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ABSTRACT
Recent research has shown that machine learning (ML) models
are vulnerable to privacy attacks that leak information about the
training data. In this work, we consider Graph Neural Networks
(GNNs) as the target model, and focus on a particular type of privacy
attack named property inference attack (PIA) which infers the sensi-
tive properties of the training graph through the access to GNNs.
While the existing work has investigated PIAs against graph-level
properties (e.g., node degree and graph density), we are the first to
perform a systematic study of the group property inference attacks
(GPIAs) that infer the distribution of particular groups of nodes
and links (e.g., there are more links between male nodes than those
between female nodes) in the training graph. First, we consider a
taxonomy of threat models with various types of adversary knowl-
edge, and design six different attacks for these settings. Second,
we demonstrate the effectiveness of these attacks through exten-
sive experiments on three representative GNN models and three
real-world graphs. Third, we analyze the underlying factors that
contribute to GPIA’s success, and show that the GNNmodel trained
on the graphs with or without the target property represents some
dissimilarity in model parameters and/or model outputs, which
enables the adversary to infer the existence of the property. Further,
we design a set of defense mechanisms against the GPIA attacks,
and demonstrate empirically that these mechanisms can reduce
attack accuracy effectively with small loss on GNN model accuracy.
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1 INTRODUCTION
Advances in machine learning (ML) in recent years have enabled a
large array of applications such as data analytics, autonomous sys-
tems, and security diagnostics. Building good ML models, however,
require computational resources and possibly significant financial
investment. Small companies as well as developers and researchers
with limited resources may not be able to afford such impractical
cost. This motivates the creation of online ML model marketplaces
where ML models are shared and traded [1, 3]. However, since
these models may be trained on the data that contains sensitive
information, it raises an important question: how much does the
model reveal about the training data?

Recent studies have identified a number of attacks to infer the
sensitive information in the training data. For example, membership
inference attacks [31, 34] infer whether a particular data sample
was used in the training of the ML models. Model inversion attacks
reconstruct the training examples given the access to the target
model [15, 16, 46]. These attacks focus on the privacy of individual
records in the dataset. On the other hand, property inference attacks
[8, 18, 29] infer the aggregate information (property) of the dataset.

In this paper, we consider Graph Neural Networks (GNNs) as the
target model. We consider the group properties that are defined over
distribution of nodes and links as the attack target. An example of
the node-level group property is that a professional network graph
contains more male users than female ones, while an example of the
link-level group properties is that a social network graph has more
links between White users than those between African American
users. Obtaining these properties by the adversary may directly
violate the intellectual property (IP) of the model owner [49].

In general, property inference exploits the idea that ML models
trained on similar datasets will represent some similarity in the
model parameters and/or the model outputs [8, 18]. Following this
idea, various PIA models have been designed to attack the classifi-
cation models [8], deep neural networks [18, 29], and generative
adversarial networks [49]. All these works mainly focus on ML
models trained on tabular and image data. Few works [36, 47, 48]
have studied PIA against GNN models over graph data. And none
of these works have investigated the leakage of nodes and links at
group level. More detailed comparison between these works and
ours can be found in Table 1 and Section 2.

Intuitively, the attacker can infer the data properties by inferring
the values of the property features (e.g., Gender) from the model
outputs through the attribute inference attacks (AIAs) [12, 35, 42].
However, the effectiveness of AIAs highly relies on several assump-
tions such as strong correlation between the property features and
the label as well as the adversary knowledge of the property fea-
tures of a subset of nodes in the original graph [12, 35]. These
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GNN model Adversary knowledge Target properties
White-box Black-box Graph-level Group-level

[36] GCN Model loss × Avg. node degree ×
[47] GCN × Model prediction × Node group distribution
[48] GraghSAGE Graph embedding × # of nodes & edges, graph density ×
Ours GCN, GraghSAGE, GAT Node embedding Model prediction × Node & link group distribution

Table 1: Comparison between the existing works on property inference attacks against GNNs and ours.

assumptions may not hold for PIAs. Indeed, both prior work [47]
and our analysis in this paper show that PIA can incur leakage
even when the property features are weakly correlated with the
task label.

In this paper, we perform the first systematic investigation of vul-
nerability of GNNs against group property inference attacks (GPIA).
We consider both black-box and white-box settings. Under the for-
mer setting, the adversary only can access the output of the target
model (e.g., posterior probability), while under the latter setting,
he/she can access the architecture and parameters (e.g., node em-
beddings) of the target model. For both settings, we consider a
comprehensive taxonomy of the threat model with various types
of adversary knowledge, and design six attacks for these settings.
All these attacks are designed as the classification models which
are trained to distinguish the positive graphs (i.e., the graphs with
the properties) from the negative ones (i.e., the graphs without the
properties) by the behaviors and outputs of either the target model
or a shadow model that mimics the target model on these graphs.

We evaluate the effectiveness of the proposed attacks on three
representative GNN models, namely, GCN [24], GraphSAGE [19],
and GAT [38], and three real-world graph datasets. The results
demonstrate that our attacks are effective under various settings.
For example, a black-box GPIA attack with only 20% of the train-
ing graph available in the adversary knowledge can achieve the
accuracy in the range of [0.9, 1] and [0.72, 0.92] for node and link
properties respectively. The attack accuracy remains to be effective
when the adversary transfers the knowledge learned from a shadow
graph to infer the properties in the target graph, even when the
shadow and target graphs have different structures and domains.
Furthermore, our attacks greatly outperform the baseline methods
that utilize the attribute inference attacks (AIAs) [12, 35, 42] and
the meta-classifier [8, 18, 47].

Next, we analyze the main factors that contribute to GPIA’s
success. We found that, due to the (indirect) correlation between
the property feature and the label as well as the non-negligible
disparity in the influence of different node/link groups on the target
model, the model parameters (node embeddings) and model outputs
by the target model trained on the data with the target property P
is distinctly dissimilar to those obtained from the data without P,
which enables the adversary to infer the existence of P.

Further, we design three defense mechanisms to mitigate the
vulnerabilities of GPIA under both black-box and white-box set-
tings. For the former setting, we add Laplace noise to perturb the
posterior output. For the latter setting, we design two defense mech-
anisms, namely adding Laplace noise on the node embeddings and
compressing node embeddings. We evaluate the performance of
these defense mechanisms, and show that these defense mecha-
nisms can reduce the attack accuracy significantly with either a

small amounts of noise or a small compression ratio. Furthermore,
both defense mechanisms address the trade-off between privacy
and model accuracy; the model accuracy is still acceptable when
the defense is sufficiently strong.

In summary, we make the following contributions in this paper:
• We design the first set of attacks against GNNs that can infer the
properties of groups of nodes and links in the training graph.

• We perform extensive empirical studies and demonstrate the
effectiveness of our proposed attacks.

• We analyze the main factors that contribute to the success of
the attacks.

• We design three defense mechanisms and demonstrate their
effectiveness against the proposed attacks.

