applied on the inner surfaces.
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Figure 10: Contours of (a) stress triaxiality, (b) effective strain, (c¢) von Mises
stress, and (d) volume fraction of evolved a’-martensite over the mesh for the
equi-biaxial (4:4) strain path case. The arrow shows the location where the
EBSD scan was taken. The model predicts 0.072 fraction of a’-martensite at
that location.
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Figure 11: Contours of (a) stress triaxiality, (b) effective strain, (c¢) von Mises
stress, and (d) volume fraction of evolved o’-martensite over the mesh for
the 2:4 strain path case.
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Figure 12: Contours of (a) stress triaxiality, (b) effective strain, (c) von Mises
stress, and (d) volume fraction of evolved a’-martensite over the mesh for
the 0:4 strain path case..
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Figure 13: Inverse pole figure (IPF) maps measured here to show grain struc-
ture in the steel, SS316L: (a) initial and (b) after equi-biaxial tension to ap-
proximately 0.35 displacement at the location indicated in Figure 10. (b’)
phase map showing the fraction of phases in the structure shown in (b).

Figure 14: Experimental from [55] (solid lines) and simulated (dashed lines)
force vs displacement curves recorded during biaxial tension along RD and
TD directions for the three strain path cases: (a) 4:4, (b) 2:4, and (c) 0:4.
(d) Corresponding strain paths at the center of the cruciform specimen for
the three cases.
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4 Conclusions

In this work, the first machine learning-based multi-objective optimization proce-
dure is developed for efficient identification of crystal plasticity model parameters.
Specifically, a GP-based budgeted multi-objective optimization sequential infilling
algorithm is implemented in a Python and R application to identify the consti-
tutive parameters of the EPSC crystal plasticity model featuring a dislocation
density-based hardening, a slip system-level kinematic back-stress, and a phase
transformation sub-models. The utility of the developed application was demon-
strated by identifying model parameters for two steel alloys, DP780 and SS316L.
Experimental flow stress data for nine complex strain paths were used as objectives
to identify the parameters for DP780 steel. Experimental flow stress and phase
fractions data for eight tensile tests in function of strain-rate and temperature were
used as objectives to identify parameters for SS316L. A budget value of 150 was
found to be sufficient to determine Pareto-optimal points (constitutive parame-
ters) for both alloys. Significantly, the number of runs of the expensive black-box
function (objectives based on the crystal plasticity model) reduced by approxi-
mately two orders of magnitude using the novel machine learning-based procedure
in comparison to the former GA-based procedure. The parameters identified for
SS316L were critically verified by simulating three biaxial tensile loading paths
using FE-EPSC.

5 Data availability

The raw data and archived git repository associated with this work can be found at
https://github.com/galoisl17/py_infill_pipeline_v2or https://github.com/
galoisl7/py_infill_pipeline.
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A Appendix A: Summary of the EPSC model

This appendix summarizes the main equations pertaining to the implicit EPSC
model formulation along with the dislocation-based hardening [84, 85], slip system-
level kinematic back-stress [86], and phase transformations [75] sub-models. Cou-
pling of the model with Abaqus through the use of a user material subroutine
(UMAT) named as FE-EPSC is also briefly described [67]. The emphasis of the
description is on the role of parameters in the constitutive response, as these pa-
rameters are used in the optimization procedures. In this section, dot and tensor
products are indicated by e and ), respectively.

A.1 Constitutive equations

The EPSC constitutive formulation relates the Jaumann rate of Cauchy stress, &,
with strain rate, €:

6=0+0cW - Wo, (A1)

where o and W are the Cauchy stress and spin tensors. The constitutive equation
is applied at a material point, which can be a single crystal or a polycrystal i.e. a
representative volume element (RVE). At the crystal level, the respective quantities
are denoted as ¢ and W€ for a single crystal, ¢. The Jaumann rate of Cauchy
stress, 6¢, and strain rate, €¢, are related by the following constitutive relation:

FC = C°(& — éPle — &Phe) — gCtr(€°), (A.2)

where C€ is the 4th rank single crystal elastic stiffness tensor, éP° is the plastic
strain-rate, and €€ is the total strain-rate. The phase transformation mechanics
contribution is the phase transformation strain rate, €’ [9]. The plastic strain
rate is the sum of the products of Schmid tensors, m® = (1/2)(b® ® n® + n® ® b?),
and shearing rates, ¥, of all slip systems, s, in each single crystal. In EPSC, the
crystal constitutive relation is written alternatively as:

6° = Lo(&° — erte), (A.3)

where L€ is the crystal elasto-plastic stiffness tensor derived from Eq. (A.2) and
a selected hardening law for the evolution of slip resistance [87, 88]. The self-
consistent homogenization procedure then gives rise to the constitutive relation
at the polycrystal level starting from the volume average quantities for stress and
strain over constituent crystals [1, 65].

A.2 Dislocation density-based hardening law

The activation of slip systems follows the consistency criteria:

o m’=r] (A.4)

6¢-m® =177, (A.5)

to ensure the stress is on the yield surface and remains on the yield surface for
every constituent crystal [89]. Here 77 is the critical resolved shear stress per slip
system in each single crystal and evolves with shear strain:

o= by (A.6)
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where h*¢ is the hardening matrix describing the hardening effect of each slip
system, s, on other slip systems, s, and "ysl is the shear strain rate per slip system
per crystal. The total slip resistance of each slip system is:

s _ « s a
Te = To + Tforest + Tdebris» (A7)

where 7§ is a strain-rate and temperature dependent initial slip resistance for slip
modes a:

T
765 (6, T) = 75,4 (1 + 15108 (é))exp (—a> ; (A.8)

TO,C

with fitting parameters: 73, 75" and 7¢'.. The last two scale the contributions from
strain-rate and temperature, respectively. T;OT esr and 7, . are strain hardening
contributions from evolution of forest and debris dislocations, respectively. The
forest term accounts for the effects of statistically stored dislocations, pi,,, per slip
system:

T;orest = baXMa‘ /Z Lss’p%“ (A9)
S/

where b” is the Burgers vector, Y is the interaction constant set to 0.9 for all phases,
1 is the shear modulus, and L* is the strength interaction matrix with values set
to 1 [90, 91]. The debris term accounts for the effects of debris dislocation density,
Pdeb, Per slip mode that evolves with increasing deformation in the material:

Toepris = 0.0861%b%\/paeplog < (A.10)

1
b%/p@) ‘

The dislocation densities evolve with shear strain for each slip system in each
grain. Additionally, the total forest dislocation density per slip system, pi,;, starts
to evolve from an initial value, pf, which is optimized in the DP cases but set to
3.0e+11 m~2 for the SS case. The forest dislocation density evolves with shear
strain, strain rate, and temperature:

9p; ;o .
5y = H?\/W — K8 (¢, T)pjop- (A.11)

Here, ¢ is the rate of dislocation generation, ¢°% is the slip system interac-
tion matrix taken as an identity matrix, and % is a strain rate and temperature
dependent dynamic recovery term derived as [84]:

kS o kT é
2 X (1 AL Ll <>> , (A.12)
K ge Dabe €o

where ¢g“ is the normalized activation energy, kp is the Boltzmann constant, D®

is the drag stress, and ¢y = 107s~! is the reference strain-rate. Finally, the debris
dislocation density evolves with shear strain, strain-rate, and temperature as:

Opach _
ovs

qabavpdebﬁg(évT)pfota (A13)

where ¢* = 4 is a constant for the dislocation recovery rate. The initial debris
dislocation density is set to a small value of 0.1 m™2.
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A.3 Backstress law

This section describes the backstress formulation used in the modeling of cyclic
loading of DP780 steel. More details can be found in [86, 49]. The backstress is
evolved on each slip system in ferrite grains as a function of shear strain during
forward loading. Consider the case of shearing in the positive slip direction of a
slip system, v** > 0, with positive amount of accumulated backstress 7, bs Tsys 0:

s = TR — exp(—vy* ), (A.14)

- _ +
Ths sys _ATIf&sys? (A15)
(A.16)

On the other hand, in the case of v57 > 0 and T, bs oys < 0, we have:
t ot t
Thosys = ~(A -+ Drifexp(=—-) + 77", (A.17)
1

