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Abstract

Purpose Rice is a staple crop worldwide and a sili-
con (Si) hyperaccumulator with Si levels reaching
5-10% of its mass; this can result in desilication and
Si-deficiency if plant residues are not managed cor-
rectly. Rice is also uniquely subject to arsenic (As)
and cadmium (Cd) contamination depending on soil
conditions. Our goal is to quantify the effects of rice
husk (a Si-rich milling byproduct) amendments and
different water management strategies on rice uptake
of Si, As, and Cd.

Methods We employed 4 husk amendment treat-
ments: Control (no husk), Husk (untreated husk), Bio-
char (husk pyrolyzed at 450 °C), and CharSil (husk
combusted at> 1000 °C). Each of these amendments
was studied under nonflooded, alternate wetting and
drying (AWD), and flooded water management in a
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pot study. Porewater chemistry and mature plant ele-
mental composition were measured.

Results Husk and Biochar treatments, along with
flooding, increased porewater and plant Si. Vegeta-
tive tissue As decreased with increasing porewater
Si, but grain As and plant Cd were primarily con-
trolled by water management. Grain As and Cd were
inversely correlated and are simultaneously mini-
mized in a redox potential (Eh) range of 225-275 mV
in the studied soil. Ferrihydrite in root iron plaque
decreased As translocation from porewater to grain,
but amendments were not able to increase plaque fer-
rihydrite content.

Conclusion We conclude moderate husk amend-
ment rates (i.e., 4 years’ worth) with minimal pre-
treatment strongly increases rice Si content but may
not be sufficient to decrease grain As in low Si and
As soil.

Keywords Rice - Husk - Silicon - Arsenic -
Cadmium

Abbreviations

AWD Alternate wetting and drying
Fh Ferrihydrite

Lep  Lepidocrocite

Goe  Goethite
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Introduction

Rice is the dominant source of calories for over half
the world population (Seck et al. 2012), and demand
is increasing each year, especially in developing
countries (Chauhan et al. 2017). Rice is also a unique
crop in that it accumulates high amounts (5-10%) of
silicon (Si) in its tissues (Jones and Handreck 1967;
Epstein 1994). Silicon is considered a beneficial
nutrient for rice because it increases disease, pest,
and stress resistance (Epstein 1994; N.K. Savant
1997; Voogt and Sonneveld 2001; Ma and Takahashi
2002; Ma 2004). Silicon can also increase grain yield
(N.K. Savant 1997; Savant et al. 1997; Korndorfer
and Lepsch 2001; Li et al. 2009b; Klotzbiicher et al.
2015), particularly under arsenic stress (Teasley et al.
2017; Limmer et al. 2018b). Although Si is a ubig-
uitous component of soils, most silicate minerals are
sparingly soluble. Managing plant-availability of Si
in rice paddies is therefore crucial to ensure high crop
productivity.

The Si present within plant tissues is typically
found as amorphous SiO, (Ma and Yamaji 2006),
which has~10Xxhigher solubility than crystal-
line SiO, minerals such as quartz (Gunnarsson and
Arnérsson 2000; Fraysse et al. 2006, 2009). This
plant-opaline SiO, pool plays an outsized role in the
Si cycle, especially in surface soils (Alexandre et al.
1997; Struyf et al. 2010; Seyfferth et al. 2013; Cor-
nelis and Delvaux 2016). Rice husk is an inedible
covering on rice grains which is especially rich in
plant-opaline Si (Li et al. 2013) and thus can serve
as a source of Si for plant growth (Seyfferth et al.
2013, 2016, 2019a; Teasley et al. 2017; Limmer
et al. 2018a; Linam et al. 2021). Husk is currently
an underutilized byproduct which accumulates at
rice mills (Minami and Saka 2005) and is sometimes
burned to ash or pyrolyzed/charred (combusted in
oxygen-limited conditions) to biochar at a wide range
of temperatures to reduce its mass (Koyama et al.
2015). In general, dissolution kinetics of SiO, from
rice husk slow with increasing pyrolysis temperature
(Linam et al. 2021), and solubility is decreased by
burning to ash (Seyfferth et al. 2016; Teasley et al.
2017; Limmer et al. 2018a). Removing, pyrolyzing,
or burning of rice husk, along with straw removal and
desilication due to weathering, can cause significant
loss of available Si from paddy soils (Berthelsen et al.
2003; Haynes 2014; Klotzbiicher et al. 2015; Hughes
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et al. 2020). Reincorporation of rice straw has nega-
tive impacts such as increased methane production,
but reincorporation of rice husk acts as a slow-release
fertilizer and continues to provide Si for several
years after incorporation (Penido et al. 2016; Teas-
ley et al. 2017; Wu et al. 2020; Linam et al. 2021).
It remains unknown how soil incorporation of unal-
tered rice husk affects plant growth and yield com-
pared to incorporation of husk charred at different
temperatures.

In addition to benefiting rice in terms of yield and
stress resistance, Si is also closely associated with
arsenic (As) uptake. The most dominant form of As
in paddy soil solution (arsenite, As(IIl)) enters rice
roots through the highly efficient Si transporters Lsil
and Lsi2 (Jian et al. 2006; Ma et al. 2007, 2008), and
the second most dominant form (dimethylarsinic acid
(DMA)) also shares Lsi2 (Li et al. 2009a). Adequate
supply of Si can decrease transporter number and
activity, which decreases As uptake and toxicity—
this has been shown in hydroponic and paddy rice
studies (Guo et al. 2005; Bogdan and Schenk 2008;
Ma et al. 2008; Zhao et al. 2009; Seyfferth and Fend-
orf 2012; Seyfferth et al. 2016, 2018, 2019a; Limmer
et al. 2018b, a). Any practice altering Si availability
to rice likely also affects As uptake, and thus increas-
ing Si nutrition has been promoted as a sustainable
way to lower As uptake by rice (Runkle et al. 2021).

