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Abstract 

A fast and robust stress-update algorithm based on the general cutting-plane method (GCPM) 

was developed for a distortional hardening model, known as the HAH-DPS model. It captures 

the anisotropic hardening behaviors such as the Bauschinger effect, transient hardening, 

differential permanent softening, and cross-loading effects. The lower computational efficiency 

of the direct application of GCPM was rectified by considering the all-evolutionary plastic state 

variables during iterations. The newly proposed algorithm was formulated on the dependence 

of the equivalent plastic strain and the other state variables defined in the distortional hardening 

model. And it was implemented in a commercial finite element software using a user-defined 

material subroutine (UMAT). Finite element simulations under strain-path change were carried 

out to demonstrate the performance of the new numerical algorithm in terms of the convergence 

behavior locally as well as globally. 
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1. Introduction 

Nowadays, the initial boundary value problems in continuum solid mechanics, characterizing 

the deformation behavior of the metals, are solved computationally and efficiently by using the 

finite element method (FEM) (Meng et al., 2018; Seifert and Schmidt, 2008). The robustness 

of problem solving is highly dependent on the selection of the integration algorithm for 

computational rate-independent plasticity. Many different numerical algorithms have been 

proposed to numerically integrate constitutive equations for a given strain increment. As a 

representative, the radial return-mapping algorithm (called the predictor–corrector algorithm), 

introduced by Wilkins (Wilkins, 1964), is widely used as the numerical integration algorithm. 

The return-mapping algorithm follows the operator-splitting methodology, which is the 

additive splitting of the constitutive equations into the elastic predictor and the subsequent 

plastic corrector. Then, the new stress is updated iteratively using the plastic corrector projected 

back to the yield surface. When the projection occurs between the two closest points, it is 

referred to as the closest-point project method (CPPM). The return mapping algorithm based 

on CPPM is completely implicit and unconditionally stable; thus, it is used in various 

applications of elasto-plastic constitutive models (Kim et al., 2008; Ortiz et al., 1983; Ortiz and 

Popov, 1985). 

Despite the advantage of CPPM, the method is mostly suitable for simple plasticity models 

such as von-Mises plastic yielding with an isotropic hardening law. The Hessian matrix for 

computing advanced plastic yielding models requires an exceedingly laborious implementation 

procedure and, as a result, the computation time becomes excessively expensive (Lee et al., 

2012; Mánik, 2021). Moreover, for a larger time increment, CPPM tends to diverge; therefore, 

additional numerical techniques such as line search (Lester and Scherzinger, 2017; Scherzinger, 

2017), sub-incrementation (Polat and Dokainish, 1989; Potts and Ganendra, 1994), sub-

stepping (Ding et al., 2007; Sloan, 1987), and multi-stage methods (Lee et al., 2015; Yoon et 

al., 1999a) should be incorporated to overcome these issues (Wissmann and Hauck, 1983). As 

an alternative, the general cutting-plane method (GCPM) was developed by Ortiz and Simo 

(Ortiz and Simo, 1986; Simo and Hughes, 1998). Because GCPM is formulated in a frame of 

the operator-splitting methodology, but with the Newton-Raphson iterative algorithm, it is also 

an extension of the return-mapping algorithm. However, GCPM does not need to calculate the 

Hessian matrix (Ghaei et al., 2010; Ortiz and Popov, 1983), which consequently, makes the 
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implementation of the complex material models in an FEM code simple and efficient (Cardoso 

and Yoon, 2009; Lee et al., 2005; Safaei et al., 2015). 

Various advanced constitutive equations have been developed to reproduce complex material 

behavior during metal forming processes (Rauch, 1997; Rauch et al., 2002). For example, 

anisotropic hardening behaviors such as the Bauschinger effect (Hahm and Kim, 2008; Kim 

and Yin, 1997), transient hardening (Kim and Yin, 1997; Tarigopula et al., 2009), permanent 

softening (Sun and Wagoner, 2013), and cross-loading behaviors (Ha et al., 2013; Tarigopula 

et al., 2008) are clearly observed for sheet metals upon strain-path change, and it is necessary 

to predict these phenomena in the FE analysis for robust and efficient modeling (Choi et al., 

2006). In the literature, significant efforts in model development have been devoted to the 

accurate prediction of anisotropic hardening behaviors, using non-isotropic concepts such as 

yield-surface-translation (Chaboche, 1986; Geng and Wagoner, 2002; Lee et al., 2007), 

multiple yield surfaces (Peeters et al., 2001b, 2001a), and microstructural-based model (Hu et 

al., 1992; Teodosiu and Hu, 1995). Modeling of the yield surface distortion was initially 

proposed by Baltov and Sawczuk (1965), and the model was formulated via structural tensors, 

which were functions of the plastic strains. Several models for the extension of their approach 

have been developed in the literatures. For examples, simple models without the evolution of 

the back-stress were developed by Feigenbaum and Dafalias (2008, 2007), and Noman et al. 

(2010) proposed the special case of the distortional model for cross-hardening. The comparison 

among the different distortional models could be found in literature (Shi and Mosler, 2013). In 

particular, material models, based on the yield-surface-distortional concept have been recently 

introduced by Barlat et al. (Barlat et al., 2014, 2011; Butuc et al., 2019), which is referred to as 

the homogeneous-yield-function-based anisotropic hardening (HAH) model. Extensive 

validation has been performed on HAH models regarding the anisotropic hardening behaviors 

under various strain-path changes (Lee et al., 2020; Wi et al., 2020). More recently, a modified 

version of the HAH model was proposed to describe differential permanent softening, namely 

HAH-DPS (Homogeneous-yield-function-based anisotropic hardening-Differential permanent 

softening), with respect to the loading directions (Lee et al., 2020). 

With regard to the implementation of the HAH model series into FE codes, the radial return-

mapping algorithms, either CPPM or GCPM, for stress-update were utilized by Lee et al. 

(2012). They developed numerical formulations of the HAH model series using both CPPM 
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and GCPM (J. Lee et al., 2012), and GCPM with a sub-stepping scheme was proposed to avoid 

inaccurate solutions owing to the semi-explicit nature of the GCPM (Lee et al., 2015). A multi-

step return-mapping algorithm based on the CPPM for the HAH model was proposed by Choi 

and Yoon (Choi and Yoon, 2019), in which the finite difference method was introduced to 

calculate the first and second derivatives of the distortional yield function. It was also reported 

that the numerical accuracy of the CPPM for the recent HAH model can be improved by 

applying the line search method (Lee et al., 2021; Yoon et al., 2020). Recently, Choi et al. (Choi 

et al., 2021) proposed a fully implicit numerical algorithm that can solve a complete set of 

residuals, including stress, equivalent plastic strain, and all the plastic state variables of the 

constitutive model. However, the above studies focused on obtaining a solution for a given 

strain increment locally. In other words, the global assessment of the tangent operator to obtain 

a solution to the nonlinear boundary-value problem has not been performed in an implicit FE 

code. As reported in the literature (Meier et al., 2016; Starman et al., 2014), the tangent operator 

is necessary to ensure computational efficiency and fast convergence in a global equilibrium; 

however, a lack of studies on global convergence is observed for the advanced distortional 

hardening law. 

The primary purpose of this study is to evaluate the newly proposed numerical algorithm based 

on GCPM, locally as well as globally, considering the all-evolutionary plastic state variables 

of the distortional hardening model in an FE analysis in terms of the computational speed and 

convergence. Section 2 presents a summary of the distortional hardening model HAH-DPS. 

