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Abstract

A fast and robust stress-update algorithm based on the general cutting-plane method (GCPM)
was developed for a distortional hardening model, known as the HAH-DPS model. It captures
the anisotropic hardening behaviors such as the Bauschinger effect, transient hardening,
differential permanent softening, and cross-loading effects. The lower computational efficiency
of the direct application of GCPM was rectified by considering the all-evolutionary plastic state
variables during iterations. The newly proposed algorithm was formulated on the dependence
of the equivalent plastic strain and the other state variables defined in the distortional hardening
model. And it was implemented in a commercial finite element software using a user-defined
material subroutine (UMAT). Finite element simulations under strain-path change were carried
out to demonstrate the performance of the new numerical algorithm in terms of the convergence

behavior locally as well as globally.

Keywords: Numerical integration; Distortional hardening; Strain-path change; Cross-loading



1. Introduction

Nowadays, the initial boundary value problems in continuum solid mechanics, characterizing
the deformation behavior of the metals, are solved computationally and efficiently by using the
finite element method (FEM) (Meng et al., 2018; Seifert and Schmidt, 2008). The robustness
of problem solving is highly dependent on the selection of the integration algorithm for
computational rate-independent plasticity. Many different numerical algorithms have been
proposed to numerically integrate constitutive equations for a given strain increment. As a
representative, the radial return-mapping algorithm (called the predictor—corrector algorithm),
introduced by Wilkins (Wilkins, 1964), is widely used as the numerical integration algorithm.
The return-mapping algorithm follows the operator-splitting methodology, which is the
additive splitting of the constitutive equations into the elastic predictor and the subsequent
plastic corrector. Then, the new stress is updated iteratively using the plastic corrector projected
back to the yield surface. When the projection occurs between the two closest points, it is
referred to as the closest-point project method (CPPM). The return mapping algorithm based
on CPPM is completely implicit and unconditionally stable; thus, it is used in various
applications of elasto-plastic constitutive models (Kim et al., 2008; Ortiz et al., 1983; Ortiz and
Popov, 1985).

Despite the advantage of CPPM, the method is mostly suitable for simple plasticity models
such as von-Mises plastic yielding with an isotropic hardening law. The Hessian matrix for
computing advanced plastic yielding models requires an exceedingly laborious implementation
procedure and, as a result, the computation time becomes excessively expensive (Lee et al.,
2012; Manik, 2021). Moreover, for a larger time increment, CPPM tends to diverge; therefore,
additional numerical techniques such as line search (Lester and Scherzinger, 2017; Scherzinger,
2017), sub-incrementation (Polat and Dokainish, 1989; Potts and Ganendra, 1994), sub-
stepping (Ding et al., 2007; Sloan, 1987), and multi-stage methods (Lee et al., 2015; Yoon et
al., 1999a) should be incorporated to overcome these issues (Wissmann and Hauck, 1983). As
an alternative, the general cutting-plane method (GCPM) was developed by Ortiz and Simo
(Ortiz and Simo, 1986; Simo and Hughes, 1998). Because GCPM is formulated in a frame of
the operator-splitting methodology, but with the Newton-Raphson iterative algorithm, it is also
an extension of the return-mapping algorithm. However, GCPM does not need to calculate the

Hessian matrix (Ghaei et al., 2010; Ortiz and Popov, 1983), which consequently, makes the
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implementation of the complex material models in an FEM code simple and efficient (Cardoso

and Yoon, 2009; Lee et al., 2005; Safaei et al., 2015).

Various advanced constitutive equations have been developed to reproduce complex material
behavior during metal forming processes (Rauch, 1997; Rauch et al., 2002). For example,
anisotropic hardening behaviors such as the Bauschinger effect (Hahm and Kim, 2008; Kim
and Yin, 1997), transient hardening (Kim and Yin, 1997; Tarigopula et al., 2009), permanent
softening (Sun and Wagoner, 2013), and cross-loading behaviors (Ha et al., 2013; Tarigopula
et al., 2008) are clearly observed for sheet metals upon strain-path change, and it is necessary
to predict these phenomena in the FE analysis for robust and efficient modeling (Choi et al.,
2006). In the literature, significant efforts in model development have been devoted to the
accurate prediction of anisotropic hardening behaviors, using non-isotropic concepts such as
yield-surface-translation (Chaboche, 1986; Geng and Wagoner, 2002; Lee et al., 2007),
multiple yield surfaces (Peeters et al., 2001b, 2001a), and microstructural-based model (Hu et
al., 1992; Teodosiu and Hu, 1995). Modeling of the yield surface distortion was initially
proposed by Baltov and Sawczuk (1965), and the model was formulated via structural tensors,
which were functions of the plastic strains. Several models for the extension of their approach
have been developed in the literatures. For examples, simple models without the evolution of
the back-stress were developed by Feigenbaum and Dafalias (2008, 2007), and Noman et al.
(2010) proposed the special case of the distortional model for cross-hardening. The comparison
among the different distortional models could be found in literature (Shi and Mosler, 2013). In
particular, material models, based on the yield-surface-distortional concept have been recently
introduced by Barlat et al. (Barlat et al., 2014, 2011; Butuc et al., 2019), which is referred to as
the homogeneous-yield-function-based anisotropic hardening (HAH) model. Extensive
validation has been performed on HAH models regarding the anisotropic hardening behaviors
under various strain-path changes (Lee et al., 2020; Wi et al., 2020). More recently, a modified
version of the HAH model was proposed to describe differential permanent softening, namely
HAH-DPS (Homogeneous-yield-function-based anisotropic hardening-Differential permanent

softening), with respect to the loading directions (Lee et al., 2020).

With regard to the implementation of the HAH model series into FE codes, the radial return-
mapping algorithms, either CPPM or GCPM, for stress-update were utilized by Lee et al.

(2012). They developed numerical formulations of the HAH model series using both CPPM
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and GCPM (J. Lee et al., 2012), and GCPM with a sub-stepping scheme was proposed to avoid
inaccurate solutions owing to the semi-explicit nature of the GCPM (Lee et al., 2015). A multi-
step return-mapping algorithm based on the CPPM for the HAH model was proposed by Choi
and Yoon (Choi and Yoon, 2019), in which the finite difference method was introduced to
calculate the first and second derivatives of the distortional yield function. It was also reported
that the numerical accuracy of the CPPM for the recent HAH model can be improved by
applying the line search method (Lee et al., 2021; Yoon et al., 2020). Recently, Choi et al. (Choi
et al., 2021) proposed a fully implicit numerical algorithm that can solve a complete set of
residuals, including stress, equivalent plastic strain, and all the plastic state variables of the
constitutive model. However, the above studies focused on obtaining a solution for a given
strain increment locally. In other words, the global assessment of the tangent operator to obtain
a solution to the nonlinear boundary-value problem has not been performed in an implicit FE
code. As reported in the literature (Meier et al., 2016; Starman et al., 2014), the tangent operator
is necessary to ensure computational efficiency and fast convergence in a global equilibrium;
however, a lack of studies on global convergence is observed for the advanced distortional

hardening law.

