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Abstract

In this paper, the evolution of the plastic anisotropy of stainless steel 316L samples is
investigated under proportional loading paths using a customized cruciform specimen.
The determination of a novel cruciform specimen by a design of experiments approach
integrated with finite element simulations is described. The mechanical properties of the
material are characterized under uniaxial tension applied in every 15° from the rolling
direction and equibiaxial tension from hydraulic bulge experiments. The results reveal that
the plastic anisotropy shown in stress and strain significantly evolves with respect to the
plastic work. Based on the experiments, the material behavior is modeled using a non-
quadratic anisotropic yield function, Y1d2004-18p, with parameters modeled as a function
of the equivalent plastic strain assuming plastic work equivalence and with constant
parameters for comparison. The Hockett-Sherby model is also used for the strain
hardening behavior to extrapolate the results to higher strain values. The models are
implemented into a user material subroutine for finite element simulations. To validate the
model, in-plane biaxial tension experiments are performed, using a customized specimen,
to achieve greater deformation than previous designs by introducing double-sided
pockets for thickness reduction and notches in the corner areas. The results are

compared with finite element simulations implemented with the plasticity models.

Keywords: B. anisotropic material, B. constitutive behavior, B. elastic-plastic material, C.
finite elements, C. mechanical testing



1. Introduction

Building accurate material models often involves the consideration of various
aspects of material behavior, one of which is differences with respect to the material
orientation, so called plastic anisotropy, of sheet metals. In terms of mechanical behavior,
plastic anisotropy is often defined by ratios in stress and strain with respect to a reference.
The values are not unity, i.e., non-isotropic, in general and can be varied with the material
orientation. Their numerical formulations, so called anisotropic yield functions, have been
published in the past 75 years starting with Hill and Orowan [1], who published a yield
function for orthotropic materials based on the isotropic von Mises yield function in 1948.
Several years later, Hosford [2] derived a generalized yield function based on the isotropic
yield function from Hershey [3]. Barlat and Lian [4] modified Hosford’s yield function to
incorporate the effect of shear stress. In the decades since, increasingly advanced yield
functions, e.g., Karafillis and Boyce [5], Barlat family functions [6—9], Cazacu and Barlat
[10,11], Bron and Besson [12], and Banabic, Balan, and Comsa (BBC) family functions
[13,14], have been developed to improve plastic anisotropy predictions, some of which
are summarized in the reviews by Banabic et al. [15] and Barlat and Kuwabara [16].

These recent developments have proven successful in their ability to simulate
forming processes for a material of consistent plastic anisotropy during deformation [17—
21], i.e., relatively constant stress ratios and r-values with respect to plastic work.
However, for some materials, a clear distinction is observed in the plastic anisotropy at
different levels of plastic work under non-proportional [22—24] or proportional loading
[18,25]. The former often presents strong evolutions in the anisotropy, especially upon

the loading path change, with respect to plastic work. Thus, it is modeled in conjunction



with kinematic [26—28] or distortional hardening models [29-31], which can capture
Bauschinger effect, permanent softening, latent hardening effect, etc., depending on the
material. In contrast, the latter presents relatively minor plastic anisotropy changes
primarily caused by the texture evolution during deformation [25]. To model this, as an
example, Kuwabara et al. [25] calibrated an exponential function, using data at several
strain levels, for each parameter of YId2000-2d [8]. When choosing a yield function,
specific types of metals, e.g., steel [30,32,33], aluminum [21,34-37], titanium [38—40],
magnesium [41,42] alloys, etc., and their textures can be considered to provide an
adequate description of plastic anisotropy. Simultaneously, the computational expense in
numerical simulations, which results from the complexity of the model necessitated by the
desired level of accuracy, must be balanced.

These advanced plasticity models often require the identification of more
parameters, and thus basic material characterization experiments, e.g., uniaxial tension,
are insufficient, especially for modeling forming processes. These modeling efforts may
be further complicated by the inclusion of stress superposition [43], varying deformation
paths [27,44-47], and ductile damage and fracture analysis [48,49]. In 1967, Shiratori
and Ikegami [50] designed four potential cruciform specimen geometries and conducted
biaxial tension experiments to study more complex deformations. Later, Kuwabara et al.
[51] proposed a cruciform specimen with straight arms and investigated the work
hardening in cold-rolled steel under biaxial tension. In the decades since, many cruciform
geometries have been proposed, one of which is designated as ISO standard 16842 [52]

(see more information in [51,53-55]), but an ASTM standard does not exist.



In Banerjee et al. [56], the criteria cited most often for designing cruciform biaxial
specimens are uniformity of strain fields, minimization of shear strains, failure behavior in
the gauge area, and reduced stress concentrations outside the major deformation region.
Common strategies for achieving these objectives include creating notches at the corners
[57,58], reducing or increasing the thickness in specific regions [59-61], machining slots
in the arms [51,52,59], or some combination thereof [62]. Deng et al. [59] proposed a
modified design with a reduced thickness area that does not require inverse numerical
calibration and presented the yield locus of a dual-phase steel, DP590, determined
experimentally using the specimen. Murakoso and Kuwabara [63] used cruciform
specimens to analyze ultra-thin stainless steel sheets under biaxial tension. Despite
numerous specimen designs already available in the literature [64], additional variations
are still being generated to tailor the achievable results and place emphasis on certain
design specifications according to the authors’ intended applications. For example, the
predecessors to the geometry described in this work required a sufficiently large gauge
area for material characterization, such as strain measurement and microstructure
imaging [65,66].

