
Continuous Security through Integration Testing in
an Electronic Health Records System

Saptarshi Purkayastha∗, Shreya Goyal∗, Tyler Phillips†,
Huanmei Wu∗, Brandon Haakenson†, Xukai Zou†

∗Department of BioHealth Informatics, †Department of Computer Science
Indiana University-Purdue University Indianapolis

Indianapolis, Indiana 46202, USA.
{saptpurk, shregoya, phillity, hw9, bhaakens, xzou}@iupui.edu

Abstract—The estimated average cost of a healthcare data
breach in 2019 was $6.45 million, which is the highest among
all industries. Yet, security remains an afterthought in many
digital health applications. Formal methods for testing for bugs
are commonplace in software development through the use of unit
testing, integration testing, system testing, and acceptance testing.
More so, in modern software engineering, continuous integration
is a well-known concept to run automated tests soon after any
code change, when the system builds and notifies the development
team of the test results. In this paper, we describe the use
of a popular Python unit testing framework to implement a
formal method of security testing. Common Vulnerability Scoring
System (CVSS) is used to calculate metrics that represent the
state of security of a deployed system. We developed a series
of Pytest Behavioral Driven Development (BDD) scripts to test
the Authentication and Availability of a widely used Electronic
Health Records System called OpenMRS. The advantage of
using the BDD approach is that testing scripts, called Gherkin
files, can be read, and understood by the developers as well
as the non-developer stakeholders. The use of Gherkin serves
two purposes: firstly, it serves as the project’s documentation,
and secondly, it automates the tests. The use of the CVSS score
between 0 to 10 becomes an objective metric to compare every
code change, thus achieving continuous security. We plan to
expand BDD scripts to attacks like Denial of Service, Session
Hijacking, SQL Injection, and other privilege escalation attacks.

Index Terms—Behavior Driven Development, Common
Vulnerability Scoring System, Continuous Security, Electronic
Health Records, Integration testing, OpenMRS.

I. INTRODUCTION

According to a study conducted for the reported data
breaches in the United States between 2013-2017, it was
seen that there were 128 breaches involving Electronic Health
Records (EHR), which affected more than 4.8 million patient
records [1]. Also, there were a total of 363 breaches classified
as hacking incidents, which involved more than 130 million
patient records, and 1149 breaches that were non-hacking
incidents but impacted over 23 million records [1]. The
healthcare data breach on an average was estimated to cost
$6.45 million for the year 2019 [2]. From these, we can see
the urgent need for robust security in health systems, right
from software development to deployment. Also, there is a
need to monitor the IT systems and ensure that they are
updated and tested against various security attacks at regular

intervals to identify the potential vulnerabilities that can take
place [3]. For the United States, it was seen that in the year
2016, the estimated total cost for EHR hacking incidents was
$3.6 billion, followed by unauthorized access or disclosure of
personal health information at $466 million [4]. Thus, poor
security practices are costing a lot of money and risking the
identity and health of many.

Continuous Integration (CI), where code is built and unit
tests are run after every code change [5], and Continuous
Delivery (CD), where the software package is built with
integration with other system components and deployed to
a test server [6], are considered best practices in modern
software development [7]. CI eliminates the discontinuities
between the development and deployment phases of the
software development cycle. CI is defined as a process
or practice which is comprised of various inter-connected
steps like compiling code, unit testing, and acceptance tests,
checking compliance with the code standards, and building
deployment packages [8]. Continuous Security (CS) builds on
the ideas of CI and CD, but instead of testing features of
individual components, it deploys the system in a real-like
environment and simulates attacks of different types and
validates the system [9]. Continuous Security allows better
integration of the security testing activities with the coding and
makes security a software development practice, rather than an
afterthought. While CI and CD have emerged and benefited
the software engineering practices with early detection of
errors and minimizing the last-minute cost of fixing them,
similar practices for security testing are uncommon, but highly
desired. We see two main reasons for the lack of adoption
of Continuous Security - metrics and software development
practices [8]. CI/CD improvements are relatively easy to
assess and measure because of concepts like test coverage,
feature testing, or user acceptance test are easy to define in
an automated process. Vulnerability metrics may range from
network security [10] to software library, zero-day issues, or
more common security-related bugs like buffer overflow or
Cross-Site Request Forgery (CSRF). These have made CS
harder to implement in practice than CI or CD [8], [11].

