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ABSTRACT

Machine learning algorithms, when applied to sensitive data, can
pose severe threats to privacy. A growing body of prior work has
demonstrated that membership inference attack (MIA) can disclose
whether specific private data samples are present in the training
data to an attacker. However, most existing studies on MIA focus on
aggregated privacy leakage for an entire population, while leaving
privacy leakage across different demographic subgroups (e.g., fe-
males and males) in the population largely unexplored. This raises
two important issues: (1) privacy unfairness (i.e., if some subgroups
are more vulnerable to MIAs than the others); and (2) defense un-
fairness (i.e., if the defense mechanisms provide more protection to
some particular subgroups than the others).

In this paper, we investigate both privacy unfairness and defense
fairness. We formalize a new notation of privacy-leakage disparity
(PLD), which quantifies the disparate privacy leakage of machine
learning models to MIA across different subgroups. In terms of
privacy unfairness, our empirical analysis of PLD on real-world
datasets shows that privacy unfairness exists. The minority sub-
groups (i.e., the less represented subgroups) tend to have higher
privacy leakage. We analyze how subgroup size and subgroup data
distribution impact PLD through the lens of model memorization.
In terms of defense unfairness, our empirical evaluation shows the
existence of unfairness of three state-of-the-art defenses, namely
differential privacy, Ly-regularizer, and Dropout, against MIA. How-
ever, defense unfairness mitigates privacy unfairness as the mi-
nority subgroups receive stronger protection than the others. We
analyze how the three defense mechanisms affect subgroup data
distribution disparately and thus leads to defense unfairness.
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1 INTRODUCTION

Advances in the field of machine learning (ML) have resulted in
algorithms and technologies for improving cybersecurity by helping
identify security threats and system vulnerabilities. However, ML
is also vulnerable to novel and sophisticated privacy attacks that
leak information about the training dataset [25, 52]. For instance,
in a membership inference attack (MIA) [30, 50, 52], an attacker can
infer whether a given data sample is in an ML model’s training
dataset, even if the attacker only has black-box access to the model’s
prediction APIs. When the training data is sensitive or proprietary
user data such as electronic health records, location/contact traces,
and financial information, such leakage poses severe threats to
user privacy. Meanwhile, quite a few defense mechanisms (e.g.,
[34, 45, 49, 52]) have been proposed to mitigate the threat of MIA.

Despite the active research on MIA [46, 49, 52, 54, 56, 58] and
their defense mechanisms [34, 45, 49, 52], most of these existing
studies only focus on aggregated privacy leakage of MIA over an
entire population. However, the effect of MIA may differ across
various demographic groups (e.g., females vs. males). For instance,
MIA may be able to correctly infer 80% of females and 60% of male
members, respectively. It is even possible that the privacy risk of
some subgroups can be notably high when the privacy risk of the
whole population is low. Such disparate privacy leakage across
different demographic groups may raise the serious concern of
“privacy unfairness”, i.e., an ML model can pose different privacy
risks to users in different demographic groups. The fairness concern
also holds on the defense mechanisms against MIA, as they may
affect the subgroups differently (e.g., the female group receives
more privacy protection than the male group). This imposes the
concern of “defense unfairness”, i.e., a defense mechanism does
not provide equitable protection across different groups.

The research community has mostly considered fairness and
privacy as two equally important issues and investigated them
separately. Few recent works [13, 57] started looking at fairness
and privacy concurrently. Chang et al. [13] explore the privacy
risks of imposing fairness constraints on ML models. Their angle is
orthogonal to privacy unfairness or defense unfairness. Yaghini et
al. [57] indeed study privacy unfairness and defense unfairness, but
to a very preliminary extent. They show the existence of disparate
privacy leakage to MIA and discuss the factors affecting disparate
privacy leakage. They further inspect the impact of differential
privacy (DP) [19], as an MIA defense, on the disparity. However,
their study neither unveils the fundamental causes of the disparity
nor investigates how and why DP affects the disparity.
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In this paper, we aim to study both privacy unfairness and de-
fense unfairness, centering around three research questions:

e RQ1. Does privacy unfairness exist and how significant it can be?

e RQ2. What are the factors leading to privacy unfairness?

e RQ3. Can defense mechanisms present disparate privacy leakage
of different groups and why?

Defining metrics: There have been no systematic schemes to mea-
sure privacy unfairness in the literature. To this end, we first formal-
ize a new notation called privacy-leakage disparity (PLD) to quantify
privacy unfairness in the context of MIA. PLD is adapted from a
well-accepted fairness notation named accuracy parity [6, 8, 15].
At a high level, PLD measures the gap between the MIA accuracy,
which reflects the amount of privacy leakage, of different demo-
graphic groups.

Studying privacy unfairness: Leveraging PLD, we run an em-
pirical study to measure privacy unfairness, on three real-world
datasets widely adopted by both fairness and privacy communi-
ties (see Table 2). The results show the prevalent existence of PLD,
and interestingly, the minority subgroup (i.e., the less represented
subgroup in the data) tends to have higher privacy leakage. Using
model memorization, which measures how much the model memo-
rizes data samples, as a tool, we further gain an understanding of
two major causes of PLD: (i) subgroup size - the model memorizes
more about the subgroup with a smaller size and (ii) subgroup data
distribution - the two subgroups that have more deviated distribu-
tion have higher PLD.

Studying defense unfairness: Aiming to understand defense un-
fairness, we finally inspect the impacts of MIA defenses on PLD. We
consider three state-of-the-art MIA defenses, including differential
privacy [20], Ly-regularizer [52] , and Dropout [49]. It turns out
that these MIA defenses affect PLD in a “positive” manner, namely
they tend to reduce the extent of PLD. That concurrently unveils
the existence of “defense unfairness”: the MIA defenses are inclined
to provide stronger protection for the minority subgroup. We show
the reason behind “defense unfairness” is that MIA defenses have a
disparate impact on reducing the distribution deviation between
different subgroups and the entire population. In particular, they
reduce the distribution deviation between the minority subgroup
and the entire population much quicker than the majority subgroup,
which leads to stronger defense against privacy leakage.
In summary, the paper makes the following contributions.

e We formalize the new notation of privacy-leakage disparity
to quantify privacy unfairness.

e We show the existence of privacy-leakage disparity in MIA
and unveil the main underlying causes.

e We demonstrate that existing MIA defenses have unfair pro-
tection, leading to a reduction of privacy-leakage disparity.

2 MEMBERSHIP INFERENCE ATTACKS

This paper aims to investigate the disparity of privacy leakage of
ML models. An essential component is a proper method to measure
the privacy leakage. We consider Membership Inference Attack
(MIA) [52] as the method because of its wide acceptance [28, 30, 42,
44, 46, 49-51, 54, 56] and practical influence [33]. The rest of this

Table 1: Common notations used in the paper

Notation ‘ Description
T Target model
M Membership inference attack (MIA) model
y e {+—-} Label of the target model 7~
be{+-} Label of the attack model M.
? b = +/—: member/non-member
T T .. .
Dy, vins Diest Training and testing datasets of target model 7~
Dy in Diest Training and testing datasets of attack model M
A Protected attribute. A = a (a € {0, 1}) specifies
the value of the protected attribute.
Gqa Group G1 /Gy
GJ Set of data points with protected attribute a and target label y

section covers the background of MIA. Notations to facilitate our
description are summarized in Table 1.

2.1 Target Model

Given an ML model 7°, which we call target model, MIA aims to
infer the membership of a given data sample, i.e., whether the data
sample is in the model’s training dataset DZ; ain Similar to previous
research [52], we consider target models that are classification
models with the following configurations. Given a training dataset
DZ; ain of domain X X Y, where X denotes the input features and
Y denotes the output label, the classification model 7 is trained
on D7 . based on the ground truth of Y. For a testing dataset

train
T . el T
Dy, which follows the same distribution of D, .

confidence score vector (CSV) for each data sample in Dt?;st' The
CSV is a probability distribution over the class labels of Y, and the
label of the highest CSV is deemed the prediction. For simplicity,
we only consider binary classification models (i.e., y € {—,+}), but
the methodologies and principles of our study apply to all types of

classification models.