2 RELATEDWORK
Privacy attacks against GNNs. Many studies have explored
the privacy vulnerability of GNNs. Based on which assets in GNN
models are considered as sensitive and the adversary tries to obtain,
these privacy attacks can be grouped into two categories: (1) privacy
attacks on GNN models that aim to extract information about the
model’s structure and parameters; and (2) privacy attacks on training
data that aim to infer the sensitive information in the training
graph. There has been few studies on privacy attacks on GNN
models: Wu et al. [44] designed the model extraction attack that
aims to reconstruct a duplicated GNN model. In terms of privacy
attacks on training data of GNNs, He et al. [20] designed the link
stealing attacks to infer if some specific links exist in the training
graph. Duddu et al. [12] designed three privacy attacks against
GNNs - a membership inference attack that infers whether a graph
node was in the training data, a graph reconstruction attack that
reconstructs the target graph, and an attribute inference attack that
infers the sensitive attributes. He et al. [21] proposed the node-
level membership inference attacks against GNNs. Wu et al. [45]
considered the data partition setting where each data holder has
either node features or edge information, and proposed a link-level
membership inference attack to infer the existence of links. Zhang et
al. [48] designed three inference attacks against GNNs: (1) a property
inference attack that infers the graph-level information such as
graph density and number of nodes/edges of the training graph; (2)
a subgraph inference attack that infers whether a given subgraph
is contained in the training graph; and (3) a graph reconstruction
attack that reconstructs the structure of the training graph.
Property inference attacks against ML models. Ateniese et
al. [8] first proposed the concept of the property inference attack
against ML models. They design a white-box PIA model and demon-
strate its effectiveness against SVM and HMMmodels. In the follow-
ing years, the design of PIA has been extended to fully connected
neural networks [18], Convolutional Neural Networks (CNNs) [32],
collaborative learning [29], federated learning [39, 41], and GANs
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[49]. Mahloujifar et al. [10] designed a property inference poisoning
attack by which the adversary can learn a particular property in
the training data by injecting specially crafted poison data in the
data. Unlike their work, we assume the adversary has no update
access to the training data.
Property inference attacks against GNNs. Very few works
[36, 47, 48] have studied property inference attacks against GNNs.
Suri et al. [36] proposed a generic definition of PIA which defines
the attack goal as distinguishing between two possible training
distributions. They assume that the adversary has the access to
(transformed) data distributions, while we assume the adversary
only has access to either node embeddings or posterior probabil-
ities. Zhang et al. [47] studied the leakage of properties of node
group distribution in the centralized multi-party setting. They show
that PIA can incur leakage even when the property attribute is not
correlated with the label. Probably the property inference attack in
[48] is the most relevant to our work. However, it differs from our
attack fundamentally from the following perspectives. First, [48]
considers the properties at graph level (e.g., number of nodes/edges
and graph density), while we consider the properties of nodes and
links at group level. Second, [48] considers the graph embedding
(i.e., the vector representation of the whole graph) in the adversary
knowledge, while we consider node embeddings. These major dif-
ferences in the type of properties and adversary knowledge lead to
fundamentally different design of PIA models. Furthermore, besides
the empirical results to demonstrate the effectiveness of PIA and
its defenses, we provide in-depth investigation of which factor(s)
contribute to GPIA’s success.

3 GRAPH NEURAL NETWORK
In general, GNNs take an input graph 𝐺 (𝑉 , 𝐸), along with a set of
node features, to generate a representation vector 𝑧𝑖 (node embed-
ding) for each node 𝑣𝑖 ∈ 𝑉 . One of the defining features of GNN
models is that is uses a form of neural message passing by which
vector messages are exchanged between nodes in the graph and
updated using neural networks.

In particular, during each message-passing iteration in a GNN,
the embedding 𝑧 (ℓ)

𝑖
corresponding to each node 𝑣𝑖 ∈ 𝑉 at layer ℓ

is updated according to 𝑣𝑖 ’s graph neighborhood N(𝑣𝑖 ) (typically
1-hop neighborhood). This update process can be expressed as:

𝑧ℓ+1𝑖 = UPDATEℓ (𝑧ℓ𝑖 ,AGGREGATE
ℓ ({𝑧ℓ𝑗 ,∀𝑣 𝑗 ∈ N (𝑣𝑖 )})), (1)

where UPDATE and AGGREGATE are arbitrary differentiable func-
tions (e.g., neural networks). The initial embeddings at ℓ = 0 are set
to the input features for all the nodes, i.e., 𝑧0

𝑖
= 𝑥𝑖 ,∀𝑣𝑖 ∈ 𝑉 .

After 𝑘 iterations of message passing, a Readout function pools
the node embeddings at the last layer and produces the predic-
tion results. The Readout function varies by the learning tasks.
In this paper, we consider node classification as the learning task.
For this task, often the Readout function is a softmax function.
The prediction output for each node 𝑣 is a vector of probabilities,
each corresponding to the predicted probability (posterior) that 𝑣
is assigned to a class.

In this paper, we consider three representative GNN models,
namely Graph Convolutional Network (GCN) [24], Graph-
SAGE [19], and Graph Attention network (GAT) [38]. These

Symbol Meaning
𝑣/𝑒 (𝑣𝑖 , 𝑣 𝑗 ) node/link between two nodes 𝑣𝑖 , 𝑣 𝑗

𝐴/𝑋 Property/non-property feature
P Target property

𝐺/𝐺𝑆 Target/shadow graph
𝑇 /𝑇𝑆 Target/shadow model
𝑃 GPIA attack classifier

𝑇 train, 𝑇 test Training and testing datasets of target model 𝑇
𝑃 train, 𝑃 test Training and testing datasets of GPIA model 𝑃

𝑍 𝑖 Node embedding generated at the 𝑖th-layer of 𝑇
Table 2: Notations

three models mainly differ on either AGGREGATE and UPDATE
functions. More details of the two functions for the three GNN
models can be found in our full version [40].

4 PROBLEM FORMULATION
Given a graph𝐺 (𝑉 , 𝐸) and a GNNmodel𝑇 trained on𝐺 , the goal of
GPIA is to infer whether 𝐺 has a group property P from the access
to 𝑇 . Table 2 lists the common notations used in the paper.

4.1 Group Properties
In this paper, we consider two types of properties that the adversary
aims to infer: node group properties (node properties) that specify
the aggregate information of particular node groups; and link group
properties (link properties) that specify the aggregate information
of particular link groups. The property can be either binary or non-
binary. An example of the binary property is whether the graph
contains more female nodes than male ones. An example of the
non-binary property is whether the graph has 75%, or 50%, or 25%
female nodes. In this paper, we only consider binary properties. If
a graph has the property P, we say it is a positive graph. Otherwise,
it is a negative graph.

Node/link groups. We assume the nodes are associated with a
set of features 𝑃 (called as property features) on which the grouping
of nodes and links will be defined. For simplicity, we only consider
one property feature in this paper. The rest of the node features
are called as non-property features. Typical examples of the prop-
erty features include the demographic features such as gender and
race. The grouping of nodes and links is specified by adding value-
based constraints (VBCs) on the property features. For example,
gender=“Male” defines the male group.

Node properties. The node properties are specified on the prop-
erty features with aggregate functions and arithmetic comparison
operators. In this paper, we consider COUNT() as the aggregate
function, and five arithmetic comparison operators including <, ≤,
>, ≥, =, and ≠. An example of the node property P is “COUNT(Male)
> COUNT(Female)”.

Link properties. The link properties are specified on property
features of both end nodes in the links, with aggregate functions and
arithmetic comparison operators. An example of the link property
is “COUNT(Male-Male) > COUNT(Female-Female)”, i.e., there are
more links between male users than between female users.
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Attack Adversary knowledge
𝐺𝑆 Access to 𝑇 𝐺𝐴

𝐴1 × White-box ✓
𝐴2 × Black-box ✓
𝐴3 ✓ White-box ×
𝐴4 ✓ Black-box ×
𝐴5 ✓ White-box ✓
𝐴6 ✓ Black-box ✓

Table 3: Attack taxonomy (𝐺𝑆 : shadow graph;𝑇 : target model;
𝐺𝐴: partial graph).

4.2 Adversary Knowledge
The adversarymay have additional background knowledgeKwhich
can be categorized along three dimensions:
• Partial graph 𝐺𝐴: the adversary has a subgraph 𝐺𝐴 ⊂ 𝐺 .
• Shadow graph𝐺𝑆 : the adversary has a shadow graph (or multiple
graphs)𝐺𝑆 which contains its own structure and node attributes.
𝐺𝑆 may have different domain and data distribution from 𝐺 ;

• Target model 𝑇 : We consider two types of adversary knowledge
of𝑇 : the white-box access to𝑇 , which reveals the model architec-
ture, parameters, and the loss function, and the black-box access
which allows the adversary to obtain the target model output
(i.e., posteriors) only. We also assume that the adversary has the
knowledge of the number of classes for the target model.
The assumption of the white-box setting is reasonable and quite

common nowadays [8, 18]. For example, some online platforms
[3, 5] share their models openly, including their parameters, thereby
providing white-box access. On the other hand, ML-as-a-service
services (e.g. [1, 2, 4]) that provide an API for users to query for
predictions but keep their models inaccessible to users are typical
examples of black-box settings.

5 METHODOLOGY
Given a target graph𝐺 and a GNN model𝑇 trained on𝐺 , the adver-
sary aims to infer if 𝐺 has the property P by either the white-box
access to node embeddings or the black-box access to posterior
probabilities output by 𝑇 . An example for the former case is that
the data owner uploads node embeddings to a third-party service
provider such as Google’s Embedding Projector service1 to perform
downstream analysis tasks, while an example for the latter case
is that the data owner uploads the posterior probability (e.g., by
a GNN-based recommender system [17]) to a third-party online
optimization solver such as Gurobi2 for optimization. Another pos-
sible attack scenario is the collaborative setting under which the
attacker and other parties train a model jointly by sharing either
the model predictions or node embeddings [47]. The attacker is cu-
rious to infer the properties of other parties’ data from their shared
embeddings/predictions.

