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ABSTRACT
Machine learning algorithms, when applied to sensitive data, can

pose severe threats to privacy. A growing body of prior work has

demonstrated that membership inference attack (MIA) can disclose

whether specific private data samples are present in the training

data to an attacker. However, most existing studies on MIA focus on

aggregated privacy leakage for an entire population, while leaving

privacy leakage across different demographic subgroups (e.g., fe-

males and males) in the population largely unexplored. This raises

two important issues: (1) privacy unfairness (i.e., if some subgroups

are more vulnerable to MIAs than the others); and (2) defense un-
fairness (i.e., if the defense mechanisms provide more protection to

some particular subgroups than the others).

In this paper, we investigate both privacy unfairness and defense

fairness. We formalize a new notation of privacy-leakage disparity
(PLD), which quantifies the disparate privacy leakage of machine

learning models to MIA across different subgroups. In terms of

privacy unfairness, our empirical analysis of PLD on real-world

datasets shows that privacy unfairness exists. The minority sub-

groups (i.e., the less represented subgroups) tend to have higher

privacy leakage. We analyze how subgroup size and subgroup data

distribution impact PLD through the lens of model memorization.

In terms of defense unfairness, our empirical evaluation shows the

existence of unfairness of three state-of-the-art defenses, namely

differential privacy, 𝐿2-regularizer, and Dropout, against MIA. How-

ever, defense unfairness mitigates privacy unfairness as the mi-

nority subgroups receive stronger protection than the others. We

analyze how the three defense mechanisms affect subgroup data

distribution disparately and thus leads to defense unfairness.
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1 INTRODUCTION
Advances in the field of machine learning (ML) have resulted in

algorithms and technologies for improving cybersecurity by helping

identify security threats and system vulnerabilities. However, ML

is also vulnerable to novel and sophisticated privacy attacks that

leak information about the training dataset [25, 52]. For instance,

in a membership inference attack (MIA) [30, 50, 52], an attacker can

infer whether a given data sample is in an ML model’s training

dataset, even if the attacker only has black-box access to the model’s

prediction APIs. When the training data is sensitive or proprietary

user data such as electronic health records, location/contact traces,

and financial information, such leakage poses severe threats to

user privacy. Meanwhile, quite a few defense mechanisms (e.g.,

[34, 45, 49, 52]) have been proposed to mitigate the threat of MIA.

Despite the active research on MIA [46, 49, 52, 54, 56, 58] and

their defense mechanisms [34, 45, 49, 52], most of these existing

studies only focus on aggregated privacy leakage of MIA over an

entire population. However, the effect of MIA may differ across

various demographic groups (e.g., females vs. males). For instance,

MIA may be able to correctly infer 80% of females and 60% of male

members, respectively. It is even possible that the privacy risk of

some subgroups can be notably high when the privacy risk of the

whole population is low. Such disparate privacy leakage across

different demographic groups may raise the serious concern of

“privacy unfairness”, i.e., an ML model can pose different privacy

risks to users in different demographic groups. The fairness concern

also holds on the defense mechanisms against MIA, as they may

affect the subgroups differently (e.g., the female group receives

more privacy protection than the male group). This imposes the

concern of “defense unfairness”, i.e., a defense mechanism does

not provide equitable protection across different groups.

The research community has mostly considered fairness and

privacy as two equally important issues and investigated them

separately. Few recent works [13, 57] started looking at fairness

and privacy concurrently. Chang et al. [13] explore the privacy

risks of imposing fairness constraints on ML models. Their angle is

orthogonal to privacy unfairness or defense unfairness. Yaghini et

al. [57] indeed study privacy unfairness and defense unfairness, but

to a very preliminary extent. They show the existence of disparate

privacy leakage to MIA and discuss the factors affecting disparate

privacy leakage. They further inspect the impact of differential

privacy (DP) [19], as an MIA defense, on the disparity. However,

their study neither unveils the fundamental causes of the disparity

nor investigates how and why DP affects the disparity.

https://doi.org/10.1145/3488932.3501279
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In this paper, we aim to study both privacy unfairness and de-

fense unfairness, centering around three research questions:

• RQ1. Does privacy unfairness exist and how significant it can be?
• RQ2. What are the factors leading to privacy unfairness?
• RQ3. Can defense mechanisms present disparate privacy leakage
of different groups and why?

Definingmetrics: There have been no systematic schemes to mea-

sure privacy unfairness in the literature. To this end, we first formal-

ize a new notation called privacy-leakage disparity (PLD) to quantify
privacy unfairness in the context of MIA. PLD is adapted from a

well-accepted fairness notation named accuracy parity [6, 8, 15].

At a high level, PLD measures the gap between the MIA accuracy,

which reflects the amount of privacy leakage, of different demo-

graphic groups.

Studying privacy unfairness: Leveraging PLD, we run an em-

pirical study to measure privacy unfairness, on three real-world

datasets widely adopted by both fairness and privacy communi-

ties (see Table 2). The results show the prevalent existence of PLD,

and interestingly, the minority subgroup (i.e., the less represented

subgroup in the data) tends to have higher privacy leakage. Using

model memorization, which measures how much the model memo-

rizes data samples, as a tool, we further gain an understanding of

two major causes of PLD: (i) subgroup size - the model memorizes

more about the subgroup with a smaller size and (ii) subgroup data
distribution - the two subgroups that have more deviated distribu-

tion have higher PLD.

Studying defense unfairness: Aiming to understand defense un-

fairness, we finally inspect the impacts of MIA defenses on PLD. We

consider three state-of-the-art MIA defenses, including differential

privacy [20], 𝐿2-regularizer [52] , and Dropout [49]. It turns out

that these MIA defenses affect PLD in a “positive” manner, namely

they tend to reduce the extent of PLD. That concurrently unveils

the existence of “defense unfairness”: the MIA defenses are inclined

to provide stronger protection for the minority subgroup. We show

the reason behind “defense unfairness” is that MIA defenses have a

disparate impact on reducing the distribution deviation between

different subgroups and the entire population. In particular, they

reduce the distribution deviation between the minority subgroup

and the entire population much quicker than the majority subgroup,

which leads to stronger defense against privacy leakage.

In summary, the paper makes the following contributions.

• We formalize the new notation of privacy-leakage disparity

to quantify privacy unfairness.

• We show the existence of privacy-leakage disparity in MIA

and unveil the main underlying causes.

• We demonstrate that existing MIA defenses have unfair pro-

tection, leading to a reduction of privacy-leakage disparity.

2 MEMBERSHIP INFERENCE ATTACKS
This paper aims to investigate the disparity of privacy leakage of

ML models. An essential component is a proper method to measure

the privacy leakage. We consider Membership Inference Attack

(MIA) [52] as the method because of its wide acceptance [28, 30, 42,

44, 46, 49–51, 54, 56] and practical influence [33]. The rest of this

Table 1: Common notations used in the paper

Notation Description

T Target model

M Membership inference attack (MIA) model

𝑦 ∈ {+,−} Label of the target model T
𝑏 ∈ {+,−} Label of the attack model M.

𝑏 = +/−: member/non-member

𝐷T
𝑡𝑟𝑎𝑖𝑛

, 𝐷T
𝑡𝑒𝑠𝑡

Training and testing datasets of target model T

𝐷M
𝑡𝑟𝑎𝑖𝑛

, 𝐷M
𝑡𝑒𝑠𝑡

Training and testing datasets of attack model M

𝐴
Protected attribute.𝐴 = 𝑎 (𝑎 ∈ {0, 1}) specifies

the value of the protected attribute.

𝐺𝑎 Group𝐺1/𝐺0

𝐺
𝑦
𝑎 Set of data points with protected attribute 𝑎 and target label 𝑦

section covers the background of MIA. Notations to facilitate our

description are summarized in Table 1.

2.1 Target Model
Given an ML model T , which we call target model, MIA aims to

infer the membership of a given data sample, i.e., whether the data

sample is in the model’s training dataset 𝐷T
𝑡𝑟𝑎𝑖𝑛

. Similar to previous

research [52], we consider target models that are classification

models with the following configurations. Given a training dataset

𝐷T
𝑡𝑟𝑎𝑖𝑛

of domain 𝑋 × 𝑌 , where 𝑋 denotes the input features and

𝑌 denotes the output label, the classification model T is trained

on 𝐷T
𝑡𝑟𝑎𝑖𝑛

based on the ground truth of 𝑌 . For a testing dataset

𝐷T
𝑡𝑒𝑠𝑡 which follows the same distribution of 𝐷T

𝑡𝑟𝑎𝑖𝑛
, T outputs a

confidence score vector (CSV) for each data sample in 𝐷T
𝑡𝑒𝑠𝑡 . The

CSV is a probability distribution over the class labels of 𝑌 , and the

label of the highest CSV is deemed the prediction. For simplicity,

we only consider binary classification models (i.e., 𝑦 ∈ {−, +}), but
the methodologies and principles of our study apply to all types of

classification models.

2.2 Attack Model
In an MIA attack, the attacker trains another ML model M called

the attack model. M takes some input features 𝑋𝑀𝐼𝐴
produced by

T as an input, and predicts the membership for any given data

sample. Formally,M can be considered as a binary classification

model which predicts the label 𝑏 for any data sample (𝑥,𝑦), where
𝑏 = + if M predicts (𝑥,𝑦) ∈ 𝐷T

𝑡𝑟𝑎𝑖𝑛
, otherwise 𝑏 = −.