7 outputs a

2.2 Attack Model

In an MIA attack, the attacker trains another ML model M called
the attack model. M takes some input features X4 produced by
7 as an input, and predicts the membership for any given data
sample. Formally, M can be considered as a binary classification
model which predicts the label b for any data sample (x, y), where
b = +if M predicts (x,y) € Dz;am, otherwise b = —.

In the black-box setting [52], an attacker has access to the CSVs
output by 7 for each data sample, through channels like prediction
APIs of the target model. When the attack has access to the ground
truth of some members and non-members of DZ; ain- The attacker
generates the training dataset D;\r/ﬁ”. ,, of the attack model M, which
includes the CSVs of all members/non-members in the ground truth
as features XMT4 and their member/non-member status as labels.
The attacker then trains M on Dg’:u.n. When the attacker has no
access to the ground truth of members/non-members in Dz;ain,
the attack model can be learnt using the following shadow model
approach [52].

Technically, the attacker first synthesizes data samples to mir-
ror the training samples of 7. One way is to initialize a random
sample and gradually improve its quality using output of the target

model [52]. Based on the synthesized data, the attacker creates a



group of shadow models to approximate the target model. Each
shadow model is trained using some synthesized data samples and
the outputs of those samples predicted by the target model. The
attacker eventually deems the shadow models as the target model
and trains the attack model as described above.

Other works also considered the white-box setting [39, 46],
where the attacker is assumed to have access to the parameters of 7.
In this setting, the attack model can further use features extracted
from the model parameters (e.g., the gradients of the prediction
with respect to a data sample [46]).

In this work, we focus on the black-box setting for a considera-
tion of its generality. Since our goal is to observe the disparity of
privacy leakage, acquiring a more evident level of privacy leakage
is obviously beneficial. To this end, we take two actions. First, we
assume some ground truth members/non-members are available
to train the target model, avoiding using the the shadow models
that can be noisy. Second, we follow [52] to train a separate attack
model for each label of 7.

2.3 Quantifying Privacy Leakage by
Membership Inference Attacks

MIA effectiveness is measured by standard metrics [49, 52] includ-
ing accuracy, precision, and recall. Given an attack testing dataset
D{west, which consists of members and non-members of the target
model’s training dataset. The attacker uses the attack model M to
predict memberships of data samples in DtMest. Specifically, accu-
racy is the fraction of the data correctly predicted as member or
non-member, precision is the fraction of the predicted members that

are true members of D7 and recall is the fraction of the true

train’

members in D! that are predicted as members.

test

3 DEFINING PRIVACY-LEAKAGE DISPARITY

Using MIA, we have a method to measure the privacy leakage
experienced by the entire population, but we still lack schemes to
assess the disparity of the privacy leakage. In fact, privacy-leakage
disparity (PLD) has not been systematically defined in the literature.
In this paper, we aim to take the initial step towards establishing
the definition of PLD, with a focus at the group level (i.e., how to
quantify the difference in the privacy leakage of different groups).
Our insights are borrowed from Algorithm Fairness in ML, an area
attracting tremendous attention in recent years. In the rest of this
section, we first briefly introduce algorithm fairness in ML and then
explain how we adapt that to PLD.

3.1 Algorithmic Fairness in Machine Learning

Roughly speaking, given a dataset D of domain X X Y where X
denotes the input features and Y denotes the output label, each
sample in D is associated with a set of protected attributes A C X
(e.g., gender, race). For simplicity, we consider only one protected
attribute in this paper. Depending on the value of the protected at-
tribute, the data samples in D are divided into two groups: protected
group (denoted by A = 1) and unprotected group A = 0. For instance,
consider gender as the protected attribute. The whole population
can be grouped into the female and male groups, where the female
group is considered as the protected group.

Based on the definition of the protected attribute and the corre-
sponding groups, an ML system satisfies group fairness if its pre-
dicted outcomes are similar across different groups. The fairness
community has proposed many mathematical notations to formal-
ize the similar treatment [10, 17, 27, 37]. For example, equal op-
portunity [27] requires the same true positive rate across different
groups, while equalized odds [27] requires the same true and false
positive rates across different groups [27]. More recent research also
brings up the concept of accuracy parity [6, 8, 15], observing that
ML systems often exhibit substantial accuracy disparities among
different demographic groups. Formally, accuracy parity is defined
as follows (formalism of other fairness metrics is omitted because
we adapt accuracy parity to define PLD):

DEFINITION 1 (AcCcURACY PARITY [6, 8, 15]). Given a prediction
model h, and a pre-defined accuracy metric ACC that measures the
accuracy of the prediction output made by h, let ACC, = ACC(h,Gg)
be the prediction accuracy of the group G (a € {0, 1}). Then h satisfies
accuracy parity if ACCy = ACC;.

The violation of accuracy parity is known as disparate mistreat-
ment [59]. To measure the level of disparate mistreatment, we can
use accuracy gap defined as follows:

DEFINITION 2 (ACCURACY GAP). Given a prediction model h and
two groups Go and G1, the accuracy gap of h on these two groups is
A:=|ACCy — ACC1|. By definition, if A(h) satisfies accuracy parity,
A(h) will be zero.

3.2 From Algorithmic Fairness to
Privacy-Leakage Disparity

To align with the working principles of MIAs, we mainly consider
subgroups, instead of protected/unprotected groups. In particular,
since we follow the state-of-the-art MIA model [52] to train a sepa-
rate attack model for each target label, we further split each group
(Gop or Gy) into ¢ subgroups, where ¢ is the number of unique labels
of the target model. For example, consider a binary classification
task that predicts whether an individual has annual income greater
than $50K based on their demographic information, the group G;=
Female is split into two subgroups: G} for females who are labeled
with annual income greater than $50K, and G| for the remaining fe-
males. In the following discussions, we use G, to indicate the group
with A = a, where a € {0, 1}. We use G_ to present the subgroup of
Ggq with label y, where y € {—, +}. Given two subgroups G~ and Gg,
that have the same target label y, we call GY the minority subgroup
if|GY < Gg, |, and Gg, the majority subgroup.

We adapt accuracy parity to define PLD. But instead of looking
at the accuracy of the ML model (i.e., target model), we consider
the accuracy of MIA (i.e., the attack model): the probability that
an adversary can correctly infer if a data point is a member/non-
member in DZ; ain- Based on MIA accuracy, the privacy leakage of
a subgroup can be measured as follows:

DEFINITION 3 (SUBGROUP PRIVACY LEAKAGE). Given a dataset D,
a target model T, and the MIA model M that predicts the membership
label b, we define the privacy leakage of the target model 7~ with
respect to the subgroup GY (i.e., data points in D with the protected
attribute a (a € {0,1}) and labely (y € {—,+}) against M as:

PL(GY)=P(b=b|Y =y, A =a).



Table 2: Datasets used in our study

Dataset ‘ Size  Attributes (#) Target labels (#)

Adult 45k 14 2
Broward | 7.2k 8 2
Hospital | 52.7k 16 2

Based on the definition of subgroup privacy leakage, we then de-
fine PLD to quantify the difference in the privacy leakage between
two subgroups (e.g., females v.s. males). We require the two sub-
groups to have the same label since the existing fairness literature
typically do not compare groups with different labels. Formally:

DEFINITION 4 (PRIVACY-LEAKAGE DISPARITY). For any two sub-
groups G and Gg, that have the same label y, the privacy-leakage
disparity between these two subgroups is measured as:

PLD(G{.GY) = |[PL(G) - PL(GJ)I.

In essence, PLD defined above quantifies the “accuracy gap” of
M between two subgroups, which indicates the difference in their
privacy-risk levels. Specifically, the subgroup with higher MIA
accuracy has a higher risk than the other subgroup.

We note that we may also adapt other fairness metrics (e.g.,
equalized odds [27] and equal opportunity [27]) to define PLD. We
omit doing so because our follow-up studies are less dependent on
which fairness metrics we use to define PLD.

4 MEASURING PRIVACY-LEAKAGE
DISPARITY

To answer research question RQ1 (§1), we perform an empirical
study to measure PLD of MIA, aiming to understand its existence
and extent. Our code and datasets are shared at https://github.com/
dzhong2/MIA _disparity.