- _ +

I;Ss ,8Ys A Ifs ,5Ys”® <A18)

. s+
In the above equations, Ths.sys

in the positive and negative directions of a slip system, respectively, Tlfft is the
saturated backstress, v, and v are fitting coefficients , and A is a parameter for
asymmetric evolution of backstress in the two opposite directions, s™ and s~.
Backstress acts in the opposite direction of the current direction of slip and reduces
the critical resolved shear stress needed to activate the slip when the direction flips
upon load reversal. The modified Eq. (A.4a) describes this effect:

and Tl;ssisy . are the backstresses accumulated

o -m* — 7St =15, (A.19)

Given that the overall backstress must vanish in the RVE, the backstress in
martensite regions is defined using the volume average of backstress in the ferrite
phase [86, 49].

A.4 Phase transformations law

The strain-induced FCC ~-austenite to BCC o/-martensite phase transformation
begins with the formation of shear bands [92] as partial dislocations on austenite
slip systems separate to form a sufficiently thick stacking fault. The key equations
are summarized in this section while more details can be found in [9, 75].

The stacking fault width is:

d= N /(2 — Nby((B) —B)o) - 2%), (A.20)

where c is a constant, IV is the number of faults in the shear band, v is the fault
energy, b, = \/6 is the magnitude of the Burgers vector of a partial dislocation, bl

and f)i are the unit vectors of the left and right partial dislocations, respectively,
and fi’ is the normal vector of the slip plane. To reach a large partial separation,
the denominator approaches zero:

29N

N by((b; —b,)o°) -1 =0 (A.21)

where 3 is the stacking fault energy (SFE), which is a material constant and
can be experimentally measured. The shear band has an HCP structure, which is
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known as the e-martensite. As each slip system can form a shear band through
partial separation and multiple slip systems can be active in each austenite grain,
multiple shear bands in a grain intersect and form o/-martensite at the intersection.
Since the transformation is derived from slip activity in the FCC grain, the volume
increase of 2.59% [81] between FCC and BCC structure gives rise to the phase
transformation strain, €”’, through the volumetric part of the Bain deformation
gradient, Fv [93, 94]:

vol\T gpvol
NGt et 4 (A.22)

pt
€
2

The deformation mechanics phase transformation model in EPSC nucleates
the shear bands as e-martensite grains. The volume fraction increment, A f%¢ is:

AP
86

Af5F = (A.23)
where A~*P is the shear strain increment and s® is the characteristic shear
relating y-austenite to e-martensite derived from the intrinsic twinning shear, s

[95]:

f="_=_"_ (A.24)

The effect of triaxiality on transformation rate is introduced via 8 = fy +
xg(0¢)kg, which follows the formulations in an earlier Olson-Cohen phase trans-
formation EPSC model [9], and scales the e-martensite volume fraction increment.

As observed in the SS316L temperature-dependence data, the onset of trans-
formation is delayed at higher temperatures, suggesting material under higher
temperatures have higher SFE parameters, which is also consistent with ear-
lier reports [96, 97] that also reported the SFE to vary linearly with tempera-
ture. Therefore, the effect of temperature on transformation is introduced via
X =mgspp(T —273.15) + CspE, where the intercept Cspp is the SFE at a refer-
ence temperature 7' = 273.15K and the slope mgrg is the temperature sensitivity
coefficient.

Then, the o/-martensite volume fraction increment incorporating shear strain
increment on the HCP transformation plane, Av* and characteristic shear for the

/ ; e—a’ 1
e — o transformation, s = —=, 1s:
M 3\/57

A~

85%0/

Afe = (A.25)

Both e-martensite and o'-martensite grains are nucleated when the volume
reaches 0.01. Multiple FCC slip systems can nucleate independent HCP e-martensite
grains per parent austenite grain. However, only the geometries of the two largest
HCP shear bands give rise to the orientation of the resulting o/-martensite grain.
Subsequently transformed o/-martensite from all sources in the same parent austen-
ite grain are assumed to re-orient to match the first o/ grain and the volume frac-
tions contribute to the volume fraction of the first o/-martensite grain. Upon nu-
cleation, the new grains inherit the current crystal states from the parent austenite
grain such as dislocation density, stress, and strain. The crystallographic orienta-
tion relationship between austenite, e-martensite, and o/-martensite is: {111}, ||
{0001}, || {110}, with (110), || (2110)c || (111)4.
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A.5 FE-EPSC