Formally, the attack’s goal is to design a binary classifier 𝑃 that
can be formulated as: 𝑃 : K, P→ 𝐿, where K denotes the adversary
knowledge, and 𝐿 is the set of class labels for property prediction.
In this paper, we only consider binary property (i.e., 𝐿 = {0, 1}). We
will discuss how to extend to non-binary properties in Section 8.

1https://projector.tensorflow.org/
2https://www.gurobi.com

Whether the adversary has each of 𝐺𝐴 , 𝑇 , and 𝐺𝑆 in K is a
binary choice. However, we assume at least one of 𝐺𝐴 and 𝐺𝑆 is
available for training of GPIA model, as the adversary always can
obtain some public graphs from external resources as the shadow
graphs if the partial graph is not available. Therefore, we have a
comprehensive taxonomy with six different threat models based
on different combinations of 𝐺𝐴 , 𝑇 , and 𝐺𝑆 in K. We design six
GPIA attack classifiers for these threat models, and summarize the
taxonomy of our attacks in Table 3. Next, we describe the details
of the black-box attacks (𝐴2, 𝐴4, 𝐴6) first, followed by the details of
the white-box attacks (𝐴1, 𝐴3, 𝐴5). Enlightened by the existing PIA
works [47, 48], our attacks also use shadow models. However, due
to the assumption of different adversary knowledge (see Table 1),
the design of our shadow models is fundamentally different from
these works in the design of attack features.

5.1 Black-box Attacks
The black-box attack includes three phases: shadow model training,
attack model training, and property attack inference (Figure 1). Next,
we explain the details of these three phases.

Shadow model training phase. To collect the data 𝑃 train to
train the GPIA classifier 𝑃 , first, the adversary trains 𝑘 ≥ 1 shadow
models 𝑇𝑆

1 , . . . ,𝑇
𝑆
𝑘
. The training data for each shadow model 𝑇𝑆

𝑖
is

a subgraph𝐺𝑆
𝑖
that is randomly sampled from the partial graph𝐺𝐴

(Attack 𝐴2), the shadow graph𝐺𝑆 (Attack 𝐴4), or both (Attack 𝐴6).
Each shadow training graph 𝐺𝑆

𝑖
may or may not have the property

P. In this paper, we assume all shadow graphs have the same size.
Let 𝑛𝑠 be the number of nodes in the shadow graphs. Intuitively,
to ensure the shadow models mimic the behaviors of the target
model, they should be trained in the way that the output of each
shadow model𝑇𝑆

𝑖
on the shadow training dataset𝐺𝑆

𝑖
is close to the

output of the target model 𝑇 on 𝐺𝑆
𝑖
. In this paper, we follow the

prior works [8, 18] and consider the strongest attack scenario that
the shadow models are identical to the target model, i.e., they have
the same architecture and parameters.

Attack model training phase. Before training the GPIA clas-
sifier, the adversary constructs the attack training data 𝑃 train by
the following procedure. For each trained shadow model 𝑇𝑆

𝑖
and

its training data 𝐺𝑆
𝑖
, the adversary aggregates the set of posterior

probability values generated by 𝑇𝑆
𝑖

on 𝐺𝑆
𝑖
into a vector ®𝑣𝑖 . The

vector ®𝑣𝑖 is inserted into the GPIA training dataset 𝑃 train as the
features, which is associated with a GPIA label “1” if𝐺𝑆

𝑖
is positive,

and “0” otherwise.
How to aggregate multiple posterior probability values into one

vector as the GPIA features? We consider two different approaches:
• Concatenation: Given 𝑛𝑠 nodes in the shadow graph, each associ-
ated with ℓ posterior probabilities, there are 𝑁 = 𝑛𝑠 × ℓ posterior
probability 𝑝1, . . . , 𝑝𝑁 in total. These 𝑁 probability values are
concatenated into a vector ®𝑣 =< 𝑝1, . . . , 𝑝𝑁 > as GPIA features.

• Element-wise difference (EWD): For each node 𝑣 , which is associ-
ated with ℓ posterior probability values 𝑝1, . . . , 𝑝ℓ , we calculate
the average element-wise difference 𝑝diff of 𝑣 as follows:

𝑝diff =
1

ℓ (ℓ − 1)
∑︁

1≤𝑖, 𝑗≤ℓ,𝑖≠𝑗
( |𝑝𝑖 − 𝑝 𝑗 |) .
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Shadow graph 
G1S (w/ P)

Shadow graph
G2S (w/ P)

Shadow graph 
Gk-1S (w/o P)

Shadow graph
GkS (w/o P)

Shadow
model T1S

Shadow
model Tk-1S

Attack classifier 

Target model T 

Target graph G

G has P (0/1)?

. . . . . . 

Shadow model training Attack model training Property inference

(Agg(p11,p12 , …), “1” )

(Agg(p21, p22 , …), “1”)

(Agg(pk-11, pk-12 , …), “0”)

(Agg(pk1, pk2 , …), “0”)

. . . 

. . . 

. . . 

Agg(p1, p2…)

p11, p12, …

Shadow
model T2S

p21,p22, …

Shadow
model TkS

pk-11,pk-12, …

pk1,pk2, …

Training

Figure 1: Overview of the black-box GPIA. Agg() is the aggregation function that generates GPIA features from posteriors.

Intuitively, the more (less, resp.) skewed posterior distribution,
the higher (lower, resp.) 𝑝diff will be. In a uniform distribution
of posteriors, 𝑝diff = 0. After the element-wise difference of
each node is calculated, all values are concatenated into a vector
®𝑣 =< 𝑝diff1 , . . . , 𝑝diff𝑛𝑠

> as GPIA features.

The intuition behind the EWD method is that the distribution
of posterior output of positive and negative graphs is significantly
different, where such difference can be captured by the element-
wise difference value.

After 𝑃 train is generated, the adversary trains the GPIA classifier
𝑃 on 𝑃 train. In this paper, we consider three types of classifiers,
namely Multi-layer Perceptron (MLP), Random Forest (RF), and
Linear Regression (LR).

Property attack inference phase. At inference time, the ad-
versary computes the aggregated posterior probability output by
the target model 𝑇 on the target graph 𝐺 , using the same posterior
aggregation function in the training phase. Then the adversary
feeds the aggregated posterior as the input feature of the testing
sample to 𝑃 , and obtains the predicted GPIA label.

5.2 White-box Attacks
Unlike the black-box attacks that need shadow models, the white-
box attacks do not need any shadow model due to its white-box
access to the target model. Therefore, the white-box attacks only
include two phases, namely, attack model training and property
attack inference. Next, we discuss the details of these two phases.

Attack model training phase. since the adversary has the
white-box access to the target model𝑇 , he will construct the attack
training data 𝑃 train by using the model parameters of 𝑇 as the
features in 𝑃 train. The motivation behind this is that the parameters
of the models trained on the positive graphs will be more similar
than those trained on the negative graphs. Following this, we design
the followingmethod to construct 𝑃 train. For each shadow graph𝐺𝑆

𝑖
,

the adversary uses it to train 𝑇 and obtains all the parameters of 𝑇 ,
where the parameters are the node embeddings of𝐺𝑆

𝑖
. The shadow

graph 𝐺𝑆
𝑖
can be randomly sampled from the partial graph 𝐺𝐴

(Attack 𝐴1), the shadow graph𝐺𝑆 (Attack 𝐴3), or both (Attack 𝐴5).
Then the adversary aggregates these node embeddings into a vector

®𝑣𝑖 , and inserts ®𝑣𝑖 into 𝑃 train as the features. He further associates ®𝑣𝑖
with a GPIA label “1” if 𝐺𝑆

𝑖
is positive, and “0” otherwise.

In general, given a GNN model of 𝑘 layers, the adversary can
choose any 𝑘 ′ ≤ 𝑘 layers, and collect the node embeddings of these
𝑘 ′ layers to generate GPIA features. We use𝐴 𝑗1,..., 𝑗𝑡

𝑖
to indicate that

the attack 𝐴𝑖 uses the model parameters (i.e., node embeddings)
at the 𝑗1-th, . . . , 𝑗𝑡 -th layers of GNN. For example, 𝐴2

1 indicates
the attack 𝐴1 that utilizes the embedding at the 2nd layer of the
target model 𝑇 , and 𝐴

1,2
1 indicates the attack 𝐴1 that utilizes the

embeddings at both the 1st and 2nd layers of 𝑇 . There are 2𝑘 − 1
possible choices of choosing these 𝑘 ′ layers in total. Besides these
embeddings, the posterior probabilities also can be included to gen-
erate features in the same way as in the black-box setting (Section
5.1). We will investigate the impact of choosing different amounts
of node embeddings on GPIA performance later (Section 6).