4.1 Experimental Setup

4.1.1 Datasets. We use three real-world datasets that are widely
adopted by both fairness and MIA communities, as listed in Table 2.
We elaborate on them as follows.

Adult dataset [1] includes 45,222 instances and 14 attributes
(such as age, gender, education, marital status, occupation, working
hours, and native country) that describe the information about
individuals from the 1994 U.S. census. The prediction task is to
determine whether a person makes over $50k annually.

Broward [2] contains criminal history, jail and prison time, de-
mographics and COMPAS (which stands for Correctional Offender
Management Profiling for Alternative Sanctions) risk scores for
defendants from Broward County, Florida. The prediction task is
to infer whether a criminal defendant will be a recidivist (i.e., a
criminal who re-offend) within two years.

Hospital dataset [47] is released by the Texas Department of
State Health Services. It contains records of inpatient stays in some
health facilities. The features include types of external causes of
injury, diagnosis, the procedures the patient underwent, and demo-
graphic information such as the gender, age, and race of the patients.
The classification task is to predict the patient’s main procedure.
We categorize the main procedures into two groups (corresponding
to the prediction labels): cardiology and pulmonology.

Table 3: Performance of the target models and MIA. Acc: ac-
curacy; Prec: precision; Rec: recall.

Dataset ‘ Train Acc  Test Acc ‘ MIA Acc  MIA Prec  MIA Rec
Adult 90.4% 82.5% 54.1% 52.4% 89.7%
Broward 71.3% 67.3% 51.8% 51.5% 64.4%
Hospital 91.8% 64.9% 65.1% 62.1% 77.5%

The datasets are pre-processed to remove all the samples with
missing values. Further, all attributes are converted into numeric
values by using one hot encoding.

4.1.2  Setup of groups/subgroups. For all datasets, we follow the
literature of fairness research and consider gender and race as the
protected attributes. For each protected attribute, we setup two
groups Go and Gj. The final grouping results can be found in Ap-
pendix A (Table 8). Since all datasets have binary target labels, we
further each group into two subgroups, based on their target labels.
Thus, each dataset is split into four subgroups G}, G7, Gy, and G .

4.1.3  Training Target and Attack Models. In this paper, we consider
a Neural Network + Neural Network (NN+NN) setting, where both
the target and attack models are neural networks. Different archi-
tectures are used for the two models, as the attacker does not know
the architecture of the target model in black-box MIA. More details
of the two neural networks are described below.

Training the target model: For each dataset, we randomly select
50% of the samples for training and the remaining for testing. We
train the neural network with Keras toolkit [3]. The neural network
consists of 3 hidden layers with {512, 256, 128} neurons at each layer
and a softmax output layer. The model is trained for 200 epochs
with learning rate 0.01 and batch size 800.

Training the attack model: As described in §2.2, we consider
an attacker with access to some ground-truth of members/non-
members of the target model’s training dataset. Specifically, we
pick 50% of a target model’s training samples and 50% of its testing
samples as the ground-truth members and non-members. We then
obtain the CSVs of the ground-truth members/non-members via
querying the target model and uses the CSVs to train the attack
model. The attack model is a neural network also trained by Keras.
The neural network consists of two hidden fully-connected layers
respectively with {256, 128} neurons and a sigmoid output layer.
We use the learning rate 0.01 and batch size 64 for 400 epochs in
our experiments.

Evaluation metrics of target and attack models: The training
and testing accuracy of the target model 7™ is defined by the proba-
bility that 7~ correctly predicts the true label.

acc = P(T(x;) = yi)

where x; is a data sample and y; is the true label of x;.

In contrast, MIA accuracy is defined by the probability that the
attack model M correctly predicts the membership label:

MIA acc = PIM(T (xi)) = b;)

where b; (+/-) indicates whether the data point is included in the
training dataset of the target model.

Similarly, MIA precision is measured by the fraction of true
members that the attack model predicts to be members:

MIA prec = P(M(T (x1)) = bi| M(T (x1)) = +)
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Table 4: Privacy-leakage disparity and average of influence scores (AIS) of subgroups. Between two subgroups of the same

label, the minority subgroup is marked with , the higher MIA accuracy with , and the higher AIS with
Gender Race
Dataset | Label y | Subgroup - -
Size \ MIA Accuracy \ AIS \ PLD Size \ MIA Accuracy \ AIS \ PLD
G; 6512 51.9% 0.0015 2654 52.9% 0.0018
+ 1.3% 0.3%
Ga’ 10493 53.2% 0.0221 14351 52.6% 0.0005
Adult
Gy 833 65.4% 0.0181 495 69.8% 0.0193
- 7.8% 12.5%
Gy 4773 57.2% 0.0017 5111 57.3% 0.0128
G;r 453 52.6% 0.0893 1084 51.0% 0.0202
+ 1.1% 1.4%
Gg 1530 51.5% 0.0467 899 52.4% 0.1
Broward
Gy 249 54.0% 0.1608 678 52.7% 0.245
- 2.5% 1.2%
GO_ 1375 51.5% 0.0319 946 51.5% 0.0294
G;’ 4849 71.2% 0.0296 3022 72.7% 0.0437
+ 2.3% 1.3%
. Ga’ 4264 73.5% 0.0308 6092 71.4% 0.0235
Hospital
G; 8253 62.1% 0.014 5051 62.6% 0.0175
- 1.5% 1.9%
Ga 9022 60.6% 0.0122 12225 60.7% 0.0025

MIA recall is measured by the fraction of all true members identified
by the attack model:

MIA recall = P(M(T (xi)) = bilb; = +)

Performance of target and attack models: Both training ac-
curacy and testing accuracy of the target models are measured,
respectively using the training samples and the testing samples
(50% v.s. 50%). To measure MIA performance, we respectively select
20% of the target model’s training samples and 20% of its testing
samples as an attack testing dataset. This attack testing dataset do
not overlap with the ground-truth members/non-members to train
the attack models, and we use it to compute the accuracy, precision,
and recall of MIA. Each MIA attack is repeated 25 times and the
average results are gathered in Table 3.

Overall, MIA presents varied performance against different datasets.
On Adult and Hospital, MIA accuracy reaches 89.7% and 77.5 %,
respectively. This creates an environment of high MIA accuracy to
study PLD. In contrast, MIA on the Broward dataset has an accuracy
of 51.8%, which gets closer to random guess. Such a result, consis-
tent with what is reported by the literature [52], shows that MIA
has a weaker effectiveness with this dataset. We envision this does
not hurt our study, but instead, benefits our study since it provides
an extreme context — low MIA accuracy — of understanding PLD.

Our results are also consistent with the common understanding
that MIA is attributable to over-fitting of the target model. Con-
sidering the gap between training accuracy and testing accuracy
as the over-fitting metric, all our target models present a certain
level of over-fitting, matching the effectiveness of MIA. Moreover,
larger over-fitting leads to more effective MIA. For instance, Hospi-
tal dataset presents the largest gap between training accuracy and
testing accuracy, and thus, shows the highest MIA accuracy.

4.2 Results of Privacy-Leakage Disparity

For each dataset, we measure the size and MIA accuracy of all four
subgroups (G, G, Gg , Gy ). Table 4 shows the results, and we
summarize the major observations as follows.

PLD exists: Although all subgroups show privacy leakage to MIA
to a certain extent (MIA accuracy changes from 51% to 73.5%) in each
setting, different subgroups experience different amounts of privacy
leakage. Consider Adult dataset with Race as the protected attribute
as an example. MIA accuracy varies from 52.9% to 69.8% across the
four subgroups. Such MIA accuracy disparity is observed across
all the three datasets and their subgroups. We also observe such
disparity in MIA precision and recall across different subgroups.
The results can be found in Appendix (Table 10).

Second, MIA accuracy of subgroups can be significantly different
from that of the whole population. Indeed, even when MIA accuracy
over the whole population is low (close to 50%), MIA accuracy of
subgroups still can be notably high. For example, MIA accuracy of
the whole population of Adult dataset is 54.1% (Table 3), while MIA
accuracy of the subgroup Gy is as high as 69.8% (Table 4).