Behavior Driven Development (BDD) allows writing tests,
similar to in spoken English, which is easily understandable
by the non-technical stakeholders [12]. The main goal of BDD

26

2020 International Conference on Software Security and Assurance (ICSSA)

978-1-6654-3246-7/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSSA51305.2020.00012

20
20

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Se
cu

rit
y

an
d

A
ss

ur
an

ce
 (I

C
SS

A
) |

 9
78

-1
-6

65
4-

32
46

-7
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SS
A

51
30

5.
20

20
.0

00
12

Authorized licensed use limited to: IUPUI. Downloaded on December 09,2022 at 21:42:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Conceptual relationship between CI, CD and CS

is to get executable specifications of a system. BDD starts
with the textual description of the conditions using specific
keywords like Given, When and Then to tag the type of
sentence and indicate how the sentence should be treated in
the testing phase [13]. OpenMRS is a popular open-source
Electronic Health Record (EHR) system that is used in over
40 countries around the world, including for clinical practice,
research and teaching [14]. By using BDD in the process of
software development for OpenMRS, we were able to simulate
the attacks and validate the security of the system whenever
code is merged into the master repository. OpenMRS already
has a CI/CD process in its software development practice. By
adding Continuous Security in the process, we demonstrate
that vulnerabilities in the system can be identified and fixed
during software development itself.

II. RELATED WORK

Staff and Ernst introduced the concept of ‘continuous’
testing and suggested that continuous testing is an effective
tool for reducing the overall development time by almost
15%, indicating that continuous testing can be incorporated
to reduce the waiting time [15]. A literature review by Shahin
et al. on the approaches and tools for the implementation of
continuous practice (CI/CD) identified around 30 approaches
and tools that facilitate the reduction of build and test time
in continuous integration, increase visibility and awareness on
the test, automates the continuous testing and improves the
reliability of deployment methods [16]. While the tools and
apps are addressing and solving a wide range of problems,
there exist some of the challenges for adopting continuous
practices. These challenges include lack of awareness, high
cost associated with it, lack of skilled labor and expertise,
lack of suitable tools, resistance to change, and lack of proper
test strategy [16].

The use of the Common Vulnerability Scoring System
(CVSS) is emerging and being used by many organizations for
risk assessment. Mell et al. reviewed that several organizations
such as Cisco, US National Institute of Standards and
Technology (through the US National Vulnerability Database
(NVD)), Qualys, Oracle, and Tenable Network Security are
using CVSS [17]. The benefits of using the CVSS framework
are standardized risk scores, contextual scoring, and its an
open-source framework [17]. Another study evaluates the
security of the medical devices by describing the test scenarios
and calculating the corresponding CVSS scores. The study

highlights that the healthcare industry have a low adoption
percentage (around 61%) for the security frameworks. The
study also found that the NIST framework was among the top
four frameworks adopted by the organization. The challenges
mentioned in the previous studies The NIST CVSS framework
is a low-cost, easy to use system for identifying the security
vulnerabilities and enhance the risk management processes
[18]. The another added advantage of this framework includes
easy to understand and interpret results, thus requiring no
additional training or tools. The scores are interpreted as: Low:
0 to 3.9; Medium: 4 to 6.9; and High: 7 to 10. Higher score
indicates higher vulnerability to attacks.

Another study compared different testing frameworks and
found that the Pytest framework was the most efficient and
suitable one. The reason being its straightforward test creation,
ease of writing the test applications and integration with
another platforms. Additionally, because Pytest is a Python
package we can take advantage of other open source Python
packages available with desired functionality [19]

III. METHODOLOGY

We implemented our Continuous Security software
development practice using Pytest [20] BDD, as a way
to enhance collaboration between developers and EHR
implementers. The BDD approach has allowed the product
planners and software designers to specify the requirements
in simple English, which is matched to unit tests that
perform security testing after deployment [12]. The enhanced
collaboration also helped in troubleshooting and writing
concrete automation tests. The unit tests eventually produce
scores using the Common Vulnerability Scoring System
framework, such that each identified severity and associated
risk can be measured. The CVSS specification defines a
framework that the assessor can use to transform information
about the system vulnerability into a CVSS score [21].