Another way to affect the plant-uptake of toxic
metal(loid)s in rice is through water management.
The flooded conditions typically used in rice pro-
duction result in low soil redox potential (Eh) and
reductive dissolution of As-bearing iron (Fe) oxide
minerals. This allows adsorbed arsenate (As(V)) to
be reduced to the much more soluble As(III), which
is more plant-available; As(III) can subsequently
be methylated to the less (human-) toxic but more
translocatable (Zhao et al. 2009, 2013; Carey et al.
2010, 2011; Zheng et al. 2013; Seyfferth et al. 2018)
forms monomethylarsonic acid (MMA) or DMA.
One method of lessening As uptake is allowing soil
to dry—either periodically as in alternate wetting
and drying (AWD), or permanently as in nonflooded
rice production (Bouman et al. 2007; Arao et al.
2009; Li et al. 2009b; Seyfferth et al. 2018). When
soils are drier (e.g. nonflooded conditions), their Eh
is higher and sulfide-bound contaminants such as
cadmium (Cd) can be released through oxidation of
reduced minerals, resulting in plant uptake of the



Plant Soil

Cd** ion (Kashem and Singh 2001a, b; Arao et al.
2009; Seyfferth et al. 2019a). This dynamic leads to a
tradeoff between As and Cd availability to rice during
water management and efforts are currently underway
to determine the most promising irrigation strategy
to minimize both As and Cd in rice. We posit that
a combination of water and Si management may be
better than either alone in minimizing uptake of toxic
metal(loid)s in rice.

Both Si and water management have the poten-
tial to affect the formation and mineral composition
of Fe plaque that forms in the rhizosphere of rice,
which has consequences for plant-uptake of toxic
metal(loid)s. Fe plaque is apparent as the reddish-
orange precipitate on the roots of wetland plants like
rice grown under flooded conditions. This plaque
forms due to radial oxygen loss (ROL) from aeren-
chyma tissues that transport oxygen from the atmos-
phere to roots and allow the roots to respire, but in
the process some oxygen leaks into the rhizosphere
and reacts with aqueous ferrous iron (Hansel et al.
2001; Cornell and Schwertmann 2006a; Khan et al.
2016). Fe plaque is heterogeneous in space and is
comprised mostly of the Fe (hydr)oxides ferrihy-
drite (“Fh,” Fe(OH);:nH,0), lepidocrocite (“Lep,”
y-FeOOH), and goethite (“Goe,” a-FeOOH) (Han-
sel et al. 2001; Cornell and Schwertmann 2006a;
Seyfterth et al. 2010, 2011; Frommer et al. 2011;
Khan et al. 2016). These minerals are in a dynamic
equilibrium, with the short-range ordered and highly
reactive Fh generally forming first and transform-
ing into the more highly-ordered and stable Lep and
Goe over time (Waychunas et al. 1993; Manceau and
Charlet 1994; Manceau 1995; Schwertmann et al.
1999; Hansel et al. 2005; Cornell and Schwertmann
2006b). Fe oxides are usually positively charged in
soils (Cornell and Schwertmann 2006¢) and therefore
strongly adsorb anions, including As species (Inskeep
et al. 2002; Bogdan and Schenk 2008). It is thought
that Fe plaque limits uptake of As (Hansel et al. 2002;
Guo et al. 2007; Deng et al. 2010; Lee et al. 2013;
Syu et al. 2013; Yamaguchi et al. 2014; Amaral et al.
2017; Yang et al. 2020), but this complex process
is not well understood. It is known that Si addition
retards the transformation of Fh to higher ordered
phases (Schwertmann and Thalmann 1976; Amaral
et al. 2017; Limmer et al. 2018a), which may effec-
tively increase the surface area for As adsorption on
plaque (Cornell and Schwertmann 2006¢). However,

Si can also compete with As(IIl) for adsorption sites
(Luxton et al. 2008). In addition, less soil flooding
tends to decrease the amount of Fe plaque and pro-
mote a plaque that has higher siderite (FeCO;) and
Lep (Seyfferth et al. 2019b).

Because of these complex rhizosphere interactions,
we must better understand how soil management
impacts the uptake of nutrients and contaminants by
rice. It is unknown how return of Si-rich rice husk
with and without charring pretreatment will affect Si
and As uptake by rice. It is also unknown how water
management will affect the trade-off between As and
Cd uptake in this context, and how both these man-
agement decisions will impact rhizosphere interac-
tions. Here, we conducted a pot study to better under-
stand how Si and water management affect As and
Cd uptake by rice. We hypothesized that; 1) husk and
biochar would increase plant Si and root plaque Fh
content; 2) increased Si and root plaque Fh would be
correlated with decreased As uptake; 3) rice As and
Cd uptake would trade-off due to water management;
4) a combination of AWD water management and
husk or biochar amendment would simultaneously
minimize As and Cd in rice grain.

Materials and methods
Soil description and husk amendments

Soil for the pot study was collected from the Univer-
sity of Delaware adjacent to the Rice Investigation,
Communication, and Education (RICE) Facility.
Detailed soil descriptions can be found in earlier work
(Teasley et al. 2017; Limmer et al. 2018a; Seyfferth
et al. 2019a) but briefly, the soil is an Elsinboro
series, Typic Hapludult, silty loam and has pH (1:1
H,0)=5.2, 2.86% organic matter (loss-on-ignition),
3.8 mg kg~! total As (acid-digestible), <1 mg kg
total Cd (acid-digestible), and 13 mg kg™! acetic acid-
extractable Si. Soil was collected from the A hori-
zons (approximately 20 cm depth) and mixed by hand
while moist, taking care to preserve soil structure as
closely as possible.

Rice husk treatments consisted of Control (no
amendment), unaltered rice husk (“Husk”), rice husk
biochar (“Biochar”), and husk incinerated at high
(>1000 °C) temperature (“‘CharSil”). Both Husk
and CharSil were acquired from Riceland Mills in
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Stuttgart, Arkansas, USA. Rice husk biochar was
pyrolyzed from the fresh husk in steel cannisters with
a small vent in their lid via batch method at 450 °C.
Cannisters were removed from the oven and sealed
when volatilization ceased (39 min). Additional infor-
mation on Biochar preparation and characterization
can be found in Linam et al. 2021. Elemental compo-
sition of amendments and pH, cation exchange capac-
ity (CEC), specific surface area (SSA), and point of
zero charge (PZC) of Biochar and CharSil are given
in Table 1.