In the black-box setting [52], an attacker has access to the CSVs

output by T for each data sample, through channels like prediction

APIs of the target model. When the attack has access to the ground

truth of some members and non-members of 𝐷T
𝑡𝑟𝑎𝑖𝑛

. The attacker

generates the training dataset 𝐷M
𝑡𝑟𝑎𝑖𝑛

of the attack modelM, which

includes the CSVs of all members/non-members in the ground truth

as features 𝑋𝑀𝐼𝐴
and their member/non-member status as labels.

The attacker then trains M on 𝐷M
𝑡𝑟𝑎𝑖𝑛

. When the attacker has no

access to the ground truth of members/non-members in 𝐷T
𝑡𝑟𝑎𝑖𝑛

,

the attack model can be learnt using the following shadow model

approach [52].

Technically, the attacker first synthesizes data samples to mir-

ror the training samples of T . One way is to initialize a random

sample and gradually improve its quality using output of the target

model [52]. Based on the synthesized data, the attacker creates a



group of shadow models to approximate the target model. Each

shadow model is trained using some synthesized data samples and

the outputs of those samples predicted by the target model. The

attacker eventually deems the shadow models as the target model

and trains the attack model as described above.

Other works also considered the white-box setting [39, 46],

where the attacker is assumed to have access to the parameters of T .

In this setting, the attack model can further use features extracted

from the model parameters (e.g., the gradients of the prediction

with respect to a data sample [46]).

In this work, we focus on the black-box setting for a considera-

tion of its generality. Since our goal is to observe the disparity of

privacy leakage, acquiring a more evident level of privacy leakage

is obviously beneficial. To this end, we take two actions. First, we

assume some ground truth members/non-members are available

to train the target model, avoiding using the the shadow models

that can be noisy. Second, we follow [52] to train a separate attack

model for each label of T .

2.3 Quantifying Privacy Leakage by
Membership Inference Attacks

MIA effectiveness is measured by standard metrics [49, 52] includ-

ing accuracy, precision, and recall. Given an attack testing dataset
𝐷M
𝑡𝑒𝑠𝑡 , which consists of members and non-members of the target

model’s training dataset. The attacker uses the attack model M to

predict memberships of data samples in 𝐷M
𝑡𝑒𝑠𝑡 . Specifically, accu-

racy is the fraction of the data correctly predicted as member or

non-member, precision is the fraction of the predicted members that

are true members of 𝐷T
𝑡𝑟𝑎𝑖𝑛

, and recall is the fraction of the true

members in 𝐷M
𝑡𝑒𝑠𝑡 that are predicted as members.

3 DEFINING PRIVACY-LEAKAGE DISPARITY
Using MIA, we have a method to measure the privacy leakage

experienced by the entire population, but we still lack schemes to

assess the disparity of the privacy leakage. In fact, privacy-leakage

disparity (PLD) has not been systematically defined in the literature.

In this paper, we aim to take the initial step towards establishing

the definition of PLD, with a focus at the group level (i.e., how to

quantify the difference in the privacy leakage of different groups).

Our insights are borrowed from Algorithm Fairness in ML, an area

attracting tremendous attention in recent years. In the rest of this

section, we first briefly introduce algorithm fairness in ML and then

explain how we adapt that to PLD.

3.1 Algorithmic Fairness in Machine Learning
Roughly speaking, given a dataset 𝐷 of domain 𝑋 × 𝑌 where 𝑋

denotes the input features and 𝑌 denotes the output label, each

sample in 𝐷 is associated with a set of protected attributes 𝐴 ⊆ 𝑋

(e.g., gender, race). For simplicity, we consider only one protected

attribute in this paper. Depending on the value of the protected at-

tribute, the data samples in 𝐷 are divided into two groups: protected
group (denoted by𝐴 = 1) and unprotected group𝐴 = 0. For instance,

consider gender as the protected attribute. The whole population

can be grouped into the female and male groups, where the female

group is considered as the protected group.

Based on the definition of the protected attribute and the corre-

sponding groups, an ML system satisfies group fairness if its pre-
dicted outcomes are similar across different groups. The fairness

community has proposed many mathematical notations to formal-

ize the similar treatment [10, 17, 27, 37]. For example, equal op-
portunity [27] requires the same true positive rate across different

groups, while equalized odds [27] requires the same true and false

positive rates across different groups [27]. More recent research also

brings up the concept of accuracy parity [6, 8, 15], observing that
ML systems often exhibit substantial accuracy disparities among

different demographic groups. Formally, accuracy parity is defined

as follows (formalism of other fairness metrics is omitted because

we adapt accuracy parity to define PLD):

Definition 1 (Accuracy Parity [6, 8, 15]). Given a prediction
model ℎ, and a pre-defined accuracy metric 𝐴𝐶𝐶 that measures the
accuracy of the prediction output made by ℎ, let𝐴𝐶𝐶𝑎 = 𝐴𝐶𝐶 (ℎ,𝐺𝑎)
be the prediction accuracy of the group𝐺𝑎 (𝑎 ∈ {0, 1}). Thenℎ satisfies
accuracy parity if 𝐴𝐶𝐶0 = 𝐴𝐶𝐶1.

The violation of accuracy parity is known as disparate mistreat-
ment [59]. To measure the level of disparate mistreatment, we can

use accuracy gap defined as follows:

Definition 2 (Accuracy gap). Given a prediction model ℎ and
two groups 𝐺0 and 𝐺1, the accuracy gap of ℎ on these two groups is
Δ:= |𝐴𝐶𝐶0 −𝐴𝐶𝐶1 |. By definition, if Δ(ℎ) satisfies accuracy parity,
Δ(ℎ) will be zero.

3.2 From Algorithmic Fairness to
Privacy-Leakage Disparity

To align with the working principles of MIAs, we mainly consider

subgroups, instead of protected/unprotected groups. In particular,

since we follow the state-of-the-art MIA model [52] to train a sepa-

rate attack model for each target label, we further split each group

(𝐺0 or𝐺1) into ℓ subgroups, where ℓ is the number of unique labels

of the target model. For example, consider a binary classification

task that predicts whether an individual has annual income greater

than $50K based on their demographic information, the group 𝐺1=

Female is split into two subgroups: 𝐺+
1
for females who are labeled

with annual income greater than $50K, and𝐺−
1
for the remaining fe-

males. In the following discussions, we use𝐺𝑎 to indicate the group

with𝐴 = 𝑎, where 𝑎 ∈ {0, 1}. We use𝐺
𝑦
𝑎 to present the subgroup of

𝐺𝑎 with label𝑦, where𝑦 ∈ {−, +}. Given two subgroups𝐺𝑦
𝑎 and𝐺

𝑦

𝑎′

that have the same target label 𝑦, we call𝐺
𝑦
𝑎 the minority subgroup

if |𝐺
𝑦
𝑎 < 𝐺

𝑦

𝑎′ |, and 𝐺
𝑦

𝑎′ the majority subgroup.
We adapt accuracy parity to define PLD. But instead of looking

at the accuracy of the ML model (i.e., target model), we consider

the accuracy of MIA (i.e., the attack model): the probability that

an adversary can correctly infer if a data point is a member/non-

member in 𝐷T
𝑡𝑟𝑎𝑖𝑛

. Based on MIA accuracy, the privacy leakage of

a subgroup can be measured as follows:

Definition 3 (Subgroup Privacy Leakage). Given a dataset 𝐷 ,
a target model T , and the MIAmodelM that predicts the membership
label 𝑏, we define the privacy leakage of the target model T with
respect to the subgroup 𝐺𝑦

𝑎 (i.e., data points in 𝐷 with the protected
attribute 𝑎 (𝑎 ∈ {0, 1}) and label 𝑦 (𝑦 ∈ {−, +}) against M as:

𝑃𝐿(𝐺𝑦
𝑎 ) = 𝑃 ( ˆ𝑏 = 𝑏 |𝑌 = 𝑦,𝐴 = 𝑎) .



Table 2: Datasets used in our study

Dataset Size Attributes (#) Target labels (#)

Adult 45k 14 2

Broward 7.2k 8 2

Hospital 52.7k 16 2

Based on the definition of subgroup privacy leakage, we then de-

fine PLD to quantify the difference in the privacy leakage between

two subgroups (e.g., females v.s. males). We require the two sub-

groups to have the same label since the existing fairness literature

typically do not compare groups with different labels. Formally:

Definition 4 (Privacy-leakage Disparity). For any two sub-
groups 𝐺𝑦

𝑎 and 𝐺𝑦

𝑎′ that have the same label 𝑦, the privacy-leakage
disparity between these two subgroups is measured as:

𝑃𝐿𝐷 (𝐺𝑦
𝑎 ,𝐺

𝑦

𝑎′) = |𝑃𝐿(𝐺𝑦
𝑎 ) − 𝑃𝐿(𝐺𝑦

𝑎′) |.

In essence, PLD defined above quantifies the “accuracy gap” of

M between two subgroups, which indicates the difference in their

privacy-risk levels. Specifically, the subgroup with higher MIA

accuracy has a higher risk than the other subgroup.