Furthermore, the amounts of PLD (Def. 4) vary across different
settings. For example, the PLD between the two subgroups G} and
Gy is around 1.2% on Broward dataset with Race as the protected
attribute, but it jumps to 7.8% between the same two subgroups
for Adult dataset with Gender as the protected attribute. Even for
the same dataset and same protected attribute, the PLD can vary
significantly for subgroups with different labels. In Adult dataset
with Race as the protected attribute, for example, the PLD between
GT and Ga“ is 0.3%, which increases to 12.5% between Gl_ and GO_.
More details about the factors influencing PLD are discussed in §5.

The minority subgroup has higher privacy leakage: Another
important observation is that, out of the two subgroups of the same
label, the minority one has larger MIA accuracy in most of the
settings. Furthermore, the group size is not inversely proportional
to MIA accuracy. Consider Broward dataset with Gender as the
protected attribute as an example, the size of G is almost one third
of that of Gar . However, MIA accuracy of GI“ is close to that of G(J)r )
The only exception happens to G} and G on Adult dataset with
Gender as the protected attribute. The minority subgroup G} has
smaller MIA accuracy than that of G, although its size is smaller
than GJ. This observation is consistent with the results reported



Table 5: Model overfitting disparity (OD) v.s. PLD.

Gender Race

D Label
ataset | Labely | —7p [PD || oD | PLD
+ 31% | 13% || 1.0% | 03%
Adult - 15.4% | 7.8% || 24.8% | 12.5%
Broward + 3.7% | 1.1% || 4.4% | 1.4%
- 50% | 25% || 0.7% | 1.2%
Hossital + 49% | 23% || 3.2% | 13%
P - 31% | 15% || 3.9% | 1.9%

by prior works [13, 57]. Briefly, the major reason is that the target
model “memorizes” more of the minority subgroup than the other
subgroups. A deeper analysis is given in §5.

Higher overfitting leads to higher PLD: A widely recognized
reason of MIA is overfitting. As we have pointed out in §4.1, more
overfitting leads to higher MIA accuracy. This brings us a hypothe-
sis that PLD is correlated with the disparity in model overfitting
of different subgroups. To verify the hypothesis, we separately
measured the overfitting of each subgroup and calculated the dis-
parity between different subgroups. In particular, the overfitting
of a subgroup is measured as the difference between training and
testing accuracy of the subgroup. And the overfitting disparity is
measured as the difference between the overfitting of protected
and unprotected groups. As summarized in Table 5, the disparity in
overfitting exists whenever PLD appears. More importantly, higher
disparity in overfitting leads to more evident PLD across all settings.
This empirically validates our hypothesis.

5 ANALYSIS OF PLD

Our empirical study unveils the existence of PLD, but does not
give an explanation. In this section, we aim to answer research
question RQ2 (§1) and explore why PLD arises. In principle, PLD
should be rooted from differences between subgroups. This gives
us a direction of explaining the existence of PLD: what types of
difference lead to PLD and why?

In a broad sense, subgroups mainly differ in their values of the
protected attribute, their size, and their data distribution. We be-
lieve the values of the protected attribute are less critical. Running
permutation feature importance [4] on the target models presented
in §4, we obverse that the protected attribute (gender or race) is
less important to the target models, as summarized in Table 9. As
such, the value of the protected attribute will unlikely affect the
output of the target models as well as the privacy they can leak.
Thus in the rest of this section, we focus on discussing the impact
of difference in subgroup size and data distribution.

5.1 Impact of Subgroup Size on PLD

As we pointed out in §4, the minority subgroup tends to have a
higher privacy leakage, indicating a connection between subgroup
size and PLD. To demystify the connection, we leverage the concept
of model memorization. According to the existing literature [11,
40], a root cause of privacy leakage of an ML model to MIA is
that the model memorizes too much information of the training
data. Our hypothesis is that the model memorizes more about the
smaller subgroup, which bridges the gap between the subgroup
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Figure 1: Impacts of data distribution on PLD. X-axis is the
distance between two data distributions, and y-axis is the
difference of MIA accuracy between the two subgroups.

size and PLD. To verify the hypothesis, we first propose a scheme
to quantify model memorization. Then we measure how much the
model memorizes subgroups of different sizes.

Quantifying model memorization via influence scores: An
intuitive idea measuring whether the model memorizes a given
training sample is to ask the counterfactual [12, 24]: what would
happen to the model output if the model did not see the training
sample? Answering this counterfactual enables to trace a model’s
output back to the training data through the learning algorithm.

To quantify the effect of the counterfactual, we leverage influence
function, a state-of-the-art model explanation method [38]. Influ-
ence function estimates the impact of a training point on a model
prediction. In our setting, to estimate the effect of a data sample
z(x, y) on the target model, the explanation measures the difference
in the loss function of the model when it is trained with and without
z. Formally, assuming 0, 4 T(Dz;am\{z}), that is, 6 is induced by
training the target model 7~ given the dataset excluding z. Then the
influence score of z on 7 is measured as I(z) 4 L(6;) — L(0), where
0 is a prameterization induced by the training model 7~ and L is the
loss function of 7. Intuitively, higher influence score indicates the
model memorizes more of the data sample. Given that the influence
scores quantify how much the model memorizes individual data
samples, they help explain why MIA better identifies some data
samples than the others: data samples have higher influence scores
are more likely to be correctly predicted by MIA.
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Figure 2: Distribution of CSVs of subgroups (G} v.s. G, Gender, “y = +”). The distribution is split into five intervals.

A main challenge is to design an influence function to efficiently
estimate the influence scores. A straightforward idea is to remove
a training point, retrain the target model 7~ with the remaining
points from scratch, and compute the new prediction results. An in-
fluence function, working in this way, however can incur extremely
high computation cost. To this end, we adapt the influence function
proposed by Koh et al. [38], which estimates the influence scores
for classification models without a re-training process.

The model memorizes more of the smaller subgroup: To un-
derstand how the target model memorizes each subgroup, we com-
pute the influence score of every data sample, followed by calcu-
lating the average influence score (AIS) for all samples in each
subgroup. The results are presented in Table 4 (AIS column). Except
for the case on Adult dataset with gender as the protected attribute
and “+” as the label, the minority subgroup consistently has a higher
AIS. This aligns with our hypothesis: the model memorizes more of
the minority subgroup than the majority one, and thus, leaks more
privacy about the minority subgroup.

Our analysis unveils disparity in AIS of different subgroups. An
related and interesting question is whether influence score and
MIA accuracy are correlated at the individual level. To understand
this question, we performed another evaluation where we refine
the granularity of the subgroups such that each subgroup approxi-
mates an individual. Specifically, we sort and split the data by their
influence score into 10 bins, followed by separately calculating the
average MIA accuracy of each bin. The results in Figure 3 indicate
that different subgroups, when classified by influence score, present
similar MIA accuracy. Thus, we anticipate no evident correlation
between influence score and MIA accuracy at the individual level.

To summarize, the target model memorizes more of the minority
subgroup at an aggregate level (as shown by Table 4). When consid-
ering the individual level, it does not memorize more of particular
records than the others (as shown in Figure 3).

Subgroup size is not the only factor that impacts influence
score: Table 4 includes an exceptional case, namely G} v.s. Gy for
Adult data with Gender as the protected attribute. In the case, G}
is the minority subgroup but has a lower AIS and thus a lower
MIA accuracy than the majority group. The existence of the case
indicates that the difference in AIS across groups is not solely
determined by the group size. What remains as a potential factor is
the difference in data distribution of the two groups. We accordingly
run a follow-up analysis in the next subsection.

5.2 Impact of Data Distribution on PLD

To understand the impact of subgroup data distribution on PLD,
we design a simulation experiment where the size of different sub-
groups is kept identical. Specifically, we randomly pick a subset of
sample S from each dataset uniformly, ensuring the distribution
of S is similar to the whole dataset. Once obtaining S, we generate
a same-sized subset S’ by adding noise N on the distribution of S.
N follows the normal distribution with mean y = 0 and standard
deviation § € {0,0.01,0.1,0.2,0.4}. § = 0 means the distributions
of S and S’ are identical. Larger § indicates more noise and thus
higher distance between the distributions of S and S’.