For material modeling purposes, the addition of in-plane biaxial cruciform
experiments is beneficial for parameter identification or validation of models calibrated
using conventional experiments, such as uniaxial tension in different orientations.
Although the available testing conditions of in-plane biaxial experiments are mostly limited
to the biaxial tension stress states, compression combined with tension [67] can be
applied with additional equipment, e.g., an anti-buckling device. Alternatively, shear

combined with tension [68] or plane strain tension [69] can be investigated with custom



geometries. A custom device with hinged fixtures and knife-edges has also been
developed for off-axes testing [70]. These experiments can improve specific aspects of
the material models required by numerical analyses. In Steglich et al. [41], AZ31
magnesium alloy biaxial deformation experiments were used to validate a visco-plastic
self-consistent model. In Kuwabara et al. [25], 6016-O and 6016-T4 aluminum alloys were
compared experimentally and numerically using cruciform specimens to determine the
effects of heat treatment on the plastic anisotropy. In addition to plasticity modeling,
Leotoing et al. [71,72] performed in-plane biaxial experiments to investigate the non-linear
prestraining effect and construct numerical forming limit models. Ha et al. [36] used a
specialized cruciform specimen, in conjunction with center-hole and shear specimens, to
characterize the ductile fracture of a heat treated aluminum alloy, AA6111, using the
experimental-numerical hybrid method. Kuwabara et al. [73] used the ISO standard
cruciform geometry in comparison to uniaxial compression experiments to characterize
the strength differential effect in a low carbon steel. Additionally, a 0.8 mm-thick mild steel
cruciform specimen using the ISO standard geometry was measured up to a plastic strain
level of 0.234 in non-linear stress path experiments to validate the material model [74].
In this paper, the evolution of plastic anisotropy in stainless steel 316L (SS316L)
under proportional loading is investigated using a newly designed cruciform specimen
and advanced material modeling for the numerical simulation. The plasticity
characterization is presented in Section 2 with the experimental results of uniaxial and
equibiaxial tensions. Based on the experiments, the material is modeled in Section 3
using a non-quadratic anisotropic yield function with equivalent plastic strain dependent

parameters, i.e., YId2004-18p (¢), and Hockett-Sherby strain hardening. Section 4



describes the optimization of the cruciform geometry based on six design goals and the
in-plane biaxial experiments using the determined cruciform specimen under four
proportional loading conditions. In Section 5, finite element (FE) simulations of the
cruciform experiments are performed, using YId2004-18p(g), Y1d2004-18p with constant
parameters, and von Mises yield functions, and compared to experimental results to
validate the implemented models under the given loading conditions. The work is

summarized with conclusions in Section 6.

2. Plasticity characterization

For the material characterization of SS316L sheet of 1.2 mm thickness, uniaxial
and equibiaxial tension experiments were performed. From these experimental results,
the strain ratios and normalized stresses are calculated at seven plastic work levels to
evaluate the plastic anisotropy evolution. Refer to Table 1 for a summary of the material

characterization results.

2.1. Uniaxial tension experiment

Seven uniaxial tension experiments were conducted using the ASTM E8 standard
sheet-type specimen [75] oriented every 15° from the rolling direction (RD) to the
transverse direction (TD) at room temperature in displacement control (5 mm/min), which
corresponds to a static strain rate (¢ #1072 /s) in the plastic range, using an MTS universal

testing machine with a 250 kN load cell. Three specimens were tested for each condition

1 Certain commercial instruments and software are identified to specify the
experimental study adequately. This does not imply endorsement by NIST or that the
instruments and software are the best available for the purpose.



to ensure repeatability of the results. Strain data were obtained using a 2D-Digital Image
Correlation (2D-DIC) system (Correlated Solutions, Inc.) with a 5.0-megapixel camera
(FLIR Grasshopper2) and 17 mm lens (Schneider). The specimens were prepared with a
base coat of white paint with a black paint overspray pattern for the DIC imaging. The DIC
parameters used in the analyses (VIC-2D software) were 19 pixels, 4 pixels, and 5 for the
subset, step, and filter sizes, respectively. Figure 1 shows the experimental setup with
the 2D-DIC system and specimen geometry from ASTM ES8.

Figure 2 contains the true-stress strain curves during uniform elongation for seven
uniaxial tension experiments (one for each orientation from the RD) and the
corresponding instantaneous r-values, i.e., the ratio of width to thickness strain increment
orr = deﬁ,/de’z, with respect to equivalent plastic work. The instantaneous r-values are
calculated using a constant plastic strain increment of 0.05. The thickness strain is
inferred based on volume conservation. The equivalent plastic strain (&= [d¢&),
calculated by the work equivalence principle (dw = a: deP = 7 - dé¢), is plotted in the upper
x-axis. In Figure 2a, the RD and TD orientations show similar hardening behavior, and
the true stress-strain curve for 45° falls slightly below the six other orientations as shown
in the inset. Compared to the minor anisotropy in the flow stress seen in the stress-strain
curves, the r-values present much clearer anisotropy, varying between 0.4 and 1.55, and
even evolve as the plastic work increases. Young’s modulus is calculated from the
experimental data, and Poisson’s ratio is assumed to be the textbook value. The values

are summarized in Table 1.
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Figure 1. Uniaxial tension experiment: (a) test setup for MTS machine with 2D-DIC

system and (b) ASTM E8 specimen geometry.
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Figure 2. Experimental results of uniaxial tension in every 15° from the RD:

(a) true stress-strain curves and (b) instantaneous r-values with respect to the plastic

work and equivalent plastic strain.
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2.2. Hydraulic bulge experiment

A hydraulic bulge experiment was performed using a servo-hydraulic formability
tester (R&B RB316FT) with a 1000 kN (100 tonf) load cell and maximum hydraulic power
unit flow rate of 0.757 L/s (12 gal/min) at the Korea Institute of Industrial Technology
(KITECH). Square blanks of 200 mm x 200 mm size and 1.2 mm thickness were used
with the holding force between 897 kN and 996 kN (90 tonf and 100 tonf). The strain field
was measured using a stereo-DIC (surface 3D) system (GOM Inc.) with two 5.0-
megapixel cameras (FLIR Grasshopper2) and 75 mm lenses (Schneider). The DIC
analysis parameters used for the post-processing (ARAMIS Professional) were subset
and step sizes of 19 pixels and 16 pixels, respectively. The experimental setup with the
3D-DIC system is shown in Figure 3.

According to ISO 16808 [52], in the bulge test, the stress-strain relationship is
represented by the approximately equibiaxial, or membrane [76,77] stress and the
thickness strain at the pole, which is determined by plastic incompressibility and the major
and minor surface strains, i.e., & and &,, measured by the DIC system. The membrane
stress, g, is defined as pR/(2t) where p is the pressure recorded by the machine, R is
the radius of curvature of the outer surface, and t is the thickness of the specimen. The
instantaneous thickness is calculated by t, exp &, where t, is the initial sheet thickness

and ¢; is the true thickness strain determined by assuming incompressibility, i.e., & =

—&; — &. The radius of curvature of the outer surface is determined by 2/(Ri + Ri), where
1 2

R; and R, are the radii of major and minor curvatures of the outer surface at the pole

obtained by the DIC system.
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The experiment was performed five times to confirm test repeatability, and three
of the results are shown in Figure 4a. The measured maximum strain for the bulge test,
as commonly is seen, is higher than the maximum strain of uniaxial tension (also shown
in Figure 4a), but the flow stresses are higher due to the plastic anisotropy and its
evolution. This is characterized by normalizing the flow stress of equibiaxial tension with
respect to the equivalent stress, which is uniaxial tension in the RD in this study, i.e.,
ap/a. The values at seven plastic work levels are summarized in Table 1. Similarly, the
plastic anisotropy in strain is evaluated by the strain ratio in the RD and TD, i.e., r, =
der,, /dek,, [8], as shown in Figure 4b. Like in the plastic anisotropy observed in uniaxial
tension, that of nearly equibiaxial tension also evolves during the deformation. It should
be noted that the noise in the stress-strain curve causes an even greater noise level in
the r, values of Figure 4b, but an evolution trend in the three experiments shown is
captured. A previous study [78] found that the hydraulic bulge test does achieve a stress
state that is perfectly equibiaxial tension. However, the amount of deviation reported is 1-
5% for a steel material with an original thickness to diameter ratio between 0.01 and

0.001, which applies to the current work with a ratio of 0.004.
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Figure 4. Experimental results of hydraulic bulge experiment: (a) true stress-strain curves
of bulge test with comparison to uniaxial tension (UT) in the RD, and (b) r;, value with

respect to the plastic work and equivalent plastic strain.
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Table 1. Summary of mechanical properties at seven plastic work levels for SS316L.

Young’s modulus E =193.840.4 GPa Poisson’s ratio v =0.33

Plastic anisotropy at seven plastic work levels WP

(MJ/m?3) 10 25 50 75 100 125 150

Normalized stress (o /)

RD 1.000 1.000 1.000 1.000 1.000 1.000 1.000

c 15 1.023 1.016 1.014 1.011 1.010 1.009 1.009
% 30 1.024 1.008 1.001 1.001 1.000 0.998 0.998
% 45 0.998 0.978 0.972 0.970 0.970 0.969 0.969
:§ 60 1.041 1.010 0.995 0.994 0.993 0.992 0.992
> 75 1.056 1.021 1.007 0.999 0.998 0.997 0.997
TD 1.036 1.006 0.990 0.985 0.985 0.984 0.984
Bulge 1.062 1.065 1.069 1.075 1.082 1.082 1.082

Strain ratio (r-value and ;)

RD 0.458 0.531 0.552 0.622 0.628 0.642 0.784

c 15 0.564 0.604 0.696 0.696 0.746 0.821 0.839
'% 30 0.710 0.887 0.900 0.915 0.921 0.940 0.982
% 45 1.004 1.124 1.156 1.180 1.203 1.262 1.279
:§ 60 1.295 1.266 1.306 1.317 1.306 1.406 1.299
> 75 1.322 1.276 1.355 1.306 1.333 1.341 1.421
TD 1.335 1.315 1.313 1.261 1.227 1.242 1.252
Bulge 0.969 0.940 0.900 0.872 0.865 0.865 0.865

*Determined normalized stresses typically had uncertainties +0.003 and strain ratios

typically had uncertainties £0.0002 based on one standard deviation.

15



3. Constitutive modeling

In the following section, the modeling of the material behavior is discussed and is based
on the experiments from the previous section. YId2004-18p(€), a non-quadratic
anisotropic yield function with equivalent plastic strain dependent parameters is used.

Additionally, the Hockett-Sherby model is used to describe the strain hardening behavior.

