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 6 
Abstract 7 

Post-event reconnaissance missions are conducted after each major natural hazard event to collect valuable 8 

and perishable data. Teams of engineers and scientists are deployed to collect data, and in particular visual 9 

data (images), to support particular lines of inquiry, or to identify new lines of inquiry, that may lead to 10 

new knowledge about the best practices for the design of civil infrastructure. Visual data, combined with 11 

computer vision methods, can be a valuable tool for accelerating and automating these processes. Together 12 

they provide the means to more easily use the data, and organize the data sets so that they can be 13 

discovered in a search and reused. The focus of this paper is the development of an automated technique 14 

to classify the overall damage state of a building based on a typical set of reconnaissance images collected 15 

from a single building in the field. The motivating task is the collection of data and classification of damage 16 

into broad categories, such as those needed for computing the Hassan index [1]. The method adopts a naïve 17 

Bayes fusion algorithm [2] to combine the data, and an integrated sampling technique to reduce the 18 

computational time without compromising the quality of the results. Validation is performed using 29,543 19 

past reconnaissance images from 720 buildings in different parts of the world that was collected, in part, 20 

for determination of the Hassan index.  21 

Keywords: Information fusion, Naïve Bayes fusion, Post-event reconnaissance, Building damage state 22 

classification 23 

 24 

1. Introduction 25 

In the weeks after a natural disaster, reconnaissance teams dedicated to collecting perishable scientific data 26 

about the performance of the buildings are deployed. These teams are interested in collecting data, 27 

including a significant quantity of images, to synthesize lessons and identify new lines of inquiry by 28 

observing and classifying the damage in buildings in the region. Past examples of such reconnaissance 29 

missions include the teams deployed by ACI Committee 133, of which a summary of the lessons learned 30 

from these can be found in Laughery (2020) [3]. An example of the collected data during the missions are 31 

the 169 buildings, Villalobos et al. surveyed in 2016 [4]. For each building, the data collected included a 32 

number of photographs collected to document evidence of the post-event condition of the structure, and 33 

also other information like, the building coordinates, height, permanent drift, column dimensions, floor 34 

plan dimensions, and the overall damage state. These data are carefully documented for use by the 35 

researchers on the reconnaissance team, and are also organized and published in a public repository for 36 

other researchers to explore [5,6]. 37 

A sample of the type of form that is completed on-site during the building survey is provided in 38 

Fig. 1(a). Herein we will refer to this form as the building survey form. This form is accompanied by a large 39 

set of images collected by the engineers in the field to document their observations. Since good quality 40 

digital cameras have become widely available, such image sets have been growing in size, and in recent 41 

missions the teams typically gather about 100-200 images per building. Here we will refer to this visual 42 

data collected from a given building as the set of images (SOI, hereafter). The SOI contains images with 43 

scenes focused on structural components and nonstructural components, either exhibiting damage or 44 

showing undamaged views of damaged components, and also containing various undamaged components. 45 

The SOI also contains images of other objects, such as measurements and GPS devices, and other less 46 
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important objects. The SOI for a single building is certainly not comprehensive, and sometimes only 47 

representative damage to components is captured rather than collecting repetitive images.  48 

Note that the sample building survey form here includes a sketch of the first floor of the building 49 

plan on the left, with an indication of where the structural columns are located. Information about the 50 

building is annotated, such as location, the number of stories and some basic observations. Some 51 

measurements are also collected to document the basic dimensions of the structure. In this particular 52 

mission, a key objective was to collect data to use in computing the Hassan index [7-9]. The Hassan index 53 

is a technique that has been used in many missions and by different teams to rapidly classify the 54 

vulnerability of a building based on the column and wall dimensions in each direction. An example of data 55 

collected using this approach can be found in Pujol et. al. [1]. Over the past two decades considerable effort 56 

has gone into obtaining data to support this technique. Reinforced concrete (RC) components (structural 57 

members) and masonry (M) components (non-structural members) contribute separately to the calculation 58 

of the index, and thus they are noted separately on the building survey form.  59 

In the field, an important task for these reconnaissance teams is to classify the overall state of 60 

damage using general categories such as severe, moderate, etc. This damage classification task is performed 61 

separately for RC components and M components, as is evident from the information highlighted in the 62 

orange box in Fig. 1(a). These classes are assigned manually in the field following the guideline shown in 63 

the green box in Fig. 1(b). The guideline supports five states of damage each for both RC and M, including: 64 

none, light, moderate, severe, and collapse. Classifying the overall state of damage is just one example of 65 

the type of reconnaissance tasks that can be supported by automation and computer vision. Samples of 66 

images collected in the field are shown in Fig. 1(c).  67 

 68 

 
(a) 
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(b) 

 
(c) 

 Figure 1. Representative sample of the building survey forms used in the field: (a) the building survey 69 
form, (b) the guideline and (c) samples of images [10] 70 

 71 

Assessing the post-event condition of buildings is complex and diverse, and in some cases, unsafe 72 

for reconnaissance teams. Villalobos (2016) showed that after the 2016 Ecuador earthquake, 45% of the 73 

buildings surveyed presented severe damage, 24% presented moderate damage and 31% light damage [4]. 74 

Image data is certainly collected from the exterior of the building as well. There is an interest in using 75 

drones to perform such data collection tasks in the future, although the tremendous number of images 76 

collected would require significant time and computational power to sort and analyze as well. Efforts have 77 

also been devoted to developing methods for post-event building condition assessment using such data. 78 