The CVSS framework provides several dimensions over
which a vulnerability score is calculated. These dimensions
are classified into three groups, or metrics: Base Metric,
Temporal Metric, and Environmental Metric. The Base Metric
Group is, by far, the most used in practice [22], [23]. The
Base Score calculation is organized in two conceptually
different groups - Exploitability metrics and Impact metrics.
Exploitability metric describes the means by which an attacker
can deliver a successful attack, whereas Impact metrics provide
an assessment of the consequences of a successful attack on
the impacted system [21]. Exploitability metrics under CVSS
v3 are measured over four parameters: Attack Vector (AV),
Attack Complexity (AC), Privileges Required (PR), and User
Interaction (UI). Impact metrics in CVSS v3 are measured
over the CIA triad Confidentiality, Integrity, and Availability
[21].

We performed vulnerability scans and penetration tests
to discover weaknesses in our OpenMRS deployment.
Penetration tests consisting of a series of automated testing
scenarios were then defined in a Gherkin feature file. A
Gherkin file is Pytest-BDD standard description format, where

27

Authorized licensed use limited to: IUPUI. Downloaded on December 09,2022 at 21:42:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Pytest BDD approach

we describe the test scenario, and then based on the results
of our Pytest script, a CVSS score is generated. Our paper
focuses on the six elements of information security defined
by the Parkerian Hexad along with the three major tenants
of access control. The security attributes of Parkerian Hexad
consists of Confidentiality, Integrity, Availability, Authenticity,
Utility, and Possession [24].

After performing the literature search, we came up with
some of the most common security attacks for an EHR and

A. Test-case for Authenticity
Test Scenarios for Authenticity attack include SQL injection

attacks, where the attacker can bypass the identity of the user
and get access to the resources by sending the smart inputs.
The smart inputs, called tautology, bypass the authentication
step. We verify for these vulnerabilities, and check if the
system allows us to login as the user we claimed to be or not.
If we are able to log in, it indicates that the system is highly
vulnerable to SQL injection attacks, and a lower CVSS score
is given, as per Table I.

TABLE I. Parameters for Test Case 1 (Authenticity)

Parameter
Description

Parameter Value Description

Attack Vector Netw(N),0.85 remotely exploitable
Attack Complexity Low(L),0.77 no special conditions required
Privilege Required None(N),0.85 privilege required is none
User Interaction None(N),0.85 No user interaction required
Scope Unchanged(U) Impacted and vulnerable

component same
Confidentiality Admin 0.56, Other

0.22
Admin access(H), Other user
access like Physician and
Patient(L)

Integrity Admin 0.56,
Physician 0.22,
Patient 0

Admin access(H), Other user
access like Physician(L),
Patient(N)

Availability None(N),0 No loss of Availability

B. Test Case for Session Management
Authentication & session management is a critical part

of web application security. Flaws in any of these areas

can cause failure to protect the user credentials and session
token used within one life cycle [25]. EHR systems for
patient privacy and security, including OpenMRS, are usually
configured to logout after every 10 mins of inactivity. Ending
user sessions is an important tenant for validating the system
against authentication attacks. If the session is disconnected
or logged out, the user should not be allowed access to
the account on hitting the back button. Test Scenarios are
developed to ensure that the current session terminates when
the user is logged out. The impact parameters for this use-case
include Confidentiality and Integrity and shown in Table II.