The primary purpose of this study is to evaluate the newly proposed numerical algorithm based
on GCPM, locally as well as globally, considering the all-evolutionary plastic state variables
of the distortional hardening model in an FE analysis in terms of the computational speed and
convergence. Section 2 presents a summary of the distortional hardening model HAH-DPS.
Section 3 presents a brief description of the general stress-update algorithm, that includes the
computation of the solution given a strain increment and continuum tangent operator. Moreover,
the stress-update scheme based on GCPM is reformulated for the distortional hardening model,
which considers the evolutionary plastic state variables of the material modeling. As a result,
the continuum tangent operator is newly derived with all the components of the model, which
affects the convergence behavior in a global equilibrium. Section 4 presents the performance
of the two stress-integration algorithms in terms of computation time and convergence behavior
by considering two case study simulations. Finally, the conclusions and summary of this study

are presented in section 5.



2. Theoretical background

2.1. Modeling for anisotropic hardening behaviors under strain-path change

The HAH model herein is based on a homogeneous function of the first degree with respect to
the Cauchy stress, ®(#6) = 5-®(6), and it utilizes a distortional hardening concept proposed
by Barlat et al. (Barlat et al., 2014, 2013, 2011) to describe anisotropic hardening behaviors,

instead of the kinematic hardening concept. The mathematical expression is as follows:

1
CD(G,f 7f ’ ﬁs) = {¢q(0) + (oh(caf 7f ’ ]’is)}q = (_SIH(E_:)a (1)

where @ is the equivalent stress, ¢ is the Cauchy stress, s is the deviatoric stress tensor, the
function ¢ is the stable component that represents the material anisotropic property, and ¢, is
the fluctuating component that controls the distortion of the yield surface. The exponent q is
the material constant for controlling the sharpness of the distorted yield surface, &€ is the
equivalent plastic strain, and Gy is the reference flow hardening curve to be fitted by the Swift
hardening law, 6;y= C-(€ + ¢()", and C and ¢, are the material coefficients to be identified
from the flow curve of the uniaxial tension. Notably, Gy can replace any equivalent
expressions for reference flow hardening. i isa special tensor, namely the microstructure
deviator, introduced to hold the material deformation history and determine the direction of the

yield surface distortion. The hat symbol above h indicates that the quantity of the deviator is
normalized as Xjj = x;; / [8/3 " xjiXij, and its initial component is the same as the deviatoric
stress s when the first plastic deformation occurs.

The Bauschinger effect, transient hardening, and differential permanent softening behaviors
can be successfully reproduced by the distortion of the yield surface, controlled by the state
variables fi and /2 in Eq. (1) of the fluctuating component ¢, . The two state variables fi and f>
are additionally expressed using the plastic state variables g1 and g2, and the fluctuating

component ¢, is defined as follows:

o,(0.f,.f, 0) =11 |ﬁs:s - |f1s:s||q +1, |ﬁs:s + |fls:s||q (2)
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Here, “:” symbol represents the double dot product of the second-order tensors A and B (will

be omitted) defined as:

A:B=(q;;ei®ej): (b ex®e) = a;jbydid;, 4)

where 0ix and 61 are Kronecker delta function. And the frame em (m =1, 2, 3) represents a fixed

orthonormal coordinate system.

The evolution laws for the state variables in the HAH-DPS model are formulated with an

equivalent plastic strain and are given as

dg, ou(0)
&R (k3 om@® gi) ®)

% [gk +(1- gk)(l — cos’m) — gj]

=k 6
2=k, : ©)
dg,
g = k5 (k4 — gl)’ (7)
d_ﬁs - k- [ 2 4 ] (3 i) (8)
- sgn(cosy ) ||cos x| g | (8 —cosyh’),

where ki—ks are material constants and subscripts (i, j, k, 1) are (1, 2, 3, 4) or (2, 1, 4, 3) if
h':s>0 or h'is < 0, respectively. The function sgn(.), the scalar parameters cos o (J. Lee et

al., 2020) and cos y (Schmitt et al., 1994), and the evolution law of the state variable gr are

given by:
8 o
cosy =3 (§L:hs), 9)
1 ifx=0 98 :
sgn(x) = {_1 ifi <o d—; = kR[kR(l — cos?y) —gR], (10)
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where §, and §; are the stress deviators corresponding to the first plastic strain increment
and current plastic deformation, respectively. In the above evolution laws, z = 5, kr=15, and

k'R = (0.2 are suggested values.

Cross-loading behaviors, either cross-hardening or cross-softening under cross-loading paths,

are modeled using additional functions in the stable component ¢ of Eq. (1) with state variables

as follows:
o)~ | W)+ yisy)? with w(s)= (5" and w(sy) (12)
. 1
s"=s. +ns, withn = — (13)
L
sp = 4(1 = g¢)so. (14)

where sc and so are decomposed stress tensors collinear and orthogonal to the microstructure
. -~ 8 -~ =~ . .
deviator h’, defined as Se == (s:h")h° and So = S — S, respectively. The function ¢ can be
3

any isotropic or anisotropic yield function.

The state variables gr. and gs control the description of cross-hardening and cross-softening
under the given cross-loading condition, respectively, and their evolution laws during plastic

deformation are defined as follows:

d o(0

% = kg [(1 — (;III:I((E))) (\/L(l — cos?y) + cos?y — 1) +1- gL] , (15)
d
% =kg[1+ (S— 1)coszx—gs], (16)

where ki, ks, S, and L are the material constants.



2.2. Graphical interpretation of the HAH-DPS model

As formulated in previous section, the HAH-DPS model can predict the anisotropic hardening
behaviors such as the Bauschinger effect, cross-loading effect, and differential permanent
softening effect when the loading path changes. Figure 1 (a) and (b) show the yield loci
evolution for the latent hardening and cross-loading contraction predicted by the HAH-DPS
model under the orthogonal loading condition, respectively. The uniaxial tension in the rolling
direction (RD) was prescribed to the material as the first loading (See red dotted surfaces). As
shown in figures, the opposite part of the yield locus was distorted to reproduce the
Bauschinger effect. Then, as the second loading path, subsequent uniaxial tension along the
transverse direction (TD) was subjected (See black lined surfaces). As shown in figures, both
distorted yield loci recover the yield locus of the isotropic hardening (Blue dotted surface) to
describe the transient and permanent softening, and they are controlled by the state variables
g1-4. For the latent hardening case, sudden expansion of the yield locus is obtained by using the
state variable gi. during the second loading as described in Figure 1 (a). And the state variable
gs affects the sudden contraction of the yield locus to reproduce the cross-loading contraction

under the orthogonal loading condition as shown in Figure 1 (b).
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Figure 1: Yield loci prediction of the HAH-DPS model reproducing (a) latent hardening and

(b) cross-contraction after pre-tension in RD followed by uniaxial tension in TD (J. Lee et al.,

2020).