Next, we discuss how to aggregate a set of node embeddings into
one vector as the GPIA feature. We consider the following three
aggregation methods in this paper. We adapt two pooling methods
that have been widely used for Convolutional Neural Networks
[9, 26, 43], namely max-pooling and mean-pooling. Both pooling
methods take a set of network parameters in the format of vectors
as the input, and summarize these vectors as a single vector of fixed
length. Max-pooling preserves the most prominent features, while
mean-pooling has a smoothing effect.

• Concatenation: Given 𝑛𝑠 node embeddings 𝑧1, . . . , 𝑧𝑛𝑠 of the
shadow graph, they are concatenated into a vector of dimension
𝑛𝑠 , ®𝑣 =< 𝑧1, . . . , 𝑧𝑛𝑠 >, as GPIA features.

• Max-pooling: Given 𝑛𝑠 node embeddings 𝑧1, . . . , 𝑧𝑛𝑠 from the
shadow graph, we generate a vector ®𝑣 =< 𝑧𝑚𝑎𝑥

1 , . . . , 𝑧𝑚𝑎𝑥
𝑛𝑠

> as
the GPIA features, where 𝑧𝑚𝑎𝑥

𝑖
is the maximum of all value in

the embedding 𝑧𝑖 .
• Mean-pooling: Given 𝑛𝑠 node embeddings 𝑧1, . . . , 𝑧𝑛𝑠 , we gener-
ate a vector ®𝑣 =< 𝑧𝑚𝑒𝑎𝑛

1 , . . . , 𝑧𝑚𝑒𝑎𝑛
𝑛𝑠

>, where 𝑧𝑚𝑒𝑎𝑛
𝑖

is the mean
of all values in 𝑧𝑖 .

Different aggregation methods generate different GPIA features,
and thus lead to different attack performance. We will investigate
the impact of different embedding aggregation methods on GPIA
performance in Section 6.
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Dataset # nodes # edges # features # classes
Pokec 45,036 170,964 5 2

Facebook 4,309 88,234 1,284 2
Pubmed 19,717 44,338 500 3

Table 4: Description of datasets

Property attack inference phase. At inference time, the ad-
versary collects the model parameters of the target model𝑇 trained
on the target graph 𝐺 , and aggregates the parameters into a vec-
tor as the input feature of the testing sample, by using the same
embedding aggregation function in the training phase. Therefore,
the feature 𝑃 test is a vector whose size is the same as the number
of nodes in 𝐺 , whereas the feature of 𝑃 train is a vector whose size
is the same as the number of nodes in 𝐺𝑆 . Since 𝐺 and 𝐺𝑆 may
have different number of nodes, the feature of 𝐺 and 𝐺𝑆 can be of
different sizes. This raises the challenge of how to predict on 𝑃 test

if its feature is not of the same size as that of 𝑃 train.
To address this challenge, we consider four different methods to

align the features of 𝑃 train and 𝑃 test to be of same dimensions: (1)
Sampling: the most straightforward approach is to ensure that 𝐺
and𝐺𝑆 have the same number of nodes. This can be achieved as the
adversary can obtain the knowledge of the number of nodes in𝐺 by
counting the number of node embeddings via its white-box access
to the target model. Then the adversary samples the same number
of nodes from 𝐺𝑆 . This method is applicable when the number of
nodes in 𝐺𝑆 is no less than that of 𝐺 ; (2) TSNE projection [37]: it
projects high-dimensional data to either two or three-dimensional
data. We apply TSNE on the features of 𝑃 train and 𝑃 test to project
them into the same two-dimensional space, regardless of their orig-
inal dimensions; (3) PCA dimension reduction [30]: We apply PCA,
a widely-used dimension reduction method in the literature, on the
feature vector of both 𝑃 train and 𝑃 test and project them into a space
of the same dimension; (4) Autoencoder dimension compression:
Autoencoder [22] compresses the dimensions in the way that the
data in the high-dimensional space can be reconstructed from the
representation of lower dimension with small error. We apply Au-
toencoder on the features of 𝑃 train and 𝑃 test to compress both into
the same space of a lower dimension. To reduce the amounts of
information loss by compression, we only compress the feature
vector of the larger dimension into the space of the feature vector
of smaller one.

Different alignments methods incur different amounts of infor-
mation loss on the resulting embeddings, and thus lead to different
GPIA performance. We will investigate the impact of different align-
ment methods on GPIA performance in Section 6.

6 EVALUATION
In this section, we aim to demonstrate the effectiveness of GPIA
through answering the following three research questions:
• RQ1 - How effective is GPIA on representative GNN models
and real-world graph datasets?

• RQ2 - Why GPIA work?
• RQ3 - How various factors (e.g., attack classifier models, embed-
ding/posterior aggregation methods, and complexity of GNN
models) affect GPIA effectiveness?

6.1 Experimental Setup
All the experiments are executed on Google COlab with Tesla P100
(16G) and 200GB memory. All the algorithms are implemented in
Python with PyTorch. Our code and datasets are available online3.

Datasets. We consider three real-world datasets, namely Pokec,
Facebook, and Pubmed datasets, that are popularly used for graph
learning in the literature: (1) Pokec social network graph4 is col-
lected from the most popular on-line social network in Slovakia;
(2) Facebook social network graph5 consists of Facebook users as
nodes and their friendship relationship as edges; and (3) Pubmed
Diabetes dataset6 consists of scientific publications from Pubmed
database that are classified into three classes. Each publication node
is associated with 500 unique keywords as the features. The links
between publications indicate the citation relationship. Table 4 sum-
marizes the information of the three datasets. The purpose of pick
two graphs in one domain (social network graphs) and one graph
from a different domain is for the validation of the effectiveness of
transfer attacks (𝐴3 and 𝐴4).

Target GNN models. We consider three state-of-the-art GNN
models, namely GCN [24]7, GraphSAGE [19] and GAT [38]8, that
are widely used by the ML community. For each hidden layer, the
number of neurons is 64, which is the same as the dimension of
node embedding.We set the number of epoches for training as 1,500,
and use early stop with the tolerance as 50. We set the dimension
of node embeddings to 64 for all the three datasets.

Properties and property groups. For each dataset, we design
one node property and one link property to be attacked. The prop-
erties are summarized in Table 5. We pick the keywords “Insulin”
(IS) and “streptozotocin” (ST) for Pubmed dataset as they are the
keywords of the highest and lowest TF-IDF weight respectively.
The successful attacks on these properties can reveal the gender
distribution in Facebook and Pokec social network graphs, and
the frequency distribution of particular keywords (which can be
sensitive) in Pubmed graph.

Implementation of attack classifier. We use three types of
attack classifiers for both attacks, namely Multi-layer Perceptron
(MLP), Random Forest (RF), and Linear Regression (LR). We use
the implementation of the three classifiers provided by sklearn
package.9 We set up the MLP classifier of three hidden layers, with
the number of neurons for each layer as 64, 32, 16 respectively.
We use ReLU as the activation function for the hidden layers and
Sigmoid for the output layer. We train 1,000 epochs with a learning
rate of 0.001. We use cross-entropy loss as the loss function and
Adam optimizer. For RF classifier, we set the maximum depth as
150 and the minimum number of data points allowed in a leaf node
as 1. For LR classifier, we use the L2 norm as the penalty term, and
liblinear10 as the optimization solver. We set the maximum number
of iterations as 100 and the early-stop tolerance as 1e-4.

3https://anonymous.4open.science/r/PIA-CE14/
4https://snap.stanford.edu/data/soc-pokec.html
5https://snap.stanford.edu/data/ego-Facebook.html
6https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes
7We use implementation of GCN at https://github.com/tkipf/pygcn
8We use the implementation of both GraphSAGE and GAT fromDGL package available
at https://github.com/dmlc/dgl
9https://scikit-learn.org/
10Liblinear libary: https://www.csie.ntu.edu.tw/ cjlin/liblinear/
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Property Type Graph Property Descriptionfeature
𝑃1

Node
Pokec Gender COUNT(Male)> COUNT(Female)

𝑃2 Facebook Gender COUNT(Male)> COUNT(Female)
𝑃3 Pubmed Keyword COUNT(publications with “IS”) > COUNT(publications without “IS”)
𝑃4

Link
Pokec Gender COUNT(same-gender links) > COUNT(diff-gender links)

𝑃5 Facebook Gender COUNT(same-gender links) > COUNT(diff-gender links)
𝑃6 Pubmed Keyword COUNT(links btw. papers with “IS”) > COUNT(links btw. papers with “ST”)

Table 5: Properties to be attacked by GPIA. same-gender (diff-gender, resp.) links indicate those links between users of the
same (different, resp.) gender. “IS” = “Insulin”; “ST” = “Streptozotocin”.