3.1. Strain hardening

The strain hardening behavior is described by the Hockett-Sherby model [79]:

d=H-—(H-oy) - exp(—=N-&gM) (1)

where g is the equivalent stress, € is the equivalent plastic strain, and g is the initial yield
stress measured using the 0.2% offset method. H,N, and m are material fitting
parameters to the stress-strain curve of uniaxial tension in the RD as seen in Figure 5.
One representative stress-strain curve of uniaxial tension in the RD is chosen for the

fitting, and the identified values are summarized in Table 2.

Table 2. Material parameters for Hockett-Sherby strain hardening model.

o (MPa) H (MPa) N m
339.48 1445.44 1.81 0.89

16
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Figure 5. Extrapolation of stress-strain curve for uniaxial tension in the RD (symbols)

using Hockett-Sherby model (dashed line).

To validate the extrapolation at larger levels of plastic strain, i.e., beyond the
plastic strain range achieved by the uniaxial experiment, the stress-strain curve for
Hockett-Sherby is also plotted for comparison with the equivalent stress-strain curve

obtained from the bulge test experimental data using Hill 79 [80,81] (see Figure A1).

3.2. Yield function for plastic anisotropy and evolution
To model the plastic anisotropy and its evolutionary behavior with respect to plastic
work, a non-quadratic anisotropic yield function, i.e., Yld2004-18p [9], is used:
G/ QI c/ srr|@ ! grr|@ G/ srr|¢
d=¢(5,8) =S -S| +1|S51 -S| + |51 -S|
(2)
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|a

+]85 = S|+ 1S5 = 55| + IS5 — Sy

+]55 = S|+ 155 = Sy + |85 - Sy

|* = 45¢

where S/ and S are the principal values of the stress tensors, §’ and §”, which are

linearly transformed deviatoric stresses by two operators, C’ and €, respectively.

§II=CII_S=CII_T_G=~LII_0_ (3)

where ¢ denotes the Cauchy stress tensor, s is its deviator, and T is the transformation

tensor between them. The two transformation matrices, C' and C”’, are composed of

H H ! !/ ! ! !/ ! ! ! ! 14 n 14 n
eighteen parameters, i.e., aj—1_1g = C12,C13,C21,C23, C31, C32, C44, Css, Ci6, C12, €13, C21, Cog,

n

31, C32, Ca4, Css, Coi, Where the subscripts denote the orientation with respect to the RD,

given by:

0 —Ccip —Cc13 0 0 0
—Cy1 0 —Ccy3 0 0 0
C— —C31 —C3p 0 0 0 0
0 0 0 €4 O 0
0 0 0 0 ¢35 O (4)
0 0 0 0 0 cg6l
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0 0 0 300 (5)
0 0 0 030
Lo 0 0 0 0 3

The exponent a is related to the crystal structure, i.e., 6 for body-centered cubic
(BCC) and 8 for face-centered cubic (FCC) [82,83]. The material used in the study is
austenitic stainless steel (SS316L) with zero martensite in its as-received condition.
Previous works by the authors [84,85] utilizing the same SS316L material confirm that the
as-received material is fully austenitic and that minimal phase transformation occurs at
room temperature. Thus, a = 8 is used for YId2004-18p modeling in this study.

The plastic anisotropy, characterized by the strain ratios and normalized stresses
from the uniaxial tension and hydraulic bulge experiments (Table 1), is used to determine
the parameters of the yield function. For Y1d2004-18p with constant parameters, the strain
ratios and normalized stresses are averaged between plastic work levels of 10 and 150
MJ/m3 to determine the constant parameter set (Table 3). For YId2004-18p(%), the
individual sets of parameters at seven plastic work levels, i.e., WP from 10 to 150 MJ/m?,
equivalent to € from 0.027 to 0.252, are determined separately, using the least squares
method, to capture the evolution in the plastic anisotropy during the deformation. These

are shown as the symbols in Figure 6.
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Table 3. Summary of YId2004-18p parameters:

a; A;

1 1.076
2 1.183
3 1.170
4 1.265
5 0.757
6 1.163
7 0.934
8 0.917
9 1.185
10 0.960
11 0.692
12 0.880
13 0.717
14 1.109
15 0.827
16 1.195
17 1.220
18 0.971

Next, each parameter, a;, is approximated using an exponential function with
respect to the equivalent plastic strain, €, which is a simplified expression of Kuwabara et

al. [25] as,

ai,1—18(§) = A; — B; - exp(=D; - ¥) 6)

20



where A;, B;, and D; are calibration constants for each «;. The exponential fits are shown
as lines with respect to plastic work and equivalent plastic strain in Figure 6. The
corresponding calibration constants, i.e., the fitting parameters for each YId2004-18p(%)

parameter, determined for SS316L are shown in Table 4.
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Figure 6. Equivalent plastic strain dependent parameters of YId2004-18p(g), i.e., a;(¢) (a)
a; — aq and (b) a;o — a1g, at seven levels of plastic work to capture the evolution of plastic
anisotropy of SS316L. The parameters are fit (solid lines) with the exponential function in

Equation 6 and the constants in Table 4.
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Table 4. Summary of YId2004-18p(g) parameters: a;(€) = A; — B; - exp (—D; - ).

a; A; B; D;
1 0.93 -0.06 10
2 0.56 -0.10 27
3 0.71 0.06 45
4 0.80 -0.13 25
5 0.88 -0.03 35
6 0.89 0.11 8
7 1.22 -0.01 30
8 1.23 -0.03 5
9 0.99 0.18 20
10 1.40 0.12 4
11 1.40 -0.03 3
12 1.22 0.21 17
13 1.25 0.07 20
14 1.12 0.03 20
15 1.11 -0.03 27
16 0.89 -0.02 3
17 0.88 -0.01 20
18 1.20 -0.10 30

*Determined «a; parameters typically had variances £0.004 from identified values.