Figure 2 shows the evolution of the state variable g under two different loading path change
conditions; (a) Uniaxial compression in RD followed by the subsequent tension in RD,
corresponding to cos ® =—1; (b) Uniaxial tension in RD followed by the succeeding tension in
TD, corresponding to cos ® = —0.5. The state variables g; affects the amount of the recovery
during the second loading, reproducing the permanent softening effect. As shown in figure, the
original HAH model can reproduce the permanent softening effect for two strain-path change
conditions while different amount of the permanent softening eftect for the HAH-DPS model
can be observed. This is because the new state variable cos o in Eq. (6) influences the evolution

of the state variable g1, leading to the different predictions for the permanent softening under

strain-path changes.
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Figure 2: Evolution of the state variable g using the HAH and HAH-DPS models under the
strain-path change conditions: (a) cos ® =—1 and (b) cos ® =-0.5. The data refer to Lee et al.

(J. Lee et al., 2020).



3. Numerical implementation for anisotropic distortional hardening

3.1. Review of incremental deformation theory

The incremental constitutive equation has been obtained from the minimum plastic work path
(Chung and Richmond, 1993, 1992; Yoon et al., 1999a) based on the materially embedded
coordinate system. Here, summary of the incremental deformation theory is provided. Let us
define the deformation gradient F, which describes a deformation between the current time t

and the reference time to, and it is decomposed as follows:
F(t) = R(t)U(t) for to <t < to+At, (17)
where R and U are rotational and right-stretch tensors in the incremental quantity, respectively.

Considering the relationship for the rate of the deformation tensor L =D + W = FF! (F=0F/ot

and F'=U"'R™), the deformation rate tensor D and the spin tensor W are expressed as follows:
D= (FF !);=(RUU 'R ")sand W = (FF '), =RR! + (RUU 'R ), (18)

where U=0U/6t, R=0R/6t, and the subscript ‘a’ and s’ denote the anti-symmetric part and the
symmetric part of the tensor, respectively. When the same principal material lines are kept

constant during deformation, the following relationships are obtained:
D =RUU'R" (19)

where RT represents the transpose tensor of the tensor R. Therefore, the deformation and

rotation are conveniently decoupled by using the tensors R and U.

The objectivity rule is satisfied for the updated stresses, which are rotated by R, because the
material is rotated by the incremental angle calculated by the polar decomposition at each

discrete step.
An invariant quantity with respect to the rotation, D, is defined as
D =R"DR=UU". (20)

Note that the symbol “*” represents the quantity with respect to the materially embedded
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coordinate system or the Lagrangian quantity.

The incremental logarithmic strain quantity at a given time increment is obtained, which

satisfies the minimum plastic work condition, as express:
Az= [ Ddt = InU(to + At 1)

Note that Eq. (21) is consistent with the rotation neutralized strain tensor of Nagtegaal and

Rebelo (1988). And, the total deformation could be decomposed as (Lee, 1969)

F = F°F’ = (R°U°)(R?UP) and L = F¢(F°) ' +FF°(F?) | (F¢) ! (22)

[IPe4)

where the superscripts “e” and “p” mean the elastic and plastic deformations, respectively.
The following relationship is derived for infinitesimal elastic strains (i.e., F¢=I),

D = D¢ + DP. (23)
Finally, the incremental logarithmic strain can be decomposed into as follows:

Ag = Ag® + A¢’ (24)
where Ag® and Ag” are the elastic and plastic strain increments, respectively.

Note that the Ag® is the proportional to the increment of Cauchy stress Ac in the incremental
deformation theory. The incremental application of elastic-plasticity for FEM analysis will be

introduced in the next section.

3.2. Review of the general cutting-plane algorithm

The stress-integration algorithm based on the cutting plane method updates the Cauchy stress
o and the relevant state variables of the material models, at the current time step tn+1 for a given
strain increment Agq+1. The proposed cutting plane algorithm is formulated with the Newton—
Raphson iteration (Ortiz and Simo, 1986), in which the iteration begins by calculating the

elastic predictor. For the simplicity, the proposed algorithmic approach in this study is to
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integrate the equivalent plastic strain iteratively but the state variables of the HAH-DPS model

explicitly, which are dependent on the equivalent plastic strain.

Assuming that a given strain increment Agq+1 is a fully elastic strain increment, the elastic

predictor 6" is computed as follows:

¢ =0, + C":Ag,, , (25)

where o, is the Cauchy stress at the previous time step tn, C° is the fourth-order isotropic
elasticity stiffness tensor, and “:” denotes a tensor product between the fourth-order and second-

order tensors defined as:
C:D = (Cijklei X €; Qexr®e): (dnnem D ey) = Cijkldmnskmslnei X e, (26)

where dkm and o1, are Kronecker delta function. And, the state variables and equivalent plastic

strain in the HAH-DPS model are the same as those at the previous time step.
If the following condition is satisfied, the trial stress is purely elastic.

®nle (GT, ‘§n) = cI)nle (GT) - (_SIH(En) <0 5 (27)

where ® determines the plastic yielding of the material, and ® and oy are defined in Eq.
(1). The condition where Eq. (27) holds is denoted as the consistency condition: Then, the
updated stress 6,7 atthe current step is the trial stress ', and the equivalent strain and other
state variables of the HAH-DPS model are kept as the converged values from the previous time

step.

However, the material deformation becomes plastic when ®,,; (6", &,)>0. Subsequently, the
consistency condition in Eq. (28) is iteratively solved using the unknown variable Ay, which is
the incremental plastic multiplier. By applying the associated flow rule and Euler’s theorem,
the relationship between the equivalent plastic strain increment A& and plastic multiplier Ay

1s obtained as follows:

Opi1 = P(0, + A6yi1) — O (€, + AY) = P(0,:1) — o1 (&, + Agyiq), (28)
oD
AP = Ay — 29

12
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where Ag” is the plastic strain increment.

By applying Taylor’s expansion to Eq. (28), the variation of the equivalent plastic strain

increment at the (k+1)1 iteration is as follows:

00,1 (A&, "
A_I(llfl-'-ll) = A§n+1k + 6(Ag) and ®n+1(A§n+1k) n %S(A{;) o, a1
00 (A& *
S(AY) = S(Aé) = — ®n+1 (Aén_‘_lk)/%
- Oui1 (AEy:1") (32)
a(l)n+1 e, a(l)n+1 , _ k ’
(a"nﬂ “i% o +H(A%)

where H' is the slope of the strain-hardening curve, given by the Swift hardening law. The
newly updated stress and equivalent plastic strain are computed as
k

o0
ops = okys +5(AE)C: 7 —= and E5HY =&, + asY. (33)

Gn+1

The state variables of the HAH-DPS model are updated at the (k+1)" iteration as below.