The FE-EPSC model interacts with the FE analysis software, Abaqus, through
the UMAT subroutine. The subroutine passes an imposed strain increment and
a state variables array at each FE integration point, while the FE-EPSC model
returns the homogenized stress tensor, Jacobian matrix, and updated state vari-
ables. Every integration point in the finite element mesh is initially given the same
model parameters and texture. The texture and phase fractions evolve with plastic
strain. In each simulation time, ¢, Abaqus sends a strain increment, Ae’}; 5> deter-
mined from the boundary conditions imposed onto the mesh, and the FE-EPSC
follows the constitutive law to calculate the corresponding homogenized stress,

O'%JFEAt. The accumulated strain at the current time, ¢, is:

€FS = €y + Aepp. (A.26)

The Jacobian matrix, gﬁ:ﬁ £, derived in [83] is also returned to Abaqus to

estimate subsequent trial displacement fields. It is the stiffness, I:mc, that relates
Cauchy stress and strain:

dAorp (oS —oby)  0AG (L™ Ae)

_ _ _ _ iinc A2
O0A€erE O0AerE OAE I5JANG ( 7)

B Appendix B: Initial texture

This appendix presents pole figures showing the initial texture in the studied alloys
(Figure 15 and Figure 16).

Figure 15: Pole figures showing the initial texture of DP780.

Figure 16: Pole figures showing the initial texture of SS316L.

C Appendix C: RMSE

This appendix presents normalised RMSE to get percent error followed by averag-
ing over objectives per material, which is used to rank the identified Pareto optima
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(Figure 17a and Figure 17b). An example not normalised RMSE for each out of 9
objectives for the DP780 case study is: 36.5823 41.7893 41.6133 21.8229 24.4985
32.6111 39.3297 40.8595 46.6604 in (MPa). Note that every experimental curve
and corresponding simulated curve are discretized into many points to ger RMSE
per objective. Figure 18, Figure 19, and Figure 20 show the simulation results
corresponding to the lowest point on the plot in Figure 17b (optimum 2). Table 6
are parameters for optimum 2.
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(b)

Figure 17: Average normalized RMSE sorted in an ascending order for: (a)
Pareto set containing 40 optimal solutions for parameters of DP780 and (b)
Pareto set containing 41 optimal solutions for parameters of SS316L.
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Figure 18: Comparison between experimental and simulated curves from
Figure 6 and simulated optimum 2 (dash-dotted) curves with four jumps in
strain rate at 20 °C.

Figure 19: Comparison between experimental and simulated curves from
Figure 7 and simulated optimum 2 (dash-dotted) at four temperatures under
a strain rate of 0.001 s~'.
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Figure 20: Comparison between experimental and simulated curves from
Figure 8 and simulated optimum 2 (dash-dotted) curves showing fraction of
o/-martensite at four temperatures under a constant strain rate. The fraction
of e-martensite is nearly zero.

Table 6: Optimum 2 EPSC model parameters for austenite and two marten-
site phases of SS316L steel.

Parameters | 7-Austenite | e-Martensite | o/-Martensite
K& [m™1 1.34e+08 0.205e408* 2.87e+08
g¢ 0.147 1.0e+06* 0.312
D*[M Pal 120 100* 326.2
70,a[M Pal 385.2 800.0* 325.2
T0.b 0.016 - -
70.¢[ K] 208.9 - -
Phase transformation parameters
msrp L] 0.1277 Csrp[2%] 11.5295
Kg 0.1187 Bo 0.0781
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D Appendix D: GA versus GP sequential in-
filling

This appendix presents comparisons between past results from the genetic algo-
rithm optimization and current results obtained using the optimization developed
in the present work (Figure 21).

Figure 21: Comparison between experimental curves taken from [49] (solid
red lines as in Figures 4 and 5), simulated curves based on the optimum 1
and optimum 2 parameters (blue lines as in Figures 4 and 5), and simulated
curves from [32] (dashed black lines).
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