TABLE II. Parameters for Test Case 2 (Session Management)

Parameter
Description

Parameter Value Description

Attack Vector Network(L),0.55 physical access to vulnerable
component required

Attack Complexity Low(L),0.77 no special conditions required
Privilege Required None(N),0.85 privilege required is none
User Interaction None(N),0.85 No user interaction required
Scope Unchanged(U) Impacted and vulnerable

component same
Confidentiality Admin 0.56, Other 0.22 Admin access(H), Other user

access(L)
Integrity Admin 0.56, Physician

0.22, Patient 0
Admin access(H), Other user
access(L), Patient(N)

Availability None(N),0 No loss of Availability

C. Test Case for Brute force attack

Test Scenarios were developed to test the OpenMRS
platform against Brute Force Attack. Known usernames and
randomly generated strings for passwords were used to exploit
the weakness of the system. The system should ideally suspend
the account after some limited number of incorrect password
attempts. For our test case, the random guess for username
and password attempts were made for ten times and examined
for account suspension. Confidentiality and Integrity are the
two important impact parameters for this case, and CVSS
parameter values are shown in Table III.

TABLE III. Parameters for Test Case 3 (Brute force authentication)

Parameter
Description

Parameter Value Description

Attack Vector Network(N),0.85 remotely exploitable
Attack Complexity High(H),0.44 Username should be known

for exploitation
Privilege Required None(N),0.85 privilege required is none
User Interaction None(N),0.85 No user interaction required
Scope Unchanged(U) Impacted and vulnerable

component same
Confidentiality Admin 0.56, Other 0.22 Admin access(H), Other user

access(L)
Integrity Admin 0.56, Physician

0.22, Patient 0
Admin access(H), Other
access(L), Patient(N)

Availability None(N),0.0 No loss of Availability

The CVSS score for Confidentiality and Integrity will
depend on the privilege accessed by the attacker after logging
into the system. If the user gains admin privileges, then
total loss of Confidentiality and Integrity will occur. If the
user gains physician or nurse privilege, then a partial loss of
Confidentiality and Integrity will occur. With patient privilege,
the attacker will have limited access to resources. Such a

28

Authorized licensed use limited to: IUPUI. Downloaded on December 09,2022 at 21:42:07 UTC from IEEE Xplore. Restrictions apply.

limited loss of Confidentiality will be no loss of system
integrity as they cannot modify the records. The Execution
time for the attack is also calculated.

D. Test-case for Authorization

Authorization attack includes privilege escalation and SQL
injection attacks. Test Scenarios were developed to determine
the venerability of the system against such attacks. If
successful, this type of attack can result in gaining privileges
as high as the administrative level.

TABLE IV. Parameters for Test Case 4 (Authorization)

Parameter
Description

Parameter Value Description

Attack Vector Local(L),0.55 physical access to vulnerable
component required

Attack Complexity Low(L),0.77 no special conditions required
Privilege Required Low(L),0.62 low privilege user tries to gain

access to higher privileges
User Interaction None(N),0.85 No user interaction required
Scope Unchanged(U) Impacted and vulnerable

component same
Confidentiality Admin 0.56, Other

0.22
Admin access(H), Other access
Physician(L)

Integrity Admin 0.56, Other
0.22

Admin access(H), Other user
access like Physician(L)

Availability None(N),0 No loss of Availability

Privilege Escalation occurs in two ways: Vertical Privilege
escalation where the user with lower privilege receives the
access of users with high-level privileges and Horizontal
Privilege Escalation where a normal user receives the
privileges of other normal users [26]. Test scenarios for
privilege escalation attacks involve storing and retrieving data
from the database for different user roles and privileges.
The user privileges are checked before granting access to
create, receive, or delete any part of the information from the
database. CVSS score parameters are shown in Table IV.

Examples of privilege escalation include URL manipulation
[27]. In this attack, we manipulate the URL query strings &
capture important account information. Information from the
HTTP GET request passed as URL parameters are captured
and modified in our test scripts. If the server accepts it,
it indicates that the system is highly vulnerable, and the
calculated CVSS score will be high. The developed test
scenarios assume that the attacker has the lowest level of
privilege i.e., patient level, and he tries to gain access to
physician or admin level.

E. Test-case for Denial of Service attack

A common Availability attack, particularly for
network-hosted systems, is the Denial of Service attack
[28]. In a Denial of Service (DOS) attack, the service
becomes unavailable due to capacity overload. Test scenarios
were developed to simulate DOS attack, and the OpenMRS
system is expected to block IPs after rate-limits on its API
have been reached. The test scenarios verify that these
rate-limits are in place and calculate the CVSS scores based
on these criteria, as shown in Table V.