We note that we may also adapt other fairness metrics (e.g.,

equalized odds [27] and equal opportunity [27]) to define PLD. We

omit doing so because our follow-up studies are less dependent on

which fairness metrics we use to define PLD.

4 MEASURING PRIVACY-LEAKAGE
DISPARITY

To answer research question RQ1 (§1), we perform an empirical

study to measure PLD of MIA, aiming to understand its existence

and extent. Our code and datasets are shared at https://github.com/

dzhong2/MIA_disparity.

4.1 Experimental Setup
4.1.1 Datasets. We use three real-world datasets that are widely

adopted by both fairness and MIA communities, as listed in Table 2.

We elaborate on them as follows.

Adult dataset [1] includes 45,222 instances and 14 attributes

(such as age, gender, education, marital status, occupation, working

hours, and native country) that describe the information about

individuals from the 1994 U.S. census. The prediction task is to

determine whether a person makes over $50k annually.

Broward [2] contains criminal history, jail and prison time, de-

mographics and COMPAS (which stands for Correctional Offender

Management Profiling for Alternative Sanctions) risk scores for

defendants from Broward County, Florida. The prediction task is

to infer whether a criminal defendant will be a recidivist (i.e., a

criminal who re-offend) within two years.

Hospital dataset [47] is released by the Texas Department of

State Health Services. It contains records of inpatient stays in some

health facilities. The features include types of external causes of

injury, diagnosis, the procedures the patient underwent, and demo-

graphic information such as the gender, age, and race of the patients.

The classification task is to predict the patient’s main procedure.

We categorize the main procedures into two groups (corresponding

to the prediction labels): cardiology and pulmonology.

Table 3: Performance of the target models and MIA. Acc: ac-
curacy; Prec: precision; Rec: recall.

Dataset Train Acc Test Acc MIA Acc MIA Prec MIA Rec

Adult 90.4% 82.5% 54.1% 52.4% 89.7%

Broward 71.3% 67.3% 51.8% 51.5% 64.4%

Hospital 91.8% 64.9% 65.1% 62.1% 77.5%

The datasets are pre-processed to remove all the samples with

missing values. Further, all attributes are converted into numeric

values by using one hot encoding.

4.1.2 Setup of groups/subgroups. For all datasets, we follow the

literature of fairness research and consider gender and race as the
protected attributes. For each protected attribute, we setup two

groups 𝐺0 and 𝐺1. The final grouping results can be found in Ap-

pendix A (Table 8). Since all datasets have binary target labels, we

further each group into two subgroups, based on their target labels.

Thus, each dataset is split into four subgroups 𝐺+
1
,𝐺−

1
,𝐺+

0
, and𝐺−

0
.

4.1.3 Training Target and Attack Models. In this paper, we consider

a Neural Network + Neural Network (NN+NN) setting, where both

the target and attack models are neural networks. Different archi-

tectures are used for the two models, as the attacker does not know

the architecture of the target model in black-box MIA. More details

of the two neural networks are described below.

Training the target model: For each dataset, we randomly select

50% of the samples for training and the remaining for testing. We

train the neural network with Keras toolkit [3]. The neural network

consists of 3 hidden layers with {512, 256, 128} neurons at each layer
and a softmax output layer. The model is trained for 200 epochs

with learning rate 0.01 and batch size 800.

Training the attack model: As described in §2.2, we consider

an attacker with access to some ground-truth of members/non-

members of the target model’s training dataset. Specifically, we

pick 50% of a target model’s training samples and 50% of its testing

samples as the ground-truth members and non-members. We then

obtain the CSVs of the ground-truth members/non-members via

querying the target model and uses the CSVs to train the attack

model. The attack model is a neural network also trained by Keras.

The neural network consists of two hidden fully-connected layers

respectively with {256, 128} neurons and a sigmoid output layer.

We use the learning rate 0.01 and batch size 64 for 400 epochs in

our experiments.

Evaluation metrics of target and attack models: The training
and testing accuracy of the target model T is defined by the proba-

bility that T correctly predicts the true label.

𝑎𝑐𝑐 = 𝑃 (T (𝑥𝑖 ) = 𝑦𝑖 )
where 𝑥𝑖 is a data sample and 𝑦𝑖 is the true label of 𝑥𝑖 .
In contrast, MIA accuracy is defined by the probability that the

attack model M correctly predicts the membership label:

MIA 𝑎𝑐𝑐 = 𝑃 (M(T (𝑥𝑖 )) = 𝑏𝑖 )
where 𝑏𝑖 (+/-) indicates whether the data point is included in the

training dataset of the target model.

Similarly, MIA precision is measured by the fraction of true

members that the attack model predicts to be members:

MIA 𝑝𝑟𝑒𝑐 = 𝑃 (M(T (𝑥𝑖 )) = 𝑏𝑖 |M(T (𝑥𝑖 )) = +)

https://github.com/dzhong2/MIA_disparity
https://github.com/dzhong2/MIA_disparity


Table 4: Privacy-leakage disparity and average of influence scores (AIS) of subgroups. Between two subgroups of the same
label, the minority subgroup is marked with green, the higher MIA accuracy with orange, and the higher AIS with pink.

Dataset Label 𝑦 Subgroup
Gender Race

Size MIA Accuracy AIS PLD Size MIA Accuracy AIS PLD

Adult

+ 𝐺+
1

6512 51.9% 0.0015

1.3%

2654 52.9% 0.0018

0.3%

𝐺+
0

10493 53.2% 0.0221 14351 52.6% 0.0005

− 𝐺−
1

833 65.4% 0.0181

7.8%

495 69.8% 0.0193

12.5%

𝐺−
0

4773 57.2% 0.0017 5111 57.3% 0.0128

Broward

+ 𝐺+
1

453 52.6% 0.0893

1.1%

1084 51.0% 0.0202

1.4%

𝐺+
0

1530 51.5% 0.0467 899 52.4% 0.1

− 𝐺−
1

249 54.0% 0.1608

2.5%

678 52.7% 0.245

1.2%

𝐺−
0

1375 51.5% 0.0319 946 51.5% 0.0294

Hospital

+ 𝐺+
1

4849 71.2% 0.0296

2.3%

3022 72.7% 0.0437

1.3%

𝐺+
0

4264 73.5% 0.0308 6092 71.4% 0.0235

− 𝐺−
1

8253 62.1% 0.014

1.5%

5051 62.6% 0.0175

1.9%

𝐺−
0

9022 60.6% 0.0122 12225 60.7% 0.0025

MIA recall is measured by the fraction of all true members identified

by the attack model:

MIA 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑃 (M(T (𝑥𝑖 )) = 𝑏𝑖 |𝑏𝑖 = +)

Performance of target and attack models: Both training ac-

curacy and testing accuracy of the target models are measured,

respectively using the training samples and the testing samples

(50% v.s. 50%). To measure MIA performance, we respectively select

20% of the target model’s training samples and 20% of its testing

samples as an attack testing dataset. This attack testing dataset do

not overlap with the ground-truth members/non-members to train

the attack models, and we use it to compute the accuracy, precision,

and recall of MIA. Each MIA attack is repeated 25 times and the

average results are gathered in Table 3.

Overall, MIA presents varied performance against different datasets.

On Adult and Hospital, MIA accuracy reaches 89.7% and 77.5 %,

respectively. This creates an environment of high MIA accuracy to

study PLD. In contrast, MIA on the Broward dataset has an accuracy

of 51.8%, which gets closer to random guess. Such a result, consis-

tent with what is reported by the literature [52], shows that MIA

has a weaker effectiveness with this dataset. We envision this does

not hurt our study, but instead, benefits our study since it provides

an extreme context — low MIA accuracy — of understanding PLD.

Our results are also consistent with the common understanding

that MIA is attributable to over-fitting of the target model. Con-

sidering the gap between training accuracy and testing accuracy

as the over-fitting metric, all our target models present a certain

level of over-fitting, matching the effectiveness of MIA. Moreover,

larger over-fitting leads to more effective MIA. For instance, Hospi-

tal dataset presents the largest gap between training accuracy and

testing accuracy, and thus, shows the highest MIA accuracy.

4.2 Results of Privacy-Leakage Disparity
For each dataset, we measure the size and MIA accuracy of all four

subgroups (𝐺+
1
, 𝐺−

1
, 𝐺+

0
, 𝐺−

0
). Table 4 shows the results, and we

summarize the major observations as follows.

PLD exists: Although all subgroups show privacy leakage to MIA

to a certain extent (MIA accuracy changes from 51% to 73.5%) in each

setting, different subgroups experience different amounts of privacy

leakage. Consider Adult dataset with Race as the protected attribute

as an example. MIA accuracy varies from 52.9% to 69.8% across the

four subgroups. Such MIA accuracy disparity is observed across

all the three datasets and their subgroups. We also observe such

disparity in MIA precision and recall across different subgroups.

The results can be found in Appendix (Table 10).

Second, MIA accuracy of subgroups can be significantly different

from that of the whole population. Indeed, even whenMIA accuracy

over the whole population is low (close to 50%), MIA accuracy of

subgroups still can be notably high. For example, MIA accuracy of

the whole population of Adult dataset is 54.1% (Table 3), while MIA

accuracy of the subgroup 𝐺−
1
is as high as 69.8% (Table 4).