8 §o: 8D
COSW = 5s——F——7 34
318, [s%| -
ﬁs(kH) = ﬁs(k) + k-sgn( cosy) [lcos xl /2 +g ] ( 3% — cos Xh )8(A ), (35)
S— 8( a(k+1), ﬁs(k+1)) (36)

3 )
X K 011 (0) k =
g0 = g0 + K, <k3 — o~ 8 )> 5(48), (37)
o1 (Eny1
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(k+1) G K [gq + (1 - gq) (1 = cos’m) — gp]

gD = g 5(4E), (38)
€p
~s(k+1) k+1)
(k+1) _ (k) 5 (1,2,3,4) h s 2 0
=g +ks(k, — g )0(AE), for (o,p,q,T) { o (39
P r ( r) (2,1,3,4) hs(k+1):s(k+1) <0
oy (0
g£k+1) _ gik) + Kk, Kl _ %) (\/L(l — cos?x) + cos?y — 1) +1
O1n(Ent1 )
(40)
gl = g9 4 kg[1 + (S — 1)cos?x — gs]5(AE), 4D
g0 = g9 4 kylkk (1 — cos) — gld(4%), 2
The iterations are terminated upon satisfying the following criteria:
—(k+1)
o |®(A8n++1 )|
GIH(8n+1 )

where the tolerances used in this study is Tol = 107°.

Figure 3 shows a schematic of the proposed numerical algorithm. As shown in the figure, the
updated stress at the (k+1)™ iteration is returned along with the tangent cut of the yield surface

at the stress point of the £ iteration.
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Figure 3: Schematic of the cutting-plane algorithm.

To maintain an approximately quadratic convergence rate in the implicit FE system globally,

the continuum tangent modulus C should be characterized as follows:

oD
od
do = C%: (ds — d§—) , (45)
06
¢ 0D e_@
_ e_C'%®C'aG _ ep
de=|C de = C*Pde, (46)
ob . 0D .
8—:C =—+H
c o6

where the symbols of “@” represents the open product of two second-order tensors, defined as
AQB=(q;e;Q¢€) Q (bex®e)) = a;jbe; Ve R ey X e (47)

As shown in Eq. (46), the first derivative of the plastic yielding function is necessary to obtain
the continuum tangent operator throughout the stress integration procedure. With respect to the
computation time, the analytical closed-form equation produces the best performance.

However, extremely hard efforts are required to obtain the gradients of the plastic yielding

15



function as the material models become complicated to reproduce the material response under
complex loading conditions. As an alternative, the numerical computation of the tangent
operator, material-independent and less computation time, has been proposed and could be

found in the literatures (Miehe, 1996; Pérez-Foguet et al., 2000; Seifert et al., 2007).

Note that the meaning of a tangent modulus/operator in a view of the computational approach

is found in Appendix A.

3.3. Variational update form of anisotropic distortional hardening law

As reported in previous studies (Choi and Yoon, 2019; J. Lee et al., 2020; Yoon et al., 2020),
the shape of the distorted yield surface for the distortional hardening model changes rapidly
with the strain-path change. Thus, we focus on the variational form of the state variables
relevant to the yield surface distortion with respect to the equivalent plastic strain. Because the
state variables in the distortional hardening model in Eq. (1) are formulated as a function of the
equivalent plastic strain, a strict variational rule should be applied in Eq. (32). Thus, main
difference of the newly proposed algorithm introduced in this section is the dependence on the
equivalent plastic strain and the other state variables defined in the distortional hardening

model. The linearization of the consistency condition is carried out as follows:

~s®

a@)n+1(A§n+1k) 8(I)nJrl . CC- 8(I)nJrl n+1 af ® n+1 af ® n+1 oh
OAE - aek, T Tadk, afl B 0AE afz B 0AE aﬁs(’f) OAE  (48)

— H'(Ag,41"),

5(Ay) = 8(Ag)
®n+1 (A§n+1k)

» (49)
@) ® s (
8(Dn+1 :C%: 8(Dn+1 0D %, _ a(DIrfﬂ %, _ oDf., oh S — + H'(A§ k)
acnﬂ ackﬂ afl(k) OAg afz(k) OAge al,is(k) OAE n+1

n

where,
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oD

— 31D @ D59
= @Ry (50)
1,2
10 _ 1, 081, _ (@-D __ 1 @ (51)
OAE agl ) OAE 1,2 g (q+1) OAE
. 1,2

o _ -
— = 0" (-2 |2h

s ((g-1)
s| s
ch

(52)

The newly updated stress and equivalent plastic strain are given by Eq. (33) at the (k+1)"
iteration, and the relevant state variables are updated using Egs. (3)—(16). The same termination

condition in Eq. (43) as that of the previous cutting plane algorithm is used.

The continuum tangent modulus as a function of the all-evolutionary state variables is derived

from the rate form of the consistency condition using Eq. (49) as follows:

oD oD oD oD
df + Tsdh — H'de

d® = d@(o,f.,f,, h") — doy (&) ——do df, +
o, o,
(53)
_ 00 oD o oD o o0 oh’
= —i_1+—i_2+ — de—H'de =0,
o6 of, 08 of, 05  oh 3
e e oD
E:Cepzce_ C86®C 06
de 00 e 00 000 00, vk .\ (4)
0o~ "0J6 of 0t 0df, 0 af° O
of, oh'
where the rate forms of a" = o are computed as below.
(k+1) (k+1)
o _ 9% (q-1) 1 \%;
i il =f - — fori=1,2 55
Og agl Og fl g'(q+1) Ot or: , ( )
l
di’ y (k+1)
—_— =k z S 56
= k-sgn( cosy) [lcosxl +gR] (56)

All the values are calculated at the (k+1)" iteration, where the converged solutions are obtained.
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Note that the GCPM considering the all-evolutionary plastic state variables presented in this
section is called as “GCPM-N,” and the aforementioned GCPM is named as “GCPM-0O”. And

the whole process of the stress-update procedure is summarized in Appendix B.
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4. Numerical validation

Two stress-update algorithms based on the GCPM, that is, GCPM-O and GCPM-N, were
integrated with the HAH-DPS model. The proposed numerical algorithms were implemented
in the commercial FE software ABAQUS/Standard (Abaqus, 2018) via a user-defined material
subroutine (UMAT). Two simulations subjected to different strain-path changes were
conducted to evaluate the tangent operator with the all-evolutionary plastic state variables of
the HAH-DPS model, that is, GCPM-N, for a global solution of an implicit FE code, and to
demonstrate the convergence loss when the previously derived continuum tangent operator,
that is, GCPM-O, is used. Note that the two cases led to the complex material behaviors such
as the latent hardening and DPS effects, resulted in sudden shape change of the yield locus
during plastic deformation. More in-depth study for the two cases regarding the numerical

efficiency are presented in the following sections.