Figure 7 shows a comparison of the experimental (symbol) and predicted (dashed
line) normalized stress and r-value of uniaxial tension from the RD to TD at seven plastic
work levels. Stronger plastic anisotropy evolution is apparent in the r-value, i.e., the
numerical values change significantly, e.g., from 0.458 to 0.784 in RD and from 1.004 to

1.279 at 45°, in the specified range, as the plastic work increases compared to the flow
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stress in uniaxial tension. The calibrated parameters of YId2004-18p(€) capture the
experiments reasonably well. During the calibration, a greater emphasis is placed on
achieving better predictions at higher levels of plastic work, e.g., >50 MJ/m3, than the

lower levels, e.g., 10 MJ/m3, assuming that the values saturate.
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Figure 7. Parameter calibration of Y1d2004-18p(g) for uniaxial tension at seven plastic
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experiments, dashed lines denote Y1d2004-18p(g), and solid lines denote von Mises.
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The yield locus evolution predicted by the determined material parameters is
shown in Figure 8. Near the equibiaxial state, the yield locus is expanding as the plastic
work increases, with a particularly significant increase between 10 MJ/m?3 and 25 MJ/m3,
as observable in the inset in Figure 8. Correspondingly, the yield locus appears to be
contracting near the uniaxial tension in the TD state. The yield function, including the
evolution of the a; parameters, is implemented into a user material (UMAT) subroutine,
for FE simulations using Abaqus/Standard 2019 [86]. The stress integration scheme used
in the UMAT is the predictor-corrector method, proposed by Wilkins [87]. During the
plastic correction, a semi-explicit method, i.e., General convex Cutting Plane Method
(GCPM), proposed by Simo and Oritz [88], is used to update the stress states satisfying
the consistency condition through iterations, projecting the stress onto the yield surface.
GCPM is relatively simple to implement compared to a fully implicit method and still
performs efficiently but requires careful time step control to guarantee numerical stability

[89].
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Figure 8. Evolution of YId2004-18p(¢) yield locus at seven plastic work levels with insets

highlighting shrinkage near plane strain and expansion near equibiaxial tension.

4. In-plane biaxial tension using cruciform specimen

Cruciform biaxial experiments using a custom designed cruciform specimen were
performed to validate the ability of the implemented plasticity models, i.e., YId2004-18p(g)
combined with the Hockett-Sherby model, to capture the plastic anisotropy evolution
during the in-plane biaxial deformation. This section describes the optimization of a
cruciform geometry based on six design goals and the experiments using the determined

specimen under four proportional loading conditions.

4.1. Design of customized cruciform specimen
A design of experiments (DOE) approach was taken to generate a cruciform

geometry suitable for the biaxial machine at the University of New Hampshire (UNH). The
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previous iteration of this geometry is found in [65], which was a scaled version of the
geometry developed in [44]. The design goals in this work were (1) maximized strains in
the gauge section, (2) nearly linear strain paths, (3) moderate strain uniformity in the
gauge area, i.e., £2.5 % of the mean strain value, (4) sufficient gauge area for material
characterization, e.g., DIC, magnetic induction, and microstructure image scans, (5) a
machinable final geometry, and (6) a suitable design for the UNH apparatus, e.g., grip
widths, force capacity, displacement, and thickness.

The key geometric features for the design (as shown in Figure 9) were the radius
of the pocket flat area (Rgauge), fillet in the pocket (Fpocket), thickness of the flat area within
the pocket (Tpocket), corner notch radius (Rnotch), and arm width (Wam). It should be noted
that Tpocket Was set to 0.6 mm, corresponding to a 50 % thickness reduction, since this
parameter will always trend to the smallest value allowed in the design space to achieve
the design goals, especially maximizing strain in the gauge area. The lower and upper
bound values of Rgauge Were selected to allow sufficient surface area for measurement,
e.g., DIC, magnetic induction, etc. The lower bound of Fpocket Was set to 0.25 mm, which
is approximated as the machinability limit of standard end mills. Geometric requirements
dictate that the minimum Wam is a function of Fpocket and Rgauge (S€€ Appendix A.2).
Further based on literature and prior experience, Rnotch Was selected to be Warm/6. Rpocket
is the radius of the pocket, as depicted in Figure 9, and is geometrically derived from
Fpocket and Rgauge (sS€€ Appendix A.2). The overall width of the specimen Wespecimen was set
to 180 mm to allow for sufficient gripping in the UNH biaxial machine. The constraints on

the design parameters are shown in Table 5.
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Wipecimen = 180 mm

To= 1.2 mm

Tpocket

Figure 9. Novel cruciform specimen geometry with a reduced thickness pocket area and

corner notch features in variable terms.

Table 5. Lower bound, upper bound, and optimized values for key design parameters.