Partial graphs.We randomly sample 1,000 subgraphs from each
dataset as the partial graph. The size of each partial graph is 20%,
25%, and 30% of Pokec, Facebook, and Pubmed datasets respectively.

GPIA training and testing data. For 𝐴1&𝐴2, we randomly
sample 1,000 subgraphs from the same dataset to generate the train-
ing and testing data for GPIA. Each subgraph is of the same size as
the partial graph. The training/testing split is 0.7/0.3, with the same
number of positive and negative subgraphs in both training and test-
ing data. There is no overlap of either links or subgraphs between
training and testing data. However, it is challenging to enforce no
node overlapping between training and testing data, especially for
the datasets with a small number of nodes (e.g., Facebook dataset),
as a large portion of sampled subgraphs in the training data will
have highly similar structure. Therefore, we allow a small amounts
of node overlap between training and testing data (3%, 5%, and 4%
for Pokec, Facebook, and Pubmed dataset respectively). We will
show the impact of node non-overlapping between training and
testing data on attack accuracy in Section 6.4. For attacks 𝐴3&𝐴4,
we sample 700 subgraphs from the shadow graph as the GPIA train-
ing data, and 300 subgraphs from the target graph as the testing
data. There is no node/link overlap between training and testing
data for 𝐴3 and 𝐴4. For attacks 𝐴5&𝐴6, we sample some subgraphs
from the partial graph plus some subgraphs from the shadow graph
(700 in total) as the training data, and 300 subgraphs from the target
graph as the testing data. We consider various size ratios (1:10, 1:4,
1:2, 1:1, 2:1, 4:1, and 10:1) between partial and shadow graphs in
the training data. Similar to 𝐴1 & 𝐴2, there is no link overlap but a
small node overlap between training and testing data for 𝐴5 and
𝐴6, where the node overlap ratio does not exceed 5%.

Metrics. We measure classification accuracy as the GNN model
performance. We measure attack accuracy 𝐴𝐶 as the effectiveness
of the proposed attacks. In particular, 𝐴𝐶 =

𝑁𝑐

𝑁
, where 𝑁𝑐 is the

number of graphs that are correctly predicted by GPIA (either as
positive or negative), and 𝑁 is the total number of graphs in the
testing data. Higher AC indicates that GPIA is more effective.

Baselines.We consider three approaches as baselines for com-
parison with our GPIA model: (1) Attribute inference attack
(AIA) (Baseline-1): we follow [35] and design an AIA that pre-
dicts the values of property features by the access to the embed-
dings/posteriors. Then we evaluate PIA accuracy based on the
predicted values of property features. To ensure fair comparison
between AIA and GPIA, we consider the same partial graphs in

the adversary knowledge of GPIA for AIA. (2) K-means cluster-
ing (Baseline-2): we apply k-means clustering (𝑘 = 2) on node
embeddings and posteriors. Then we measure the average distance
between the centroid of each cluster to the embedding/posteriors,
and pick the cluster of the smaller distance; (3) Meta-classifier
(Baseline-3): We follow [8, 18, 47] and use a meta-classifier as
the GPIA classifier. We also have two additional threshold-based
baseline methods. More details of this method and its comparison
with ours can be found in our full version [40].

6.2 GPIA Performance (RQ1)
We launch the attacks𝐴1 -𝐴6 to attack GCN, GAT, and GraphSAGE,
and measure their accuracy. To have a fair comparison of attack
accuracy across different settings, we ensure that GPIA training
data is of the same size for all the attacks. We use RF and MLP
as the white-box and black-box attack classifiers, max-pooling as
the embedding aggregation method, concatenation as the posterior
aggregation method, and TSNE projection as the embedding align-
ment method, as these setups produce the best attack performance.
More results of the attack performance under different setups can
be found in Section 6.4. As the possible hidden layers that the at-
tacker collects node embeddings from is exponential to the number
of hidden layers, we only consider GNNs of two hidden layers in
this part of experiments to ease explanation.

Performance of target model. To justify why the three GNN
models are worthy to be attacked, we evaluate the performance
of these models first, and include the results in the full version
[40]. As the accuracy of all the three models is significantly higher
than the random guess, these models are ready for the launch of
GPIA. Furthermore, the three models do not have overfitting; the
training-testing gap is in a small range of [0.02, 0.08].

Attacks 𝐴1 and 𝐴2. For 𝐴1, we consider three variants whose
GPIA features are generated from the embeddings at the first layer
(𝐴1

1), the second layer (𝐴2
1), and both layers (𝐴1,2

1 ). We measured
the performance of these variants and reported the best GPIA per-
formance. More details of how different amounts of embeddings
collected from different layers affect GPIA performance will be
discussed in Section 6.4.

Figure 2 shows the attack accuracy of our proposed attacks and
the baselines. First, we observe that the attack accuracy of our 𝐴1
and𝐴2 attacks ranges in [0.62, 1], which is significantly higher than
0.5 (random guess). In some settings (e.g., Figure 2 (a)), the attack
accuracy can be as high as close to 1, even under the black-box
setting. This demonstrates the effectiveness of GPIA against these
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(c) GAT
Figure 2: Attack accuracy of𝐴1 and𝐴2.𝐴1 and𝐴2 are indicated in different colors respectively, while our approaches, Baseline-1,
Baseline-2, and Baseline-3 are indicated in solid fill, horizontal stripe fill, sphere fill, and diagonal shape fill respectively.

target models. Furthermore, both 𝐴1 and 𝐴2 outperform Baseline-
1 in all the settings. Although the superiority of 𝐴1 and 𝐴2 to
Baseline-1 is marginal on 𝑃1 for GCN and GAT (Figure 2 (a) & (c)),
it is significant for the rest of settings. We believe AIA is much less
effective than GPIA for property inference is because there is no
strong correlation between the property feature and the label in
all the three graphs. More details of the correlation between the
property feature and the label can be found in the full version [40].
Similarly, we observe that the accuracy of 𝐴1 and 𝐴2 is also much
higher than Baseline-2. We also observe that the performance of𝐴1
and 𝐴2 is similar to Baseline-3. Thus using either one classifier or
stacking multiple classifiers into a meta-classifier does not impact
the GPIA performance.

Second, although the attack performance varies across different
types of properties, the attack accuracy of GPIA against the three
node properties (𝑃1 - 𝑃3) is noticeably higher than the link prop-
erties (𝑃4 - 𝑃6) in general. The only exception is for the property
𝑃6 and GAT as the target model (Figure 2 (c)), where the attack
accuracy of 𝑃6 is close to that of 𝑃3, and higher than 𝑃1 and 𝑃2. One
possible reason that GPIA is more successful against the node prop-
erties than the link properties is that it only needs to infer the node
feature distribution over node features, but it has to infer both node
feature distribution and graph structure for the link properties.

Third, we observe that the accuracy of the white-box and black-
box attacks is very close. The difference between them is negligible
in most of the cases. Interestingly, the white-box attack does not
always outperform the black-box attack, even though its features
may include those features used by the black-box attack, possibly
due to overfitting of the GPIA classifier by including more features.
This demonstrates the power of the property inference - the black-
box access to the target model is sufficient to launch the attack.