TABLE V. Parameters for Test Case 5 (Denial of Service)

Parameter
Description

Parameter Value Description

Attack Vector Network(N),0.85 remotely exploitable
Attack Complexity Low(L),0.77 no special conditions required
Privilege Required None(N),0.85 privilege required is none
User Interaction None(N),0.85 No user interaction required
Scope Unchanged(U) Impacted and vulnerable

component same
Confidentiality None(N),0.0 No loss of confidentiality
Integrity None(N),0.0 No loss of integrity
Availability High(H),0.56 High loss of Availability

The Gherkin files, as shown below, describe the security
parameters on a deployed demo OpenMRS for multiple
scenarios. For each test scenario, corresponding python
functions for Given, When and Then are written. They are then
integrated with the other codes in the project’s main repository
to check for security attacks at various time intervals.

Listing 1: Gherkin file for Brute Force Authentication
Feature: TestCase3
As a user or attacker,
I want to perform various attacks on the system,
So that I can find out how vulnerable or secure our
system is against those attacks.

Scenario: Brute force attack with admin username
and 10 incorrect attempts
Given OpenMRS home page is displayed
When attacker tries to login with admin and
invalid "password"
Then check after 10 incorrect attempts, the
system suspends the account, blocks the account
even if correct credentials are provided

Listing 2: Pytest code related to Listing 1 Gherkin
Brute force attack TestCase 3 with known username
Constants
OPENMRS_HOME = 'https://demo.openmrs.org/openmrs'
HOME_PAGE = OPENMRS_HOME + '/home.page'

@pytest.fixture
def browser():
driver = Firefox()
driver.implicitly_wait(10)
yield driver
driver.quit()

Scenarios
@pytest_bdd.scenario('TestCase3.feature',
'Brute force attack with known username',
features_base_dir='', strict_gherkin=False)
def test_incorrect_password():
pass

Given Steps
@pytest_bdd.given('OpenMRS home page is displayed')
def demo_home(browser):
browser.get(OPENMRS_HOME)

When Steps
@pytest_bdd.when('attacker tries to login with admin
and invalid "password"')

def random(stringLength=10):
letters = string.ascii_lowercase
text = ""
for i in range(stringLength):
text = text.join(random.choice(letters))

return text

def CVSS_Score(AV, AC, PR, UI, A, C, I):
ISS = 1-((1-C) * (1-I) * (1-A))

29

Authorized licensed use limited to: IUPUI. Downloaded on December 09,2022 at 21:42:07 UTC from IEEE Xplore. Restrictions apply.

Impact = 6.42 * ISS
Exploitability = 8.22*AV*AC*PR*UI

if Impact<= 0:
Base_score = 0

else:
Base_score = min((Impact + Exploitability), 10)
Base_score1 = round(Base_score, 2)
Base_score2 = round(Base_score1, 1)

print(Base_score2)
return Base_score2

def login_username(browser):
pas=[random(10),random(10),random(10),random(10),
random(10),random(10),random(10),random(10),
random(10),random(10),'Admin123']

s_input = browser.find_element_by_id('username')
s_input.send_keys('admin')
s_input = browser.find_element_by_id('password')
s_input.send_keys((pas[i]) + Keys.TAB)
login_button = browser.find_element_by_id('loginButton')
login_button.click()
if browser.current_url == HOME_PAGE:
CVSS_Score(AV=0.85,AC=0.44,PR=0.85,UI=0.85, A=0, C=0.22,
I=0.22)

else:
CVSS_Score(AV=0.85,AC=0.44,PR=0.85,UI=0.85,A=0, C=0, I=0)

Then Steps
@pytest_bdd.then('check after 10 incorrect attempts, the
system suspends the account, blocks the account even if
correct credentials are provided"')
def login_results(browser):

assert browser.current_url != OPENMRS_HOME +
'/referenceapplication/home.page'