Design parameter (mm) Lower bound  Upper bound Optimized
Radius of pocket flat area (Rgauge) 4 15 5.65
Fillet in pocket (Fpocket) 0.25 4 1.50
Arm width (Wam) 6.50 30 30
Thickness of pocket (Tpocket) 0.6 0.6
Corner notch radius (Rnotch) Warm/6 5

For the specimen optimization, a two-level DOE approach was implemented in a

commercial optimization software, Isight [90], which is a plug-in for Abaqus, as seen in

Figure 10. Orange “process component” and green “application component” boxes, per
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Isight nomenclature, are noted in the figure. In the first level DOE, DOE1 module, 32
unique pairs of Fpocket and Rgauge Were selected within the limits listed in Table 5 using the
Optimum Latin Hypercube method. Then, the Wiogic Calculation module determined the
minimum values of Warm based on the equations in Appendix A.2 and passed them to the
next level. In the second level DOE, DOE2 module, 32 unique values of Wam were
identified again using the Optimum Latin Hypercube method. Through the DOE1 and
DOE2 modules, 32 x 32 (1024) combinations of the three design parameters (Fpocket,
Rgauge, and Wam) were produced. For each of the 1024 combinations in turn, the Rnotch
Calculation module determined Rnotch. Then, the variables for each of the 1024
combinations were used in the parameterized FE model (presented in detail in Section
5), and the analysis was run with the same displacement boundary conditions as the
experiments. Isotropic hardening and von Mises yield function were assumed in the DOE

FE simulations to reduce the computation time.

DOE Analysis
DOE 1
<_ -——
(Foocket» Pgauge) -‘ Start/End
|

32 cycles

, DOE 2
[ W,ogic Calculation J (W)
R

32 cycles

: Objective Function &
[ Anoren Calculation FlE wely [ Constraint Calculation
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Figure 10. Schematic of process flow in DOE study for cruciform specimen geometry with
orange “process component”, green “Java application component”, and blue "FE model

application component" boxes per Isight nomenclature noted.

Each run was assessed in the Objective Function & Constraint Calculation module
using an objective function and constraint selected to maximize the average effective
strain in the center 3 mm radius of the pocket. This is assumed to be a sufficient area for
material characterization instruments within Rgauge, provided that the required uniformity

of equivalent plastic strain is also achieved. These are formulated as,

®pes = %zn: lE( Ix? +y? < 3>

i=1

Maximize [@ng]

with a constraint of +2.5 % variation,

While [0'975@R53 < (5( Xiz + yiz < 3)) < 1-025@1153] (8)

where, € is the equivalent plastic strain, x; and y; are the x and y coordinates,
respectively, of the nodes in the undeformed configuration, and Ris the radius from the
central point of the pocket. The value of the objective function was then passed to the

DOE2 module and evaluated for the constraint conditions. This process continued for all
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1024 FE analyses. To ensure the applicability of the optimized design to different
deformation modes, the DOE process was performed separately for three boundary
conditions, i.e., §,:6,= 1:1, 2:1, and 4:1 covering from equibiaxial to plane-strain, where
8, and &, are displacements in each direction. The final dimensions for the geometric

parameters are shown in Table 5.

4.2. In-plane biaxial tension experiment

The in-plane biaxial tension experiments were performed using the cruciform
specimen optimized in Section 4.1. The cruciform specimens were fabricated at UNH by
the following steps. First, the specimen outline of the cruciform shape was waterjet cut
from as-received 1.2 mm thick (7o) SS316L sheets. The perimeters were then lightly
sanded to remove any rough edges. Next, the pockets on both sides of the specimen
were milled to reduce the thickness, using a custom fixture to prevent bending during the
milling operation, and finally polished to reduce the surface roughness using a series of
diamond pastes in conjunction with wool bobs attached to a rotary tool.

The in-plane biaxial tension experiments were conducted using a custom loading
frame at UNH, that is described in [59,91,92] and shown in Figure 11. The 3D-printed
alignment fixture was utilized to center the specimens prior to gripping, and the
pantograph ensured that the motion along each axis was symmetrical about the center.
The biaxial machine recorded voltages corresponding to force and displacement values
during experiments in synchronization with the stereo-DIC (3D surface DIC from

Correlated Solutions, Inc.). The strain data were extracted in the center of the pocket in
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the post-processing software (VIC-3D) with the following parameters: 21 pixels, 5 pixels,

and 5 for the subset, step, and filter sizes, respectively.

Pantograph
Grips

| / oic\

Cameras

:.‘75@ S
Sbécimen \

™ Alignment
Fixture

Figure 11. In-plane biaxial tension experimental setup (custom machine at UNH).

The specimens were subjected to four loading conditions, programmed as the
displacement paths in x- and y-axis (aligned with the material orientation, RD and TD,
respectively), i.e., §,:6,, = 1:1, 2:1, 8:1, and 1:free (unconstrained in y-axis), by driving
the four hydraulic cylinders. The experimental displacement paths are shown in Figure
12. The order of displacement ratios §,: §,=1:1, 2:1, 8:1, 1:free result in deformation close
to equibiaxial, through plane strain, to a near uniaxial strain path in the gauge section.

The corresponding experimental results are given in Section 5 with the simulation results.

33



20

’g Oy SS316L

= 1:1
“S

5 15 5.

@

>

©

_;‘ 10 |

*qEJ 2:1
=

[1h]

8 5+

(o}

w

(@) 8:1

1:free

0 5 10 15 20
Displacement in x-axis (RD) 6, (mm)

Figure 12. Biaxial tension experimental displacement paths along x-axis (RD) and y-axis

(TD).

5. FE simulation for in-plane biaxial tension

To validate the material model from the previous section, finite element simulations are
detailed in the following section. A summary of the finite element model is given.
Comparisons of the anisotropic plasticity model with experiments and von Mises are also

presented.