Pot study design

A pot study was conducted to determine the effects
of husk amendments and water management on Si,
As, and Cd uptake by rice plants. A 4 X3 completely
randomized experimental design was employed with
4 amendment treatments and 3 water management
treatments, each in triplicate. Holes were drilled into
the base of 36 8 L HDPE pots, and 9.36 kg of moist
soil (equivalent to 8 kg dry soil) was added to each.
To each pot, 45 g (0.5% w/w) of rice straw contain-
ing 30 g kg~! Si and 2.1 mg kg~! As from the RICE
Facility was added and mixed into the soil, the pot
drainage holes were sealed with rubber stoppers, and
the pots were flooded with distilled H,O. The pots
were randomized and placed in a climate-controlled
growth chamber for 31 days to allow equilibration
of paddy-like conditions. The growth chamber was
set to 14 h days with daytime temperatures of 28 °C
and nighttime temperatures of 26 °C at 60% rela-
tive humidity. Light was supplied by LED LumiGro
LumiBars. The plugs were then removed to allow
the pots to drain before incorporating Husk, Biochar,
and CharSil in 9 pots each at~1 Mg Si ha™! rates (i.e.
45 g Husk, 18.45 g Biochar, and 17.35 g Charsil per
pot) while the remaining 9 pots received no amend-
ment (“Control”). Amendments were not ground and
were incorporated well into the soil to prevent loss
from floating or leaching. This level of amendment is

equivalent to~4 years’ worth of husk production. Soil
test recommended levels of nitrogen and potassium
as urea and KClI (background P levels were sufficient
for rice growth) were also added. Hybrid rice seed-
lings (Oryza sativa L. cv CLXL745) were germinated
separately in a greenhouse for 24 days and were trans-
planted (one seedling per pot) 7 days after addition of
amendments and fertilizer.

The water management treatments were imposed
after transplanting seedlings into the 8 L pots. Three
pots from each treatment were inundated continu-
ously (“Flooded”), 3 were inundated but allowed to
drain 4 times during vegetative growth to 25% volu-
metric water content which took about 7 days for our
soil (alternate wetting and drying, “AWD”), and 3
were watered twice-weekly to 80% water-filled pore
space then allowed to drain into a basin from which
water could wick back into the soil (“Nonflooded”).
Pot order was randomized weekly, and plants were
grown in the growth chamber until physiological
maturity (124 days post-transplant).

Porewater sampling and analysis

Soil porewater was sampled every~ 14 days using
Rhizon samplers (Rhizosphere Research Products,
19.21.01) inserted at a 45° angle into the soil (2-9 cm
sampling depth) according to published methods
(Seyfferth and Fendorf 2012; Seyfferth et al. 2016).
These Rhizons were left in the soil, and evacuated
HDPE and evacuated/combusted glass vials were
used to collect porewater from each pot. Samples
from glass vials were used for dissolved organic car-
bon (DOC) analysis (Vario TOC Cube, Elementar).
The samples in plastic vials were used for pH (cali-
brated probe), Eh (Pt electrode calibrated against the
standard hydrogen electrode), and H,SiO, (Kraska
and Breitenbeck 2010) and Fe(Il) (Stookey 1970)
via colorimetric determination, and the remainder
was acidified (2% HNO;) and elemental composition
was determined via ICP-MS (Thermo Scientific™

Table 1 Concentration

- Amendment  Carbon  Nitrogen  Silicon pH CEC SSA (BET) PZC
of silicon, carbon, and o )
nitrogen in the rice husk % % % } cmol(+) kg m-g PH
amendments and pH, CEC,
SSA, and PZC of Biochar Husk 40 0.34 6.8 - - -
and CharSil Biochar 49 0.62 14.7 9.5 17.02 4.69 1.70
CharSil 26 0.26 23.8 100  11.37 2491 222
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iCAP™ TQ ICP-MS) with matrix-matched stand-
ards. Time-weighted average values were calculated
by summing the products of the measured values and
their interval between sampling dates, all divided by
experiment duration.

Plant analysis

After 124 days of growth post-transplant, the plants
were harvested and separated into panicles, straw
(stems and leaves), and roots. Roots circling the edge
of the pots (“pot-bound”) were removed and not
included in analysis. Panicles were air-dried, straw
was dried at 40 °C, roots were washed and air-dried,
and then all were weighed to obtain biomass. The
grain was removed from the husk via a benchtop de-
husker, then the brown grain, husk, and straw were
ground into powders. Roots were processed accord-
ing to the method of Amaral et al (2017) to obtain Fe
plaque mineral composition. For this, approximately
half of the dried roots were used for Fe plaque min-
eral composition (see next section) and the remaining
half was subjected to a dithionite-citrate-bicarbonate
(DCB) extraction to dissolve Fe plaque, and the
extract was diluted 100-fold prior to elemental analy-
sis with ICP-OES. The plaque-free roots were then
washed, dried, and ground. The root, straw, husk, and
grain powders were digested in concentrated HNO; in
Teflon vessels using a microwave digester (MARS6
Xpress, CEM Corporation) along with NIST 1568a
(rice flour), 1570a (spinach leaves), 1573a (tomato
leaves), and WEPAL IPE 188 (oil palm leaves) as
standards following previously established proce-
dures (Seyfferth et al. 2016). These digests were
diluted to 2% HNO; and elemental analysis was per-
formed along with blanks and check standards via
ICP-MS. Grain As speciation in brown rice grain was
also determined via extraction with dilute HNO;, and
analysis via HPLC-ICP-MS with a PRP-X100 anion
exchange column (2.1 x50 mm, Phenomenex) and
Thermo Scientific™ iCAP™ TQ ICP-MS. Detailed
descriptions of these procedures can be found (Kirby
et al. 2004; Mabher et al. 2013; Jackson 2015; Lim-
mer et al. 2018a). Recoveries of porewater As, Cd,
and Si from check standards were 102.0+12.4%,
99.1+2.5%, and 96.8+7.5%, respectively; recover-
ies of As and Cd from standard reference material
digests were 143 +57% and 114 £49% (NIST 1568b),
98 +18% and 94 +4% (NIST 1570a), and 95+29%

and 95 +4% (NIST 1573a), respectively. While there
is not a certified reference for Si in plant tissue, the
values recovered were within the range of the indica-
tive values with an average of 71 +£5%.