IV. RESULT

We were able to implement the practice of Continuous
Security with the help of the Pytest BDD framework. The
unit testing examples shown can be used by other projects
and software systems to implement automated test scenarios
to implement Continuous Security in their projects. The higher
the CVSS score, the poorer the security of the system against
those attacks. Every time a security enhancement is made in
the system, the test must be rerun, and a new CVSS score
should be calculated. If the CVSS score has decreased, it
implies that the security enhancements have worked and have
made the system less vulnerable to such security attacks. We
have released two versions of the software system through this
process, which has resulted in lowering the CVSS score for
every release. However, this is a continuous process, and with
every code change, developers are notified if their code change
is introducing any new vulnerabilities or not. Our process
has also shown that developers will release new versions of
the software system, not just on feature completeness, but
rather also achieving statistically significant gain in the CVSS
score between releases. For each Test Scenario discussed in
the methodology section, the corresponding pytest test script
is created and the CVSS score is computed for all the Test
Scenarios. The effect of the parameters for different test
scenarios is analyzed. Table VI below shows the CVSS score
for all the Test Scenarios discussed earlier. To reflect on
the results of Table VI, the Attack Vector (AV) and Attack
Complexity (AC) have largely determined the weakest link of
the system, as shown by the larger score in most of the test
cases.

TABLE VI. CVSS Scores on Test Cases for demo OpenMRS v2.10.0

CVSS Score for Test Case 1
User AV AC PR UI C I A Score

Admin 0.85 0.77 0.85 0.85 0.56 0.56 0.0 9.06
Doctor 0.85 0.77 0.85 0.85 0.22 0.22 0.0 6.40
Patient 0.85 0.77 0.85 0.85 0.22 0.0 0.0 5.30

CVSS Score for Test Case 2
User AV AC PR UI C I A Score

Admin 0.55 0.77 0.85 0.85 0.56 0.56 0.0 7.69
Doctor 0.55 0.77 0.85 0.85 0.22 0.22 0.0 5.03
Patient 0.55 0.77 0.85 0.85 0.22 0.0 0.0 3.93

CVSS Score for Test Case 3
User AV AC PR UI C I A Score

Admin 0.85 0.44 0.85 0.85 0.56 0.56 0.0 7.40
Doctor 0.85 0.44 0.85 0.85 0.22 0.22 0.0 4.74
Patient 0.85 0.44 0.85 0.85 0.22 0.0 0.0 3.63

CVSS Score for Test Case 4
User AV AC PR UI C I A Score

Admin 0.55 0.77 0.62 0.85 0.56 0.56 0.0 7.01
Doctor 0.55 0.77 0.62 0.85 0.22 0.22 0.0 4.35

CVSS Score for Test Case 5
User AV AC PR UI C I A Score

Admin 0.85 0.77 0.85 0.85 0.0 0.0 0.56 7.48

It can be observed that the CVSS is highest for the first
test scenario, indicating that the system is highly vulnerable
to SQL injection attack. Some core modules also result
in increased scores for Privilege Required (PR) and User
Interaction (UI) parameters of the CVSS framework, according
to our test cases. While these high scores are harmless in most
cases in the current release, there might be future regression
bugs that will be caught through our Continuous Security
process. Confidentiality (C), Integrity (I) and Authenticity (A)
of the system is robust and highlights that the EHR system is
secure for patient privacy and security.

V. DISCUSSION

Our research addresses the problems mentioned in some of
the above studies [16] for the lack of adoption of continuous
security frameworks. The use of Pytest BDD framework
does not require anything complex. It only requires the
working knowledge in python. All you need is a working
desktop that has a command line interface, python package
manager and an IDE for development. The other testing
tools require the developer or tester to use a debugger or
check the logs and detect where a certain value is coming
from. Pytest helps to develop and write test cases in a way
that gives you the ability to store all values inside the test
cases and finally inform the user which value failed, and
which value is asserted. Moreover, the use of BDD allows
the test cases to be written in simple readable language.
Readability in the test codes improves the software quality,
communication and collaboration between product owners,
test engineers, developers, and customers. Also, the use of
CVSS vulnerability assessment was done for assessing the
security of an EHR for achieving continuous security with the
advantage of identifying and ensuring the security with every
code commit. The CVSS system is easy to use, low cost and

30

Authorized licensed use limited to: IUPUI. Downloaded on December 09,2022 at 21:42:07 UTC from IEEE Xplore. Restrictions apply.

yields easy to interpret results. Hence, the overall framework
proved to be a robust approach to implement Continuous
Security in the EHR software development.This study will
allow the developers and testers to notice small discrepancies
in their system, with the help of which they can catch problems
early on and use effective solutions to avoid serious failures.