5.1. FE model details
An FE model of the cruciform specimen for in-plane biaxial tension was created in
Abaqus/Standard 2019. A one-eighth model was used, due to three planes of symmetry,

with a shortened arm length in comparison to the physical specimens, i.e., 65 mm
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specimen half-length instead of 90 mm, to exclude the clamped portion of the specimen
arm. The model was meshed using linear brick elements with reduced integration
(C3D8R) and consisted of approximately 22,000 elements in total, with finer meshing in
the center pocket region and three elements through the half-thickness as shown in
Figure 13. Note that a coarser mesh was used for the optimization described in Section
4.1 to reduce the computational expense.

The plasticity models implemented as a UMAT subroutine in Abaqus/Standard
2019 were used for the FE simulations, which include a non-quadratic anisotropic yield
function with the equivalent plastic strain dependent parameters, i.e., YId2004-18p(g), to
capture the plastic anisotropy evolution and Hockett-Sherby model to describe the strain
hardening behavior, as explained in Section 3. A quadratic isotropic yield function, i.e.,
von Mises, combined with the same strain hardening description, is compared with the
implemented plasticity models.

The displacement boundary conditions were applied to two reference points, which
were kinematically coupled to the thickness surfaces at the end of the specimen arms in
the x- and y-axis. Force and displacement data were extracted from these reference
points, and strain data was extracted from the center of the pocket surface as marked in

Figure 13 (red dot labeled ¢ in the through-thickness section insert).
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1/8 model

1/2 Thickness (T,)

Figure 13. 1/8" symmetry cruciform FE model and mesh design with C3D8R elements

(not to scale).

5.2. Anisotropic plasticity model validation

The force-displacement curves extracted from the experiments and simulations
are compared in Figure 14. For consistency in Figure 14 and all subsequent figures, the
simulation curves are truncated at the maximum displacement achieved by the
experiments, i.e., the fracture displacement. Note that the von Mises prediction for the
8,:8, =1:1 loading condition is an exception and is truncated at a slightly smaller
displacement than the experiments due to early localization predicted in the simulation.

Under all four loading conditions, Y1d2004-18p(g) predicts the experimental force-
displacement curves well while von Mises overpredicts the force value for nearly the
entire displacement range. This is likely due to the quadratic feature and isotropic nature
of the von Mises model, which are demonstrated in the material characterization in
Section 2. YId2004-18p tends to overpredict or underpredict the force value for the four

cases shown. Considering that complicated, non-uniform deformation fields can be
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developed in this cruciform specimen, the accuracy of the material description for a wide
range of plastic deformation modes can affect the prediction.

Furthermore, the local strain paths extracted from the surface at the center of the
pocket (red dot in Figure 13), were compared for four loading conditions as shown in
Figure 15. Only local strains in the RD (ezp) and TD (&rp), i.€., X- and y-axis, respectively,
were considered in the strain path plot. The symbols in Figure 15 represent the
experimental data from the same location and show the higher maximum achievable
strain using the customized cruciform specimen compared to specimens used in past
research [59]. The result indicates that the considered specimen design goals, i.e., (1)
greater deformation compared to the standard specimen and (2) linear strain paths, are
successfully achieved in the experiment.

Overall, in Figure 15, the strain predictions by YId2004-18p(g), Yld2004-18p, and
von Mises models agree reasonably well with the experiments. Still, YId2004-18p(&)
captures the strain paths, especially near plane strain given by é,:6,= 8:1 and 2:1, more
accurately than von Mises. The final strain levels, i.e., the end point in the curves shown
in Figure 15, selected at the same final displacements as experiments, are also
consistently overpredicted by von Mises. This seems to be caused by the isotropic
assumption ignoring the plastic anisotropy developed by complicated, non-uniform plastic
deformations in the surrounding area as shown in Figure 16. Comparing YId2004-18p

and Y1d2004-18p(g), YId2004-18p(€) shows better agreement with the experimental data.
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Figure 14. Force-displacement curves comparing Y1d2004-18p(g) (solid lines), YId2004-

18p (dotted lines), von Mises (dashed lines with end points denoted by plus signs), and

experimental (square and triangle symbols) results for proportional loading paths: §,: 8, =

(a) 1:1, (b) 2:1, (c) 8:1, and (d) 1:free. RD and TD are aligned along the x-axis (red) and

y-axis (blue), respectively.
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Figure 15. Strain path comparison between Y1d2004-18p(€) (solid lines), YId2004-18p
(dotted lines), von Mises (dashed lines), and experimental (symbols) results for

0x:6,=1:1,2:1, 8:1, and 1:free.

Figure 16 shows close-ups of the strain fields in the pocket and the surrounding
area, including the notches, just prior to fracture and at the same instance as the force-
displacement (Figure 14) and strain paths (Figure 15) for the simulations. Commonly in
all loading conditions, the highest maximum principal strain is observed near the notches,
which eventually leads to fracture in the specimen. As observed in the comparison of the
strain paths, the predictions of the strain contours in the pocket region from YId2004-
18p(g) show better agreement with experiments than those of YId2004-18p and von
Mises. The predictions of YId2004-18p match the experimental strain contours better than

the predictions of von Mises, but both are unable to capture some of the subtle strain

39



gradients evident in the DIC experimental images, e.g., the minimum principal strain

variation in the radial direction in the specimen pocket for the &,:6,= 1:1 and 1:free

experiments.
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Figure 16. Comparison of principal strain contours captured at the same fracture
displacement as the experiment to Yld2004-18p(€) and von Mises models with

proportional loading: d,:6,= (a) 1:1, (b) 2:1, (c) 8:1, and (d) 1:free.