Furthermore, the amounts of PLD (Def. 4) vary across different
settings. For example, the PLD between the two subgroups 𝐺+

1
and

𝐺+
0
is around 1.2% on Broward dataset with Race as the protected

attribute, but it jumps to 7.8% between the same two subgroups

for Adult dataset with Gender as the protected attribute. Even for

the same dataset and same protected attribute, the PLD can vary

significantly for subgroups with different labels. In Adult dataset

with Race as the protected attribute, for example, the PLD between

𝐺+
1
and 𝐺+

0
is 0.3%, which increases to 12.5% between 𝐺−

1
and 𝐺−

0
.

More details about the factors influencing PLD are discussed in §5.

The minority subgroup has higher privacy leakage: Another
important observation is that, out of the two subgroups of the same

label, the minority one has larger MIA accuracy in most of the

settings. Furthermore, the group size is not inversely proportional

to MIA accuracy. Consider Broward dataset with Gender as the

protected attribute as an example, the size of𝐺+
1
is almost one third

of that of 𝐺+
0
. However, MIA accuracy of 𝐺+

1
is close to that of 𝐺+

0
.

The only exception happens to 𝐺+
1
and 𝐺+

0
on Adult dataset with

Gender as the protected attribute. The minority subgroup 𝐺+
1
has

smaller MIA accuracy than that of 𝐺+
0
, although its size is smaller

than 𝐺+
0
. This observation is consistent with the results reported



Table 5: Model overfitting disparity (OD) v.s. PLD.

Dataset Label 𝑦 Gender Race
OD PLD OD PLD

Adult

+ 3.1% 1.3% 1.0% 0.3%

- 15.4% 7.8% 24.8% 12.5%

Broward

+ 3.7% 1.1% 4.4% 1.4%

- 5.0% 2.5% 0.7% 1.2%

Hospital

+ 4.9% 2.3% 3.2% 1.3%

- 3.1% 1.5% 3.9% 1.9%

by prior works [13, 57]. Briefly, the major reason is that the target

model “memorizes” more of the minority subgroup than the other

subgroups. A deeper analysis is given in §5.

Higher overfitting leads to higher PLD: A widely recognized

reason of MIA is overfitting. As we have pointed out in §4.1, more

overfitting leads to higher MIA accuracy. This brings us a hypothe-

sis that PLD is correlated with the disparity in model overfitting

of different subgroups. To verify the hypothesis, we separately

measured the overfitting of each subgroup and calculated the dis-

parity between different subgroups. In particular, the overfitting

of a subgroup is measured as the difference between training and

testing accuracy of the subgroup. And the overfitting disparity is

measured as the difference between the overfitting of protected

and unprotected groups. As summarized in Table 5, the disparity in

overfitting exists whenever PLD appears. More importantly, higher

disparity in overfitting leads to more evident PLD across all settings.

This empirically validates our hypothesis.

5 ANALYSIS OF PLD
Our empirical study unveils the existence of PLD, but does not

give an explanation. In this section, we aim to answer research

question RQ2 (§1) and explore why PLD arises. In principle, PLD

should be rooted from differences between subgroups. This gives

us a direction of explaining the existence of PLD: what types of
difference lead to PLD and why?

In a broad sense, subgroups mainly differ in their values of the

protected attribute, their size, and their data distribution. We be-

lieve the values of the protected attribute are less critical. Running

permutation feature importance [4] on the target models presented

in §4, we obverse that the protected attribute (gender or race) is

less important to the target models, as summarized in Table 9. As

such, the value of the protected attribute will unlikely affect the

output of the target models as well as the privacy they can leak.

Thus in the rest of this section, we focus on discussing the impact

of difference in subgroup size and data distribution.

5.1 Impact of Subgroup Size on PLD
As we pointed out in §4, the minority subgroup tends to have a

higher privacy leakage, indicating a connection between subgroup

size and PLD. To demystify the connection, we leverage the concept

of model memorization. According to the existing literature [11,

40], a root cause of privacy leakage of an ML model to MIA is

that the model memorizes too much information of the training

data. Our hypothesis is that the model memorizes more about the

smaller subgroup, which bridges the gap between the subgroup

(a) Adult (Gender) (b) Adult (Race)

(c) Broward (Gender) (d) Broward (Race)

(e) Hospital (Gender) (f) Hospital (Race)

Figure 1: Impacts of data distribution on PLD. X-axis is the
distance between two data distributions, and y-axis is the
difference of MIA accuracy between the two subgroups.

size and PLD. To verify the hypothesis, we first propose a scheme

to quantify model memorization. Then we measure how much the

model memorizes subgroups of different sizes.

Quantifying model memorization via influence scores: An
intuitive idea measuring whether the model memorizes a given

training sample is to ask the counterfactual [12, 24]: what would

happen to the model output if the model did not see the training

sample? Answering this counterfactual enables to trace a model’s

output back to the training data through the learning algorithm.

To quantify the effect of the counterfactual, we leverage influence
function, a state-of-the-art model explanation method [38]. Influ-

ence function estimates the impact of a training point on a model

prediction. In our setting, to estimate the effect of a data sample

𝑧 (𝑥,𝑦) on the target model, the explanation measures the difference

in the loss function of the model when it is trained with and without

𝑧. Formally, assuming 𝜃𝑧
Δ
= T (𝐷T

𝑡𝑟𝑎𝑖𝑛
\{𝑧}), that is, 𝜃𝑧 is induced by

training the target model T given the dataset excluding 𝑧. Then the

influence score of 𝑧 on T is measured as 𝐼 (𝑧) Δ
= 𝐿(𝜃𝑧) − 𝐿(𝜃 ), where

𝜃 is a prameterization induced by the training model T and 𝐿 is the

loss function of T . Intuitively, higher influence score indicates the

model memorizes more of the data sample. Given that the influence

scores quantify how much the model memorizes individual data

samples, they help explain why MIA better identifies some data

samples than the others: data samples have higher influence scores

are more likely to be correctly predicted by MIA.



(a) Adult (distance 0.33) (b) Broward (distance 0.23) (c) Hospital (distance 0.07)

Figure 2: Distribution of CSVs of subgroups (𝐺+
1
v.s. 𝐺+

0
, Gender, “𝑦 = +”). The distribution is split into five intervals.

A main challenge is to design an influence function to efficiently

estimate the influence scores. A straightforward idea is to remove

a training point, retrain the target model T with the remaining

points from scratch, and compute the new prediction results. An in-

fluence function, working in this way, however can incur extremely

high computation cost. To this end, we adapt the influence function
proposed by Koh et al. [38], which estimates the influence scores

for classification models without a re-training process.

The model memorizes more of the smaller subgroup: To un-
derstand how the target model memorizes each subgroup, we com-

pute the influence score of every data sample, followed by calcu-

lating the average influence score (AIS) for all samples in each

subgroup. The results are presented in Table 4 (AIS column). Except

for the case on Adult dataset with gender as the protected attribute

and “+” as the label, the minority subgroup consistently has a higher

AIS. This aligns with our hypothesis: the model memorizes more of
the minority subgroup than the majority one, and thus, leaks more

privacy about the minority subgroup.

Our analysis unveils disparity in AIS of different subgroups. An

related and interesting question is whether influence score and

MIA accuracy are correlated at the individual level. To understand

this question, we performed another evaluation where we refine

the granularity of the subgroups such that each subgroup approxi-

mates an individual. Specifically, we sort and split the data by their

influence score into 10 bins, followed by separately calculating the

average MIA accuracy of each bin. The results in Figure 3 indicate

that different subgroups, when classified by influence score, present

similar MIA accuracy. Thus, we anticipate no evident correlation

between influence score and MIA accuracy at the individual level.

To summarize, the target model memorizes more of the minority

subgroup at an aggregate level (as shown by Table 4). When consid-

ering the individual level, it does not memorize more of particular

records than the others (as shown in Figure 3).

Subgroup size is not the only factor that impacts influence
score: Table 4 includes an exceptional case, namely 𝐺+

1
v.s. 𝐺+

0
for

Adult data with Gender as the protected attribute. In the case, 𝐺+
1

is the minority subgroup but has a lower AIS and thus a lower

MIA accuracy than the majority group. The existence of the case

indicates that the difference in AIS across groups is not solely

determined by the group size. What remains as a potential factor is

the difference in data distribution of the two groups.We accordingly

run a follow-up analysis in the next subsection.

5.2 Impact of Data Distribution on PLD
To understand the impact of subgroup data distribution on PLD,

we design a simulation experiment where the size of different sub-

groups is kept identical. Specifically, we randomly pick a subset of

sample 𝑆 from each dataset uniformly, ensuring the distribution

of 𝑆 is similar to the whole dataset. Once obtaining 𝑆 , we generate

a same-sized subset 𝑆 ′ by adding noise 𝑁 on the distribution of 𝑆 .

𝑁 follows the normal distribution with mean 𝜇 = 0 and standard

deviation 𝛿 ∈ {0, 0.01, 0.1, 0.2, 0.4}. 𝛿 = 0 means the distributions

of 𝑆 and 𝑆 ′ are identical. Larger 𝛿 indicates more noise and thus

higher distance between the distributions of 𝑆 and 𝑆 ′.
When a pair of 𝑆 and 𝑆 ′ is created, we consider them as two sub-

groups and separately measure the MIA accuracy for each of them,

reusing the target and attack models trained on the entire dataset.