Section 3 presents a brief description of the general stress-update algorithm, that includes the 

computation of the solution given a strain increment and continuum tangent operator. Moreover, 

the stress-update scheme based on GCPM is reformulated for the distortional hardening model, 

which considers the evolutionary plastic state variables of the material modeling. As a result, 

the continuum tangent operator is newly derived with all the components of the model, which 

affects the convergence behavior in a global equilibrium. Section 4 presents the performance 

of the two stress-integration algorithms in terms of computation time and convergence behavior 

by considering two case study simulations. Finally, the conclusions and summary of this study 

are presented in section 5. 
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2. Theoretical background 

2.1. Modeling for anisotropic hardening behaviors under strain-path change 

The HAH model herein is based on a homogeneous function of the first degree with respect to 

the Cauchy stress, Φ(ησ) = η·Φ(σ), and it utilizes a distortional hardening concept proposed 

by Barlat et al. (Barlat et al., 2014, 2013, 2011) to describe anisotropic hardening behaviors, 

instead of the kinematic hardening concept. The mathematical expression is as follows: 

Φ�σ, f1, f2, h�s� = �φq(σ) + φh�σ, f1, f2, h�s��
1
q = σ�IH(ε̅), (1) 

where Ф is the equivalent stress, σ is the Cauchy stress, s is the deviatoric stress tensor, the 

function φ is the stable component that represents the material anisotropic property, and φh is 

the fluctuating component that controls the distortion of the yield surface. The exponent q is 

the material constant for controlling the sharpness of the distorted yield surface, ε̅  is the 

equivalent plastic strain, and σ�IH is the reference flow hardening curve to be fitted by the Swift 

hardening law, σ�IH= C∙(ε̅ + ε0)n, and C and ε0 are the material coefficients to be identified 

from the flow curve of the uniaxial tension. Notably, σ�IH  can replace any equivalent 

expressions for reference flow hardening. h�s is a special tensor, namely the microstructure 

deviator, introduced to hold the material deformation history and determine the direction of the 

yield surface distortion. The hat symbol above h indicates that the quantity of the deviator is 

normalized as x�ij = xij �8 3⁄ ∙ xijxij� , and its initial component is the same as the deviatoric 

stress s when the first plastic deformation occurs. 

The Bauschinger effect, transient hardening, and differential permanent softening behaviors 

can be successfully reproduced by the distortion of the yield surface, controlled by the state 

variables f1 and f2 in Eq. (1) of the fluctuating component φh. The two state variables f1 and f2 

are additionally expressed using the plastic state variables g1 and g2, and the fluctuating 

component φh is defined as follows: 

φh�σ, f1, f2, h�s� = f1
  q �h�s:s − �h�s:s��

q
+ f2

  q �h�s:s + �h�s:s��
q
 (2) 
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fk = �
1
gk

q − 1�
1 q�

, and k = 1, 2. (3) 

Here, “:” symbol represents the double dot product of the second-order tensors A and B (will 

be omitted) defined as: 

A : B = (𝑎𝑎𝑖𝑖𝑖𝑖𝒆𝒆i⊗𝒆𝒆j) : (𝑏𝑏𝑘𝑘𝑘𝑘𝒆𝒆k⊗𝒆𝒆l) = 𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑘𝑘𝑘𝑘δikδjl, (4) 

where δik and δjl are Kronecker delta function. And the frame em (m = 1, 2, 3) represents a fixed 

orthonormal coordinate system. 

The evolution laws for the state variables in the HAH-DPS model are formulated with an 

equivalent plastic strain and are given as 

dgi
dε̅

= k2 �k3
σ�IH(0)
σ�IH(ε̅)

− gi� (5) 

dgj

dε̅
= k1

�gk + �1 − gk�(1− cos2ω) − gj�
gj

 (6) 

dgl
dε̅

= k5�k4 − gl�, (7) 

dh�s

dε̅
= k∙sgn( cos χ ) �|cos χ|1 z� + gR� �ŝ − cos χ h�s�, (8) 

where k1–k5 are material constants and subscripts (i, j, k, l) are (1, 2, 3, 4) or (2, 1, 4, 3) if 

h�s:s ≥ 0 or h�s:s < 0, respectively. The function sgn(.), the scalar parameters cos ω (J. Lee et 

al., 2020) and cos χ (Schmitt et al., 1994), and the evolution law of the state variable gR are 

given by: 

cos χ =
8
3
�ŝL:h�s�, (9) 

sgn(x) = � 1 if x ≥ 0
−1 if x < 0  and 

dgR
dε̅

= kR�kR
' (1− cos2χ) − gR�, (10) 
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cos ω =
8
3

ŝ0:ŝL

|ŝ0||ŝL| , (11) 

where ŝ0 and ŝL are the stress deviators corresponding to the first plastic strain increment 

and current plastic deformation, respectively. In the above evolution laws, z = 5, kR=15, and 

kR
' = 0.2 are suggested values. 

Cross-loading behaviors, either cross-hardening or cross-softening under cross-loading paths, 

are modeled using additional functions in the stable component φ of Eq. (1) with state variables 

as follows: 

 φ(s) = � ψ(s)2 + ψ(sp)2 with ψ(s)= ξ(s") and ψ(sp) (12) 

s"= sc + ηso with η =
1
gL

 (13) 

sp = 4�1 − gS�so, (14) 

where sc and so are decomposed stress tensors collinear and orthogonal to the microstructure 

deviator h�s, defined as sc = 8
3

 (s:h� s) h�s and so = s − sc, respectively. The function ξ can be 

any isotropic or anisotropic yield function. 

The state variables gL and gS control the description of cross-hardening and cross-softening 

under the given cross-loading condition, respectively, and their evolution laws during plastic 

deformation are defined as follows: 

dgL
dε̅

= kL ��1 −
σ�IH(0)
σ�IH(ε̅)

� ��L(1 − cos2χ) + cos2χ  − 1� + 1 − gL� , (15) 

dgS
dε̅

= kS�1 + (S − 1)cos2χ− gS�, (16) 

where kL, kS, S, and L are the material constants. 
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2.2. Graphical interpretation of the HAH-DPS model 

As formulated in previous section, the HAH-DPS model can predict the anisotropic hardening 

behaviors such as the Bauschinger effect, cross-loading effect, and differential permanent 

softening effect when the loading path changes. Figure 1 (a) and (b) show the yield loci 

evolution for the latent hardening and cross-loading contraction predicted by the HAH-DPS 

model under the orthogonal loading condition, respectively. The uniaxial tension in the rolling 

direction (RD) was prescribed to the material as the first loading (See red dotted surfaces). As 

shown in figures, the opposite part of the yield locus was distorted to reproduce the 

Bauschinger effect. Then, as the second loading path, subsequent uniaxial tension along the 

transverse direction (TD) was subjected (See black lined surfaces). As shown in figures, both 

distorted yield loci recover the yield locus of the isotropic hardening (Blue dotted surface) to 

describe the transient and permanent softening, and they are controlled by the state variables 

g1–4. For the latent hardening case, sudden expansion of the yield locus is obtained by using the 

state variable gL during the second loading as described in Figure 1 (a). And the state variable 

gS affects the sudden contraction of the yield locus to reproduce the cross-loading contraction 

under the orthogonal loading condition as shown in Figure 1 (b). 

 

 

(a)                                (b) 

Figure 1: Yield loci prediction of the HAH-DPS model reproducing (a) latent hardening and 

(b) cross-contraction after pre-tension in RD followed by uniaxial tension in TD (J. Lee et al., 

2020). 
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Figure 2 shows the evolution of the state variable g1 under two different loading path change 

conditions; (a) Uniaxial compression in RD followed by the subsequent tension in RD, 

corresponding to cos ω = –1; (b) Uniaxial tension in RD followed by the succeeding tension in 

TD, corresponding to cos ω = –0.5. The state variables g1 affects the amount of the recovery 

during the second loading, reproducing the permanent softening effect. As shown in figure, the 

original HAH model can reproduce the permanent softening effect for two strain-path change 

conditions while different amount of the permanent softening effect for the HAH-DPS model 

can be observed. This is because the new state variable cos ω in Eq. (6) influences the evolution 

of the state variable g1, leading to the different predictions for the permanent softening under 

strain-path changes. 
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(a)                                (b) 

Figure 2: Evolution of the state variable g1 using the HAH and HAH-DPS models under the 

strain-path change conditions: (a) cos ω = –1 and (b) cos ω = –0.5. The data refer to Lee et al. 

(J. Lee et al., 2020). 
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3. Numerical implementation for anisotropic distortional hardening 

3.1. Review of incremental deformation theory 

The incremental constitutive equation has been obtained from the minimum plastic work path 

(Chung and Richmond, 1993, 1992; Yoon et al., 1999a) based on the materially embedded 

coordinate system. Here, summary of the incremental deformation theory is provided. Let us 

define the deformation gradient F, which describes a deformation between the current time t 

and the reference time t0, and it is decomposed as follows: 

F(t) = R(t)U(t) for t0 ≤ t ≤ t0+Δt , (17) 

where R and U are rotational and right-stretch tensors in the incremental quantity, respectively. 