To evaluate the deformation uniformity in the gauge area, the equivalent stress
and strain in the thickness (RD-ND plane) and the face (RD-TD plane) of the pocket are
examined based on the numerical predictions (see Figure 17). Note that, for simplicity,
the predictions of Y1d2004-18p are not shown in Figure 17. In the reduced thickness
region, the stress and strain are nearly constant through the specimen thickness and

along the radial direction on the face. Overall, these predictions indicate that relatively
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uniform fields for the equivalent stress and strain are achieved over a large volume, which

is desirable for material characterization measurements, e.g., DIC, magnetic induction.
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Figure 17. Comparison of equivalent (a) stress and (b) plastic strain along the thickness

direction (RD-ND plane) and the face (RD-TD plane) of the pocket.

6. Summary and conclusions

In this work, the plastic anisotropy of SS316L and its evolutionary behavior were
investigated under proportional loading paths using a cruciform specimen customized for
in-plane biaxial experiments. The plastic behavior, characterized by uniaxial and

equibiaxial tension experiments, were modeled by a non-quadratic anisotropic yield
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function with equivalent plastic strain dependent material parameters, Y1d2004-18p(¢), to
capture the strong evolutionary behavior in the plastic anisotropy and Hockett-Sherby
model to describe the strain hardening. For the in-plane biaxial tension, a cruciform
specimen was newly designed to satisfy six design goals and improve the specimen
performance in experiments. Four loading paths were applied to the specimen, imposing
strain paths near uniaxial, plane-strain, and equibiaxial tension. The experiments were
performed using the in-plane biaxial machine at UNH, and the results were compared
with FE simulations using the implemented models in a UMAT for Abaqus/Standard.
Overall, the YId2004-18p(€) predictions show good agreement with the experimental
results for both the force-displacement curves and the strain fields in the gauge region
compared to the constant parameter and isotropic yield functions. This validates that the
implemented plasticity modeling can accurately describe the plastic anisotropy developed

in both stress and strain fields.
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Appendix
A.1. Comparison of Effective Stress-Strain Curves for Bulge Test

A comparison of the strain hardening behavior at large, i.e., close to 1, strain levels
is shown in Figure A1 to further validate the chosen material model. To simplify the
calculations, instead of using Y1d2004-18p, the bulge test equivalent stress-strain curve
is obtained by the Hill 1979 non-quadratic yield function (Equation 1.1) [80]. The
equations for the equivalent stresses and strains for a balanced biaxial stress state [81]
are given in Equation A1.2, where ¢; is half of the absolute value of the thickness strain,
a is calculated by equating the equivalent stress and strain from a tensile test and bulge
test at an effective strain equivalent to the true uniform strain in tension, and r;, is the r-
value obtained by r = (1, + 2145 + 19¢) /4. The Hill 1979 effective stress-strain curve for
the bulge test (red circles) is plotted with the extrapolated Hockett-Sherby stress-strain
curve. Overall, the Hill 1979 stress-strain curve matches well with the Hockett-Sherby

stress-strain curve over the entire strain range shown.

2(1+7”2)5a=(1+27”2)|0'1—0'2|a+|0'1+0'2|a (A11)

_ 209 _
5= G raye €= ala e

(A1.2)
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Figure A1. Comparison of extrapolated Hockett-Sherby (black dashed line) stress-strain
curve and equivalent stress-strain curve for the hydraulic bulge test using Hill 1979 (red
circles). For completeness, the bulge test (red open circles) and uniaxial tension (black

open circles) experimental true stress-strain curves are overlaid.

The bulge test (red open circles) and uniaxial tension (black open circles)
experimental data stress-strain curves are also included in Figure A1. Note that the bulge
test experimental data is plotted in terms of true stress and strain not equivalent stress
and strain. The material anisotropy is evident by the difference in the hardening behavior

between these experimental true stress-strain curves.

A.2. Cruciform Specimen Geometric Relationships

Through thickness geometric relationship (see Figure 9) for the flat gauge region

results in,
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(Tsample - Tpocket) (A2-1)
2

Tewe =
and

(Rgauge + Fpocket)' if Fpocket < Tcut (A22)

Rpocket = "
[Rgauge + \/Fpocket - (Fpocket - Tcut)z] ’ lprocket > Tcut

See Figure A2a for more clarification on Eq. A2. Based on the authors’ prior experience,

R, otch iS determined by the following relationship with W, .,

X

Ryoteh = . (A2.3)

Based on the geometric relationship in Figure 9a and Figure A2b,

Warm =~ = Rpocket + Lnzp + Raoten (A2.4)

where Ly,p is the shortest distance from the notch to the pocket along the diagonal

direction. Substituting Eq. A3 into Eq. A4 and solving for W, .,

6
Warm = (Rpocket + LNZP) (M—_l) (A25)
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Assuming that proper triaxial strain is obtained in the corner reinforcement by constraining

a relative dimension of in-plane geometry and the sample thickness,
LNZP = Tsample (A26)

and therefore, the minimum of W,,,, can be determined by the following equation.

6
Warm = (Rpocket + Tsample) (3\/7—_1) (A27)
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\D Rpocket
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Figure A2. Relationship between the key geometric features for the design (a) plane

view and (b) section A-A.
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