4.1. Combined plane-strain tension and simple shear loading of a notched specimen

A 1.2 mm-thick sheet metal specimen subjected to plane-strain tension followed by simple
shear deformations was modeled with shell elements of four-node reduced integration (S4R).
The number of elements and average mesh size were 2174 and 0.7 mm X 0.7 mm, respectively.
Figure 4 describes the geometry of the specimen with dimension and displacement boundary
condition for loading: (1) The upper part of the sample was fixed, and the lower part was moved
down by 0.7 mm (plane-strain tension in the gauge section). (2) The load was then released
(unloading). (3) Finally, the lower part was fixed, and the upper part was displaced by 3.5 mm
in the horizontal direction (simple shear). The new tests were developed to reproduce the
continuous or discontinuous strain path change by van Riel and van den Boogaard (2007), and
the corresponding simulations were conducted by Ha et al. (2014). The loading path change
indicators, cos x and cos o, defined in Egs. (9) and (11) become zero during the prescribed
strain-path change, and this loading path change is called the cross-loading condition. For the
simulations during the second loading, the initial displacement increment Auy, ini. = 0.0035 mm
and maximum Aui, max. = 0.035 mm were prescribed, and 1 s simulation time was subjected.
The material coefficients of the EDDQ steel sample for the constitutive models were obtained

from the authors’ previous work (Lee et al., 2020), as listed in Table 1. The anisotropic material
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properties were predicted by Y1d2000-2d (Barlat et al., 2003), and the formulations are
summarized in Appendix C. Note that the EDDQ steel sample exhibits stress overshooting or

cross-hardening behavior under cross-loading conditions (Ha et al., 2013).

23 mm

Figure 4: Specimen geometry subjected to plane-strain tension followed by simple shear

Table 1: Coefficients of the material models

Elastic properties and Swift hardening law

Young’s . , .
modulus (GPa) Poisson’s ratio C (MPa) €0 N
193.0 0.33 538.0 0.0075 0.267

Plastic anisotropy parameters for Y1d2000-2d with exponent m = 6

o1 o2 o3 04 s (073 o7 as

1.014 1.118 0.931 0.892 0.904 0.811 1.029 0.918

Distortional hardening parameters for HAH-DPS model with q =2

k ki ko ks kq ks L ke S ks
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Figure 5: Maximum iterations for convergence in the stress integrating procedure during the

second loading for (a) GCPM-N and (b) GCPM-O.

Figure 5 shows a comparison of the convergence behavior of the stress integration during the
second loading between GCPM-N and GCPM-O. The total number of time-increments as well
as the increment size were similar for both methods. The maximum number of iterations for
convergence was also similar for most time increments, but a more iterative procedure was
necessary for GCPM-O than for GCPM-N in the early stage of the loading path change, that is,
~ 1 <0.05 s. Nevertheless, both algorithms required several iterations at the beginning of the
strain-path change, wherein the prior loading history was effective for the plastic deformation,
owing to the overshooting flow behavior under cross-loading conditions, as shown in Figure 6
(a). To reproduce the cross-loading effect in the HAH-DPS model, the distorted yield locus
rapidly expanded along the subsequent loading direction, as shown in Figure 6 (b). This was
accompanied by drastic changes in the state variables of the model, which results in more
iterative work to find the new stress update at the subsequent plastic deformation after strain-
path change. For comparison, the yield locus of the isotropic hardening (IH) law was also
plotted in Figure 6 (b) in the dotted black line. Note that the proposed distortional hardening
21



model follows the isotropic hardening behavior during the first loading, and because there was

no prior loading history, both algorithms resulted in the same convergence behavior, which is

not further examined in this study.
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Figure 6: (a) Simple shear stress—plastic strain relationship and (b) the yield loci in the n-plane
predicted by HAH-DPS and isotropic hardening (IH) models for the plane-strain tension
followed by simple shear loading.
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(a) (b)
Figure 7: Comparison between CGPM-N and GCPM-O during stress update in terms of (a)
objective function I, and (b) the plastic multiplier increment 5(Ay).

More detailed analyses on the iterative behavior of two stress integration algorithms are
described in Figure 7 (a) and (b). Figure 7 (a) represents the evolution of the objective function
I, as defined in Eq. (43), which should be less than a specified tolerance when the solution
converges. It shows drastic changes in the objective function I' in the initial stage of the
iteration, corresponding to the loading path change, and as a result, it needs more iterative
works owing to the severe distortion and sudden expansion of the yield surface. GCPM-O has
more oscillated patterns in the objective function I, while GCPM-N can find a converged
solution rapidly after 17 iterations. Figure 7 (b) shows the evolution of the plastic multiplier
increment 6(Ay), defined in Egs. (32) and (49) for two different algorithms. During iterations,
CGPM-N has smaller plastic multiplier increment changes than GCPM-O, which can

accelerate the numerical convergence speed.

GCPM-N GCPM-N

GCPM-O : GCPM-O

LOLOOO000000OH
WA BNNONNOLOO
SONRBRONRLJWEREO

(a) (b)

Figure 8: Comparison of FE results for (a) state variable gi contours at the initial stage of the

strain-path change, and (b) von-Mises stress distribution (Unit: MPa) at the final stage.
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Figure 8 (a) shows the state variable g; contours, representing Bauschinger effect, at the initial
stage of the strain-path change. Almost same contours on the state variable g; are observed in
two different numerical schemes although gi evolves with respect to the plastic multiplier as
shown in Figure 7. And the corresponding quantitative analysis is carried out to calculate the

least square error (8) between two FE results as follows:

P _ _0\2
5 \/Zizll\l(FiGCPM N _ FiGCPM O) (57)
N )

where N is the total number of elements, and F represents the FE result value.

Table 2: Least square errors between two different stress-update algorithms for Figure 8

. Stress in x- Stress in y-
) von-Mises o o Shear stress Txy
State variable gi direction Gxx direction Gyy
stress (MPa) (MPa)
(MPa) (MPa)
2.8x10* 4.2 5.7 4.8 3.0
50 50
s Total iterations : 513 i Total iterations : 1581
40| Toal CPU time : 852 s 40 Toal CPU time : 1730 s
wn 30 72}
= =
S 2
£ 20} =
2 2
10 -
%0 02 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
Time (s) Time (s)
(a) (b)

Figure 9: Convergence behavior in the global equilibrium during the second loading for (a)

GCPM-N and (b) GCPM-O.
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The least square error of the state variable g is provided in Table 2, quantitively. The result
confirmed that almost same physical values are reproduced using the two different algorithms.
Furthermore, the results in Figure 8 (b) show similar von-Mises stress distributions of two
different stress-update algorithms at the final stage although each algorithm has different

iteration histories as seen in Figure 5, and the corresponding errors are also shown in Table 2

Figure 9 shows the comparison of convergence results in a global equilibrium using GCPM-N
and GCPM-O during the second loading. The graphs represent the number of iterations
required to obtain a global equilibrium for each increment. As shown in the figure, GCPM-N
leads to efficient and fast convergence results, and the total number of iterations of GCPM-N
requires less than one-third of GCPM-O. Moreover, the total CPU time GCPM-N is much less
than that of GCPM-O (852 s for the simulation using GCPM-N versus 1730 s for the simulation
using GCPM-O). This demonstrates that GCPN-N, with an all-evolutionary state variable, is a
more efficient and powerful approach in terms of convergence behavior in the global

equilibrium.