Considering the relationship for the rate of the deformation tensor L = D + W = ḞF–1 (Ḟ=∂F/∂t 

and F–1=U–1R–1), the deformation rate tensor D and the spin tensor W are expressed as follows: 

D = (ḞF–1)s = (RU̇U–1R–1)s and W = (ḞF–1)a = ṘR–1 + (RU̇U–1R–1)a (18) 

where U̇=∂U/∂t, Ṙ=∂R/∂t, and the subscript ‘a’ and ‘s’ denote the anti-symmetric part and the 

symmetric part of the tensor, respectively. When the same principal material lines are kept 

constant during deformation, the following relationships are obtained: 

D = RU̇U–1RT  (19) 

where RT represents the transpose tensor of the tensor R. Therefore, the deformation and 

rotation are conveniently decoupled by using the tensors R and U. 

The objectivity rule is satisfied for the updated stresses, which are rotated by R, because the 

material is rotated by the incremental angle calculated by the polar decomposition at each 

discrete step. 

An invariant quantity with respect to the rotation, 𝐃𝐃� , is defined as  

𝐃𝐃�  = RT DR = U̇U–1. (20) 

Note that the symbol “^” represents the quantity with respect to the materially embedded 
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coordinate system or the Lagrangian quantity. 

The incremental logarithmic strain quantity at a given time increment is obtained, which 

satisfies the minimum plastic work condition, as express: 

Δε = ∫ 𝐃𝐃�t0+∆t
t0

dt = lnU(t0 + Δt) (21) 

Note that Eq. (21) is consistent with the rotation neutralized strain tensor of Nagtegaal and 

Rebelo (1988). And, the total deformation could be decomposed as (Lee, 1969) 

F = FeFp = (ReUe)(RpUp) and L = Ḟe(Fe)–1+FeḞp(Fp)–1(Fe)–1 (22) 

where the superscripts “e” and “p” mean the elastic and plastic deformations, respectively. 

The following relationship is derived for infinitesimal elastic strains (i.e., Fe≅I), 

𝐃𝐃�  = 𝐃𝐃�𝑒𝑒 + 𝐃𝐃�𝑝𝑝. (23) 

Finally, the incremental logarithmic strain can be decomposed into as follows: 

Δε = Δεe + Δεp (24) 

where Δεe and Δεp are the elastic and plastic strain increments, respectively. 

Note that the Δεe is the proportional to the increment of Cauchy stress Δσ in the incremental 

deformation theory. The incremental application of elastic-plasticity for FEM analysis will be 

introduced in the next section. 

 

3.2. Review of the general cutting-plane algorithm 

The stress-integration algorithm based on the cutting plane method updates the Cauchy stress 

σ and the relevant state variables of the material models, at the current time step tn+1 for a given 

strain increment ∆εn+1. The proposed cutting plane algorithm is formulated with the Newton–

Raphson iteration (Ortiz and Simo, 1986), in which the iteration begins by calculating the 

elastic predictor. For the simplicity, the proposed algorithmic approach in this study is to 
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integrate the equivalent plastic strain iteratively but the state variables of the HAH-DPS model 

explicitly, which are dependent on the equivalent plastic strain. 

Assuming that a given strain increment ∆εn+1 is a fully elastic strain increment, the elastic 

predictor σT is computed as follows: 

σT = σn + Ce:∆εn+1 , (25) 

where σn is the Cauchy stress at the previous time step tn, Ce is the fourth-order isotropic 

elasticity stiffness tensor, and “:” denotes a tensor product between the fourth-order and second-

order tensors defined as: 

𝐂𝐂 ∶ 𝐃𝐃 =  (𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝒆𝒆i ⊗ 𝒆𝒆j ⊗ 𝒆𝒆k ⊗ 𝒆𝒆l) ∶  (𝑑𝑑𝑚𝑚𝑚𝑚𝒆𝒆m ⊗ 𝒆𝒆n)  = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑚𝑚𝑚𝑚δkmδln𝒆𝒆i ⊗ 𝒆𝒆j, (26) 

where δkm and δln are Kronecker delta function. And, the state variables and equivalent plastic 

strain in the HAH-DPS model are the same as those at the previous time step. 

If the following condition is satisfied, the trial stress is purely elastic. 

Θn+1(σT, ε̅n) = Φn+1(σT) − σ�IH(ε̅n)  ≤ 0 , (27) 

where Θ determines the plastic yielding of the material, and Φ and σ�IH are defined in Eq. 

(1). The condition where Eq. (27) holds is denoted as the consistency condition: Then, the 

updated stress σn+1 at the current step is the trial stress σT, and the equivalent strain and other 

state variables of the HAH-DPS model are kept as the converged values from the previous time 

step. 

However, the material deformation becomes plastic when Θn+1(σT, ε̅n)>0. Subsequently, the 

consistency condition in Eq. (28) is iteratively solved using the unknown variable Δγ, which is 

the incremental plastic multiplier. By applying the associated flow rule and Euler’s theorem, 

the relationship between the equivalent plastic strain increment Δε̅ and plastic multiplier Δγ 

is obtained as follows: 

Θn+1 = Φ(σn + ∆σn+1) − σ�IH(ε̅n + ∆γ) = Φ(σn+1) − σ�IH(ε̅n + ∆ε̅n+1), (28) 

∆εp = ∆γ
∂Φ
∂σ

, (29) 
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Δε̅ = 
σ∆εp

Φ(σ)  = 
σ∆γ ∂Φ

∂σ
Φ(σ)  = ∆γ

Φ(σ)
Φ(σ)  = ∆γ , (30) 

where ∆εp is the plastic strain increment. 

By applying Taylor’s expansion to Eq. (28), the variation of the equivalent plastic strain 

increment at the (k+1)th iteration is as follows: 

 ∆ε̅n+1
(k+1) = ∆ε̅n+1

𝑘𝑘 + δ(Δε̅) and Θn+1�∆ε̅n+1
𝑘𝑘� +

∂Θn+1�∆ε̅n+1
𝑘𝑘�

∂Δε̅
δ(Δε̅) = 0, (31) 

δ(∆γ) = δ(Δε̅)  = −Θn+1�∆ε̅n+1
k�

∂Θn+1�∆ε̅n+1
k�

∂Δε̅
�

=  
Θn+1�∆ε̅n+1

k�

�∂Φn+1
𝑘𝑘

∂σn+1
𝑘𝑘 : Ce: ∂Φn+1

𝑘𝑘

∂σn+1
𝑘𝑘 + H'�∆ε̅n+1

k��
, 

(32) 

where H' is the slope of the strain-hardening curve, given by the Swift hardening law. The 

newly updated stress and equivalent plastic strain are computed as 

σn+1
(k+1) = σn+1

k + δ(∆ε�)Ce:
∂Φn+1

𝑘𝑘

∂σn+1
𝑘𝑘  and  ε�n+1

(k+1) = ε�n+1
k + ∆ε�n+1

(k+1). (33) 

The state variables of the HAH-DPS model are updated at the (k+1)th iteration as below. 

cosω =
8
3
𝐬𝐬�0:𝐬𝐬�L

(𝑘𝑘+1)

|𝐬𝐬�0|�𝐬𝐬�L
(𝑘𝑘+1)�

, (34) 

h�s(𝑘𝑘+1) = h�s(𝑘𝑘) + k∙sgn( cos χ ) �|cos χ|1 z� + gR� �ŝ(𝑘𝑘) − cos χ h�s(𝑘𝑘)� δ(∆ε�), (35) 

cos χ =
8
3
�𝐬𝐬�L

(𝑘𝑘+1):h�s(𝑘𝑘+1)�, (36) 

go
(𝑘𝑘+1) = go

(𝑘𝑘) + k2 �k3
σ�IH(0)

σ�IH(ε̅n+1
(k+1))

− go
(𝑘𝑘)� δ(∆ε�), (37) 
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gp
(𝑘𝑘+1) = gp

(𝑘𝑘) + k1
�gq + �1 − gq� (1 − cos2ω) − gp�

gp
δ(∆ε�), (38) 

gr
(𝑘𝑘+1) = gr

(𝑘𝑘) + k5�k4 − gr�δ(Δε̅), for (o, p, q, r) �(1, 2, 3, 4) h�s(𝑘𝑘+1):s(𝑘𝑘+1) ≥ 0
(2, 1, 3, 4) h�s(𝑘𝑘+1):s(𝑘𝑘+1) < 0

, (39) 

gL
(𝑘𝑘+1) = gL

(𝑘𝑘) + kL ��1 −
σ�IH(0)

σ�IH(ε̅n+1
(k+1))

� ��L(1 − cos2χ) + cos2χ − 1� + 1

− gL� δ(∆ε�), 

(40) 

gS
(𝑘𝑘+1) = gS

(𝑘𝑘) + kS[1 + (S − 1)cos2χ − gS]δ(∆ε�), (41) 

gR
(𝑘𝑘+1) = gR

(𝑘𝑘) + kR[kR′ (1 − cos2χ) − gR]δ(∆ε�), (42) 

The iterations are terminated upon satisfying the following criteria: 

Γ =
�Θ�∆ε�n+1

(k+1)��

σ�IH�ε̅n+1
(k+1)�

< Tol (43) 

where the tolerances used in this study is Tol = 10−6. 