Meanwhile, we use Kolmogorov–Smirnov (KS) test to quantify the

distance between the distributions in the target model output, or

CSV, for 𝑆 and 𝑆 ′. We considered the distribution of CSV instead of

the distribution of the original data for two reasons. First, the origi-

nal data has too many dimensions (see Table 2), whose distribution

is complex to measure and visualize. In contrast, the CSV only has

two dimensions (as all the target models are binary classifiers), mak-

ing distribution analysis much easier. Second, the difference in CSV

distribution reflects the difference in the original data distribution.

An analysis on the CSV distribution should also support our goal.

Each test above is repeated 10 times. Figure 1 shows the results

of PLD (i.e., the difference between the MIA accuracy on 𝑆 and 𝑆 ′)
when the distributions of 𝑆 and 𝑆 ′ have a different distance. Appar-
ently, difference in the data distribution of subgroups also affects

PLD. In general, PLD increases when two subgroups have a larger

distribution distance, i.e., their distributions are more different.

Which factor is dominant, size or data distribution: Our anal-
ysis so far unveils both size and data distribution of subgroups affect

PLD. It brings up the question that which factor is the dominant

one, or how the two factors impact PLD synthetically. Our obser-

vation is when difference in the data distributions is less intensive,

size plays a more significant role and the minority subgroup tends

to leak more privacy. Otherwise, data distribution may dominate

and overturn the impact of size. Below we use the exceptional case

discussed in §5.1 to demonstrate our observation.

We measure the distribution of CSV for 𝐺+
1
and 𝐺+

0
in that case.

For comparison, the same measurement is done for𝐺+
1
and𝐺+

0
from

other datasets with Gender as the protected attribute and + as the



Figure 3: MIA accuracy of subgroups with different influ-
ence scores. Top x% at x-axis means [top-(x-10)%, top-x%].

label. All the results are shown in Figure 2. The major observation

of our analysis is that the CSV distribution for 𝐺+
1
and 𝐺+

0
in Adult

dataset varies more dramatically, compare to the Broward and

Hospital datasets. We use the discrete Kolmogorov–Smirnov (KS)

tests to quantify the distance between the CSV distribution of 𝐺+
1

and 𝐺+
0
. It turns out that the distance with Adult dataset is much

higher than the other two datasets, as illustrated in Figure 2. Because

of this large distribution difference, 𝐺+
1
has less privacy leakage

than 𝐺+
0
, even though it has a smaller size.

6 IMPACT OF MIA DEFENSE ON PLD
The research community has designed multiple defenses against

MIA. The defenses aim to reduce the privacy leakage of the en-

tire population. An interesting question is whether (and why) the
defenses have disparate impacts across different subgroups and conse-
quently mitigate PLD (i.e., research questionRQ3 (§1))? This section
seeks to answer this question from an empirical perspective.

Evaluation Metrics: We use the metrics described in §4.1 to mea-

sure the performance of the target model and the attack model. To

measure PLD, we calculate the difference of MIA accuracy between

two subgroups with same target label (+ or -), following §4.2.

6.1 Defense Mechanisms
In general, MIA defenses can be classified into two categories. One

category modifies the training process of the target model such that

it leaks less membership information to MIA. The other category

adds perturbations to the CSVs instead of modifying the training

process of the target model. We consider the following defenses in

the first category, because of their wide use by the community.

Differential privacy (DP): [20] has become the de facto standard

in privacy-preserving data analytics. Roughly speaking, a differen-

tially private ML algorithm ensures that the inclusion of an individ-

ual training sample does not significantly affect the model output.

We consider 𝜖-differential privacy, where 𝜖 is called privacy budget
and specifies the level of guaranteed privacy. A larger 𝜖 provides

weaker privacy protection but smaller accuracy/utility loss of the

model. We use the implementation of TensorFlow-Privacy [43] to

enforce DP with {0.3, 0.5, 1.0, 3.0, 5.0} as the privacy budget 𝜖 .

𝐿2-Regularizer:Overfitting has been identified as one of the major

reasons whyMIA can be effective. Thus, a natural solution to defend

against MIA is to reduce model overfitting by using regularization.

Table 6: Performance of target model and MIA under DP

Dataset Privacy Budget (𝜖) Train Acc. Test Acc. MIA Acc.

Adult

No DP 90.4% 82.5% 54.1%

5.0 83.8% 82.9% 50.9%

3.0 83.2% 82.7% 50.8%

1.0 82.4% 82.3% 50.8%

0.5 77.5% 77.3% 50.6%

0.3 75.3% 75.2% 50.6%

Broward

No DP 71.3% 67.3% 51.8%

5.0 68.4% 67.5% 50.2%

3.0 67.7% 66.8% 50.1%

1.0 66.6% 66.5% 49.8%

0.5 65.0% 65.1% 49.7%

0.3 56.9% 56.9% 49.8%

Hospital

No DP 91.8% 64.9% 65.1%

5.0 70.1% 67.6% 51.6%

3.0 68.7% 67.2% 51.2%

1.0 66.3% 66.0% 50.7%

0.5 65.4% 65.5% 50.5%

0.3 65.4% 65.5% 50.5%

Shokri et al. [52] has shown the effectiveness of the conventional

𝐿2-regularizer as a defense mechanism. 𝐿2-regularizer adds the

norm of the parameters to the loss function with a parameter 𝜆,

which controls the weight of the regularization. We use {0.00005,

0.0001, 0.001, 0.005, 0.01, 0.1} for the 𝜆 parameter, which controls

the weight of parameter 𝐿2 norm in the loss function. The higher

the value we assign to 𝜆, the stronger the defense is.

Dropout: also reduces overfitting [49]. It randomly deletes a pro-

portion (dropout ratio) of edges in a fully connected neural network

model in each training iteration. We use four dropout ratios {1%,

5%, 10%, 20% }. Larger dropout ratio indicates stronger defense.

6.2 Effectiveness of MIA Defenses
To validate the effectiveness of the defenses and their impacts on

the target model, we measure the accuracy of both target and attack

models after deploying the defenses. Table 6 shows the results of

DP. The results for 𝐿2-regularizer and Dropout are similar, which

are presented in Table 11. First, DP is effective in mitigating MIA.

For all the datasets, MIA accuracy decreases to close to 50% (i.e.,

random guess) when the privacy budget 𝜖 decreases. Second, DP

harms the accuracy of the target model when providing stronger

defense against MIA. Consider Adult dataset as an example. The

target training accuracy drops from 90.4% to 75.3% and the target

testing accuracy drops from 82.5% to 75.2% when the privacy budget

𝜖 approaches 0.3. These results align with the well-known trade-off

issue between privacy and model accuracy.

6.3 Impacts of MIA Defenses on PLD
To understand the impacts of MIA defenses on PLD, we measure

MIA accuracy of each subgroup. Table 7 summarises the results

with DP as the defense. The results for 𝐿2-regularizer and Dropout

defenses are similar and can be found in Appendix (Tables 12 & 13).



Table 7: Impacts of DP on PLD. The columns of 𝐺+
1
and 𝐺+

0
show the MIA accuracy of the corresponding subgroup.

Dataset Privacy budget 𝜖
Gender Race

𝐺+
1

𝐺+
0

PLD 𝐺−
1

𝐺−
0

PLD 𝐺+
1

𝐺+
0

PLD 𝐺−
1

𝐺−
0

PLD

Adult

No DP 51.9% 53.2% 1.3% 65.4% 57.2% 8.2% 52.9% 52.6% 0.3% 69.8% 57.3% 12.5%

5.0 50.6% 50.8% 0.2% 51.3% 51.4% 0.1% 50.5% 50.7% 0.2% 52.1% 51.3% 0.8%

3.0 50.4% 50.8% 0.4% 51.8% 51.3% 0.5% 50.6% 50.7% 0.1% 51.9% 51.3% 0.6%

1.0 50.5% 50.6% 0.1% 51.3% 51.4% 0.1% 50.3% 50.6% 0.3% 51.3% 50.5% 0.8%

0.5 50.3% 50.7% 0.4% 51.2% 50.9% 0.3% 50.5% 50.5% 0.0% 51.0% 50.7% 0.3%

0.3 50.5% 50.5% 0.0% 51.0% 50.8% 0.2% 50.4% 50.5% 0.1% 50.2% 50.6% 0.4%

Broward

No DP 52.6% 51.5% 1.1% 54.0% 51.5% 2.5% 51.0% 52.4% 1.4% 52.7% 51.5% 1.2%

5.0 49.6% 50.0% 0.4% 49.3% 50.7% 1.4% 49.9% 49.9% 0.0% 51.0% 49.7% 1.3%

3.0 50.8% 50.5% 0.3% 48.9% 49.8% 0.9% 50.5% 49.8% 0.7% 50.5% 48.5% 2.0%

1.0 49.7% 49.9% 0.2% 49.7% 49.8% 0.1% 49.8% 49.9% 0.1% 49.4% 50.4% 1.0%

0.5 50.1% 49.5% 0.6% 49.3% 49.8% 0.5% 49.6% 49.7% 0.1% 50.0% 49.4% 0.6%

0.3 50.2% 49.6% 0.6% 50.1% 49.7% 0.4% 50.0% 49.8% 0.2% 49.9% 49.7% 0.2%

Hospital

No DP 71.2% 73.5% 2.3% 62.1% 60.6% 1.5% 72.7% 71.4% 1.3% 62.6% 60.7% 1.9%

5.0 52.3% 52.0% 0.3% 51.2% 51.3% 0.1% 52.5% 52.0% 0.5% 51.4% 51.2% 0.2%

3.0 51.7% 51.5% 0.2% 51.0% 51.0% 0.0% 51.9% 51.4% 0.5% 51.0% 51.0% 0.0%

1.0 50.8% 50.9% 0.1% 50.7% 50.5% 0.2% 50.9% 50.8% 0.1% 50.7% 50.6% 0.1%

0.5 50.6% 50.7% 0.1% 50.5% 50.2% 0.3% 50.9% 50.5% 0.4% 50.3% 50.4% 0.1%

0.3 50.7% 50.6% 0.1% 50.5% 50.5% 0.0% 50.8% 50.5% 0.3% 50.4% 50.5% 0.1%

MIA defenses mitigate PLD: When the privacy budget of DP

decreases, MIA accuracy of the subgroups also drops, all gradually

getting closer to 50%. In turn, this leads to a reduction of PLD.