When a pair of S and S’ is created, we consider them as two sub-
groups and separately measure the MIA accuracy for each of them,
reusing the target and attack models trained on the entire dataset.
Meanwhile, we use Kolmogorov-Smirnov (KS) test to quantify the
distance between the distributions in the target model output, or
CSV, for S and S’. We considered the distribution of CSV instead of
the distribution of the original data for two reasons. First, the origi-
nal data has too many dimensions (see Table 2), whose distribution
is complex to measure and visualize. In contrast, the CSV only has
two dimensions (as all the target models are binary classifiers), mak-
ing distribution analysis much easier. Second, the difference in CSV
distribution reflects the difference in the original data distribution.
An analysis on the CSV distribution should also support our goal.

Each test above is repeated 10 times. Figure 1 shows the results
of PLD (i.e., the difference between the MIA accuracy on S and S”)
when the distributions of S and S” have a different distance. Appar-
ently, difference in the data distribution of subgroups also affects
PLD. In general, PLD increases when two subgroups have a larger
distribution distance, i.e., their distributions are more different.

Which factor is dominant, size or data distribution: Our anal-
ysis so far unveils both size and data distribution of subgroups affect
PLD. It brings up the question that which factor is the dominant
one, or how the two factors impact PLD synthetically. Our obser-
vation is when difference in the data distributions is less intensive,
size plays a more significant role and the minority subgroup tends
to leak more privacy. Otherwise, data distribution may dominate
and overturn the impact of size. Below we use the exceptional case
discussed in §5.1 to demonstrate our observation.

We measure the distribution of CSV for G;’ and Ga' in that case.
For comparison, the same measurement is done for G;r and Gg from
other datasets with Gender as the protected attribute and + as the
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label. All the results are shown in Figure 2. The major observation
of our analysis is that the CSV distribution for G} and G in Adult
dataset varies more dramatically, compare to the Broward and
Hospital datasets. We use the discrete Kolmogorov—-Smirnov (KS)
tests to quantify the distance between the CSV distribution of G
and Gj. It turns out that the distance with Adult dataset is much
higher than the other two datasets, as illustrated in Figure 2. Because
of this large distribution difference, G} has less privacy leakage
than G, even though it has a smaller size.

6 IMPACT OF MIA DEFENSE ON PLD

The research community has designed multiple defenses against
MIA. The defenses aim to reduce the privacy leakage of the en-
tire population. An interesting question is whether (and why) the
defenses have disparate impacts across different subgroups and conse-
quently mitigate PLD (i.e., research question RQ3 (§1))? This section
seeks to answer this question from an empirical perspective.

Evaluation Metrics: We use the metrics described in §4.1 to mea-
sure the performance of the target model and the attack model. To
measure PLD, we calculate the difference of MIA accuracy between
two subgroups with same target label (+ or -), following §4.2.

6.1 Defense Mechanisms

In general, MIA defenses can be classified into two categories. One
category modifies the training process of the target model such that
it leaks less membership information to MIA. The other category
adds perturbations to the CSVs instead of modifying the training
process of the target model. We consider the following defenses in
the first category, because of their wide use by the community.
Differential privacy (DP): [20] has become the de facto standard
in privacy-preserving data analytics. Roughly speaking, a differen-
tially private ML algorithm ensures that the inclusion of an individ-
ual training sample does not significantly affect the model output.
We consider e-differential privacy, where € is called privacy budget
and specifies the level of guaranteed privacy. A larger € provides
weaker privacy protection but smaller accuracy/utility loss of the
model. We use the implementation of TensorFlow-Privacy [43] to
enforce DP with {0.3, 0.5, 1.0, 3.0, 5.0} as the privacy budget €.
Ly-Regularizer: Overfitting has been identified as one of the major
reasons why MIA can be effective. Thus, a natural solution to defend
against MIA is to reduce model overfitting by using regularization.

Table 6: Performance of target model and MIA under DP

Dataset | Privacy Budget(¢) Train Acc. Test Acc. MIA Acc.
No DP 90.4% 82.5% 54.1%
5.0 83.8% 82.9% 50.9%
3.0 83.2% 82.7% 50.8%
Adult
1.0 82.4% 82.3% 50.8%
0.5 77.5% 77.3% 50.6%
0.3 75.3% 75.2% 50.6%
No DP 71.3% 67.3% 51.8%
5.0 68.4% 67.5% 50.2%
3.0 67.7% 66.8% 50.1%
Broward
1.0 66.6% 66.5% 49.8%
0.5 65.0% 65.1% 49.7%
0.3 56.9% 56.9% 49.8%
No DP 91.8% 64.9% 65.1%
5.0 70.1% 67.6% 51.6%
. 3.0 68.7% 67.2% 51.2%
Hospital
1.0 66.3% 66.0% 50.7%
0.5 65.4% 65.5% 50.5%
0.3 65.4% 65.5% 50.5%

Shokri et al. [52] has shown the effectiveness of the conventional
Ly-regularizer as a defense mechanism. Ly-regularizer adds the
norm of the parameters to the loss function with a parameter A,
which controls the weight of the regularization. We use {0.00005,
0.0001, 0.001, 0.005, 0.01, 0.1} for the A parameter, which controls
the weight of parameter L norm in the loss function. The higher
the value we assign to A, the stronger the defense is.

Dropout: also reduces overfitting [49]. It randomly deletes a pro-
portion (dropout ratio) of edges in a fully connected neural network
model in each training iteration. We use four dropout ratios {1%,
5%, 10%, 20% }. Larger dropout ratio indicates stronger defense.

6.2 Effectiveness of MIA Defenses

To validate the effectiveness of the defenses and their impacts on
the target model, we measure the accuracy of both target and attack
models after deploying the defenses. Table 6 shows the results of
DP. The results for Ly-regularizer and Dropout are similar, which
are presented in Table 11. First, DP is effective in mitigating MIA.
For all the datasets, MIA accuracy decreases to close to 50% (i.e.,
random guess) when the privacy budget € decreases. Second, DP
harms the accuracy of the target model when providing stronger
defense against MIA. Consider Adult dataset as an example. The
target training accuracy drops from 90.4% to 75.3% and the target
testing accuracy drops from 82.5% to 75.2% when the privacy budget
€ approaches 0.3. These results align with the well-known trade-off
issue between privacy and model accuracy.

6.3 Impacts of MIA Defenses on PLD

To understand the impacts of MIA defenses on PLD, we measure
MIA accuracy of each subgroup. Table 7 summarises the results
with DP as the defense. The results for Ly-regularizer and Dropout
defenses are similar and can be found in Appendix (Tables 12 & 13).



Table 7: Impacts of DP on PLD. The columns of G and Gj show the MIA accuracy of the corresponding subgroup.