Figure 3 shows a schematic of the proposed numerical algorithm. As shown in the figure, the 

updated stress at the (k+1)th iteration is returned along with the tangent cut of the yield surface 

at the stress point of the kth iteration. 
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Figure 3: Schematic of the cutting-plane algorithm. 

 

To maintain an approximately quadratic convergence rate in the implicit FE system globally, 

the continuum tangent modulus Cep should be characterized as follows: 

dΘ = dΦ(σ) − dσ�IH(ε̅) =  
∂Φ
∂σ

dσ − H'dε̅ = 0 , (44) 

dσ = Ce: �dε −  dε̅
∂Φ
∂σ
�  , (45) 

dσ = �Ce −  
Ce: ∂Φ

∂σ ⊗Ce: ∂Φ
∂σ

∂Φ
∂σ :Ce: ∂Φ

∂σ + H'
� dε = Cepdε , (46) 

where the symbols of “⊗” represents the open product of two second-order tensors, defined as 

A ⊗B = (𝑎𝑎𝑖𝑖𝑖𝑖𝒆𝒆i⊗𝒆𝒆j) ⊗ (𝑏𝑏𝑘𝑘𝑘𝑘𝒆𝒆k⊗𝒆𝒆l) = 𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑘𝑘𝑘𝑘𝒆𝒆i ⊗ 𝒆𝒆j ⊗ 𝒆𝒆k ⊗ 𝒆𝒆l. (47)  

As shown in Eq. (46), the first derivative of the plastic yielding function is necessary to obtain 

the continuum tangent operator throughout the stress integration procedure. With respect to the 

computation time, the analytical closed-form equation produces the best performance. 

However, extremely hard efforts are required to obtain the gradients of the plastic yielding 
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function as the material models become complicated to reproduce the material response under 

complex loading conditions. As an alternative, the numerical computation of the tangent 

operator, material-independent and less computation time, has been proposed and could be 

found in the literatures (Miehe, 1996; Pérez-Foguet et al., 2000; Seifert et al., 2007). 

Note that the meaning of a tangent modulus/operator in a view of the computational approach 

is found in Appendix A. 

 

3.3. Variational update form of anisotropic distortional hardening law 

As reported in previous studies (Choi and Yoon, 2019; J. Lee et al., 2020; Yoon et al., 2020), 

the shape of the distorted yield surface for the distortional hardening model changes rapidly 

with the strain-path change. Thus, we focus on the variational form of the state variables 

relevant to the yield surface distortion with respect to the equivalent plastic strain. Because the 

state variables in the distortional hardening model in Eq. (1) are formulated as a function of the 

equivalent plastic strain, a strict variational rule should be applied in Eq. (32). Thus, main 

difference of the newly proposed algorithm introduced in this section is the dependence on the 

equivalent plastic strain and the other state variables defined in the distortional hardening 

model. The linearization of the consistency condition is carried out as follows: 

∂Θn+1�∆ε̅n+1
𝑘𝑘�

∂Δε̅
=  −

∂Φn+1
𝑘𝑘

∂σn+1
𝑘𝑘 : Ce:

∂Φn+1
𝑘𝑘

∂σn+1
𝑘𝑘 +  

∂Φn+1
𝑘𝑘

∂f1
  (k)

∂f1
  (k)

∂Δε̅
+

∂Φn+1
𝑘𝑘

∂f2
  (k)

∂f2
  (k)

∂Δε̅
+

∂Φn+1
𝑘𝑘

∂h�s(k)

∂h�s(k)

∂Δε̅

− H'�∆ε̅n+1
k�, 

(48) 

δ(∆γ) = δ(Δε̅)

=  
Θn+1�∆ε̅n+1

k�

�∂Φn+1
𝑘𝑘

∂σn+1
𝑘𝑘 : Ce: ∂Φn+1

𝑘𝑘

∂σn+1
𝑘𝑘 −  ∂Φn+1

𝑘𝑘

∂f1
  (k)

∂f1
  (k)

∂Δε̅ − ∂Φn+1
𝑘𝑘

∂f2
  (k)

∂f2
  (k)

∂Δε̅ − ∂Φn+1
𝑘𝑘

∂h�s(k)
∂h�s(k)

∂Δε̅ + H'�∆ε̅n+1
k��

, (49) 

where,  
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∂Φ
∂f1,2

=  Φ(1−q)f1,2
  (q−1)�2h�ss�

q
 (50) 

∂f1,2

∂Δε̅
=  

∂f1,2

∂g1,2

∂g1,2

∂Δε̅
= f1,2

  (q−1) �−
1

g1,2
  (q+1)�

∂g1,2

∂Δε̅
 (51) 

∂Φ
∂h�s = Φ(1−q)f1,2

   q (−1)1,2∙2∙�2h�ss�
(q−1)

s. (52) 

The newly updated stress and equivalent plastic strain are given by Eq. (33) at the (k+1)th 

iteration, and the relevant state variables are updated using Eqs. (3)−(16). The same termination 

condition in Eq. (43) as that of the previous cutting plane algorithm is used. 

The continuum tangent modulus as a function of the all-evolutionary state variables is derived 

from the rate form of the consistency condition using Eq. (49) as follows: 

dΘ = dΦ�σ, f1, f2, h�s� − dσ�IH(ε̅) =
∂Φ
∂σ

dσ +
∂Φ
∂f1

df1 +
∂Φ
∂f2

df2 +
∂Φ
∂h�s dh�s − H'dε̅ 

=  
∂Φ
∂σ

dσ + �
∂Φ
∂f1

∂f1
∂ε̅

+
∂Φ
∂f2

∂f2
∂ε̅

+
∂Φ
∂h�s

∂h�s

∂ε̅
� dε̅ − H'dε̅ = 0 , 

(53) 

dσ
dε

= Cep =  Ce −  
Ce ∂Φ

∂σ ⊗Ce ∂Φ
∂σ

�∂Φ
∂σ :Ce: ∂Φ

∂σ − ∂Φ
∂f1

∂f1
∂ε̅ −

∂Φ
∂f2

∂f2
∂ε̅ −

∂Φ
∂h�s

∂h�s

∂ε̅ + H'�
, (54) 

where the rate forms of ∂f1
∂ε̅

, ∂f2
∂ε̅

, ∂h�s

∂ε̅
 are computed as below. 

∂f𝑖𝑖
∂ε̅

=  
∂f𝑖𝑖
∂g𝑖𝑖

∂g𝑖𝑖
∂ε̅
�

(𝑘𝑘+1)

= f𝑖𝑖
  (q−1) �−

1

g𝑖𝑖
  (q+1)�

∂g𝑖𝑖
∂ε̅
�

(𝑘𝑘+1)

 for i = 1, 2 (55) 

dh�s

dε̅
= k∙sgn( cos χ ) �|cos χ|1 z� + gR� �ŝ − cos χ h�s��

(𝑘𝑘+1)
 (56) 

All the values are calculated at the (k+1)th iteration, where the converged solutions are obtained.  
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Note that the GCPM considering the all-evolutionary plastic state variables presented in this 

section is called as “GCPM-N,” and the aforementioned GCPM is named as “GCPM-O”. And 

the whole process of the stress-update procedure is summarized in Appendix B.  
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4. Numerical validation 

Two stress-update algorithms based on the GCPM, that is, GCPM-O and GCPM-N, were 

integrated with the HAH-DPS model. The proposed numerical algorithms were implemented 

in the commercial FE software ABAQUS/Standard (Abaqus, 2018) via a user-defined material 

subroutine (UMAT). Two simulations subjected to different strain-path changes were 

conducted to evaluate the tangent operator with the all-evolutionary plastic state variables of 

the HAH-DPS model, that is, GCPM-N, for a global solution of an implicit FE code, and to 

demonstrate the convergence loss when the previously derived continuum tangent operator, 

that is, GCPM-O, is used. Note that the two cases led to the complex material behaviors such 

as the latent hardening and DPS effects, resulted in sudden shape change of the yield locus 

during plastic deformation. More in-depth study for the two cases regarding the numerical 

efficiency are presented in the following sections. 