Even with a larger privacy budget (e.g., 𝜖 = 5), PLD is significantly

decreased. The results indicate that while mitigating MIA, DP also

helps reduce PLD. Similar trends are observed on 𝐿2-regularizer

and Dropout, as shown in Tables 12 and 13 in the Appendix.

A follow-up question is how exactly DP and other MIA defenses

reduce PLD. In principle, MIA defenses work by making samples

less distinguishable from each other such that the attacker can-

not recognize the members. Indirectly, the defenses make different

subgroups similar and thus, shrink the distance between the distri-

butions of their target model output (or CSV). Further considering

our previous observation that PLD decreases with the CSV distribu-

tion distance (see Figure 1), it is expected that MIA defenses reduce

PLD. To verify this reasoning, we measure the distance between

the CSV distribution of the minority and majority groups, before

and after the MIA defenses are applied. Figure 4 (a)-(c) show the

results on Adult dataset with Race as the protected attribute. As the

defense strength increases, the CSV distribution distance between

the two subgroups decreases, well supporting our reasoning.

Defense unfairness exists: MIA defenses reducing PLD leads to

an interesting phenomenon: the defense mechanisms provide differ-
ent amounts of protection across different subgroups. Connecting the

phenomenon to that the minority subgroup tends to have higher

privacy leakage, we derive another observation: the defense mecha-
nisms provide stronger protection on the minority subgroups. Consider
Adult dataset with Race as the protected attribute as an example

(see Table 6). MIA accuracy of the minority subgroup 𝐺−
1
drops

from 69.8% (without DP) to 50.2% (𝜖 = 0.3), presenting a 28% of

reduction. In contrast, MIA accuracy of the majority group 𝐺−
0

decreases from 57.3% to 50.6%, only showing a 12% of reduction.

Similar disparity also arises in other settings and the other two de-

fenses, as illustrated in Tables 12 and 13 in the Appendix. This raises

an interesting question: why MIA defenses provide more protection
on the minority subgroup than the majority group?

6.4 Analysis of Defense Unfairness
Prior work [5] has shown that DP has disparate impacts on model

accuracy. In particular, the accuracy of target model deteriorates

more for the minority subgroups. However, such disparate impacts

on target model accuracy cannot explain the disparate impacts on

MIA accuracy. Therefore, to understand the above question, we

once again borrow insights from the principle of MIA defenses.

As pointed out above, MIA defenses work by making samples less

distinguishable from each other. As such, MIA defenses shall con-

currently make subgroups less different from the entire population.

We accordingly measure the distance between the CSV distributions

of each subgroup and the entire population, before and after MIA

defenses. Figure 4 presents the results on Adult dataset with Race

as the protected attribute. The results on Broward and Hospital

datasets are similar and shown in Figures 7 & 8. Evidently, MIA de-

fenses reduce the CSV distribution distance between each subgroup

and the entire population. Another trend is MIA defenses reduce

the distance for the minority subgroup more dramatically. But how

does this connect to defense unfairness? We give an analysis below.

Recalling §5.1, the target model leaks more privacy of the minor-

ity subgroup because it memorizes more about that subgroup. A

related, more fundamental matter is why the target model mem-

orizes more about the minority subgroup. We believe a reason is



(a) DP (b) 𝐿2-regularizer (c) Dropout

Change of CSV distribution distance between subgroups with increase of defense strength

(d) DP (e) 𝐿2-regularizer (f) Dropout

Change of CSV distribution distance each subgroup and the entire population with increase of defense strength

Figure 4: Impact of defensemechanisms on subgroups (Adult dataset, Race). In sub-figures (a)-(c), each curve shows the distance
between two subgroups with the same label (we use 𝐺0 and 𝐺1 to denote the two subgroups). In sub-figures (d)-(f), the two
subgroups of the same target label have the same color; The minority/majority subgroups are labeled with solid/dotted lines.

the minority subgroup deviates more from the entire population.

Consider Figure 4 (d)/(e)/(f) as an example. Without MIA defenses,

the minority subgroup has a larger CSV distribution distance to the

overall population, compared to the majority subgroup. As a conse-

quence (presumably), the target model memories more about the

minority subgroup and leaks more privacy from that subgroup (see

Table 4). Connecting everything together, MIA defenses reduce the

distances between the minority subgroup and the overall popula-

tion quicker and thus, de-memorize the minority subgroup quicker.

This results in stronger protection for the minority subgroup.

Correlation betweendefense unfairness anddistribution dis-
tance: Our analysis above correlates defense unfairness to distri-
bution distance between two subgroups. We took a further step to

understand how the two metrics are correlated exactly. We first

introduce a metric to quantify defense unfairness. Specifically, we

consider the delta between the reduced MIA accuracy of two sub-

groups when a defense is applied as defense unfairness:

Defense Unfairness = |Δ(𝑎𝑐𝑐 (𝐺+
0
)) − Δ(𝑎𝑐𝑐 (𝐺+

1
)) |

where Δ(𝑎𝑐𝑐 (𝐺+
0
))/Δ(𝑎𝑐𝑐 (𝐺+

1
)) denotes the change of MIA accu-

racy of 𝐺+
0
/𝐺+

1
before and after the defense.

Leveraging the above metric, we measure the level of defense

unfairness and the change of distribution distance when gradu-

ally increasing the defense strengthen. Figure 5 shows the results

with DP as the defense mechanism on Hospital dataset. The results

on Adult and Broward datasets are similar and can be found in

Appendix (Figure 6). The distribution distance is measured by Kol-

mogorov–Smirnov test. A key observation, reflected by the results,

is that defense unfairness is more evident when the distribution dis-

tance is reduced to a larger extent. This is not surprising. According

to what we discussed in §6.2, the reduction of distribution distance

shall lead to reduction of PLD, which is essentially defense unfair-

ness. Another interesting observation is that the defense tends to

reduce the distribution distance more rapidly when the distance

value is larger and, in turn, present higher defense unfairness.

6.5 Privacy Unfairness v.s. Defense Unfairness
PLD arises because MIA presents disparate accuracy on different

subgroups. To mitigate PLD, a defense must decrease the MIA

accuracy of one group harder, which essentially causes defense

unfairness. In this regard, privacy unfairness principally conflicts

with defense unfairness, and the latter is a cue to the former. While

it is also interesting to study defense unfairness and the related

mitigation, the matter goes beyond the scope of this paper.

7 RELATEDWORK
MIA and Defenses: MIA [30, 50, 51] predicts whether a given

record was used in training a target model, typically under a black-

box setting where the target model exposes a prediction API to

the attacker. Some recent works [42, 46, 49, 56] provide more de-

tailed study of MIA. MIAs have also been developed to attack fed-

erated/collaborative learning [44, 46], generative adversarial net-

works (GANs) [14, 28], adversarially robust deep learning models

[54], embedding models [53], and GNNs [29]. On the horizon, new

variants of MIAs, e.g., label-only MIAs [16, 41], are arising.

Several defenses have been designed to defend against MIA.

As described in §6, the defenses belong to two major categories.

The first category of defenses modify the training process of the

target model such that it leaks less membership information. Exem-

plary defenses include differential privacy [20], dropout and model

stacking [49], and adversarial regularization [45]. In contrast, the



(a) Gender, 𝑦 = + (b) Gender, 𝑦 = − (c) Race, 𝑦 = + (d) Race, 𝑦 = −
Figure 5: Defense unfairness v.s. distance between subgroup distributions (DP as defense, Hospital dataset). The x-axis is the
change of distance between the subgroup distributions under different privacy budgets; The y-axis is the defense unfairness.

second category of defenses add perturbations to the CSV instead

of modifying the training process of the target model [34].