Dataset | Privacy budget € Genderi — Race — —
Gi | 6t |p] 6; | G, [pp|| 6t [ 6 [PD]| 67 | G; | pLD
No DP 51.9% | 53.2% | 1.3% | 65.4% | 57.2% | 8.2% || 52.9% | 52.6% | 0.3% | 69.8% | 57.3% | 12.5%
5.0 50.6% | 50.8% | 0.2% | 51.3% | 51.4% | 0.1% || 50.5% | 50.7% | 0.2% | 52.1% | 51.3% | 0.8%
Adult 3.0 50.4% | 50.8% | 0.4% | 51.8% | 51.3% | 0.5% || 50.6% | 50.7% | 0.1% | 51.9% | 51.3% | 0.6%
1.0 50.5% | 50.6% | 0.1% | 51.3% | 51.4% | 0.1% 50.3% | 50.6% | 0.3% | 51.3% | 50.5% | 0.8%
0.5 50.3% | 50.7% | 0.4% | 51.2% | 50.9% | 0.3% 50.5% | 50.5% | 0.0% | 51.0% | 50.7% | 0.3%
0.3 50.5% | 50.5% | 0.0% | 51.0% | 50.8% | 0.2% || 50.4% | 50.5% | 0.1% | 50.2% | 50.6% | 0.4%
No DP 52.6% | 51.5% | 1.1% | 54.0% | 51.5% | 2.5% 51.0% | 52.4% | 1.4% | 52.7% | 51.5% 1.2%
5.0 49.6% | 50.0% | 0.4% | 49.3% | 50.7% | 1.4% 49.9% | 49.9% | 0.0% | 51.0% | 49.7% 1.3%
Broward 3.0 50.8% | 50.5% | 0.3% | 48.9% | 49.8% | 0.9% || 50.5% | 49.8% | 0.7% | 50.5% | 48.5% | 2.0%
1.0 49.7% | 49.9% | 0.2% | 49.7% | 49.8% | 0.1% || 49.8% | 49.9% | 0.1% | 49.4% | 50.4% | 1.0%
0.5 50.1% | 49.5% | 0.6% | 49.3% | 49.8% | 0.5% || 49.6% | 49.7% | 0.1% | 50.0% | 49.4% | 0.6%
0.3 50.2% | 49.6% | 0.6% | 50.1% | 49.7% | 0.4% || 50.0% | 49.8% | 0.2% | 49.9% | 49.7% | 0.2%
No DP 71.2% | 73.5% | 2.3% | 62.1% | 60.6% | 1.5% || 72.7% | 71.4% | 1.3% | 62.6% | 60.7% | 1.9%
5.0 52.3% | 52.0% | 0.3% | 51.2% | 51.3% | 0.1% || 52.5% | 52.0% | 0.5% | 51.4% | 51.2% | 0.2%
Hospital 3.0 51.7% | 51.5% | 0.2% | 51.0% | 51.0% | 0.0% || 51.9% | 51.4% | 0.5% | 51.0% | 51.0% | 0.0%
1.0 50.8% | 50.9% | 0.1% | 50.7% | 50.5% | 0.2% 50.9% | 50.8% | 0.1% | 50.7% | 50.6% | 0.1%
0.5 50.6% | 50.7% | 0.1% | 50.5% | 50.2% | 0.3% 50.9% | 50.5% | 0.4% | 50.3% | 50.4% | 0.1%
0.3 50.7% | 50.6% | 0.1% | 50.5% | 50.5% | 0.0% || 50.8% | 50.5% | 0.3% | 50.4% | 50.5% | 0.1%

MIA defenses mitigate PLD: When the privacy budget of DP
decreases, MIA accuracy of the subgroups also drops, all gradually
getting closer to 50%. In turn, this leads to a reduction of PLD.
Even with a larger privacy budget (e.g., € = 5), PLD is significantly
decreased. The results indicate that while mitigating MIA, DP also
helps reduce PLD. Similar trends are observed on Ly-regularizer
and Dropout, as shown in Tables 12 and 13 in the Appendix.

A follow-up question is how exactly DP and other MIA defenses
reduce PLD. In principle, MIA defenses work by making samples
less distinguishable from each other such that the attacker can-
not recognize the members. Indirectly, the defenses make different
subgroups similar and thus, shrink the distance between the distri-
butions of their target model output (or CSV). Further considering
our previous observation that PLD decreases with the CSV distribu-
tion distance (see Figure 1), it is expected that MIA defenses reduce
PLD. To verify this reasoning, we measure the distance between
the CSV distribution of the minority and majority groups, before
and after the MIA defenses are applied. Figure 4 (a)-(c) show the
results on Adult dataset with Race as the protected attribute. As the
defense strength increases, the CSV distribution distance between
the two subgroups decreases, well supporting our reasoning.

Defense unfairness exists: MIA defenses reducing PLD leads to
an interesting phenomenon: the defense mechanisms provide differ-
ent amounts of protection across different subgroups. Connecting the
phenomenon to that the minority subgroup tends to have higher
privacy leakage, we derive another observation: the defense mecha-
nisms provide stronger protection on the minority subgroups. Consider
Adult dataset with Race as the protected attribute as an example
(see Table 6). MIA accuracy of the minority subgroup G] drops
from 69.8% (without DP) to 50.2% (¢ = 0.3), presenting a 28% of

reduction. In contrast, MIA accuracy of the majority group G
decreases from 57.3% to 50.6%, only showing a 12% of reduction.
Similar disparity also arises in other settings and the other two de-
fenses, as illustrated in Tables 12 and 13 in the Appendix. This raises
an interesting question: why MIA defenses provide more protection
on the minority subgroup than the majority group?

6.4 Analysis of Defense Unfairness

Prior work [5] has shown that DP has disparate impacts on model
accuracy. In particular, the accuracy of target model deteriorates
more for the minority subgroups. However, such disparate impacts
on target model accuracy cannot explain the disparate impacts on
MIA accuracy. Therefore, to understand the above question, we
once again borrow insights from the principle of MIA defenses.
As pointed out above, MIA defenses work by making samples less
distinguishable from each other. As such, MIA defenses shall con-
currently make subgroups less different from the entire population.
We accordingly measure the distance between the CSV distributions
of each subgroup and the entire population, before and after MIA
defenses. Figure 4 presents the results on Adult dataset with Race
as the protected attribute. The results on Broward and Hospital
datasets are similar and shown in Figures 7 & 8. Evidently, MIA de-
fenses reduce the CSV distribution distance between each subgroup
and the entire population. Another trend is MIA defenses reduce
the distance for the minority subgroup more dramatically. But how
does this connect to defense unfairness? We give an analysis below.

Recalling §5.1, the target model leaks more privacy of the minor-
ity subgroup because it memorizes more about that subgroup. A
related, more fundamental matter is why the target model mem-
orizes more about the minority subgroup. We believe a reason is
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Figure 4: Impact of defense mechanisms on subgroups (Adult dataset, Race). In sub-figures (a)-(c), each curve shows the distance
between two subgroups with the same label (we use Gy and G; to denote the two subgroups). In sub-figures (d)-(f), the two
subgroups of the same target label have the same color; The minority/majority subgroups are labeled with solid/dotted lines.

the minority subgroup deviates more from the entire population.
Consider Figure 4 (d)/(e)/(f) as an example. Without MIA defenses,
the minority subgroup has a larger CSV distribution distance to the
overall population, compared to the majority subgroup. As a conse-
quence (presumably), the target model memories more about the
minority subgroup and leaks more privacy from that subgroup (see
Table 4). Connecting everything together, MIA defenses reduce the
distances between the minority subgroup and the overall popula-
tion quicker and thus, de-memorize the minority subgroup quicker.
This results in stronger protection for the minority subgroup.

Correlation between defense unfairness and distribution dis-
tance: Our analysis above correlates defense unfairness to distri-
bution distance between two subgroups. We took a further step to
understand how the two metrics are correlated exactly. We first
introduce a metric to quantify defense unfairness. Specifically, we
consider the delta between the reduced MIA accuracy of two sub-
groups when a defense is applied as defense unfairness:

Defense Unfairness = |A(acc(Gg)) - A(acc(GIr))I

where A(acc(Ga“))/A(acc(Gf)) denotes the change of MIA accu-
racy of GJ/G{ before and after the defense.

Leveraging the above metric, we measure the level of defense
unfairness and the change of distribution distance when gradu-
ally increasing the defense strengthen. Figure 5 shows the results
with DP as the defense mechanism on Hospital dataset. The results
on Adult and Broward datasets are similar and can be found in
Appendix (Figure 6). The distribution distance is measured by Kol-
mogorov-Smirnov test. A key observation, reflected by the results,
is that defense unfairness is more evident when the distribution dis-
tance is reduced to a larger extent. This is not surprising. According
to what we discussed in §6.2, the reduction of distribution distance

shall lead to reduction of PLD, which is essentially defense unfair-
ness. Another interesting observation is that the defense tends to
reduce the distribution distance more rapidly when the distance
value is larger and, in turn, present higher defense unfairness.

6.5 Privacy Unfairness v.s. Defense Unfairness

PLD arises because MIA presents disparate accuracy on different
subgroups. To mitigate PLD, a defense must decrease the MIA
accuracy of one group harder, which essentially causes defense
unfairness. In this regard, privacy unfairness principally conflicts
with defense unfairness, and the latter is a cue to the former. While
it is also interesting to study defense unfairness and the related
mitigation, the matter goes beyond the scope of this paper.