 

4.1. Combined plane-strain tension and simple shear loading of a notched specimen 

A 1.2 mm-thick sheet metal specimen subjected to plane-strain tension followed by simple 

shear deformations was modeled with shell elements of four-node reduced integration (S4R). 

The number of elements and average mesh size were 2174 and 0.7 mm × 0.7 mm, respectively. 

Figure 4 describes the geometry of the specimen with dimension and displacement boundary 

condition for loading: (1) The upper part of the sample was fixed, and the lower part was moved 

down by 0.7 mm (plane-strain tension in the gauge section). (2) The load was then released 

(unloading). (3) Finally, the lower part was fixed, and the upper part was displaced by 3.5 mm 

in the horizontal direction (simple shear). The new tests were developed to reproduce the 

continuous or discontinuous strain path change by van Riel and van den Boogaard (2007), and 

the corresponding simulations were conducted by Ha et al. (2014). The loading path change 

indicators, cos χ and cos ω, defined in Eqs. (9) and (11) become zero during the prescribed 

strain-path change, and this loading path change is called the cross-loading condition. For the 

simulations during the second loading, the initial displacement increment ∆u1, ini. = 0.0035 mm 

and maximum ∆u1, max. = 0.035 mm were prescribed, and 1 s simulation time was subjected. 

The material coefficients of the EDDQ steel sample for the constitutive models were obtained 

from the authors’ previous work (Lee et al., 2020), as listed in Table 1. The anisotropic material 
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properties were predicted by Yld2000-2d (Barlat et al., 2003), and the formulations are 

summarized in Appendix C. Note that the EDDQ steel sample exhibits stress overshooting or 

cross-hardening behavior under cross-loading conditions (Ha et al., 2013). 

 

 

Figure 4: Specimen geometry subjected to plane-strain tension followed by simple shear 

 

Table 1: Coefficients of the material models 

Elastic properties and Swift hardening law 

Young’s 
modulus (GPa) Poisson’s ratio C (MPa) ε0 N 

193.0 0.33 538.0 0.0075 0.267 

Plastic anisotropy parameters for Yld2000-2d with exponent m = 6 

α1 α2 α3 α4 α5 α6 α7 α8 

1.014 1.118 0.931 0.892 0.904 0.811 1.029 0.918 

Distortional hardening parameters for HAH-DPS model with q = 2 

k k1 k2 k3 k4 k5 L kL S kS 
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18.7 880.0 63.0 0.64 0.92 24.0 1.65 384.0 1.0 0.0 
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(a)                                   (b) 

Figure 5: Maximum iterations for convergence in the stress integrating procedure during the 

second loading for (a) GCPM-N and (b) GCPM-O. 

 

Figure 5 shows a comparison of the convergence behavior of the stress integration during the 

second loading between GCPM-N and GCPM-O. The total number of time-increments as well 

as the increment size were similar for both methods. The maximum number of iterations for 

convergence was also similar for most time increments, but a more iterative procedure was 

necessary for GCPM-O than for GCPM-N in the early stage of the loading path change, that is, 

~ t < 0.05 s. Nevertheless, both algorithms required several iterations at the beginning of the 

strain-path change, wherein the prior loading history was effective for the plastic deformation, 

owing to the overshooting flow behavior under cross-loading conditions, as shown in Figure 6 

(a). To reproduce the cross-loading effect in the HAH-DPS model, the distorted yield locus 

rapidly expanded along the subsequent loading direction, as shown in Figure 6 (b). This was 

accompanied by drastic changes in the state variables of the model, which results in more 

iterative work to find the new stress update at the subsequent plastic deformation after strain-

path change. For comparison, the yield locus of the isotropic hardening (IH) law was also 

plotted in Figure 6 (b) in the dotted black line. Note that the proposed distortional hardening 
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model follows the isotropic hardening behavior during the first loading, and because there was 

no prior loading history, both algorithms resulted in the same convergence behavior, which is 

not further examined in this study. 
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(a)                                   (b) 

Figure 6: (a) Simple shear stress−plastic strain relationship and (b) the yield loci in the π-plane 

predicted by HAH-DPS and isotropic hardening (IH) models for the plane-strain tension 

followed by simple shear loading. 
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(a)                                   (b) 

Figure 7: Comparison between CGPM-N and GCPM-O during stress update in terms of (a) 

objective function Γ, and (b) the plastic multiplier increment δ(Δγ). 

 

More detailed analyses on the iterative behavior of two stress integration algorithms are 

described in Figure 7 (a) and (b). Figure 7 (a) represents the evolution of the objective function 

Γ, as defined in Eq. (43), which should be less than a specified tolerance when the solution 

converges. It shows drastic changes in the objective function Γ in the initial stage of the 

iteration, corresponding to the loading path change, and as a result, it needs more iterative 

works owing to the severe distortion and sudden expansion of the yield surface. GCPM-O has 

more oscillated patterns in the objective function Γ, while GCPM-N can find a converged 

solution rapidly after 17 iterations. Figure 7 (b) shows the evolution of the plastic multiplier 

increment δ(Δγ), defined in Eqs. (32) and (49) for two different algorithms. During iterations, 

CGPM-N has smaller plastic multiplier increment changes than GCPM-O, which can 

accelerate the numerical convergence speed. 

 

  

(a)                                   (b) 

Figure 8: Comparison of FE results for (a) state variable g1 contours at the initial stage of the 

strain-path change, and (b) von-Mises stress distribution (Unit: MPa) at the final stage. 
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Figure 8 (a) shows the state variable g1 contours, representing Bauschinger effect, at the initial 

stage of the strain-path change. Almost same contours on the state variable g1 are observed in 

two different numerical schemes although g1 evolves with respect to the plastic multiplier as 

shown in Figure 7. And the corresponding quantitative analysis is carried out to calculate the 

least square error (δ) between two FE results as follows: 

δ ≔ �∑ �𝐹𝐹𝑖𝑖GCPM−N − 𝐹𝐹𝑖𝑖GCPM−O�
2𝑖𝑖=𝑁𝑁

𝑖𝑖=1
𝑁𝑁

 , (57) 

where N is the total number of elements, and F represents the FE result value. 

 

Table 2: Least square errors between two different stress-update algorithms for Figure 8 

State variable g1 
von-Mises 

stress (MPa) 

Stress in x-

direction σxx 

(MPa) 

Stress in y-

direction σyy 

(MPa) 

Shear stress τxy 

(MPa) 

2.8×10-4 4.2 5.7 4.8 3.0 
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(a)                                   (b) 

Figure 9: Convergence behavior in the global equilibrium during the second loading for (a) 

GCPM-N and (b) GCPM-O. 
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The least square error of the state variable g1 is provided in Table 2, quantitively. The result 

confirmed that almost same physical values are reproduced using the two different algorithms. 

Furthermore, the results in Figure 8 (b) show similar von-Mises stress distributions of two 

different stress-update algorithms at the final stage although each algorithm has different 

iteration histories as seen in Figure 5, and the corresponding errors are also shown in Table 2 

Figure 9 shows the comparison of convergence results in a global equilibrium using GCPM-N 

and GCPM-O during the second loading. The graphs represent the number of iterations 

required to obtain a global equilibrium for each increment. As shown in the figure, GCPM-N 

leads to efficient and fast convergence results, and the total number of iterations of GCPM-N 

requires less than one-third of GCPM-O. Moreover, the total CPU time GCPM-N is much less 

than that of GCPM-O (852 s for the simulation using GCPM-N versus 1730 s for the simulation 

using GCPM-O). This demonstrates that GCPN-N, with an all-evolutionary state variable, is a 

more efficient and powerful approach in terms of convergence behavior in the global 

equilibrium. 
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Figure 10: Comparison of normalized largest force residuals between GCPM-N and GCPM-O 

at a critical node during global iterations at a simulation time of 0.122 s. 
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The largest force residuals at the critical node are monitored during global iterations at the early 

stage of the strain-path change (at the simulation time of 0.122 s). The normalized largest force 

residuals, i.e., the largest force residuals divided by their initial residuals, are plotted in Figure 

10. In the case of GCPM-O, the global solution converges after 40 iterations, whereas GCPM-

N requires less than 10 iterations for the global convergence. The force residuals decrease 

rapidly for GCPM-N, and thus the convergence rate is much faster for GCPM-N than GCPM-

O, as expected. 