Algorithmic Fairness inMachine Learning: Fairness has caught
increasing attention from the ML community [18]. Several compet-

ing notions of algorithmic fairness in machine learning have been

recently proposed. These definitions can be grouped into two broad

classes, namely group fairness and individual fairness. Group fair-

ness [7, 9, 10, 23, 36] is concerned with a small number of protected
groups (e.g., females) that are defined by the protected attributes (e.g.,
gender). It requires that the protected groups should have some

form of statistical parity (e.g., between positive outcomes or errors)

compared with either the advantaged groups (e.g., males) or the

populations as a whole. On the other hand, individual fairness [21]

requires people who are "similar" receive similar outcomes. Our

PLD fairness definition belongs to the category of group fairness.

In particular, we adapt accuracy parity [6, 8, 15] to our setting to

evaluate disparity of privacy vulnerability.

Algorithmic Fairness and Privacy The interaction between pri-

vacy and fairness has attracted increasing attention recently. Several

works [26, 31, 48, 55] have explored how to achieve fairness and

privacy jointly. These works consider fairness and privacy as two in-

dependent objectives, while we consider the intersection of fairness

and privacy, or fair privacy. Dwork et al. [21] initialize the explo-

ration of the relationship between algorithmic fairness and privacy.

They show that differential privacy techniques can be adapted to

satisfy fairness in ML. In a later position paper [22], the authors

propose a set of high-level research questions of understanding the

interaction between fairness and privacy. Our work answers one of

the questions that whether the privacy attacks are more effective

against particular members of protected groups.

The disparate effects of ML models across different groups have

been observed in several recent works. Bagdasaryan et al. [5] show

that DP has disparate effects on model accuracy - the differentially

private models have larger accuracy reduction on the underrep-

resented groups. It only used the image data for the empirical

evaluation of disparate impact of DP. We extend the study to tabu-

lar data. We also consider the other two defenses (𝐿2-regularizer

and Dropout) besides DP. Jagielski et al. [32] investigated the MIA

with the presence of DP. While their motivation is very different

from ours, they show some similar observation as ours that mem-

bership inference does not affect each training sample uniformly.

Chang et al. [12] recently explored whether enforcing fairness in

ML can incur privacy risks, which is complementary to our work.

The most related to ours is probably the recent work by Yaghini et

al. [57] (developed independently and in parallel with ours). Similar

to us, they identified the existence of disparate vulnerability across

different demographic groups against MIA. They also identified

subgroup data distribution and subgroup size as two factors influ-

encing disparate vulnerability, but without deeper analysis of why

and how. Furthermore, they only considered DP [19] as the defense

mechanism and showed similar results as ours. However, they did

not provide detailed analysis why DP has such effect.

8 CONCLUSION AND FUTUREWORK
This paper studies the topic of fair privacy in the context of MIAs.

We focus on two major issues, privacy unfairness (i.e., disparate
vulnerability of MIAs across different subgroups) and defense unfair-
ness (i.e., disparate protection by the defenses against MIA across

subgroups). First, we formally define the notion of privacy-leakage

disparity (PLD) to measure the disparity of privacy vulnerability

to MIA across different subgroups. Then we show that PLD exists,

through extensive empirical studies on real-world datasets. We

investigate why and how subgroup size and subgroup data distri-

bution impact PLD. Finally, we show that defense unfairness also

exists for three widely-used MIA defenses (DP, 𝐿2-regularizer, and

Dropout), which actually mitigates privacy unfairness.

There are multiple interesting research directions to explore.

First, our PLD metric measures the difference in MIA accuracy of

different demographic subgroups. It remains to be investigated if

other privacy-leakage disparity metrics based on the difference in

MIA precision, recall (as shown inAppendix (§ C)), or F-measure can

be adapted, and whether PLDwill change if the metrics are different.

Second, we focus on disparity of different subgroups. Disparity can

also be defined at an individual level (known as individual fairness).
Briefly speaking, individual privacy fairness requires that similar

objects receive similar treatment. It is interesting to examine if

individual PLD exists, and how to design methods to mitigate PLD

at the individual level.
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Table 8: Setup of groups based on the protected attribute

Dataset
Protected Attribute

Gender Race

Group 𝐺1 Group 𝐺0 Group 𝐺1 Group 𝐺0

Adult

Female Male

Non-white White

Broward Non-black Black

Hospital Non-white White

Table 9: Importance and ranking of protected attributes

Dataset
Gender Race

Relative

Ranking

Relative

Ranking

Importance Importance

Adult 1.81% 14
𝑡ℎ/14 2.20% 12

𝑡ℎ/14
Broward 2.68% 6

𝑡ℎ/8 3.02% 5
𝑟𝑑/8

Hospital 1.99% 15
𝑡ℎ/16 2.84% 7

𝑡ℎ/16
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APPENDIX
A GROUPING
Table 8 shows the setup of groups by gender and race. We note

that the race attribute has more than two values in every dataset.

Accordingly, we assign all race values into two racial groups by

following the conventions in the fairness community [9, 27, 35].

B FEATURE IMPORTANCE OF THE
PROTECTED ATTRIBUTES

Table 9 shows the feature importance of the protected attribute in

the three datasets. The feature importance is measured by permu-

tation feature importance method [4]. The results show that the

protected attribute (Gender or Race) are not of high importance

for training of the target model. The rankings of features based on

feature importance in Table 9 also demonstrate the unimportance

of the two protected attributes.

C MIA PRECISION AND RECALL OF
SUBGROUPS

Table 10 includes the results of MIA precision and recall for each

subgroup. Similar to the observation of MIA accuracy (Table 4),

different subgroups have disparate MIA precision and recall. The

disparity can be significant in some settings. For example, the differ-

ence in MIA recall on Adult dataset (with Gender as the protected

attribute) can be as large as around 13% between𝐺+
1
and𝐺+

0
. On the

other hand, while the disparity of MIA precision also exists across

all the settings, it is not as as large as that of MIA recall. Further-

more, some minority subgroups may receive lower (or higher) MIA

precision, but higher (or lower) MIA recall. For instance, on Adult

dataset with Gender as the protected attribute, the minority sub-

group𝐺+
1
has higher MIA precision but lower MIA recall compared

with the majority subgroup 𝐺+
0
. This raises an interesting research

question: which fairness definition is appropriate for evaluation of

privacy-leakage disparity? We leave this to the future work.

D DEFENSE EFFECTIVENESS OF
𝐿2-REGULARIZER AND DROPOUT

We show the performance of both Dropout and 𝐿2 defense mech-

anisms in Table 11. Similar to the observations of DP (Table 6),

both Dropout and L2-regularizer mechanisms are effective to de-

fend against MIA. In particular, MIA accuracy eventually achieve

50% (random guess) when both defenses get stronger. The only

exceptional case is when Dropout is applied on the target model on

Hospital dataset. The best MIA accuracy that Dropout can reduce

to is still around 60%. The possible reason is that the model is still

overfitting even when the dropout ratio is as high as 20%. We also

observe that both training and testing accuracy decreases when the

defense gets stronger. This is expected due to the trade-off between

privacy and accuracy.

E IMPACTS OF 𝐿2-REGULARIZER AND
DROPOUT ON PLD

Table 12 shows theMIA accuracy per subgroup as well as PLDwhen

Dropout is used as the defense mechanism with various dropout

ratios. The main observation is that Dropout mitigates PLD on all

the three datasets - PLD eventually approaches to zero when the

dropout ratio increases (i.e., stronger defense). Furthermore, MIA

accuracy decreases at different speeds for different subgroups. In

most of the settings, MIA accuracy decreases the fastest on the

minority subgroups. This is consistent with our findings when DP

is the defense mechanism (§ 6). We believe the underlying reasons

of such defense disparity are the same as what we discovered for

DP (§ 6). We have similar observations when 𝐿2-regularizer is used

as the defense (Table 13).

F ANALYSIS OF DEFENSE UNFAIRNESS ON
BROWARD AND HOSPITAL DATASETS

Figures 7 and 8 present how the distribution distance changes with

increase of defense strength on Broward and Hospital datasets

respectively. The observations are similar to Adult dataset (Figure

4 in §6.4) and thus are omitted due to limited space.

G DEFENSE UNFAIRNESS V.S. DISTRIBUTION
DISTANCE

Figure 6 presents the level of defense unfairness and the change

of distribution distance when gradually increasing the defense

strengthen on Adult and Broward datasets. The observation is

similar as on Hospital dataset (Figure 5). We omit the detailed

discussion due to limited space.



Table 10: MIA precision and recall of subgroups. Between every two subgroups of the same label, the minority subgroup is
marked with green, the higher MIA precision is marked with orange and the higher recall is marked with pink.