Attacks 𝐴3 and 𝐴4. Figure 3 presents the results of 𝐴3 and 𝐴4.
The results of GAT and GraphSAGE models are included in the
full version [40]. In all the settings, 𝐴3 and 𝐴4 are effective as their
accuracy is higher than 0.5 (random guess). The attack accuracy
can be as high as 0.66 when the adversary uses the Facebook social
network graph as the shadow graph to infer whether the Pokec
social network graph has disproportionate distribution between
male and female users. In other words, GPIA can transfer the knowl-
edge learned from a graph to infer the properties of another graph.
However, the accuracy of both 𝐴3 and 𝐴4 is worse than 𝐴1 and 𝐴2.
The reason behind this that some amounts of information of the
properties embedded in node embeddings/posteriors is lost due to
the feature alignment methods used for𝐴3/𝐴4. We also observe that
GPIA sometimes performs better under the settings that shadow
and target datasets belong to different domains than the settings

where they belong to the same domain. For example, GPIA accuracy
can be as high as 0.72 when Pubmed and Pokec datasets are the
target and shadow datasets respectively (Figure 3 (c)), but it is only
0.6 when the target dataset is changed to Facebook dataset while
keeping Pokec dataset as the shadow dataset, although both Pokec
and Facebook datasets are social network graphs. We analyze the
reason behind this observation, and found that the distribution of
the GPIA attack features for positive and negative graphs in the
shadow graph can be similar to that of the target graph even though
they are from different domains and/or of different structure. For
example, the distribution of the attack features over positive and
negative graphs of Pokec dataset is more similar to Pubmed dataset
than Facebook dataset. Thus the attacker can transfer such knowl-
edge learned from the shadow graph for property inference on the
target graph successfully.

Attacks 𝐴5 and 𝐴6. We vary the portions of 𝐺𝑆 and 𝐺𝐴 in the
adversary knowledge when we evaluate the effectiveness of𝐴5 and
𝐴6. Figure 4 present the attack accuracy result of both properties
𝑃1 (node property) and 𝑃4 (link property) with the partial graph
sampled from Pokec dataset and the shadow graph sampled from
Facebook dataset. Note that both Pokec and Facebook are social
network graphs. The performance of other settings can be found in
the full version [40]. We have the following observations. First, the
accuracy of𝐴5 and𝐴6 in all the settings is higher than 0.5, i.e., both
attacks are effective. Furthermore, the attack accuracy increases as
the size of the partial graph grows. In particular, when the partial
graph size dominates the shadow graph size (e.g., when the ratio
exceeds 4:1), the attack accuracy against the property 𝑃1 can be
close to 1 for both 𝐴5 and 𝐴6 for GCN model, and no less than
0.7 for GAT and GraphSAGE. Second, the attack accuracy of 𝐴5
and 𝐴6 on 𝑃1 is lower than that of the attacks 𝐴1 and 𝐴2 (i.e., only
the partial graph is available), similarly for 𝑃4. This is because the
features collected from the shadow graphs may not have consistent
distribution with those collected from the partial graph, and thus
becomes “noise” and degrades GPIA performance. On the other
hand, the attack accuracy of 𝐴5 and 𝐴6 is higher than that of 𝐴3
and 𝐴4. This is unsurprising as, compared with 𝐴3/𝐴4, 𝐴5 and 𝐴6
utilizes the additional knowledge learned from the partial graph to
improve its accuracy.

6.3 Why Does GPIA Work? (RQ2)
As the experimental results have demonstrated the effectiveness of
GPIA, next, we analyze why GPIAs can infer the existence of prop-
erty in the training graph successfully. Conducting the theoretical
analysis is very challenging due to the complexity in both training
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Figure 3: Attack accuracy of 𝐴3 and 𝐴4 when the GCN model is the target model. 𝐴1
3 and 𝐴2

3 indicate the 𝐴3 attack that uses the
model parameters at Layer 1 and Layer 2 of GCN models respectively.
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(c) GAT

Figure 4: Attack accuracy of 𝐴5 and 𝐴6 against the properties 𝑃1 and 𝑃4. The partial and shadow graphs are sampled from Pokec
and Facebook datasets respectively. X-axis shows the size ratio between partial and shadow graphs.

data and GNN models. Thus we discuss why GPIAs work based on
practical evaluations.

Correlation between property feature and label. Intuitively,
the attacker can infer the properties from the model output pos-
sibly because the property feature is strongly correlated with the
task (i.e., the class label). Following this intuition, we measure
the Pearson correlation between the property feature and class
label of the three graph datasets. These results can be found in
the full version [40]. Essentially, the correlation between the prop-
erty feature and the task label is weak for all the three datasets.
Then why the properties can be leaked even when there is weak
correlation between the property features and the label? This is
possible due to the strong correlation between the property and
non-property features in the data. For example, there is a strong
Pearson correlation (0.81) between gender (property feature) and
height (non-property feature) in Pokec dataset, between "Insulin"
(property feature) and "dietaries" (non-property feature) in Pubmed
dataset (Pearson correlation 0.41), and between gender (property
feature) and education year (non-property feature) in Facebook
dataset (Pearson correlation 0.92). As these non-property features
are correlated with the task label, the information of the properties
still can be leaked regardless of whether training data contained
the property feature or not.

Non-negligible disparate influence across different groups.
As observed by the recent studies, ML models are “biased” in the
sense that they behave differently across different groups in the
training data [11, 33]. Following this, we measure the disparity in
GNN model accuracy across different node/link groups in Facebook
and Pokec datasets. The results are included in the full version [40].

We observe the existence of accuracy disparity to some extent for
all the three GNN models. In particular, the disparity is significant
on Facebook dataset, where the difference in node classification
accuracy across male and female groups can be as large as 0.13. The
disparity demonstrates that the GNN models behave differently for
different node/link groups.

To have a deeper understanding of GNN models’ behaviors to-
wards different node/link groups, we measure the influence score of
individual node/link to quantify the impact of a node/link on the
GNN model performance. An intuitive idea measuring the influ-
ence of a given training node/link on a GNN model is to ask the
counterfactual [14, 25]: what would happen to the model behaviors if
the model did not see the node/link? Answering this counterfactual
enables to connect the model’s behaviors with the training data.

To quantify the effect of the counterfactual, we measure the dif-
ference in the model behaviors when it is trained with and without
a particular node/link. We use gradients to capture the model be-
haviors. Formally, assuming g𝑣

Δ
= ∇L(𝐺\{𝑣}), that is, g𝑣 is the set

of gradients induced from the training of the target model 𝑇 given
the graph 𝐺 excluding the node 𝑣 , where L is the loss function of
𝑇 . Then the influence score 𝐼 (𝑣) of a node 𝑣 on 𝑇 is measured as

𝐼 (𝑣) Δ
= 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (g𝑣, 𝑔),

where 𝑔 is the set of gradients induced by𝑇 on𝐺 . Intuitively, higher
influence score indicates the node 𝑣 impacts more on 𝑇 . Similarly,
assuming 𝑔𝑒

Δ
= ∇L(𝐺\{𝑒}) for a given edge 𝑒 ∈ 𝐺 , the influence

score 𝐼 (𝑒) of an edge 𝑒 on 𝑇 is measured as follows:

𝐼 (𝑒) Δ
= 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑔𝑒 , 𝑔) . (2)
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Various distance functions (e.g., Euclidean distance and cosine simi-
larity) can be used. We use cosine similarity as the distance function.
After we compute the influence score of individual nodes and links,
we compute the average influence score of nodes/links in a particu-
lar group as the influence score of the group.

Since influence measurement is time consuming as it needs
model retraining, we take a set of samples of Facebook dataset,
with each sample containing ∼ 700 nodes, and compute the average
influence score for male and female groups (for property 𝑃2), as well
as the same-gender and diff-gender links (for property 𝑃4) in these
samples. From the results reported in Table 6, we observe that all
GNN models have noticeable disparity in the influence scores across
different groups. Moreover, which group has higher influence is not
solely determined by its group size. It is also dependent on the target
model. For example, as shown in Table 6, the Male group in Face-
book dataset has higher influence score on GCN and GraphSAGE
but lower score on GAT than the Female group.

We also measure the impact of disparate group influence on their
model performance, and report the average group loss in Table 6.
The results demonstrate the non-negligible disparity in model loss
across different groups. Furthermore, the node groups of higher
influence score also have higher loss. However, this does not hold
for the link groups, as their influence is measured at link level, while
their loss is calculated at node level.

Negligible loss gap between positive and negative graphs.
Can the disparate influence and model loss of different node/link
groups lead to different target model performance over positive and
negative graphs, and thus enables GPIA? To answer this question,
we generate a set of positive and negative graphs from the Face-
book samples we used in Table 6, and measure the gap between
the average loss of the target model trained on positive graphs and
that on negative graphs. Our results (“Loss gap” column in Table
6) show that the loss gap between positive and negative graphs is
indeed negligible - the loss gap does not exceed 0.01 for all target
models (loss values in the range of [0.12, 0.44]). This is not sur-
prising, as making positive graphs to negative graphs (and vice
versa) essentially changes the size of a group (e.g., from a minority
group to a majority group). However, changing group size does not
necessarily lead to higher or lower model loss averaged over the
whole graph, given that there is no relationship between group size
and its loss. Furthermore, our empirical analysis shows that there
is no linear relationship between GPIA accuracy and the loss gap
between positive and negative graphs. In particular, GPIA accuracy
neither increases or decreases consistently with the growth of the
loss gap. Therefore, the loss gap between positive and negative
graphs does not contribute to GPIA’s success.