_
<
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residual at critical node
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Iterations
Figure 10: Comparison of normalized largest force residuals between GCPM-N and GCPM-O

at a critical node during global iterations at a simulation time of 0.122 s.

25



The largest force residuals at the critical node are monitored during global iterations at the early
stage of the strain-path change (at the simulation time of 0.122 s). The normalized largest force
residuals, i.e., the largest force residuals divided by their initial residuals, are plotted in Figure
10. In the case of GCPM-O, the global solution converges after 40 iterations, whereas GCPM-
N requires less than 10 iterations for the global convergence. The force residuals decrease
rapidly for GCPM-N, and thus the convergence rate is much faster for GCPM-N than GCPM-

0, as expected.

Figure 11 shows the convergence results in a global equilibrium when a large displacement
increment is applied. In the simulations during the second loading, the initial and maximum
displacement increments were prescribed as Aui, ini. = 0.0035 mm and Aui, max. = 0.1 mm,
respectively. As shown in the figure, the maximum number of iterations required for GCPM-N
is 80, whereas it is almost double for GCPM-O. This proves the efficiency and robustness of
the proposed approach (GCPM-N) for a large displacement increment, equivalent to a large
time increment, from the consideration of all-evolutionary state variables for the tangent

operator and plastic multiplier increment.
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Figure 11: Convergence behavior in the global equilibrium during the second loading for (a)

GCPM-N and (b) GCPM-O when the large displacement increment is prescribed.
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4.2. Forming process problem: V-bending forming and springback

To show the numerical efficiency of the proposed numerical algorithm for the advanced
distortional hardening law, a more demanding simulation was performed. A 0.1 mm-thick
ferritic-stainless steel sheet was subjected to uniaxial tension at approximately 9% strain along
the rolling direction (RD), and then the V-bending forming and springback simulations were
conducted for a pre-strain sheet cut along 45 ° of the RD. All the FE simulations were
conducted with implicit code using ABAQUS/Standard, and the influences of the stress
integration algorithms on the convergence behavior of a global equilibrium solution were

considered when complex problems such as contact issues between tools and sheet occur.

Figure 12 (a) shows the geometry and dimensions of the V-bending simulation. As shown in
the figure, a punch radius of 1 mm was used, and the punch displacement along the vertical
direction was 14.3 mm. According to the beam bending theory, a bending strain of 5 % on the
outer surface of the sheet was subjected to the given punch displacement. The corresponding
FE modeling for the components (die, punch, and blank) is shown in Figure 12 (b). Discrete
rigid body element and 4-node shell element were used for the tools and sheet, respectively.
Considering 2-fold symmetric property, only a quarter of the sheet sample was modeled with a
sample size of 20 mm (length) x 5 mm (width). More than five elements were modeled for the
corners of the tools. A Coulomb friction model with a constant friction coefficient of 0.15 was
assumed for all contact surface interactions. Instead of uniaxial tension simulation for the first
loading, a user-subroutine to define the initial solution-dependent state variable fields (SDVINI)
was used. All the state variables related to the plasticity were obtained from a full-field tension
simulation. For the second loading, which is the V-bending forming process for 1 s simulation
time, the initial and maximum punch displacement increments were prescribed as Auini. = 0.002
mm and Aumax. = 0.2 mm, respectively. The material parameters of the constitutive models for
ferritic stainless steel are summarized in Table 3. Isotropic plastic yielding, that is, von-Mises
criteria, was assumed in this study. The distortional hardening model was used to take into
account of the fact that this steel sample also shows stress overshooting or cross-hardening
behavior when the first and second loading directions are at 45 ° to each other (Bong et al.,

2019). More details are provided in (J. Lee et al., 2020).
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Figure 12: (a) Schematic of the V-bending tools and blank and (b) the corresponding FE model.

Table 3: The coefficients of the material models (J. Lee et al., 2020)

Elastic properties and Swift hardening law

Young’s . .
modulus (GPa) Poisson’s ratio C (MPa) €0 n
2239 0.33 882.6 0.0056 0.224

Plastic anisotropy parameters for Y1d2000-2d with exponent m = 2

(03] (5] o3 o4 s 06 o7 o

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Distortional hardening parameters for HAH-DPS model with q =2

k ki ko ks kq ks L ke S ks

18.7  580.0 10.0 0.9 0.88 24.0 1.65  384.0 1.0 0.0
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Figure 13: Comparison of springback results between GCPM-N and GCPM-O: (a) Profile and
(b) residual stress (Unit: MPa). The experimental data refer to Lee et al. (J. Lee et al., 2020).

The springback results of the V-bending simulation with a pre-strained specimen are shown in
Figure 13. The comparison shows that both stress-update algorithms predict almost identical
springback profiles (Figure 13 (a)) and very similar residual stress distributions with negligible
differences (Figure 13 (b)). During the forming simulations, the total number of iterations

necessary to converge to the solution for a given strain increment locally were, 391 and 252
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for GCPM-O and GCPM-N, respectively. Moreover, the average iterations per increment to
converge, i.e., the total iteration divided by the number of increments, were 4.2 and 4.4 for
GCPM-0O and GCPM-N, respectively, showing similar local convergence speed for GCMP-O
to that of GCPM-N. This is because GCPM-N requires a smaller number of increments during
the forming process. Note that the two algorithms show the same convergence behavior during

the springback simulation because of purely elastic deformation.
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Figure 14: Convergence behavior in the global equilibrium during the V-bending forming

process for (a) GCPM-N and (b) GCPM-O.

Figure 14 shows a comparison of the convergence results in the global equilibrium between
the two different tangent operators during the forming process. Importantly, the convergence
behavior of the global equilibrium exhibits much better efficiency in GCPM-N because of the
smaller number of iterations and larger increments required than GCPM-O. As already pointed
out, the poor convergence behavior of GCPM-O in a global equilibrium was observed,
especially when the material experienced a cross-loading effect with latent hardening, even
though a smaller increment was prescribed during the simulation. The number of iterations

necessary to obtain a solution globally using GCPM-N was approximately one-fifth that of
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GCPM-O. Moreover, the computation CPU time was reduced by over 70% for the proposed
GCPM-N algorithm.
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Figure 15: Comparison of normalized largest force residuals between GCPM-N and GCPM-O

at critical node during global iterations at a simulation time of 0.775 s.