Dataset Label 𝑦 Subgroup
Gender Race

size MIA precision MIA Recall size MIA precision MIA Recall

Adult

+ 𝐺+
1

6512 51.1% 97.7% 2654 51.4% 98.3%

𝐺+
0

10493 52.0% 84.8% 14351 51.6% 88.2%

− 𝐺−
1

833 60.3% 90.5% 495 63.0% 96.3%

𝐺−
0

4773 54.3% 89.4% 5111 54.4% 88.9%

Broward

+ 𝐺+
1

453 52.3% 75.1% 1084 50.6% 73.7%

𝐺+
0

1530 51.0% 66.6% 899 52.1% 48.9%

− 𝐺−
1

249 55.1% 51.4% 678 52.4% 62.2%

𝐺−
0

1375 50.9% 60.5% 946 51.1% 66.4%

Hospital

+ 𝐺+
1

4849 66.6% 85.4% 3022 68.4% 84.4%

𝐺+
0

4264 69.0% 85.0% 6092 66.3% 86.9%

− 𝐺−
1

8253 60.1% 72.1% 5051 61.0% 70.2%

𝐺−
0

9022 58.3% 74.8% 12225 58.4% 74.8%

Table 11: Performance of Dropout and 𝐿2-regularizer on both target model and MIA

Dataset Dropout Ratio Train acc. Test acc. MIA Acc

Adult

Original 90.4% 82.5% 54.1%

1% 89.9% 83.1% 53.7%

5% 89.0% 83.5% 53.3%

10% 88.2% 83.8% 52.8%

20% 86.9% 84.4% 51.9%

Broward

Original 71.3% 67.3% 51.8%

1% 70.4% 62.3% 51.2%

5% 66.7% 61.3% 51.6%

10% 64.4% 60.5% 50.4%

20% 63.1% 60.8% 50.6%

Hospital

Original 91.8% 64.9% 65.1%

1% 91.4% 62.1% 64.0%

5% 91.0% 62.3% 63.8%

10% 90.8% 62.7% 63.3%

20% 89.8% 62.0% 62.6%

Dataset Regularizer parameter 𝜆 Train acc. Test acc. MIA Acc

Adult

Original 90.4% 82.5% 54.1%

0.0001 85.9% 82.9% 52.0%

0.001 84.9% 84.7% 50.9%

0.01 83.1% 83.1% 50.8%

0.1 75.1% 75.3% 50.4%

Broward

Original 71.3% 67.3% 51.8%

0.0001 71.2% 65.3% 51.4%

0.001 70.5% 67.3% 50.8%

0.01 69.0% 67.6% 50.7%

0.1 67.8% 68.4% 50.6%

Hospital

Original 91.8% 64.9% 65.1%

0.0001 92.3% 64.8% 64.9%

0.001 87.5% 66.2% 61.6%

0.01 70.5% 69.1% 51.0%

0.1 65.4% 65.5% 50.2%

(a) Dropout (b) 𝐿2-regularizer



Table 12: Impacts of Dropout as the defense mechanism on privacy-leakage disparity (PLD)

Dataset Dropout Ratio
Gender Race

𝐺+
1

𝐺+
0

PLD 𝐺−
1

𝐺−
0

PLD 𝐺+
1

𝐺+
0

PLD 𝐺−
1

𝐺−
0

PLD

Adult

Original 51.9% 53.2% 1.3% 65.4% 57.2% 8.2% 52.9% 52.6% 0.3% 69.8% 57.3% 12.5%

1% 51.5% 52.9% 1.4% 64.4% 56.6% 7.8% 52.4% 52.4% 0.0% 66.7% 56.9% 9.8%

5% 51.3% 52.6% 1.3% 63.1% 55.8% 7.3% 53.1% 51.9% 1.2% 64.9% 56.1% 8.8%

10% 51.4% 52.2% 0.8% 60.8% 54.6% 6.2% 52.6% 51.8% 0.8% 65.0% 54.6% 10.4%

20% 51.2% 51.6% 0.4% 58.0% 52.7% 5.3% 51.6% 51.4% 0.2% 59.7% 52.8% 6.9%

Broward

Original 52.6% 51.5% 1.1% 54.0% 51.5% 2.5% 51.0% 52.4% 1.4% 52.7% 51.5% 1.2%

1% 52.2% 52.0% 0.2% 54.3% 52.2% 2.1% 51.2% 52.5% 1.3% 52.6% 51.7% 0.9%

5% 52.3% 51.5% 0.8% 53.3% 51.4% 1.8% 50.6% 52.1% 1.5% 51.7% 50.9% 0.8%

10% 50.6% 50.6% 0.0% 52.7% 51.1% 1.6% 50.8% 51.0% 0.2% 51.5% 51.2% 0.3%

20% 50.7% 50.5% 0.2% 51.8% 50.9% 0.9% 50.2% 50.9% 0.7% 51.3% 51.0% 0.3%

Hospital

Original 71.2% 73.5% 2.3% 62.1% 60.6% 1.5% 72.7% 71.4% 1.3% 62.6% 60.7% 1.9%

1% 70.9% 72.8% 1.9% 60.6% 60.7% 0.1% 71.7% 70.6% 1.1% 60.9% 59.8% 1.1%

5% 70.8% 70.5% 0.3% 60.0% 59.6% 0.4% 70.4% 69.8% 0.6% 61.0% 60.0% 1.0%

10% 69.3% 70.4% 1.1% 59.7% 58.4% 1.3% 69.1% 69.1% 0.0% 60.8% 59.3% 1.5%

20% 68.7% 70.1% 1.4% 59.1% 58.1% 1.0% 66.6% 67.0% 0.4% 60.5% 59.1% 1.4%

Table 13: Impacts of 𝐿2-regularizer as the defense mechanism on privacy-leakage disparity (PLD)

Dataset Regularizer weight 𝜆
Gender Race

𝐺+
1

𝐺+
0

PLD 𝐺−
1

𝐺−
0

PLD 𝐺+
1

𝐺+
0

PLD 𝐺−
1

𝐺−
0

PLD

Adult

Original 51.9% 53.2% 1.7% 65.4% 57.2% 8.2% 52.9% 52.6% 0.3% 69.8% 57.3% 12.5%

1.00E-04 51.0% 51.7% 0.7% 57.3% 53.1% 4.2% 51.3% 51.4% 0.1% 58.3% 53.3% 5.0%

1.00E-03 50.8% 50.6% 0.2% 51.2% 51.5% 0.3% 50.8% 50.6% 0.2% 51.8% 51.4% 0.4%

1.00E-02 50.3% 50.8% 0.5% 51.1% 51.2% 0.1% 50.6% 50.6% 0.1% 52.5% 51.1% 1.4%

1.00E-01 50.2% 50.4% 0.2% 50.7% 50.7% 0.0% 50.5% 50.3% 0.2% 51.2% 50.6% 0.6%

Broward

Original 52.6% 51.5% 1.1% 54.0% 51.5% 2.5% 51.0% 52.4% 1.4% 52.7% 51.5% 1.2%

1.00E-04 52.4% 51.5% 0.9% 53.5% 51.7% 1.8% 51.7% 52.5% 0.8% 52.5% 51.2% 1.3%

1.00E-03 51.2% 50.9% 0.3% 51.9% 50.9% 1.0% 50.9% 51.1% 0.2% 51.9% 50.8% 1.1%

1.00E-02 50.0% 50.2% 0.2% 50.9% 50.5% 0.4% 50.7% 50.4% 0.3% 51.2% 50.1% 1.1%

1.00E-01 50.5% 50.4% 0.1% 50.6% 50.7% 0.1% 50.2% 50.2% 0.0% 51.3% 50.5% 0.6%

Hospital

Original 71.2% 73.5% 2.3% 62.1% 60.6% 1.5% 72.7% 71.4% 1.3% 62.6% 60.7% 1.9%

1.00E-04 68.7% 70.8% 1.9% 61.0% 62.2% 1.2% 68.4% 67.1% 1.3% 60.3% 61.7% 1.4%

1.00E-03 65.5% 67.7% 2.2% 58.6% 59.5% 0.9% 61.8% 58.9% 2.9% 56.8% 57.9% 1.1%

1.00E-02 51.2% 51.9% 0.7% 50.9% 51.1% 0.2% 51.1% 51.0% 0.1% 50.8% 51.0% 0.2%

1.00E-01 50.8% 51.4% 0.6% 50.2% 50.1% 0.1% 50.5% 50.3% 0.2% 50.1% 50.2% 0.1%

(a) Adult (Gender, 𝑦 = +) (b) Adult (Gender, 𝑦 = −) (c) Adult (Race, 𝑦 = +) (d) Adult (Race, 𝑦 = −)

(e) Broward (Gender, 𝑦 = +) (f) Broward (Gender, 𝑦 = −) (g) Broward (Race, 𝑦 = +) (h) Broward (Race, 𝑦 = −)
Figure 6: Change of defense unfairness with distribution distance under DP. The x-axis represents the distance changes be-
tween the distribution of two subgroups under different privacy budgets, and the y-axis represents defense unfairness.



(a) DP for Broward Gender (b) DP for Broward Race (c) DP for Hospital Gender (d) DP for Hospital Race

(e) 𝐿2 for Broward Gender (f) 𝐿2 for Broward Race (g) 𝐿2 for for Hospital Gender (h) 𝐿2 for for Hospital Race

(i) Dropout for Broward Gender (j) Dropout for Broward Race (k) Dropout for Hospital Gender (l) Dropout for Hospital Race

Figure 7: Change of CSV distribution distance between subgroups with increase of defense strength

(a) DP for Broward Gender (b) DP for Broward Race (c) DP for Hospital Gender (d) DP for Hospital Race

(e) 𝐿2 for Broward Gender (f) 𝐿2 for Broward Race (g) 𝐿2 for for Hospital Gender (h) 𝐿2 for for Hospital Race

(i) Dropout for Broward Gender (j) Dropout for Broward Race (k) Dropout for Hospital Gender (l) Dropout for Hospital Race

Figure 8: Change of CSV distribution distance each subgroup and the entire population with increase of defense strength.
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