Fe mineral composition of root Fe plaque

Iron mineral composition of the root plaque was
determined via Fe EXAFS. Half of the dried roots
from each plant was sonicated to remove the root
plaque, which was collected and dried on a nitro-
cellulose filter paper following previous techniques
(Amaral et al. 2017). These filters were analyzed
on beamline 6-BM (BMM) at NSLS-II. The sam-
ples were analyzed in duplicate using a~5X1 mm
beam in transmission out to a k of 15 A~! with steps
of 0.05 k and integration times of 1 s. Data analysis
(background subtraction, normalization, and linear
combination fitting) was performed using Athena
software (Ravel and Newville 2005). Standards for
fitting were constrained by x-ray diffraction results
from previous studies of root plaque (Hansel et al.
2001; Seyfterth et al. 2011; Seyfferth 2015; Amaral
et al. 2017) and included 2-line Fh, Lep, Goe, sider-
ite, hematite (Fe,O;), and magnetite (Fe;O,). Fitting
was performed on k°-weighted spectra from k=2-12

AL
Grain As XRF images and associated As XANES

X-ray fluorescence (XRF) microscopy was used to
elucidate the As distribution and speciation in rice
grains from each treatment. Single brown grains
were embedded in epoxy resin (EPO-TEK 301-
2FL) and cut perpendicular to the long axis. Cross
Sects. (30 um) were fixed on quartz slides. Grains
of interest were selected that had representative As
concentrations and the presence of the ovular vascu-
lar trace (OVT) in the cross section. Imaging of As
distribution and As XANES spot analysis was per-
formed on XFM beamline (4-BM) at the National
Synchrotron Light Source-II (NSLS-II). Briefly, this
beamline uses Kirkpatrick-Baez (KB) mirrors to
deliver focused X-rays (2—10 mm spot size) with
tunable energy using a Si(111) double-crystal mono-
chromator. Samples were oriented 45° to the incident
beam and the XRF detector (Canberra SXD 7-ele-
ment SDD) was positioned 90° to the incident beam.
Coarse images were taken of entire grains at 12 keV
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with 10 pm beam size, 10 pm step size, and 100 ms
dwell time. Fine images were taken of the OVT
region at 12 keV with 3 pm beam size, 3 pm step size,
and 500 ms dwell time. Images were processed using
LARCH (Newville 2013) and analyzed using SMAK
(Webb 2011). Arsenic K-edge micro-XANES were
collected in fluorescence mode over an energy range
of 11,802—-12,017 eV with 3 s integration time. The
peak of the first derivative was set to 11,874 eV for
an As(V) standard. Transects were measured across
the endosperm, bran, and OVT boundaries. Triplicate
scans were averaged, normalized, and fit using linear
combination fitting in Athena (Ravel and Newville
2005). Standards considered for fitting were As(III),
As(V), DMA(V), MMA(V), and As(III)-Glutathione
(AsGlu).

Statistics

Statistical analyses were performed using R Studio
(Team 2020) and JMP Pro 16 (SAS Institute). Lin-
ear regression analysis was used to examine correla-
tions between variables within and across treatments.
Amendment*Water Management interactions were
considered during two-way ANOVA and Tukey post-
hoc HSD analysis. Significant differences were con-
sidered at p<0.05 level.

Results
Porewater Si, As, and Cd

Average concentrations of Si in the soil porewater
were affected by the amendment (p<0.001), water
management (p=0.041), and amendment*water man-
agement interaction term (p<0.001). Husk, Biochar,
and CharSil amendments increased time-weighted
average porewater Si concentrations over Control by
45%, 11%, and 4%, respectively, while Flooded and
AWD treatments had 38% and 26% higher porewater
Si compared to Nonflooded, respectively (Fig. 1a).

Concentrations of As and Cd in the soil porewater
were controlled solely by water management (Fig. 1b,
1c) with no significant differences due to amend-
ments (p=0.1 and 0.9, respectively). Porewater As
(p<0.001) was decreased by 67% and porewater Cd
(p<0.001) was increased by 184% in Nonflooded
compared to Flooded treatments; there were not sig-
nificant differences in porewater As and Cd between
AWD and Flooded conditions. The difference in Eh
between Nonflooded and Flooded treatments also
increased as plants grew larger and had increased
evapotranspiration rates (Figure S2). Thus, As and Cd
solubilities were inversely correlated and controlled
by water management. No evidence of immobiliza-
tion of As or Cd by amendments was observed.

Plant Si and yield

Porewater Si concentrations were correlated
to plant Si concentrations for husk (p=0.003),
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Fig. 1 Time-weighted average concentrations of Si (a), As (b),
and Cd (c) in soil porewater for the duration of the experiment
(10 sampling dates over 124 days). Water management deter-
mined As and Cd, while amendment and water management
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straw (p<0.001), and roots (p=0.010) at harvest
(Table S1). Plaque Si concentration was not strongly
correlated to porewater Si and was best predicted by
Eh (p=0.051). Eh was also a significant predictor in
multiple linear regression models of straw (p=0.010)
and root (p=0.004) Si concentration, where Eh was
positively correlated to root Si and negatively corre-
lated to straw Si. Though not significant, Eh was also
negatively correlated to husk Si. It should be noted
that the variance explained by these models was still
quite low (R?,; from 0.09-0.66).

Due to the strong correlation between porewater
and plant Si, amendments generally increased plant Si
concentration (Fig. 2a,b). Amendments significantly
(p<0.001) impacted Si concentration in straw and
roots; water management significantly impacted straw
(p<0.001), root (p=0.010), and plaque (p=0.044)
Si; and water management*amendment interaction
significantly affected husk Si (p=0.009). Increased
flooding tended to increase straw Si while decreasing
root Si (Fig. 2, Table S1).

Patterns of grain and straw yield differed slightly
among treatments, with AWD producing more grain
(p=0.01) and straw (p=0.05) than Nonflooded water
management (Fig. Sla,b). There were no significant
differences in harvest index (Fig. S1c). Because con-
centration and total mass of As and Cd in plant tis-
sues showed similar trends, we will present elemental

concentrations rather than elemental mass in each
plant fraction.