Figure 11 shows the convergence results in a global equilibrium when a large displacement 

increment is applied. In the simulations during the second loading, the initial and maximum 

displacement increments were prescribed as ∆u1, ini. = 0.0035 mm and ∆u1, max. = 0.1 mm, 

respectively. As shown in the figure, the maximum number of iterations required for GCPM-N 

is 80, whereas it is almost double for GCPM-O. This proves the efficiency and robustness of 

the proposed approach (GCPM-N) for a large displacement increment, equivalent to a large 

time increment, from the consideration of all-evolutionary state variables for the tangent 

operator and plastic multiplier increment. 
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(a)                                   (b) 

Figure 11: Convergence behavior in the global equilibrium during the second loading for (a) 

GCPM-N and (b) GCPM-O when the large displacement increment is prescribed. 
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4.2. Forming process problem: V-bending forming and springback 

To show the numerical efficiency of the proposed numerical algorithm for the advanced 

distortional hardening law, a more demanding simulation was performed. A 0.1 mm-thick 

ferritic-stainless steel sheet was subjected to uniaxial tension at approximately 9% strain along 

the rolling direction (RD), and then the V-bending forming and springback simulations were 

conducted for a pre-strain sheet cut along 45 ° of the RD. All the FE simulations were 

conducted with implicit code using ABAQUS/Standard, and the influences of the stress 

integration algorithms on the convergence behavior of a global equilibrium solution were 

considered when complex problems such as contact issues between tools and sheet occur. 

Figure 12 (a) shows the geometry and dimensions of the V-bending simulation. As shown in 

the figure, a punch radius of 1 mm was used, and the punch displacement along the vertical 

direction was 14.3 mm. According to the beam bending theory, a bending strain of 5 % on the 

outer surface of the sheet was subjected to the given punch displacement. The corresponding 

FE modeling for the components (die, punch, and blank) is shown in Figure 12 (b). Discrete 

rigid body element and 4-node shell element were used for the tools and sheet, respectively. 

Considering 2-fold symmetric property, only a quarter of the sheet sample was modeled with a 

sample size of 20 mm (length) × 5 mm (width). More than five elements were modeled for the 

corners of the tools. A Coulomb friction model with a constant friction coefficient of 0.15 was 

assumed for all contact surface interactions. Instead of uniaxial tension simulation for the first 

loading, a user-subroutine to define the initial solution-dependent state variable fields (SDVINI) 

was used. All the state variables related to the plasticity were obtained from a full-field tension 

simulation. For the second loading, which is the V-bending forming process for 1 s simulation 

time, the initial and maximum punch displacement increments were prescribed as ∆uini. = 0.002 

mm and ∆umax. = 0.2 mm, respectively. The material parameters of the constitutive models for 

ferritic stainless steel are summarized in Table 3. Isotropic plastic yielding, that is, von-Mises 

criteria, was assumed in this study. The distortional hardening model was used to take into 

account of the fact that this steel sample also shows stress overshooting or cross-hardening 

behavior when the first and second loading directions are at 45 ° to each other (Bong et al., 

2019). More details are provided in (J. Lee et al., 2020). 
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(a)                                     (b) 

Figure 12: (a) Schematic of the V-bending tools and blank and (b) the corresponding FE model. 

 

Table 3: The coefficients of the material models (J. Lee et al., 2020) 

Elastic properties and Swift hardening law 

Young’s 
modulus (GPa) Poisson’s ratio C (MPa) ε0 n 

223.9 0.33 882.6 0.0056 0.224 

Plastic anisotropy parameters for Yld2000-2d with exponent m = 2 

α1 α2 α3 α4 α5 α6 α7 α8 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Distortional hardening parameters for HAH-DPS model with q = 2 

k k1 k2 k3 k4 k5 L kL S kS 

18.7 580.0 10.0 0.9 0.88 24.0 1.65 384.0 1.0 0.0 
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(a) 

 

(b) 

Figure 13: Comparison of springback results between GCPM-N and GCPM-O: (a) Profile and 

(b) residual stress (Unit: MPa). The experimental data refer to Lee et al. (J. Lee et al., 2020). 

 

The springback results of the V-bending simulation with a pre-strained specimen are shown in 

Figure 13. The comparison shows that both stress-update algorithms predict almost identical 

springback profiles (Figure 13 (a)) and very similar residual stress distributions with negligible 

differences (Figure 13 (b)). During the forming simulations, the total number of iterations 

necessary to converge to the solution for a given strain increment locally were, 391 and 252 



30 

 

for GCPM-O and GCPM-N, respectively. Moreover, the average iterations per increment to 

converge, i.e., the total iteration divided by the number of increments, were 4.2 and 4.4 for 

GCPM-O and GCPM-N, respectively, showing similar local convergence speed for GCMP-O 

to that of GCPM-N. This is because GCPM-N requires a smaller number of increments during 

the forming process. Note that the two algorithms show the same convergence behavior during 

the springback simulation because of purely elastic deformation. 

 

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

Ite
ra

tio
ns

Time (s)

 

Total iterations : 639
Toal CPU time : 593 s

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100
Total iterations : 3398
Toal CPU time : 2841 s

Ite
ra

tio
ns

Time (s)

 

 

(a)                                     (b) 

Figure 14: Convergence behavior in the global equilibrium during the V-bending forming 

process for (a) GCPM-N and (b) GCPM-O. 

 

Figure 14 shows a comparison of the convergence results in the global equilibrium between 

the two different tangent operators during the forming process. Importantly, the convergence 

behavior of the global equilibrium exhibits much better efficiency in GCPM-N because of the 

smaller number of iterations and larger increments required than GCPM-O. As already pointed 

out, the poor convergence behavior of GCPM-O in a global equilibrium was observed, 

especially when the material experienced a cross-loading effect with latent hardening, even 

though a smaller increment was prescribed during the simulation. The number of iterations 

necessary to obtain a solution globally using GCPM-N was approximately one-fifth that of 
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GCPM-O. Moreover, the computation CPU time was reduced by over 70% for the proposed 

GCPM-N algorithm. 
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Figure 15: Comparison of normalized largest force residuals between GCPM-N and GCPM-O 

at critical node during global iterations at a simulation time of 0.775 s. 

 

More in-depth analysis on the global convergence behavior is conducted. Figure 15 monitors 

the largest force residuals of the global iterations at a simulation time of 0.775 s during the V-

bending forming process. The global solution is obtained for GCPM-O after 65 iterations, but 

it is only 15 iterations for GCPM-N. As a result of that, the convergence speed of GCPM-N is 

much faster than GCPM-O as analyzed in Figure 14, which is the same result with the plane-

strain tension and simple shear of the notch specimen in Section 4.1.  

Figure 16 shows the comparison of FE results between GCPM-O and GCPM-N at the 

simulation time of 0.775 s during V-bending forming process. The distribution of the state 

variable gL, which captures the cross-hardening effect, is shown in Figure 16 (a). The FE 

simulations of two different algorithms lead to almost identical results, qualitatively. In addition, 

von-Mises stress contours are evaluated for two stress update algorithms in Figure 16 (b). The 

FE results reveal that both stress integration algorithms produce the similar stress distribution 

even with drastic yield surface changes upon strain-path changes, such as sudden expansion of 
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the yield surface due to the cross-hardening effect, but the convergence rate for both algorithms 

are totally different. Thus, in conclusion, the analysis indicates that GCPM-N has an advantage 

in the global convergence speed but requires the complex mathematical expression to 

implement. In contrast, the simple formulation of GCPM-O is of advantage to implement 

although relatively slow convergence speed. 

 

  
(a)                                   (b) 

Figure 16: Comparison of FE results for (a) state variable gL contour, and (b) von-Mises stress 

distribution (Unit: MPa) at a simulation time of 0.775 s during V-bending forming. 
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5. Summary and conclusions 

In this study, a stress-update algorithm based on the GCPM method was reformulated for the 

HAH-DPS distortional hardening law, namely GCPM-N, and implemented in the commercial 

FE software ABAQUS/Standard via UMAT. The proposed numerical algorithm can capture 

anisotropic hardening behaviors such as the Bauschinger effect, transient hardening, 

differential permanent softening with respect to the loading direction, and cross-loading effect 

with latent hardening/contraction by introducing the concept of yield surface distortion. In 

particular, the plastic multiplier for obtaining the solution during stress integration and the 

continuum tangent operator for finding a solution in a global equilibrium were derived 

considering the all-evolutionary state variables. To compare the efficiency and robustness of 

the developed (GCPM-N) and previously proposed (GCPM-O) stress integration algorithms, 

two FE simulations were conducted: plane-strain tension followed by simple shear and V-

bending forming simulations with a pre-strained specimen. The main findings of this study can 

be summarized as follows: 

 From the cross-loading simulation result of the plane-strain tension followed by simple 

shear deformation, the developed numerical algorithm, GCPM-N, showed a similar 

iterative behavior for convergence, given a strain increment with that of the previous 

stress-update algorithm, GCPM-O, whereas GCPM-O required more iterations in the 

subsequent plastic deformation after strain-path change. 