However, as far as the best of our search on GitHub (for
code), Google searches (for open-source projects), and Scopus
(for published literature), we have not seen other descriptions
of hands-on implementations of Continuous Security. Maybe,
many organizations and closed-source software and software
vendors have deployed such test scripts, but these have not
been popularized. Beyond digital health projects, we see an
opportunity to implement Continuous Security whenever a
commit is made in the project codebase, and the testing will
calculate the CVSS score. This type of software assurance
process should be the norm, and we hope more open-source
projects adopt this approach.

VI. CONCLUSION & FUTURE WORK

With the advancements in information technology, the
risks of security attacks have escalated, causing substantial
monetary losses. There is a need for continuous and integration
security testing for EHRs. The CVSS Score provides a
meaningful insight with the identification of the severity of
risks and vulnerabilities and implementing appropriate security
measures against the risks. The use of BDD allows individuals
with limited programming experience to participate actively
in achieving the testing requirements and monitor the security
aspects of the software.

The design of the study was limited to only one open-source
EHR system, OpenMRS. This is a threat to external validity.
Not all the vulnerabilities associated with the EHR were
identified by our study, which could be extended further for
finding out various other vulnerabilities associated with the
system and calculating the corresponding CVSS scores.

VII. ACKNOWLEDGEMENT

The U.S. National Science Foundation supported this work
under grant OAC-1839746. This work was made possible
through a research allocation on the JetStream [29] public
cloud infrastructure and XSEDE resources.

REFERENCES

[1] J. G. Ronquillo, J. Erik Winterholler, K. Cwikla, R. Szymanski, and
C. Levy, “Health it, hacking, and cybersecurity: national trends in data
breaches of protected health information,” JAMIA Open, vol. 1, no. 1,
pp. 15–19, 2018.

[2] P. C. Reich, “Healthcare: A critical information infrastructure,” 2019.
[3] R. Clarke and T. Youngstein, “Cyberattack on britain’s national health

service—a wake-up call for modern medicine,” N Engl J Med, vol. 377,
no. 5, pp. 409–11, 2017.

[4] A. Madhavi and S. Lincke, “Security risk assessment in electronic health
record system,” in 2018 IEEE Technology and Engineering Management
Conference (TEMSCON). IEEE, 2018, pp. 1–4.

[5] M. Fowler and M. Foemmel, “Continuous integration,” 2006.
[6] J. Humble and D. Farley, Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation (Adobe
Reader). Pearson Education, 2010.

[7] D. Ståhl and J. Bosch, “Modeling continuous integration practice
differences in industry software development,” Journal of Systems and
Software, vol. 87, pp. 48–59, 2014.

[8] B. Fitzgerald and K.-J. Stol, “Continuous software engineering and
beyond: trends and challenges,” in Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering, 2014, pp. 1–9.

[9] K. A. Torkura, M. I. Sukmana, and C. Meinel, “Integrating continuous
security assessments in microservices and cloud native applications,” in
Proceedings of the 10th International Conference on Utility and Cloud
Computing, 2017, pp. 171–180.

[10] R. P. Lippmann, J. Riordan, T. Yu, and K. Watson, “Continuous security
metrics for prevalent network threats: introduction and first four metrics,”
Massachusetts Inst of Tech Lexington Lincoln Lab, Tech. Rep., 2012.

[11] M. Aslam, C. Gehrmann, and M. Björkman, “Continuous security
evaluation and auditing of remote platforms by combining trusted
computing and security automation techniques,” in Proceedings of the
6th International Conference on Security of Information and Networks,
2013, pp. 136–143.