7 RELATED WORK

MIA and Defenses: MIA [30, 50, 51] predicts whether a given
record was used in training a target model, typically under a black-
box setting where the target model exposes a prediction API to
the attacker. Some recent works [42, 46, 49, 56] provide more de-
tailed study of MIA. MIAs have also been developed to attack fed-
erated/collaborative learning [44, 46], generative adversarial net-
works (GANs) [14, 28], adversarially robust deep learning models
[54], embedding models [53], and GNNs [29]. On the horizon, new
variants of MIAs, e.g., label-only MIAs [16, 41], are arising.
Several defenses have been designed to defend against MIA.
As described in §6, the defenses belong to two major categories.
The first category of defenses modify the training process of the
target model such that it leaks less membership information. Exem-
plary defenses include differential privacy [20], dropout and model
stacking [49], and adversarial regularization [45]. In contrast, the
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Figure 5: Defense unfairness v.s. distance between subgroup distributions (DP as defense, Hospital dataset). The x-axis is the
change of distance between the subgroup distributions under different privacy budgets; The y-axis is the defense unfairness.

second category of defenses add perturbations to the CSV instead
of modifying the training process of the target model [34].
Algorithmic Fairness in Machine Learning: Fairness has caught
increasing attention from the ML community [18]. Several compet-
ing notions of algorithmic fairness in machine learning have been
recently proposed. These definitions can be grouped into two broad
classes, namely group fairness and individual fairness. Group fair-
ness [7, 9, 10, 23, 36] is concerned with a small number of protected
groups (e.g., females) that are defined by the protected attributes (e.g.,
gender). It requires that the protected groups should have some
form of statistical parity (e.g., between positive outcomes or errors)
compared with either the advantaged groups (e.g., males) or the
populations as a whole. On the other hand, individual fairness [21]
requires people who are "similar" receive similar outcomes. Our
PLD fairness definition belongs to the category of group fairness.
In particular, we adapt accuracy parity [6, 8, 15] to our setting to
evaluate disparity of privacy vulnerability.

Algorithmic Fairness and Privacy The interaction between pri-
vacy and fairness has attracted increasing attention recently. Several
works [26, 31, 48, 55] have explored how to achieve fairness and
privacy jointly. These works consider fairness and privacy as two in-
dependent objectives, while we consider the intersection of fairness
and privacy, or fair privacy. Dwork et al. [21] initialize the explo-
ration of the relationship between algorithmic fairness and privacy.
They show that differential privacy techniques can be adapted to
satisfy fairness in ML. In a later position paper [22], the authors
propose a set of high-level research questions of understanding the
interaction between fairness and privacy. Our work answers one of
the questions that whether the privacy attacks are more effective
against particular members of protected groups.

The disparate effects of ML models across different groups have
been observed in several recent works. Bagdasaryan et al. [5] show
that DP has disparate effects on model accuracy - the differentially
private models have larger accuracy reduction on the underrep-
resented groups. It only used the image data for the empirical
evaluation of disparate impact of DP. We extend the study to tabu-
lar data. We also consider the other two defenses (Ly-regularizer
and Dropout) besides DP. Jagielski et al. [32] investigated the MIA
with the presence of DP. While their motivation is very different
from ours, they show some similar observation as ours that mem-
bership inference does not affect each training sample uniformly.
Chang et al. [12] recently explored whether enforcing fairness in
ML can incur privacy risks, which is complementary to our work.
The most related to ours is probably the recent work by Yaghini et
al. [57] (developed independently and in parallel with ours). Similar

to us, they identified the existence of disparate vulnerability across
different demographic groups against MIA. They also identified
subgroup data distribution and subgroup size as two factors influ-
encing disparate vulnerability, but without deeper analysis of why
and how. Furthermore, they only considered DP [19] as the defense
mechanism and showed similar results as ours. However, they did
not provide detailed analysis why DP has such effect.

8 CONCLUSION AND FUTURE WORK

This paper studies the topic of fair privacy in the context of MIAs.
We focus on two major issues, privacy unfairness (i.e., disparate
vulnerability of MIAs across different subgroups) and defense unfair-
ness (i.e., disparate protection by the defenses against MIA across
subgroups). First, we formally define the notion of privacy-leakage
disparity (PLD) to measure the disparity of privacy vulnerability
to MIA across different subgroups. Then we show that PLD exists,
through extensive empirical studies on real-world datasets. We
investigate why and how subgroup size and subgroup data distri-
bution impact PLD. Finally, we show that defense unfairness also
exists for three widely-used MIA defenses (DP, Ly-regularizer, and
Dropout), which actually mitigates privacy unfairness.

There are multiple interesting research directions to explore.
First, our PLD metric measures the difference in MIA accuracy of
different demographic subgroups. It remains to be investigated if
other privacy-leakage disparity metrics based on the difference in
MIA precision, recall (as shown in Appendix (§ C)), or F-measure can
be adapted, and whether PLD will change if the metrics are different.
Second, we focus on disparity of different subgroups. Disparity can
also be defined at an individual level (known as individual fairness).
Briefly speaking, individual privacy fairness requires that similar
objects receive similar treatment. It is interesting to examine if
individual PLD exists, and how to design methods to mitigate PLD
at the individual level.
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Table 8: Setup of groups based on the protected attribute

Protected Attribute
Dataset Gender Race
Group G;  Group Gg | Group G;  Group Gy
Adult Non-white White
Broward Female Male Non-black Black
Hospital Non-white =~ White

Table 9: Importance and ranking of protected attributes

Gender Race
Dataset Relative Ranking Relative Ranking
Importance Importance
Adult 1.81% 14th /14 2.20% 12th /14
Broward 2.68% 6'h/8 3.02% 5rd /g
Hospital 1.99% 15t /16 2.84% 7th /16
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APPENDIX

A  GROUPING

Table 8 shows the setup of groups by gender and race. We note
that the race attribute has more than two values in every dataset.
Accordingly, we assign all race values into two racial groups by
following the conventions in the fairness community [9, 27, 35].

B FEATURE IMPORTANCE OF THE
PROTECTED ATTRIBUTES

Table 9 shows the feature importance of the protected attribute in
the three datasets. The feature importance is measured by permu-
tation feature importance method [4]. The results show that the
protected attribute (Gender or Race) are not of high importance
for training of the target model. The rankings of features based on
feature importance in Table 9 also demonstrate the unimportance
of the two protected attributes.

C MIA PRECISION AND RECALL OF
SUBGROUPS

Table 10 includes the results of MIA precision and recall for each
subgroup. Similar to the observation of MIA accuracy (Table 4),
different subgroups have disparate MIA precision and recall. The
disparity can be significant in some settings. For example, the differ-
ence in MIA recall on Adult dataset (with Gender as the protected
attribute) can be as large as around 13% between G} and G;. On the
other hand, while the disparity of MIA precision also exists across
all the settings, it is not as as large as that of MIA recall. Further-
more, some minority subgroups may receive lower (or higher) MIA
precision, but higher (or lower) MIA recall. For instance, on Adult
dataset with Gender as the protected attribute, the minority sub-
group G} has higher MIA precision but lower MIA recall compared
with the majority subgroup Gy. This raises an interesting research

question: which fairness definition is appropriate for evaluation of
privacy-leakage disparity? We leave this to the future work.

D DEFENSE EFFECTIVENESS OF
L,-REGULARIZER AND DROPOUT

We show the performance of both Dropout and Ly defense mech-
anisms in Table 11. Similar to the observations of DP (Table 6),
both Dropout and L2-regularizer mechanisms are effective to de-
fend against MIA. In particular, MIA accuracy eventually achieve
50% (random guess) when both defenses get stronger. The only
exceptional case is when Dropout is applied on the target model on
Hospital dataset. The best MIA accuracy that Dropout can reduce
to is still around 60%. The possible reason is that the model is still
overfitting even when the dropout ratio is as high as 20%. We also
observe that both training and testing accuracy decreases when the
defense gets stronger. This is expected due to the trade-off between
privacy and accuracy.