Dissimilar distribution of embeddings/posteriors of pos-
itive and negative graphs. As different node/link groups have
different influence on the target model, how these groups are dis-
tributed in the training graph affects the model parameters (embed-
dings) and posterior outputs obtained from positive and negative
graphs. To justify this, we visualize the distribution of GPIA features
aggregated from embeddings/posteriors output by the target model
on positive and negative graphs (can be found in the full version
[40]). We observe that the distribution of GPIA features aggregated
from embeddings and posteriors of positive and negative graphs
are distinctly dissimilar and well distinguishable. Such dissimilarity
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Figure 5: Impact of GNN model complexity on GPIA.

is thus utilized by the GPIA classifier to infer the existence of the
property in the training data.

6.4 Impact Factors of GPIA Performance (RQ3)
In this section, we investigate how various factors impact GPIA
performance. We consider the following factors: type of attack
classifier model, type of embedding /posterior aggregation methods,
type of dimension alignment methods, complexity of GNN models,
group size ratio, and node overlapping between GPIA training and
testing data. We also consider the impact of different amounts of
embeddings on GPIA, and observe that GPIA performance stays
stable for all the settings. We thus omit this part of discussions and
put the results in the full version [40].

Type of attack classifier models. We measure GPIA accuracy
when MLP, RF, and LR are used as the attack classifiers, and include
the results in the full version [40] due to the limited space. The
main observation is that, while the three attack classifiers deliver
similar performance in most of the settings, LR never outperforms
MLP and RF. Furthermore, RF outperforms MLP slightly in most of
the white-box attacks, while MLP has slightly better performance
than RF for the black-box attacks. Therefore, we recommend RF and
MLP as the white-box and black-box attack classifier respectively.

Embedding/posterior aggregationmethods.Wemeasure the
impacts of the three embedding aggregation methods (i.e., concate-
nation, max-pooling and mean-pooling) on GPIA performance, and
include the results in the full version [40]. The main observation is
that max-pooling outperforms the other two methods in most of the
settings. Therefore, we recommend max-pooling as the embedding
aggregation method.

We also measured the impact of the posterior aggregation meth-
ods (concatenation and element-wise difference) on GPIA perfor-
mance. Our observation is both methods have similar GPIA perfor-
mance. The results can be found in the full version [40].

Dimension alignment methods. We measure GPIA perfor-
mance for the four alignment methods (sampling, TSNE projection,
PCA dimension reduction, and Autoencoder compression), and in-
clude the results in the full version [40] due to the limited space. The
results suggest using TSNE as the dimension alignment method, as
it delivers the best attack accuracy. On the other hand, the Autoen-
coder method always delivers the worst GPIA accuracy among all
four alignment methods.

Complexity of GNN models. We define the network complex-
ity by both the number of hidden layers and the total number of
neurons in the network, andmeasure the GPIA performance against
the target model of various complexity. We vary the number of
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Model
Node group Link group

Influence score Model loss Loss Influence score Model loss Loss
Male Female∗ Male Female∗ gap Same-gender∗ Diff-gender Same-gender∗ Diff-gender gap

GCN 0.038 0.017 0.647 0.298 0.01 0.022 0.012 0.346 0.604 0.004
GraphSAGE 0.022 0.015 0.558 0.255 0.003 0.0039 0.011 0.353 0.586 0.0007

GAT 0.057 0.087 0.153 0.234 0.004 0.034 0.03 0.21 0.313 0.003
Table 6: Influence scores and GNN model loss per group, and loss gap between positive and negative graphs (Facebook dataset).
The group of the larger size is marked with ∗. Between two groups, the group of higher influence score and higher loss is
marked green and orange respectively.

hidden layers from 2 to 8, with 64 neurons at each layer, and use
the embedding at the final hidden layer to launch the attack𝐴1. We
only consider 𝐴1 and 𝐴2 in this set of experiments.

Figure 5 shows the results on Pokec dataset. We observe that
both𝐴1 and𝐴2 are less effective on complex GNNs than the simple
ones. For example, when the number of hidden layers increases to
8, the accuracy of both𝐴1 and𝐴2 against GAT becomes close to 0.5.
Although this is against our initial hypothesis that more complex
models would intrinsically learnmore information from the training
dataset and hence be more sensitive to GPIA, our observation is
indeed consistent with the prior PIA studies when CNNs are the
target model [32] that it is not necessary that more complex models
are more vulnerable to PIA.

Group size ratio. To study if the size ratio between property
groups can impact GPIA performance, we consider property 𝑃2 on
Facebook dataset and vary the size ratio between Male and Female
groups. The results of GPIA performance for these settings can be
found in the full version [40]. The main observation is that GPIA
performance is affected by group prevalence - the attack accuracy
is low (≤ 0.6) when the group size ratio is 1:1, and it grows with
the increase of the group size ratio. The attack accuracy can be as
high as 1 when the group size ratio increases to 1:3.

Node non-overlapping between GPIA training and testing
data. As our results of attacks 𝐴1&𝐴2 were evaluated over GPIA
training and testing data that have small amounts of node overlap,
we generate GPIA training and testing data with no node overlap-
ping, and evaluate the accuracy of𝐴1&𝐴2. The results can be found
in the full version [40]. The main observation is that the attack
accuracy for the non-overlapping setting is very close to that for
the node-overlapping setting (Figure 2). Thus a small amount of
node overlapping between GPIA training and testing data does not
affect GPIA accuracy significantly.

7 DEFENSE MECHANISMS
In this section, we present our defense mechanisms against GPIA.

7.1 Details of Defense Mechanisms
Defense against black-box attacks. As GPIA features are gen-
erated from the posteriors of the target model, we perturb these
posteriors to defend against GPIA. In particular, for each node 𝑣 ∈ 𝐺

and its associated posterior probabilities, we add noise on each prob-
ability [48] where the noise follows the Laplace distribution whose
density function is given by 1

2𝑏 𝑒
− 𝑥−𝜇

𝑏 (𝑏: noise scale, 𝜇: the location
parameter of the Laplace distribution).

Besides the noisy posterior mechanism, we evaluated two alter-
native methods: (1) top-k posterior output method: For each node

𝑣 ∈ 𝐺 and its associated posterior probability values, we keep the
top-k largest posteriors as the output. GPIA will be launched on the
top-k posterior output; (2) label-only output method that the tar-
get model outputs the classification label instead of the posteriors.
Our results show that both methods fail to either decrease GPIA
accuracy significantly or provide acceptable target model accuracy.
Thus we will not discuss these two defense mechanisms.

Defense against white-box attacks.We design two types of
defense mechanisms that mitigate GPIA effectiveness by modifying
the node embeddings: (1) noisy embedding: For each node 𝑣 ∈ 𝐺 ,
let 𝑧 be its node embedding. We add Laplace noise on 𝑧, where the
noise follows the Laplace distribution whose density function is
the same as noisy posterior method; and (2) embedding truncation:
An embedding of dimension 𝑑 is converted to another embedding
of lower dimension 𝑑 ′ = 𝑑 × (1 − 𝑟 ), where 𝑟 ∈ (0, 1) is the trun-
cation ratio. Higher 𝑟 indicates more dimensions to be truncated
and less information is kept in the embedding. We randomly pick
𝑑 ′ < 𝑑 dimensions from the original embedding. Different node
embeddings may have different dimensions to be truncated even
under the same truncation ratio.

For the embedding truncation method, we implemented and
evaluated three embedding dimension reduction methods including
PCA [30], TSNE projection [37], and Autoencoder [22]. However,
all of them fail to provide strong defense against GPIA, as they still
preserve large amounts of information in the embedding which can
be utilized by GPIA. Thus we will not present the details of these
alternative truncation methods.

7.2 Evaluation of Defense Mechanisms
We evaluate both effectiveness of the proposed defense methods
and their impact on target model accuracy.We only consider attacks
𝐴1 and 𝐴2 as the defense effectiveness against these two attacks
are expected to be applied to 𝐴3 −𝐴6 due to their similarities.

Setup of defense mechanisms. For both noisy embedding and
noisy posterior defense mechanisms, we set the noise scale 𝑏 =

{0.1, 0.5, 1, 5, 10}. For the embedding embedding truncation defense,
we consider the compression ratio 𝑟 = {0.01, 0.05, 0.1, 0.2, 0.3}. The
setup of the target model is the same as in Section 6.