 In view of the global convergence behavior, GCPM-N required one-third of the 

iterations exhibited by GCPM-O, and half of the computation time consumed by 

GCPM-O, which showed better computational speed. When the time increment 

enhanced, the computational efficiency of the GCPM-N was preserved. 

 From the forming and springback simulations of a complex geometrical problem, both 

algorithms resulted in the same springback predictions, and similar local convergence 

behavior was evaluated based on the average iterations. However, smaller time 

increments were required for GCPM-O. 

 By comparing the iteration numbers for a global equilibrium, the proposed GCPM-N 

considering all-evolutionary plastic state variables was found to be computationally 
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faster and more efficient. However, although the previous numerical algorithm GCPM-

O required more iterations in a global equilibrium resulting in the loss of the 

computational speed, GCPM-O still had the advantage of preserving the simple 

formulation from the implementation point of view, even for a complex constitutive 

model. 
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Appendix A. Tangent operator–Material stiffness tensor 

In order to describe the role of a tangent operator (or called material stiffness tensor) developed 

in the preceding chapter, a typical numerical solution scheme for the elastoplastic implicit 

boundary value problem (IBVP) is explained in the context of the FE method. 

Only considering the static problem case, the equilibrium equations derived from the virtual 

work equations are expressed symbolically as  

𝛙𝛙(𝛔𝛔𝑛𝑛+1) = 𝐅𝐅int(𝛔𝛔𝑛𝑛+1) − 𝐅𝐅𝑛𝑛+1ext = 𝟎𝟎 , (A.1) 

where Fint and Fext represent the discrete internal and external load vectors, respectively.  

By applying the linearization method at the ith equilibrium iteration in Eq. (A.1), the following 

linear system of equations is obtained as 

�𝐅𝐅int�𝛔𝛔𝑛𝑛+1
(𝑖𝑖) � − 𝐅𝐅𝑛𝑛+1ext � + 𝐊𝐊𝑛𝑛+1

(𝑖𝑖) Δ𝐝𝐝𝑛𝑛+1
(𝑖𝑖+1) = 𝟎𝟎, (A.2) 

where Δ𝐝𝐝𝑛𝑛+1
(𝑖𝑖+1) is the incremental nodal displacement at the (i+1)th iteration, and the global 

stiffness operator 𝐊𝐊𝑛𝑛+1
(𝑖𝑖)  is defined as 
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𝐊𝐊𝑛𝑛+1
(𝑖𝑖) =

𝜕𝜕𝛙𝛙

𝜕𝜕𝐝𝐝𝑛𝑛+1
(𝑖𝑖) =

𝜕𝜕𝐅𝐅int�𝛔𝛔𝑛𝑛+1
(𝑖𝑖) �

𝜕𝜕𝐝𝐝𝑛𝑛+1
(𝑖𝑖) =

𝜕𝜕𝐅𝐅int�𝛔𝛔𝑛𝑛+1
(𝑖𝑖) �

𝜕𝜕𝛔𝛔𝑛𝑛+1
(𝑖𝑖)

𝜕𝜕𝛔𝛔𝑛𝑛+1
(𝑖𝑖)

𝜕𝜕𝛆𝛆𝑛𝑛+1
(𝑖𝑖)

𝜕𝜕𝛆𝛆𝑛𝑛+1
(𝑖𝑖)

𝜕𝜕𝐝𝐝𝑛𝑛+1
(𝑖𝑖)  . (A.3) 

This linear equation in Eq. (A.2) could be solved when the tangent operator 𝜕𝜕𝛔𝛔𝑛𝑛+1
(𝑖𝑖)

𝜕𝜕𝛆𝛆𝑛𝑛+1
(𝑖𝑖)  is provided. 

As clearly seen in previous equation, the tangent operator derived from the stress integration 

algorithm affects a calculation of the global stiffness operator. 

By solving the following equation, the new global discrete displacement field is obtained as 

Δ𝐝𝐝𝑛𝑛+1
(𝑖𝑖+1) = −�𝐊𝐊𝑛𝑛+1

(𝑖𝑖) �
−1
�𝐅𝐅int�𝛔𝛔𝑛𝑛+1

(𝑖𝑖) � − 𝐅𝐅𝑛𝑛+1ext �. (A.4) 

Note that the simulation results are not affected by the inaccurate definition of the tangent 

operator, while the convergence rate is. 

Remark is that two types of material tangent operators can be selected to construct the structure 

stiffness operator: continuum tangent modulus and consistent tangent modulus (Gu et al., 2011; 

Simo and Taylor, 1985; Szabó and Jonas, 1995). The continuum tangent modulus is defined as 

the differentiation with respect to the infinitesimal strain increment dε of the rate constitutive 

equation dσ while the consistent tangent modulus (also called algorithmic tangent modulus) is 

obtained through direct differentiation of the incremental constitutive equation Δσ with respect 

to the total incremental strain Δε. 

More rigorous expression of the tangent operator could be summarized as below. 

The following relationship is considered. 

σ = 𝜌𝜌
𝜌𝜌0

FSFT, (A.5) 

where σ and S are the Cauchy stress and 2nd Piola-Kirchhoff stress tensors, respectively. F is 

deformation gradient tensor, ρ and ρ0 are the final and initial densities of the material. 

The relationship for the spatial gradient of the velocity (L = ḞF–1, Ḟ = ∂F/∂t) results in 

𝛔̇𝛔 = 𝜌̇𝜌
𝜌𝜌0
𝛔̇𝛔+ Lσ + 𝜌𝜌

𝜌𝜌0
FṠFT + σLT. (A.6) 
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Two assumptions are applied, and the above equation becomes a simpler expression to 

conveniently obtain the material tangent operator: (1) small deformation condition (F≅I), (2) 

incompressibility condition (𝜌̇𝜌 ≅ 0 and ρ = ρ0). And the following equation is obtained. 

𝛔̇𝛔 = Lσ + Ṡ + σLT = Dσ + Wσ + Ṡ + σD – σW, (A.7) 

where D and W are the rate of the deformation tensor and the spin tensor, respectively. Note 

that these approximations were applied only to conveniently obtain the material stiffness tensor. 

Using the formulation 𝛔̇𝛔 = 𝛔̇𝛔𝐽𝐽+ Wσ – σW, where 𝛔̇𝛔𝐽𝐽 is the Jaumann rate of the Cauchy stress, 

the expression Eq. (A.7) leads to 

Ṡ = 𝛔̇𝛔𝐽𝐽– σD – Dσ. (A.8) 

The approximations hold for dE≅Ddt, where E is Green–Lagrange strain tensor, under the 

small deformation condition (F≅I), and it leads to 

dS = dσJ – σdε – dεσ (A.9) 

where dσJ = Cepdε, and Cep is defined in this study. 

More details are found in literatures (Waffenschmidt et al., 2014; Yoon et al., 1999b). 

 

Appendix B. Summary of the stress-update algorithm for the HAH-DPS model 

A step-by-step implementation of the stress-update algorithms for the HAH-DPS model 

discussed in the paper is summarized for convenience in Box B.1. 

 

Box B.1. Algorithmic box for the HAH-DPS material model. 

1. Initialize 

k = 0, 𝛔𝛔n+1
(0) = 𝛔𝛔T = 𝛔𝛔n + 𝐂𝐂e:∆𝛆𝛆n+1 ,ε�n+1

(0) = ε�n , ∆γ = 0 , gL
(0) = (gL)n , gS

(0) =

(gS)n, gR
(0) = (gR)n, gi

(0) = (gi)n for i = 1 – 4, and 𝐡̂𝐡n+1s(0)
= 𝐡̂𝐡ns . 
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2. Check the consistency condition in Eq. (27) 

IF: Θ(𝛔𝛔T, ε�n) = Φ(𝛔𝛔T) − σ�IH(ε�n)  ≤ 0, then terminate. 