E IMPACTS OF L,-REGULARIZER AND
DROPOUT ON PLD

Table 12 shows the MIA accuracy per subgroup as well as PLD when
Dropout is used as the defense mechanism with various dropout
ratios. The main observation is that Dropout mitigates PLD on all
the three datasets - PLD eventually approaches to zero when the
dropout ratio increases (i.e., stronger defense). Furthermore, MIA
accuracy decreases at different speeds for different subgroups. In
most of the settings, MIA accuracy decreases the fastest on the
minority subgroups. This is consistent with our findings when DP
is the defense mechanism (§ 6). We believe the underlying reasons
of such defense disparity are the same as what we discovered for
DP (§ 6). We have similar observations when Ly-regularizer is used
as the defense (Table 13).

F ANALYSIS OF DEFENSE UNFAIRNESS ON
BROWARD AND HOSPITAL DATASETS

Figures 7 and 8 present how the distribution distance changes with
increase of defense strength on Broward and Hospital datasets
respectively. The observations are similar to Adult dataset (Figure
4 in §6.4) and thus are omitted due to limited space.

G DEFENSE UNFAIRNESS V.S. DISTRIBUTION
DISTANCE

Figure 6 presents the level of defense unfairness and the change
of distribution distance when gradually increasing the defense
strengthen on Adult and Broward datasets. The observation is
similar as on Hospital dataset (Figure 5). We omit the detailed
discussion due to limited space.



Table 10: MIA precision and recall of subgroups. Between every two subgroups of the same label, the minority subgroup is
marked with green, the higher MIA precision is marked with orange and the higher recall is marked with pinlk.

Dataset Label y Subgroup Gender Race
size | MIA precision | MIA Recall size | MIA precision | MIA Recall
+ Gf 51.1% 51.4%
Adult Gy 14351 88.2%
Gy
- Gy 4773 54.3% 89.4% 5111 54.4% 88.9%
+ Gf 1084 50.6%
Broward Gy 1530 51.0% 66.6% 48.9%
Gy 51.4% 62.2%
Gf 4849 66.6% 84.4%
Hospital " Gy 85.0% 6092 66.3%
Gy 72.1% 70.2%
- Gy 9022 58.3% 12225 58.4%
Table 11: Performance of Dropout and Ly-regularizer on both target model and MIA
Dataset | Dropout Ratio Trainacc. Testacc. MIA Acc Dataset | Regularizer parameter A Trainacc. Testacc. MIA Acc
Original 90.4% 82.5% 54.1% Original 90.4% 82.5% 54.1%
1% 89.9% 83.1% 53.7% 0.0001 85.9% 82.9% 52.0%
Adult 5% 89.0% 83.5% 53.3% Adult 0.001 84.9% 84.7% 50.9%
10% 88.2% 83.8% 52.8% 0.01 83.1% 83.1% 50.8%
20% 86.9% 84.4% 51.9% 0.1 75.1% 75.3% 50.4%
Original 71.3% 67.3% 51.8% Original 71.3% 67.3% 51.8%
1% 70.4% 62.3% 51.2% 0.0001 71.2% 65.3% 51.4%
Broward 5% 66.7% 61.3% 51.6% Broward 0.001 70.5% 67.3% 50.8%
10% 64.4% 60.5% 50.4% 0.01 69.0% 67.6% 50.7%
20% 63.1% 60.8% 50.6% 0.1 67.8% 68.4% 50.6%
Original 91.8% 64.9% 65.1% Original 91.8% 64.9% 65.1%
1% 91.4% 62.1% 64.0% 0.0001 92.3% 64.8% 64.9%
Hospital 5% 91.0% 62.3% 63.8% Hospital 0.001 87.5% 66.2% 61.6%
10% 90.8% 62.7% 63.3% 0.01 70.5% 69.1% 51.0%
20% 89.8% 62.0% 62.6% 0.1 65.4% 65.5% 50.2%

(a) Dropout (b) Ly-regularizer



Table 12: Impacts of Dropout as the defense mechanism on privacy-leakage disparity (PLD)

. Gender Race

Dataset Dropout Ratio — — — —
G Gy PLD G Gy PLD G Gy PLD G] G, PLD
Original 51.9% 53.2% 1.3% 65.4% 57.2% 8.2% 52.9% 52.6% 0.3% 69.8% 57.3% 12.5%
1% 51.5% 52.9% 1.4% 64.4% 56.6% 7.8% 52.4% 52.4% 0.0% 66.7% 56.9% 9.8%
Adult 5% 51.3% 52.6% 1.3% 63.1% 55.8% 7.3% 53.1% 51.9% 1.2% 64.9% 56.1% 8.8%
10% 51.4% 52.2% 0.8% 60.8% 54.6% 6.2% 52.6% 51.8% 0.8% 65.0% 54.6% 10.4%
20% 51.2% 51.6% 0.4% 58.0% 52.7% 5.3% 51.6% 51.4% 0.2% 59.7% 52.8% 6.9%
Original 52.6% 51.5% 1.1% 54.0% 51.5% 2.5% 51.0% 52.4% 1.4% 52.7% 51.5% 1.2%
1% 52.2% 52.0% 0.2% 54.3% 52.2% 2.1% 51.2% 52.5% 1.3% 52.6% 51.7% 0.9%
Broward 5% 52.3% 51.5% 0.8% 53.3% 51.4% 1.8% 50.6% 52.1% 1.5% 51.7% 50.9% 0.8%
10% 50.6% 50.6% 0.0% 52.7% 51.1% 1.6% 50.8% 51.0% 0.2% 51.5% 51.2% 0.3%
20% 50.7% 50.5% 0.2% 51.8% 50.9% 0.9% 50.2% 50.9% 0.7% 51.3% 51.0% 0.3%
Original 71.2% 73.5% 2.3% 62.1% 60.6% 1.5% 72.7% 71.4% 1.3% 62.6% 60.7% 1.9%
1% 70.9% 72.8% 1.9% 60.6% 60.7% 0.1% 71.7% 70.6% 1.1% 60.9% 59.8% 1.1%
Hospital 5% 70.8% 70.5% 0.3% 60.0% 59.6% 0.4% 70.4% 69.8% 0.6% 61.0% 60.0% 1.0%
10% 69.3% 70.4% 1.1% 59.7% 58.4% 1.3% 69.1% 69.1% 0.0% 60.8% 59.3% 1.5%
20% 68.7% 70.1% 1.4% 59.1% 58.1% 1.0% 66.6% 67.0% 0.4% 60.5% 59.1% 1.4%

Table 13: Impacts of Ly-regularizer as the defense mechanism on privacy-leakage disparity (PLD)

Dataset | Regularizer weight A Gender Race
G Gy PLD G Gy PLD Gf Gy PLD Gy Gy PLD
Original 51.9% 53.2% 1.7% 65.4% 57.2% 8.2% 52.9% 52.6% 0.3% 69.8% 57.3% 12.5%
1.00E-04 51.0% 51.7% 0.7% 57.3% 53.1% 4.2% 51.3% 51.4% 0.1% 58.3% 53.3% 5.0%
Adult 1.00E-03 50.8% 50.6% 0.2% 51.2% 51.5% 0.3% 50.8% 50.6% 0.2% 51.8% 51.4% 0.4%
1.00E-02 50.3% 50.8% 0.5% 51.1% 51.2% 0.1% 50.6% 50.6% 0.1% 52.5% 51.1% 1.4%
1.00E-01 50.2% 50.4% 0.2% 50.7% 50.7% 0.0% 50.5% 50.3% 0.2% 51.2% 50.6% 0.6%
Original 52.6% 51.5% 1.1% 54.0% 51.5% 2.5% 51.0% 52.4% 1.4% 52.7% 51.5% 1.2%
1.00E-04 52.4% 51.5% 0.9% 53.5% 51.7% 1.8% 51.7% 52.5% 0.8% 52.5% 51.2% 1.3%
Broward 1.00E-03 51.2% 50.9% 0.3% 51.9% 50.9% 1.0% 50.9% 51.1% 0.2% 51.9% 50.8% 1.1%
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Figure 6: Change of defense unfairness with distribution distance under DP. The x-axis represents the distance changes be-
tween the distribution of two subgroups under different privacy budgets, and the y-axis represents defense unfairness.
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Figure 8: Change of CSV distribution distance each subgroup and the entire population with increase of defense strength.
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