Concentrations and tradeoff of grain As and Cd

Rice grain total As and Cd concentration was largely
controlled by water management (Fig. 3, p<0.001
for both), which was the only statistically signifi-
cant independent variable. Flooded rice accumulated
1.3-2.3 times more As than AWD, and 9-12 times
more than Nonflooded. Conversely, Nonflooded rice
accumulated 7.3-16.8 times more Cd than AWD,
and 16.7-40.3 times more than Flooded. AWD treat-
ment effectively increased average porewater Eh by
51-168 mV during the 30 days of dry downs and
maintained a higher Eh for several weeks after re-
flooding (Figure S2). Husk and Biochar treatments
showed a smaller increase in Eh compared to Con-
trol and CharSil. Increased As uptake due to flood-
ing generally increased up the transpiration stream
(from plaque to grain), while increased Cd uptake due
to Nonflooded conditions was most pronounced in
plaque and grain. Amendments did not significantly
impact plant Cd concentrations. Unpolished rice grain
As and Cd concentrations were exponentially corre-
lated to porewater Eh, and inversely correlated with
each other. This results in a trade-off between grain

x103
o
[$]

Si (mg kg™")

Straw Husk

Fig. 2 Concentrations of Si in aboveground (a) and below-
ground (b) plant tissues at harvest determined via plant
digestion; aboveground values are in thousands. In legend,
“C”=Control, “H”=Husk, “BC”=Biochar, “CH”=CharSil,
and “NF”=Nonflooded, “AWD” = Alternate Wetting and Dry-
ing, “F’=Flooded. Amendment is seen to affect straw and
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Error bars represent + standard deviation (n=3); a=0.05
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Fig. 3 Concentrations of As species (a) and total Cd (b) in
brown grain at harvest determined via microwave digestion.
TMAO =trimethylarsine oxide. Total As, DMA, and total Cd
are all significantly affected by water management (capital

As and Cd, with minimization of both contaminants
at moderate Eh of 225-275 mV (Fig. 4).
Concentrations of Cd in plant tissues (roots, straw,
husk, and grain) could be predicted very well by pore-
water Eh and porewater Cd concentration (Table S1).
In contrast, the dynamics of As uptake and translo-
cation were more complex (Table S1, Fig. S3). Gen-
erally, plant As decreased with increasing Eh. When
all samples are analyzed together, there are no clear
correlations between porewater Si and plant As; Eh
alone was an equally good predictor of grain As when
compared to more complex models. When samples
are separated by water management, however, we
see reasonably strong negative correlations between

Fig. 4 Exponential 25 Tt
trade-off between grain As

(circles) and Cd (squares)

showing minimization of 2
both contaminants at Eh of

225-275 mV. This value is 50)‘

expected to shift in different X5
soils with different As and E’
Cd levels. Time-weighted &
. <

average porewater Eh is c 1
shown to be a good sole ‘®
O]

predictor of grain contami-

nation (R>=0.7-0.75)
0.5

Flooded

Nonflooded AWD

Flooded

letters with brackets), while iAs concentration is affected by
water management¥*amendment interaction (lowercase letters
inside bars). Error bars represent +standard deviation (n=3);
a=0.05

porewater Si and As in husk, straw, roots, and grain
(for iAs; DMA shows no such trend, Fig. S3).
Arsenic speciation in the rice grain was much
more variable than total As concentration (Fig. 3a).
Concentrations of organic As species (0As, pri-
marily DMA) in rice grain was only significantly
impacted by water management, and the trend was
the same as total As: F>AWD>NF. Inorganic As
(1As=As(Il)+ As(V)) was significantly affected
by amendment (p=0.026), water management
(p<0.001), and the interaction term of these two
variables (p=0.009; Fig. 3a). Under Flooded treat-
ments, the Control, Biochar and CharSil treatments
had the highest grain iAs, which was slightly lowered,

106
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r 0.5 ©0C_AWD
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o
o £ HF
033
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but not significantly, in the Husk treatment. Under
AWD, the lowest grain iAs was observed in the Con-
trol with Biochar treatment having significantly more
iAs. Between Flooded and AWD water manage-
ments, the largest impact observed was that AWD
decreased grain iAs by 65% in the Control, while the
Husk, Biochar, and CharSil treatments only showed
a 5-22% decrease in iAs (Fig. 3a). AWD decreased
0As species by 44-81% and showed no trends due to
amendment.

Arsenic pXRF maps of rice grains provided addi-
tional insight into the changes of As speciation under
Flooded (Fig. 5b) to AWD (Fig. 5a) conditions (exam-
ple shown from Husk amendments). The ovular vas-
cular trace (OVT) appears more intense in the AWD
grain (Fig. 5a) due to iAs being the primary species
under AWD (Fig. 3a) and being concentrated more
in the OVT. The OVT of the Flooded grain (Fig. 5b)
appears similar or even less pronounced, which sug-
gests the decreased grain As due to AWD seen in

Fig. 5 pXRF maps show-
ing total As distribution

in the grain OVT region

of rice grown under AWD
(a) and Flooded (b) water
management with Husk
treatment. Markers indicate
location of As XANES
scans along with labels
corresponding to their
location in the grain. Color
scales are set to the same
minimum and maximum
fluorescence intensity

100% T

Percent As Species
B (2] o]
o o o
XXX

20%

0% -

AWD Flooded AWD Flooded

ovT Bran

Fig. 6 Bar charts showing linear combination fitting results of
As XANES spot scans in rice grain from AWD and Flooded
experiments under Husk treatment. Tissue locations corre-
spond to labels in Fig. 5. AWD treatment was seen to generally

the digestion data (Fig. 3a) is primarily due to less
DMA distributed in the bran and endosperm. Arsenic
p-XANES spectra were collected from spots shown
in Fig. 5 and are classified as endosperm, bran, or
OVT based on their location. Results from p-XANES
support the evidence of AWD primarily decreasing
grain DMA, not iAs (Fig. 6), and also suggest that
the majority of the “iAs” seen via HPLC-ICP-MS is
likely As(III)-glutathione (AsGlu) that is oxidized
during grain extraction (Raab et al. 2004; Lombi et al.
2009). As-XANES data showed an increase in AsGlu
dominance due to AWD water management, the
magnitude of which decreases moving into the grain
(OVT > bran > endosperm; Fig. 6). As-XANES data
from Biochar and CharSil AWD grains showed a sim-
ilar but stronger trend of increased AsGlu and As(V)
with decreased DMA under AWD water management
(Fig. S4). Finally, example As pXRF maps of grain
cross-sections for CharSil-Flooded (Fig. 7b,e) and
CharSil-AWD (Fig. 7a,d) shows evidence of much