ELSE: Go to 3 

3. Calculate the incremental plastic multiplier δ(∆γ) 

IF: For GCPN-N algorithm, then compute δ(∆γ) using Eq. (49) 

δ(∆γ) =  
Θn+1�∆ε̅n+1

k�

�∂Φn+1
𝑘𝑘

∂σn+1
𝑘𝑘 :Ce:

∂Φn+1
𝑘𝑘

∂σn+1
𝑘𝑘 − 

∂Φn+1
𝑘𝑘

∂f1
  (k)

∂f1
  (k)

∂Δε̅ −
∂Φn+1
𝑘𝑘

∂f2
  (k)

∂f2
  (k)

∂Δε̅ −
∂Φn+1
𝑘𝑘

∂h�s(k)
∂h�s(k)

∂Δε̅ +H'�∆ε̅n+1
k��

. 

ELSE: Compute δ(∆γ) for GCPN-O algorithm, using Eq. (32). 

4. Obtain the equivalent plastic strain increments in Eq. (31) 

∆ε̅n+1
(k+1) = ∆ε̅n+1

𝑘𝑘 + δ(∆γ). 

5. Update the stress and equivalent strain in Eq. (33) 

𝛔𝛔n+1
(𝑘𝑘+1) = 𝛔𝛔n+1

(𝑘𝑘) + δ(∆ε�)Ce: ∂Φn+1
𝑘𝑘

∂σn+1
𝑘𝑘 , 

ε�n+1
(𝑘𝑘+1) = ε�n+1

(𝑘𝑘) + ∆ε�n+1
(0) . 

6. Update the state variables of the HAH-DPS model at (k+1)th iteration through 

Eqs. (34)–(41) 

7. Check the consistency condition in Eq. (28) 

Θn+1
𝑘𝑘+1= Φ�𝛔𝛔n+1

(𝑘𝑘+1)� − σ�IH�ε�n+1
(𝑘𝑘+1)�. 

IF: Γ =
�Θn+1

𝑘𝑘+1�

σ�IH�ε̅n+1
(k+1)�

< Tol in Eq. (43), Go to 10. 

ELSE: Set k ← k+1 and GO TO 3. 

8. Computer the tangent operator Cep 
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IF: For GCPN-N algorithm, then compute Cep using Eq. (54) 

Cep =  Ce −  
Ce∂Φ

∂σ⊗Ce∂Φ
∂σ

�∂Φ
∂σ:Ce:∂Φ

∂σ−
∂Φ
∂f1

∂f1
∂ε̅−

∂Φ
∂f2

∂f2
∂ε̅−

∂Φ
∂h�s

∂h�s

∂ε̅ +H'�
. 

ELSE: Compute tangent operator for GCPN-O algorithm, using Eq. (45). 

 

Appendix C. Anisotropic non-quadratic yield function: Yld2000-2d 

The equivalent stress of Yld2000-2d model (Barlat et al., 2003) is express as  

ξ(σ) = �
ξ' + ξ"

2
�

1
a

 = σ�e , (B.1) 

ξ' = �S1
(1) − S2

(1)�
a

 and ξ" = �2S2
(2) + S1

(2)�
a

+ �2S1
(2) + S2

(2)�
a

 , (B.2) 

where ‘a’ represents an exponent, recommended as 8 for FCC metals and 6 for BCC metals. 

σ�e is the equivalent stress, and S1,2
(i)  (i = 1, 2) represent the principal stresses calculated from 

the following tensor S(i) (i = 1, 2). Two linear transformations from the Cauchy stress σ to S(i) 

(i = 1, 2) are used to reproduce the anisotropic property of metals, and defined as  

S(1, 2) = C(1, 2) ∙ s = C(1, 2) ∙ T ∙ 𝛔𝛔 = L(1, 2) ∙ σ . (B.3) 

The tensor T has a role to transform the Cauchy stress σ to the deviatoric stress s via, and the 

tensors C(1) and C(2) include the anisotropic property of metals. L(1) and L(2) are the two linear 

transformations product and their matrix forms are expressed as follows: 

�
Sxx

(i)

Syy
(i)

Sxy
(i)
�  = �

L11
(i) L12

(i) 0
L21

(i) L22
(i) 0

0 0 L66
(i)
� �

σxx
σyy
σxy

�  with i = 1,2 (B.4) 



39 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡L11

(1)

L12
(1)

L21
(1)

L22
(1)

L66
(1)⎦
⎥
⎥
⎥
⎥
⎥
⎤

 = 

⎣
⎢
⎢
⎢
⎡

2 3⁄ 0 0
−1 3⁄ 0 0

0
0
0

−1 3⁄
2 3⁄

0

0
0
1⎦
⎥
⎥
⎥
⎤

�
α1
α2
α7

�  and 

⎣
⎢
⎢
⎢
⎢
⎢
⎡L11

(2)

L12
(2)

L21
(2)

L22
(2)

L66
(2)⎦
⎥
⎥
⎥
⎥
⎥
⎤

 = 
1
9
⎣
⎢
⎢
⎢
⎡
−2 2 8 −2 0
1 −4 −4 4 0
4
−2
0

−4
8
0

−4 1 0
2 −2 0
0 0 9 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
α3
α4
α5
α6
α8⎦
⎥
⎥
⎥
⎤
 (B.5) 

Note that the model recovers von-Mises isotropic yield model when the exponent of the model 

is equal to 2 and all the material coefficients become the unity. 

 

Appendix D. Iterations required for achieving global equilibrium for Figures 10 and 15 

The discrete values of the normalized largest force residual at critical node for Figures 10 and 

15 are provided as below. 

Normalized largest force residual at critical node 

Iteration number 1 2 3 4 5 

Figure 10 
GCPM-O 1.00 0.948 0.873 0.804 0.749 

GCPM-N 1.00 0.317 0.101 6.48×10-2 4.76×10-2 

Figure 15 
GCPM-O 1.00 0.699 0.551 0.462 0.401 

GCPM-N 1.00 0.268 0.018 8.14×10-3 6.59×10-3 

Iteration number 6 7 8 9 10 

Figure 10 
GCPM-O 0.712 0.674 0.640 0.605 0.573 

GCPM-N 3.50×10-2 2.49×10-2 1.75×10-2 Converged 

Figure 15 
GCPM-O 0.335 0.282 0.239 0.203 0.188 

GCPM-N 2.75×10-3 1.74×10-3 1.14×10-3 6.92×10-4 4.36×10-4 

Iteration number 11 12 13 14 15 

Figure 10 GCPM-O 0.542 0.513 0.490 0.476 0.461 
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GCPM-N Converged 

Figure 15 
GCPM-O 0.172 0.156 0.139 0.123 0.109 

GCPM-N 2.77×10-4 1.78×10-4 1.15×10-4 Converged 

Iteration number 16 17 18 19 20 21 22 

Figure 10 GCPM-O 0.447 0.432 0.418 0.406 0.392 0.38 0.369 

Figure 15 GCPM-O 0.0956 0.0837 0.0732 0.0639 0.0557 0.0490 0.0456 

Iteration number 23 24 25 26 27 28 29 

Figure 10 GCPM-O 0.357 0.346 0.334 0.323 0.311 0.303 0.291 

Figure 15 GCPM-O 0.0426 0.0400 0.0376 0.0354 0.0335 0.0323 0.0313 

Iteration number 30 31 32 33 34 35 36 

Figure 10 GCPM-O 0.283 0.273 0.265 0.256 0.247 0.239 0.231 

Figure 15 GCPM-O 0.0303 0.0293 0.0284 0.0275 0.0267 0.0259 0.0252 

Iteration number 37 38 39 40 41 42 43 

Figure 10 GCPM-O 0.224 0.216 0.209 Converged 

Figure 15 GCPM-O 0.0245 0.0238 0.0232 0.0226 0.0220 0.0214 0.0209 

Iteration number 44 45 46 47 48 49 50 

Figure 15 GCPM-O 0.0204 0.0199 0.0194 0.0190 0.0185 0.0181 0.0177 

Iteration number 51 52 53 54 55 56 57 

Figure 15 GCPM-O 0.0173 0.0169 0.0166 0.0162 0.0159 0.0156 0.0152 

Iteration number 58 59 60 61 62 63 64 

Figure 15 GCPM-O 0.0149 0.0146 0.0143 0.0141 0.0138 0.0135 0.0133 

Iteration number 65 66      
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Figure 15 GCPM-O 0.0130 0.0128      
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