More in-depth analysis on the global convergence behavior is conducted. Figure 15 monitors
the largest force residuals of the global iterations at a simulation time of 0.775 s during the V-
bending forming process. The global solution is obtained for GCPM-O after 65 iterations, but
it is only 15 iterations for GCPM-N. As a result of that, the convergence speed of GCPM-N is
much faster than GCPM-O as analyzed in Figure 14, which is the same result with the plane-

strain tension and simple shear of the notch specimen in Section 4.1.

Figure 16 shows the comparison of FE results between GCPM-O and GCPM-N at the
simulation time of 0.775 s during V-bending forming process. The distribution of the state
variable gr, which captures the cross-hardening effect, is shown in Figure 16 (a). The FE
simulations of two different algorithms lead to almost identical results, qualitatively. In addition,
von-Mises stress contours are evaluated for two stress update algorithms in Figure 16 (b). The
FE results reveal that both stress integration algorithms produce the similar stress distribution

even with drastic yield surface changes upon strain-path changes, such as sudden expansion of
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the yield surface due to the cross-hardening effect, but the convergence rate for both algorithms
are totally different. Thus, in conclusion, the analysis indicates that GCPM-N has an advantage
in the global convergence speed but requires the complex mathematical expression to

implement. In contrast, the simple formulation of GCPM-O is of advantage to implement

‘ GCPM-N ’
‘ GCPM-O ’
(a) (b)

Figure 16: Comparison of FE results for (a) state variable gr. contour, and (b) von-Mises stress

although relatively slow convergence speed.

N’

GCPM-O

distribution (Unit: MPa) at a simulation time of 0.775 s during V-bending forming.
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5. Summary and conclusions

In this study, a stress-update algorithm based on the GCPM method was reformulated for the
HAH-DPS distortional hardening law, namely GCPM-N, and implemented in the commercial
FE software ABAQUS/Standard via UMAT. The proposed numerical algorithm can capture
anisotropic hardening behaviors such as the Bauschinger effect, transient hardening,
differential permanent softening with respect to the loading direction, and cross-loading effect
with latent hardening/contraction by introducing the concept of yield surface distortion. In
particular, the plastic multiplier for obtaining the solution during stress integration and the
continuum tangent operator for finding a solution in a global equilibrium were derived
considering the all-evolutionary state variables. To compare the efficiency and robustness of
the developed (GCPM-N) and previously proposed (GCPM-O) stress integration algorithms,
two FE simulations were conducted: plane-strain tension followed by simple shear and V-
bending forming simulations with a pre-strained specimen. The main findings of this study can

be summarized as follows:

® From the cross-loading simulation result of the plane-strain tension followed by simple
shear deformation, the developed numerical algorithm, GCPM-N, showed a similar
iterative behavior for convergence, given a strain increment with that of the previous
stress-update algorithm, GCPM-O, whereas GCPM-O required more iterations in the

subsequent plastic deformation after strain-path change.

® In view of the global convergence behavior, GCPM-N required one-third of the
iterations exhibited by GCPM-O, and half of the computation time consumed by
GCPM-O, which showed better computational speed. When the time increment

enhanced, the computational efficiency of the GCPM-N was preserved.

® From the forming and springback simulations of a complex geometrical problem, both
algorithms resulted in the same springback predictions, and similar local convergence
behavior was evaluated based on the average iterations. However, smaller time

increments were required for GCPM-O.

® By comparing the iteration numbers for a global equilibrium, the proposed GCPM-N

considering all-evolutionary plastic state variables was found to be computationally
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faster and more efficient. However, although the previous numerical algorithm GCPM-
O required more iterations in a global equilibrium resulting in the loss of the
computational speed, GCPM-O still had the advantage of preserving the simple
formulation from the implementation point of view, even for a complex constitutive

model.
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Appendix A. Tangent operator—Material stiffness tensor

In order to describe the role of a tangent operator (or called material stiffness tensor) developed
in the preceding chapter, a typical numerical solution scheme for the elastoplastic implicit

boundary value problem (IBVP) is explained in the context of the FE method.

Only considering the static problem case, the equilibrium equations derived from the virtual

work equations are expressed symbolically as
Y(0n41) = F™(0ne1) —F51 =0, (A1)
where F" and F* represent the discrete internal and external load vectors, respectively.

By applying the linearization method at the i™ equilibrium iteration in Eq. (A.1), the following

linear system of equations is obtained as
. : . -
[Fine(of)y) — B | + K, Ad(Y = o, (A2)

where Adglifll ) is the incremental nodal displacement at the (i+1)" iteration, and the global
stiffness operator Kﬂl is defined as
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op  F™(al),) oF™(o1),) a0, 0e?),

®
K11 = - . . . . (A.3)
6} 6 ® ) @
adn+1 adn+1 ao-n+1 asn+1 adn+1
C g . . 96D . .
This linear equation in Eq. (A.2) could be solved when the tangent operator . & is provided.
€

n+1

As clearly seen in previous equation, the tangent operator derived from the stress integration

algorithm affects a calculation of the global stiffness operator.

By solving the following equation, the new global discrete displacement field is obtained as
i : -1 . .
a2 = [0 [P(o,) - R a4

Note that the simulation results are not affected by the inaccurate definition of the tangent

operator, while the convergence rate is.

Remark is that two types of material tangent operators can be selected to construct the structure
stiffness operator: continuum tangent modulus and consistent tangent modulus (Gu et al., 2011;
Simo and Taylor, 1985; Szabd and Jonas, 1995). The continuum tangent modulus is defined as
the differentiation with respect to the infinitesimal strain increment de of the rate constitutive
equation do while the consistent tangent modulus (also called algorithmic tangent modulus) is
obtained through direct differentiation of the incremental constitutive equation Ac with respect

to the total incremental strain Ae.
More rigorous expression of the tangent operator could be summarized as below.

The following relationship is considered.

o= LFSF', (A.5)

Po

where ¢ and S are the Cauchy stress and 2™ Piola-Kirchhoff stress tensors, respectively. F is

deformation gradient tensor, p and po are the final and initial densities of the material.

The relationship for the spatial gradient of the velocity (L = FF!, F = 6F/t) results in

6 = L6+ Lo+ 2FSFT+ oL, (A.6)
Po Po
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Two assumptions are applied, and the above equation becomes a simpler expression to
conveniently obtain the material tangent operator: (1) small deformation condition (F=I), (2)

incompressibility condition (p = 0 and p = po). And the following equation is obtained.

6 =L6+S+o6L"=Do+Wo+8+0D-cW, (A.7)

where D and W are the rate of the deformation tensor and the spin tensor, respectively. Note

that these approximations were applied only to conveniently obtain the material stiffness tensor.