B As(lll) Glutathione
0O DMA(V)
B As(V)

AWD Flooded
Endosperm

decrease the DMA proportion of total As. Magnitude of trend
is highest in OVT and bran, and trend is similar in Biochar and
CharSil treatments (Fig. S4)
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CharSil-AWD | b

Grain As (mg kg'*)

Fig. 7 pXRF images of As distribution in grains from rice
grown under AWD (a,c) and Flooded (b,e) water management
with CharSil treatment. Lower images (c and e) are fine scans
of OVT regions delineated by white boxes in a and b, respec-
tively. Under Flooded conditions, As is much more diffuse
throughout the endosperm due to higher DMA, while it is con-
centrated as arsenic(II)-glutathione ("iAs” in extraction data)

lower As in the bran and endosperm of AWD grains,
with the unchanged OVT signal, likely due to iAs.

Plaque Si, As, and mineralogy

Root plaque mineral composition was impacted
by both water management (p<0.001) and water
management*amendment interaction (p=0.023,
Fig. 8). Linear combination fitting results sug-
gested minimization of error with a 4-compo-
nent model consisting of 2-line Fh, Lep, Goe,
and siderite. Total amount of plaque decreased
from Flooded > AWD >Nonflooded, while the
amount of Fh and Lep is influenced by water
management*amendment interaction (p=0.023 and
0.036, respectively). Although there is significantly
less Lep and noticeably less Fh, Goe, and siderite in
the Flooded Husk treatment compared to the Flooded
Control, this relationship is inverted for the AWD
treatment. On a percentage basis, multiple linear
regression suggests that percent Fh increases with Eh;
percent Goe increases and percent siderite decreases
with Fe(Il); and percent Lep decreases with Fe(Il),
DOC, and Eh. There is a significant impact of water
management on Fe mineralogy on a percent basis,
where Nonflooded conditions increase Fh and Lep
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—

AWD Flooded

in the bran and OVT in AWD treatment. This corresponds to
the As speciation data from the grain extraction data (d, cop-
ied from Fig. 3a) which suggests AWD treatment primarily
decreases DMA which is located throughout the endosperm.
Color scales are set to the same minimum and maximum fluo-
rescence intensities for the coarse scans (a,b) and for the fine
scans (c, e)

k] [ siderite
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o M Charsil
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Fig. 8 Concentration of Fe minerals in root plaque determined
via Fe-EXAFS and DCB extraction showing overall Fe plaque
increased with flooding extent. Uppercase letters with brackets
represent Tukey HSD groupings for water management and
total, Sid, Goe, Lep, and Fh mass in plaque. Lowercase letters
in bars represent Tukey HSD groupings within Fe minerals for
water management*amendment interaction. Error bars repre-
sent standard deviation (n=3); a=0.05

at the expense of Goe (Fig. S5). On a mass basis (g
Fe mineral/kg root), multiple linear regression shows
that the mass of each mineral decreases with Eh, and
that Lep decreases with DOC. Porewater DOC and
Si are positively correlated to Fh, though they are not
statistically significant predictors.

Linear regression shows an inverse relationship
between As translocation factor (TF=grain As/
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porewater As) and percent Fh in root plaque, while As
translocation is positively correlated to plaque percent
Goe (Fig. 9). Despite these correlations, grain As is
closely tied to total amount of Fe plaque on roots, as
emphasized by the similar trends seen in Figs. 3a and
8. Figure 9 avoids biases due to Eh effects and thus
focuses on relative As accumulation from porewater.

Discussion
Si supply from amendments

We partially accept hypothesis 1—Husk and Bio-
char increased plant Si but did not seem to increase
Fh in root plaque. Rice husk management plays a
strong role in determining plant available Si. Soil
incorporation of Husk and Biochar increases Si con-
centrations in porewater and rice plants regardless of
water management (Figs. 1,2). This agrees with the
literature (Penido et al. 2016; Seyfferth et al. 2016),
and suggests Si-rich residue incorporation plays
an important role in the Si cycle in rice paddies
(Seyfferth et al. 2013). Uncontrolled combustion of
husk at high temperature, however, inhibits the abil-
ity of husk to supply Si to soil or plants; for CharSil,
this is likely due to the transformation of amorphous
SiO, to more crystalline forms (Savant et al. 1997).
Typical pyrolytic temperatures do not cause crystal-
linity changes of SiO,, and therefore the decreased
Si supply from Biochar seen here is likely due to

increased hydrophobicity or resistance to decomposi-
tion (Linam et al. 2021). In contrast to previous work
(Taib 2007; Xiao et al. 2014), our results suggest that
the ability of rice husk to supply plant-available Si is
not increased by pyrolysis or burning pretreatment
and may actually be decreased by it. It is also worth
noting that porewater (Fig. 1) and aboveground plant
(Fig. 2) Si increased with extent of flooding (Tsuji-
moto et al. 2014). This is likely due to release of Si
bound to minerals such as Fe (hydr)oxides during
reductive dissolution at low Eh. This has important
implications for the role root or rhizosphere Fe plaque
could play in Si availability to rice.

Rice As uptake and grain speciation

Uptake of As by rice plants is a complicated process,
but our results suggest it is primarily determined by
soil redox potential (Fig. 4, Table S1). There is a
strong exponential relationship between grain As and
porewater Eh as previously observed (Li et al. 2009b),
which is not improved by considering porewater As
(Seyfferth et al. 2019a); however, here porewater As
was positively correlated with husk and straw As
(Table S1). This could be due to active biological
control over As translocation to rice grain, differences
in Si:As ratios, high levels of DMA in grain, or strong
collinearity between porewater Eh and As.
Amendments interacted with water management
to alter As speciation in rice grain. This was particu-
larly important in AWD water management, where

Fig. 9 Positive and inverse 6 1 ® Goethite ® Ferrihvari C_NF
linear correlations between y=14.81x - 0.32 y= _;”;21 i' 1e 383
As translocation factor (TF) R2=0.55 R2=039 ©C_AWD
and percent Fe plaque as 51 eC_F
Goe and Fh, respectively. .
As TF=grain As/time- s, H_NF
weighted average porewater = H_AWD
As. Slopes suggest that a o
10% increase in plaque Goe o 3 HF
results in 1.48 mg/kg more E BC_NF
As translocated to grain per e
UM porewater As, while 2 2 ©BC_AWD
10% more Fh in plaque c ®BC_F
results in 2.13 mg/kg less o