Metrics. We measure defense effectiveness as the accuracy of
GPIA against the GNN with defense. We measure target model
accuracy as the accuracy of node classification by the target model.

Baseline. Differential privacy (DP) [13] has been shown as ef-
fective against inference attacks on ML models [23, 34]. Therefore,
we use differentially private deep learning method [6] that adds
Laplace noise to the gradients as the baseline. We set the noise scale
𝜖 = 1

𝑏
(i.e., 𝜖 = {10,5,1,0.5,0.1}), where 𝑏 is the noise scale value for
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Figure 6: Defense effectiveness of the noisy posterior/embedding defense method (GCN as the target model). The noisy
embedding defense is used against 𝐴1

1 and 𝐴2
1, while the noisy posterior defense is used against 𝐴2.
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Figure 7: Performance of the embedding truncation defense (GCN as the target model).
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Figure 8: Target model accuracy under the noisy posterior/embedding defense (GCN as the target model).

the noisy embedding/posterior scheme. Lower 𝜖 indicates stronger
noise scale and thus strong privacy protection.

Effectiveness of defense. We add the noise to the embeddings
𝑍 1 and 𝑍 2 to defend against 𝐴1

1 and 𝐴
2
1. We do not consider adding

noise to both layers as more noise will lead to higher loss of tar-
get model accuracy. Figure 6 shows the attack accuracy results
under the noisy embedding/posterior defense when GCN is the
target model. The defense performance on GraphSAGE and GAT
are shown in the full version [40]. First, we observe that the noisy
embedding/posterior defense can reduce the attack accuracy effec-
tively by achieving the accuracy around 0.5 in all the settings. Sec-
ond, different attacks require different amounts of noise to achieve
the same degree of protection. For example, the defense against 𝐴1

1

and 𝐴2
1 requires the noise 𝑏 = 0.5 and 𝑏 = 5 to reduce the attack

accuracy to be close to 0.5 respectively. Different properties also
require different amounts of noise to be added to achieve the same
degree of protection. For example, the defense against 𝐴2

1 on 𝑃2
and 𝑃5 requires noise of scale 𝑏 = 5 and 𝑏 = 0.5 to reach the attack
accuracy around 0.5.

We also observe that the defense power of the DP baseline is
weaker than our method in the defense against the white-box attack
𝐴1 (Figure 6 (a) & (b)), even with the noise scale as large as 10
(i.e., DP noise scale 𝜖 = 0.1). Indeed, similar observations have
been made that DP is ineffective against GPIA for other target
models such as HMMs and SVMs [8]. Indeed, although DP provides
theoretical guarantee of privacy protection against individual data
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points, it is unclear if it can provide sufficient protection over GPIA
inference of aggregate information of a group of samples. Further,
the data independence assumption of DP [27] is indeed violated
in the context of GNNs, as the edges in graph are dependent and
correlated. However, we also observe that DP is effective against
the black-box attack 𝐴2 (Figure 6 (c)), and outperforms our method
when the noise scale 𝑏 < 5 in most of the settings.

Figure 7 (a) and (b) demonstrate the effectiveness of the embed-
ding truncation defense method with GCN as the target model. The
defense performance on GraphSAGE and GAT are shown in the
full version [40]. The embedding truncation defense can reduce
the attack accuracy of 𝐴1

1 to be close to 0.5 when the truncation
ratio is as small as 0.1 (i.e., remove 10% of embeddings). However,
it requires more noise (truncation ratio as large as 0.3) to reduce
the attack accuracy of 𝐴2

1 to be close to 0.5. We believe this is be-
cause 𝐴2

1 is stronger than 𝐴1
1 as it encodes more information in the

embedding that can be utilized by the attack.
Target model accuracy under defense. For the noisy poste-

rior/embedding defense mechanism, we show the result of GCN ac-
curacy in Figure 8. The results of GraphSAGE and GAT are included
in the full version [40]. We observe that GCN accuracy downgrades
when more noise is added to the embeddings/posteriors. The ac-
curacy loss varies for different datasets. For example, the accuracy
loss never exceeds 10% for Facebook when the noise is added to
𝑍 2, but becomes as large as 50.7% for Pubmed dataset (Figure 8 (b)).
Indeed, Pubmed dataset is the most sensitive to the noise among
the three datasets, as it witnesses the largest amounts of accuracy
loss. Nevertheless, the target model accuracy is acceptable when
the defense is sufficient (i.e., the attack accuracy is close to 0.5). For
example, consider Pokec dataset and noise scale 𝑏 = 1, the accuracy
of attack 𝐴1

1 is mitigated to around 0.5 (Figure 6 (a)), while the
target model accuracy is still 0.6 (Figure 8 (a)), which is higher than
random guess for a binary classification task. We also observe that
the target model accuracy by our defense always outperforms that
of DP baseline. This demonstrates that adding noise on embeddings
and posteriors better address the trade-off between defense and
target model accuracy than adding noise on gradients.

For the embedding truncation defense, we show the result of
GCN in Figure 7 (c) & (d). The results of GraphSAGE and GAT are
shown in the full version [40]. We observe that the target model
accuracy downgrades when the truncation ratio increases, and the
accuracy loss varies for different datasets and different embeddings
that are truncated. For example, the target model accuracy loss is
13.9% and 36.1% for Facebook and Pubmed datasets respectively
when 𝑍 1 is truncated. Pubmed dataset witnesses the highest accu-
racy loss among the three datasets. Second, in terms of the trade-off
between privacy and accuracy, the embedding truncation method
loses to the noisy embedding method, as its target model accuracy
is lower than that by the noisy embedding method under similar
attack accuracy. For example, by the embedding truncation method,
the target model accuracy is 0.58 for Facebook dataset (Figure 7
(d)) when the attack accuracy of 𝐴2

1 against all properties becomes
around 0.5 (Figure 7 (b)). This is slightly lower than that by the
noisy embedding method, where the target model accuracy is 0.61
for Facebook dataset (noise scale 𝑏 = 5 in Figure 8 (b)) when the

attack accuracy of 𝐴2
1 against all properties becomes around 0.5

(noise scale 𝑏 = 5 in Figure 6 (b)).
Why are defense mechanisms effective? Intuitively, our de-

fense mechanisms add perturbations on individual embeddings and
posteriors. Then why can they defend against the property infer-
ence at group level? To answer this question, we recall that one
of root causes of GPIA is the disparate model loss across different
groups (Section 6). We measure the loss of all groups after the de-
fense mechanisms are applied, and observe that the loss disparity
across different groups is mitigated to some extent by the pertur-
bation added to embeddings/posteriors. There is more mitigation
of loss disparity when more perturbation is added (i.e., stronger
defense). More details of how loss disparity across different groups
is mitigated by defense can be found in the full version [40].

8 CONCLUSION
In this paper, we propose the first systematic study of GPIA against
GNNs. We design six GPIA attacks for both white-box and black-
box settings, and demonstrate the attack effectiveness through
extensive experiments. We analyze the main factors that contribute
to the success of GPIA.We also present various defense mechanisms
against the proposed attacks, and demonstrate the effectiveness of
these mechanisms.

Limitations and future work. Next, we discuss the limitations
of our work and several research directions for the future work.

Properties at subgraph level. So far, we only consider the group
properties at node and link levels. In general, the properties at
subgraph level, e.g., imbalanced data distribution across different
communities, are sensitive. Thus an interesting direction for the
future research is to extend our GPIA model to deal with subgraph-
level properties. The design strategy of the subgraph-based PIAs
can be similar to GPIA: we generate the training data from positive
and negative shadow/partial graphs, and train the classifier on the
generated data.

Non-binary properties. Our attacks only deal with binary prop-
erties. A more powerful attack can be predicting from multiple
classes, for example, inferring the population ratio of particular
racial groups in the given graph. One straightforward solution to
non-binary properties is simply replacing the binary GPIA clas-
sifiers with multi-class ones using the same GPIA features. An
alternative solution is to use meta-classifiers [8, 18] for inference.

Sparse graphs. The success of GPIA relies on its training data
that consists of sufficient number of positive graphs sampled from
shadow/partial graphs. Thismay not be achievable on shadow/target
graphs that are sparse, as their samples are likely to contain few
links and thus fail to meet the properties, especially the link-level
ones. In this case, the adversary may need to apply link prediction
algorithms [7, 28] to add links to the shadow/partial graphs in the
GPIA training data.
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