Using the formulation 6 = 6/+ Woe — oW, where 6’ is the Jaumann rate of the Cauchy stress,

the expression Eq. (A.7) leads to
S= 6/— 6D - Deo. (A.8)

The approximations hold for dE=Ddt, where E is Green—Lagrange strain tensor, under the

small deformation condition (F=I), and it leads to
dS = do’ — ode — deo (A9)
where do’ = C®dg, and C*P is defined in this study.

More details are found in literatures (Waffenschmidt et al., 2014; Yoon et al., 1999b).

Appendix B. Summary of the stress-update algorithm for the HAH-DPS model

A step-by-step implementation of the stress-update algorithms for the HAH-DPS model

discussed in the paper is summarized for convenience in Box B.1.

Box B.1. Algorithmic box for the HAH-DPS material model.

1. Initialize

k = 0, 0-1(10-21 =o' = o, + Ce:A£n+1a§1(1(21 = &p, AY =0, g](_,O) = (gL)na ggO) =
S(O) _ 1

(g)m ¥ = (gr)m» 8% = (g)y fori=1-4,and b3} = hs.
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Check the consistency condition in Eq. (27)

IF: ©(67,&,) =®(c") — 514(5,) <0, then terminate.
ELSE: Go to 3

Calculate the incremental plastic multiplier 8(Ay)

IF: For GCPN-N algorithm, then compute 3(Ay) using Eq. (49)

=k
6(A ) ®n+1(A5n+1 )
Y) = .
& b . s(®
5®£+1: e:aq),’?1 aq)’lf*wfl(_) 6‘I’r]fﬂafz(_) Oq’xlfﬂ@hs_ :H'(A§n+1k)
06,41 0011 ajl(k) 0Ae l?/‘z(k) 0AE BES(k) OAE

ELSE: Compute 8(Ay) for GCPN-O algorithm, using Eq. (32).
Obtain the equivalent plastic strain increments in Eq. (31)
AEERD = Ag, . * + 5(AY).

. Update the stress and equivalent strain in Eq. (33)

e, o0,

7
0011

o =6 4 5(a8)C

4D _ () (0
€n+1 ~ En+1 + A8n+1'

. Update the state variables of the HAH-DPS model at (k+1)™ iteration through
Egs. (34)—(41)

Check the consistency condition in Eq. (28)

Oni1= (D(Ggrll)) - (_SIH(ES:-T))'

k+1
n+1

IF: T' = ———75 < Tol in Eq. (43), Go to 10.

61H(£n+1 )
ELSE: Set k < k+1 and GO TO 3.

Computer the tangent operator C?
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IF: For GCPN-N algorithm, then compute C* using Eq. (54)

0D 0D
c do ®C do

00 o 00 00 00y 0doh’ .\
86" ‘06 0f 0t Of, 08 QRS 0OE |

Cep = Ce _

ELSE: Compute tangent operator for GCPN-O algorithm, using Eq. (45).

Appendix C. Anisotropic non-quadratic yield function: Y1d2000-2d

The equivalent stress of Y1d2000-2d model (Barlat et al., 2003) is express as

a<>—<§;§> -5, 8.1
z;'=|s§” “and€ = |2s(2) |2s(2)+s(2) , (B.2)

where ‘a’ represents an exponent, recommended as 8 for FCC metals and 6 for BCC metals.
G, is the equivalent stress, and S (1=1, 2) represent the principal stresses calculated from

the following tensor S® (i = 1, 2). Two linear transformations from the Cauchy stress ¢ to S®

(1=1, 2) are used to reproduce the anisotropic property of metals, and defined as
S(1’2)=C(1’2) .szc(l,z) T - 0'=L(1’2) ‘G. (B.3)

The tensor T has a role to transform the Cauchy stress ¢ to the deviatoric stress s via, and the
tensors C'V and C® include the anisotropic property of metals. L") and L® are the two linear

transformations product and their matrix forms are expressed as follows:

sO1 L9 LD 0o

SOf =L ng) 0 cyy] withi=1,2 (B-4)
. Oy

S Lol
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Qs (B.5)

Note that the model recovers von-Mises isotropic yield model when the exponent of the model

is equal to 2 and all the material coefficients become the unity.

Appendix D. Iterations required for achieving global equilibrium for Figures 10 and 15

The discrete values of the normalized largest force residual at critical node for Figures 10 and

15 are provided as below.

Normalized largest force residual at critical node

Iteration number 1 2 3 4 5
GCPM-O 1.00 0.948 0.873 0.804 0.749
Figure 10
GCPM-N 1.00 0.317 0.101 6.48x102  4.76x107
GCPM-O 1.00 0.699 0.551 0.462 0.401
Figure 15
GCPM-N 1.00 0.268 0.018 8.14x10°  6.59x107
Iteration number 6 7 8 9 10
GCPM-O 0.712 0.674 0.640 0.605 0.573
Figure 10
GCPM-N  3.50x10%  2.49x10%  1.75x1072 Converged
GCPM-O 0.335 0.282 0.239 0.203 0.188
Figure 15
GCPM-N  2.75x107 1.74x1073 1.14x10°  6.92x10*  4.36x10*
Iteration number 11 12 13 14 15
Figure 10 GCPM-O 0.542 0.513 0.490 0.476 0.461
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GCPM-N Converged
GCPM-O 0.172 0.156 0.139 0.123 0.109
Figure 15
GCPM-N  2.77x10*  1.78x10*  1.15x10* Converged
Iteration number 16 17 18 19 20 21 22
Figure 10 GCPM-O 0.447 0432 0418 0.406 0.392 0.38 0.369
Figure 15 GCPM-O 0.0956 0.0837 0.0732 0.0639 0.0557 0.0490 0.0456
Iteration number 23 24 25 26 27 28 29
Figure 10 GCPM-O 0.357 0346 0334 0323 0311 0303 0.291
Figure 15 GCPM-O 0.0426 0.0400 0.0376 0.0354 0.0335 0.0323 0.0313
Iteration number 30 31 32 33 34 35 36
Figure 10 GCPM-O 0.283 0.273  0.265 0.256 0.247 0.239  0.231
Figure 15 GCPM-O 0.0303 0.0293 0.0284 0.0275 0.0267 0.0259 0.0252
Iteration number 37 38 39 40 41 42 43
Figure 10 GCPM-O 0.224 0.216  0.209 Converged
Figure 15 GCPM-O 0.0245 0.0238 0.0232 0.0226 0.0220 0.0214 0.0209
Iteration number 44 45 46 47 48 49 50
Figure 15 GCPM-O 0.0204 0.0199 0.0194 0.0190 0.0185 0.0181 0.0177
Iteration number 51 52 53 54 55 56 57
Figure 15 GCPM-O 0.0173 0.0169 0.0166 0.0162 0.0159 0.0156 0.0152
Iteration number 58 59 60 61 62 63 64
Figure 15 GCPM-O 0.0149 0.0146 0.0143 0.0141 0.0138 0.0135 0.0133
Iteration number 65 66
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Figure 15 GCPM-O 0.0130 0.0128
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