< : ] CH_NF
As translocated to grain per 14 —
porewater pM As o CH_AWD
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Fe Plague Composition
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(compared to Flooded) AWD mainly decreased grain
DMA regardless of amendment and only decreased
iAs in Control (Fig. 3a). Our results suggest that
AWD is more effective at decreasing rice grain DMA
compared to iAs in accordance with some previ-
ous work (Li et al. 2009b; Ma et al. 2014) and that
amendments may further this effect. This suggests a
lower Eh is necessary for As methylation compared
to iAs reduction (Chen et al. 2019)—methylation can
similarly be promoted by addition of labile carbon
(Jia et al. 2013; Yang et al. 2018). Other studies sug-
gest no trend (Chou et al. 2016; Das et al. 2016) in the
effects of AWD on As speciation; this is likely due
to soil-specific responses to AWD which could also
help explain the high variability in As speciation seen
worldwide (Zhao et al. 2013). Within the AWD treat-
ment, amendments actually led to higher iAs con-
centrations than Control (Fig. 3a). The grain diges-
tion results are supported by the As-XANES spectra,
which show AsGlu dominates As speciation under
AWD, particularly in the OVT and bran (Figs. 6,S3).
The As pXRF maps also show decreased As presence
in the grain interior due to AWD (Fig. 7), which sup-
ports lower DMA concentration, as DMA is gener-
ally found more in the endosperm compared to iAs or
AsGlu (Lombi et al. 2009; Carey et al. 2010; Zheng
et al. 2013; Limmer et al. 2018a). However, we only
have direct comparisons between Flooded and AWD
grain for Husk treatment, so it is unclear how much
of the iAs in AWD Control might be comprised of
1As(IIT) rather than As(IIl)-glutathione. It is thought
that As(II)-glutathione has similar toxicity to iAs
due to disassociation of the complex during digestion
(Zakharyan and Aposhian 1999), and thus decreas-
ing its concentration in grain is equally important.
Because these species are likely more toxic to humans
than DMA (Kenyon and Hughes 2001), the effective-
ness of AWD requires consideration of As specia-
tion. Therefore, AWD treatments (in this soil type at
least) should include more or longer dry downs to
decrease iAs in rice grain when rice husks (untreated
or charred) are returned to the soil.

Si-As interaction
Our data supports hypothesis 2—we see decreased
husk and straw As and grain iAs (for Flooded water

management) with higher porewater Si. We also see a
negative correlation between plaque Fh concentration
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and root As and As translocation, but evidence is
lacking that our low levels of amendments increased
plaque Fh. This study demonstrated that Husk and
Biochar are effective amendments to increase Si con-
centration in porewater and in aboveground rice tis-
sues (Figs. 1,2). In accordance with what has been
proposed by molecular and agricultural research
(Guo et al. 2005; Jian et al. 2006; Ma et al. 2007,
2008; Bogdan and Schenk 2008; Zhao et al. 2009; Li
et al. 2009a; Seyfferth and Fendorf 2012; Seyfferth
et al. 2018, 2019a, 2016; Limmer et al. 2018b, a), Si
in porewater was negatively correlated with As con-
centration in rice straw and husk (Table S1, Fig. S3).
This antagonistic relationship was not seen with grain
As across treatments in multiple linear regression
(Table S1), but under Flooded conditions, porewater
Si was negatively (but weakly) correlated with grain
iAs (Fig. S3). This suggests the Si-As uptake com-
petition affects grain As differently under different
water managements. While previous thought suggests
that Si promotes DMA formation and uptake rela-
tive to iAs (Seyfferth et al. 2018), our data show that
Si-rich amendments decrease DMA relative to iAs
under AWD management (Fig. 3). We attribute this to
decreased Eh due to the labile carbon present in our
amendments. The low, background As levels in our
soil might be less affected by Si addition compared to
high or spiked soil As from other studies (Seyfferth
and Fendorf 2012; Teasley et al. 2017).

It is also possible that the Ultisol used in this
study is still Si-deficient even after amendment
with~4-years’ worth of rice husk and/or the culti-
var used here has a higher demand for Si. This is
supported by the relatively low concentrations of Si
in the rice straw (<3%) and husk (<4%) at harvest
(Fig. 2) and generally low porewater Si concentra-
tions even with amendments (Fig. la). A mild Si-
deficiency could explain why Si decreased As uptake
into vegetative tissues but not grain—Si has been
seen to affect vegetative tissue As more than grain As
(Li et al. 2009b; Seyfferth and Fendorf 2012; Lim-
mer et al. 2018a; Seyfferth et al. 2018). Rice grain
also accumulates a higher proportion of As in DMA
form compared to vegetative tissues, and porewater Si
competes best with iAs (Seyfferth et al. 2016, 2018),
which could help explain the stronger correlation
between porewater Si and vegetative As compared
to grain As (Fig. S3). Additional measures besides
return of husk to highly weathered paddy soils may
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be necessary to gain the As-limiting benefits of Si
fertilization (Klotzbiicher et al. 2015; Hughes et al.
2020). We therefore reject hypothesis 4—the com-
petition between Si and grain As uptake is only seen
under Flooded conditions and does not seem to be
additive to the As-limiting effects of AWD.