[12] C. Hanson, “The network certification description,” Ph.D. dissertation,
University of Colorado at Colorado Springs, 2017.

[13] C. Solis and X. Wang, “A study of the characteristics of behaviour driven
development,” in 2011 37th EUROMICRO Conference on Software
Engineering and Advanced Applications. IEEE, 2011, pp. 383–387.

[14] S. Purkayastha, J. W. Gichoya, and A. S. Addepally, “Implementation
of a single sign-on system between practice, research and learning
systems,” Applied clinical informatics, vol. 26, no. 01, pp. 306–312,
2017.

[15] D. Saff and M. D. Ernst, “Reducing wasted development time via
continuous testing,” in 14th International Symposium on Software
Reliability Engineering, 2003. ISSRE 2003. IEEE, 2003, pp. 281–292.

[16] M. Shahin, M. A. Babar, and L. Zhu, “Continuous integration, delivery
and deployment: a systematic review on approaches, tools, challenges
and practices,” IEEE Access, vol. 5, pp. 3909–3943, 2017.

[17] P. Mell, K. Scarfone, and S. Romanosky, “Common vulnerability scoring
system,” IEEE Security & Privacy, vol. 4, no. 6, pp. 85–89, 2006.

[18] I. Stine, M. Rice, S. Dunlap, and J. Pecarina, “A cyber risk
scoring system for medical devices,” International Journal of Critical
Infrastructure Protection, vol. 19, pp. 32–46, 2017.

[19] J. Voss, J. A. Garcia, W. C. Proctor, and R. T. Evans, “Automated system
health and performance benchmarking platform: high performance
computing test harness with jenkins,” in Proceedings of the HPC Systems
Professionals Workshop, 2017, pp. 1–8.

[20] D. Sale, Testing Python: Applying Unit Testing, TDD, BDD and
Acceptance Testing. John Wiley & Sons, 2014.

[21] L. Allodi, S. Banescu, H. Femmer, and K. Beckers, “Identifying
relevant information cues for vulnerability assessment using cvss,” in
Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, 2018, pp. 119–126.

[22] S. H. Houmb, V. N. Franqueira, and E. A. Engum, “Quantifying security
risk level from cvss estimates of frequency and impact,” Journal of
Systems and Software, vol. 83, no. 9, pp. 1622–1634, 2010.

[23] N. Mendes, H. Madeira, and J. Duraes, “Security benchmarks for
web serving systems,” in 2014 IEEE 25th International Symposium on
Software Reliability Engineering. IEEE, 2014, pp. 1–12.

[24] G. Pender-Bey, “The parkerian hexad,” Information Security Program
at Lewis University, 2019.

[25] K. Patel, “A survey on vulnerability assessment & penetration testing for
secure communication,” in 2019 3rd International Conference on Trends
in Electronics and Informatics (ICOEI). IEEE, 2019, pp. 320–325.

[26] S. Nagpure and S. Kurkure, “Vulnerability assessment and penetration
testing of web application,” in 2017 International Conference on
Computing, Communication, Control and Automation (ICCUBEA).
IEEE, 2017, pp. 1–6.

[27] P. Sharma and B. Nagpal, “A study on url manipulation attack methods
and their countermeasures,” 2015.

[28] G. Carl, G. Kesidis, R. R. Brooks, and S. Rai, “Denial-of-service
attack-detection techniques,” IEEE Internet computing, vol. 10, no. 1,
pp. 82–89, 2006.

[29] C. A. Stewart, T. M. Cockerill, I. Foster, D. Hancock, N. Merchant,
E. Skidmore, D. Stanzione, J. Taylor, S. Tuecke, G. Turner et al.,
“Jetstream: a self-provisioned, scalable science and engineering cloud
environment,” in Proceedings of the 2015 XSEDE Conference: Scientific
Advancements Enabled by Enhanced Cyberinfrastructure, 2015, pp. 1–8.

31

Authorized licensed use limited to: IUPUI. Downloaded on December 09,2022 at 21:42:07 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T20:14:01-0400
	Preflight Ticket Signature