Rice As and Cd management

Our data fully supports hypothesis 3—there is a
clear tradeoff between grain As and Cd due to soil
Eh which can be manipulated using AWD. Co-con-
tamination of rice grain by Cd and As was minimized
in the Eh range of 225-275 mV according to expo-
nential fits (Fig. 4). Few of our treatments were in
this Eh range, however, suggesting that in order to
achieve this minimization, more severe and additional
dry downs are required for the AWD treatment. This
value is also very relative, and is expected to be dif-
ferent for every soil (Rinklebe et al. 2016), making
management challenging. Other studies report “opti-
mal” Eh values which differ appreciably from that
reported here (Honma et al. 2016; Yao et al. 2021),
and emphasize that optimal redox conditions are
dependent on soil type, poise, and As and Cd levels
in addition to redox measurement method, timing,
and accuracy. It is likely that other measurements are
also calibrated to different reference electrodes than
the standard hydrogen electrode, which adds to the
discrepancy. Due to the dynamic tradeoff between
grain As and Cd, water management in paddy soils
must consider the relative levels of contaminants, in
addition to amendments which were seen to decrease
the efficiency of dry downs for minimizing iAs here
by threefold for Husk and CharSil and 14-fold for
Biochar (Fig. 3a). This result is likely due to the bal-
ance of soluble Si (which decreases iAs uptake) and
labile carbon (which decreases Eh and increases As
mobility) in our amendments. Husk and Biochar
maintained a lower Eh under AWD (Fig. S2), but our
results suggest the more rapid dissolution of Si from
Husk was able to counteract the decreased Eh better
than the slower dissolution of Si from Biochar.

There were no significant effects of amendments
on plant or porewater Cd concentrations in this study
which suggests that pyrolyzing or charring rice husk
does not make it a significant adsorbent or immobi-
lization agent for soil Cd. Although isotherms meas-
ured in lab settings show significant Cd adsorption,

Cd?* is a soft acid cation which likely cannot com-
pete for the hard base CEC sites which are domi-
nant on rice husk biochar (Linam et al. 2021). It is
also likely that the active surface of the Biochar was
fouled by organic matter, clays, or microbes upon
incorporation into soil. Because our amendment rates
were relatively low, Biochar and CharSil were not
able to raise the porewater pH (Fig. S2) and there-
fore failed to immobilize the Cd via precipitation
reactions. Cadmium availability is generally high
in weathered and acidic soil with low OM and CEC
(Sauvé et al. 2000; Shaheen et al. 2017; Jalali and
Najafi 2018; Mu et al. 2019) such as our soil; in these
soil conditions, Cd availability is primarily controlled
by redox potential (Arao et al. 2009; Rinklebe et al.
2016; Zhao and Wang 2020). We therefore conclude
that higher amendment rates or continued return of
rice husk as Biochar or CharSil would be necessary to
cause Cd immobilization, likely through raising soil
pH (Table 1).

Root plaque chemistry

While previous studies have proposed Fe plaque as a
protective barrier for As uptake by rice (Hansel et al.
2002; Guo et al. 2007; Deng et al. 2010; Lee et al.
2013; Syu et al. 2013; Yamaguchi et al. 2014; Amaral
et al. 2017; Yang et al. 2020), we see a strong correla-
tion between root Fe plaque and grain As (Figs. 3a,
8). This would seem to suggest that roots accumu-
late Fe plaque and grain accumulates As due to simi-
lar causal factors—both processes seem to be most
strongly controlled by Eh. Fe plaque mineralogy is
seen to be important, however, where higher Fh con-
tent is correlated to lower translocation of As from
porewater to grain, while higher Goe content is corre-
lated to higher translocation of As (Fig. 9). Goe con-
tent is seen to be correlated to porewater Fe(II) and
to be favored over Lep at higher DOC concentrations.
While it is possible that Si and DOC stabilize Fh
and discourage its transformation to more crystalline
forms (Schwertmann and Thalmann 1976; Ander-
son and Benjamin 1985; Cornell and Schwertmann
2006b; Chen et al. 2015; Seyfferth 2015; Amaral
et al. 2017; Limmer et al. 2018a), these are not sig-
nificant predictors in our study, and suggest that our
low levels of amendments do not increase Fh forma-
tion. This is contrary to expectations based on lit-
erature (Seyfferth 2015; Amaral et al. 2017; Limmer
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et al. 2018a), and suggests more complex controls on
plaque formation—we attribute this discrepancy to
the low Si concentration in our soil and lower amend-
ment rates compared to previous studies which muted
the effect of Si on Fh stabilization.

When viewed on a mass basis, plaque Fh does not
seem to decrease aboveground plant As, but it does
decrease root As (Table S1). Though all plaque min-
eral masses are positively correlated with plant As
concentration, Fe plaque mineralogy is still an impor-
tant factor determining uptake and translocation of As
from porewater to grain (Fig. 9). Correlations were
similar for translocation of As into straw and husk but
were significantly weaker for translocation into roots.
This is likely due to roots acting as an additional sink
for As. We propose that plaque mineralogy and As
uptake are both being affected by the same underly-
ing factors such as soil type, plant nutritional status
and cultivar, or root physiology. This would result
in collinearity between plaque mineralogy and plant
As, making it difficult to discern a mechanistic under-
standing of plaque’s protective role. Finally, although
we used 8 L pots to provide ample soil volume for
root development, the plants did become pot-bound
at maturity. These roots were excluded from analysis,
but there is a chance that this non-ideal growth pat-
tern alters root plaque development.

Summary

We conclude that the As-inhibiting effects of Si may
not be significant in all cases. Specifically, situations
with Si-sufficiency, high soil As, external As input,
and constant flooding may show a more antagonistic
relationship between Si and As in rice. In our study,
we conclude that small amounts of husk amendments
(~4 years’ worth) are sufficient to increase porewa-
ter and plant Si and decrease straw and husk As, but
insufficient to significantly decrease grain As in all
water managements. The low background soil As and
Si levels and suspected Si-deficiency likely contrib-
uted to these results. The increases in plant Si due to
amendments were negated when husk was pretreated
at high temperature (i.e., CharSil). Grain As and Cd
have inverse exponential relationships with Eh which
are primarily driven by water management. Dry downs
in AWD treatment were ineffective at decreasing inor-
ganic As in the presence of amendments—this could
be due to Si from amendments competing with As for
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adsorption sites on Fe oxides in the soil or root plaque.
In addition, amendments could provide labile carbon
to microbes which maintain a lower Eh throughout the
dry-downs—this is supported by slightly lower grain Cd
in Husk and Biochar treatment under AWD compared
to Control (Fig. 3b). We also conclude that even though
Fh content of Fe plaque seems to decrease As translo-
cation, the overall amount of plaque is dependent on
Eh, which results in the amount of all plaque minerals
being positively correlated with grain As. In summary,
management of rice husk is very important for plant Si
concentration, but higher amendment rates are neces-
sary to decrease As concentrations in grain, and more
intense/frequent AWD dry downs are necessary with
rice husk amendments and should be further explored.
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