Computer vision techniques have been utilized to detect various types of damage in buildings such as 79 

cracks and spalling [11-13]. Yeum et al. [14] designed clear definitions and associated image classifiers to 80 

classify images of buildings into ‘collapsed’ or ‘non-collapsed’ based on images of the building overview 81 

(overview image). Satellite images also have been used to provide such information [15-17]. However, to 82 

date the research has focused on generating information from a single image. Techniques that can consider 83 

all of the images collected from a single building and produce a comprehensive output is lacking. Fusing 84 

the information from more than one images to support humans in making decisions has been developed 85 

for houses in hurricane surveys [18]. This work adopts a Bayesian-based method to fuse multiple overview 86 
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images and make a decision of the damage level of a house. This approach provides a basis for the method 87 

developed in this paper. A barrier to that approach when dealing with more complex structures is that the 88 

computational time increases considerably when the number of images grows, for instance when dozens 89 

of images are collected from a single building. This challenge is addressed in this paper. 90 

In this paper, we develop and validate an automated technique to process the visual data to classify 91 

the damage documented in the SOI for a building. The information collected during past reconnaissance 92 

missions and published in public repositories such as DataCenterhub [5] and Design-Safe [6] is used as the 93 

basis of the technique, and also as the ground truth for its evaluation. To establish this technique, the images 94 

are classified using convolutional neural network (CNN)-based image classifiers [19]. Two probability lists 95 

are formed, one for each category: for RC damage and M damage. Then, information fusion is performed 96 

to classify the overall RC damage state and the overall M damage state observed for the building. The main 97 

merit of this technique is that automation can assist survey teams by classifying the damage state of the 98 

building to support data organization and building-level classification. Such classification, into several 99 

broad categories based on damage state, will make useful data easier to search for in large reconnaissance 100 

data sets and serve the basis for a more targeted detailed assessment of particular structures.  101 

The contents of the paper are organized as follows. Section 2 explains the methodology, including 102 

the schema designed for the image classifiers, and how to fuse the information to determine the overall 103 

damage states of the data set. Section 3 is the validation section, and describes the real-world dataset used 104 

for training and testing the image classifiers, and for validating the entire technique. A discussion of the 105 

results of this technique for earthquake induced structural damage, including pre-existing structural 106 

damage such as corrosion, is also included in this section. In Section 4, the conclusions of this work are 107 

provided along with a few recommendations for data collection and some of the existing techniques in the 108 

literature that can be used in conjunction with the technique developed in this paper. 109 

 110 
2 Methodology 111 

The overall workflow of the technique is shown in Fig. 2. The input to the technique is an SOI collected 112 

from a single building during a reconnaissance mission and stored in a digital format. The output of the 113 

fully automated technique is a classification of the overall RC and M damage state present in the building 114 

based entirely on the scenes in the images collected. Thus, the technique must make these predictions of 115 

the damage state based entirely on the available SOI.  116 

To explain the technique, we divide it into three steps. Step 1 is to read the reconnaissance images 117 

that comprise one SOI. Based on our observations of building survey forms and datasets from past 118 

reconnaissance mission, these images can target building components with various types of damage, or 119 

they can contain no damage at all. Images of irrelevant objects can also be included in the SOI collected for 120 

a given building; they can be automatically filtered out with image classifiers. Metadata for the SOI are not 121 

needed, although sometimes information is available, including the time and date when the images were 122 

collected, GPS coordinates, etc. The approach requires a reasonable level of quality in the images, in terms 123 

of both visual content and standards. For such purposes, the images need to have a resolution larger than 124 

299 by 299 pixels. Beyond that, the resolution of the images can vary in scale. The visual content of the 125 

images must be distinguishable, i.e., the damage should not take up of the entire image nor too small to be 126 

barely to be visible. Additionally, the images should not contain blur. 127 

 128 
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Step 1. Read reconnaissance images 

in an SOI 

Step 2. Generate the damage 

state probability lists 

Step 3. Use information 

fusion to predict the overall 

damage state for the 

building based on an SOI 

Figure 2. Overall workflow of the approach 129 

 130 

Step 2 is to generate values for the damage state in each image for populating two probability lists, 131 

one for RC damage and another for M damage. Taking RC damage as an example, each value in the list is 132 

a scalar probability between 0 and 1, and representing the probability of the corresponding image 133 

exhibiting RC damage state. This damage state probability is the raw prediction assigned by the respective 134 

image classifier to each image in the SOI. This classifier is applied after any irrelevant images are first 135 

filtered out automatically, which can be done using image classifiers. Irrelevant images are defined here as 136 

those for which the image classifier cannot generate a decision about the existence of RC damage, or for 137 

which no RC damage is present in the image. Detailed definitions of each of the classes used in the 138 

technique will be discussed in Section 2.1. A similar process is used for the M damage probability list. The 139 

generation of the two lists takes place in parallel, but they are entirely independent.  140 

Then, in step 3, we use information fusion to determine the overall damage state for the SOI. The 141 

information fusion process is based on the naïve Bayesian method. For either RC damage or M damage 142 

classification, the process takes a probability list from step 2 as an input and generates a single probability 143 

value as the output. After performing information fusion, the output probability value is utilized to yield 144 

a damage state decision for the SOI corresponding to a particular building. A decision is made for the SOIs 145 

corresponding to each of the two types of damage, RC damage and M damage, respectively. For each type 146 

of damage, the decision will be determined as one of two states, either moderate-to-collapse damage (MD) 147 

or none-or-light damage (ND), indicating the overall damage state as determined from the SOI. The 148 

definitions for MD and ND will descripted in detail in Section 2.1. The decisions for RC damage and M 149 

damage are derived independently throughout the entire process. 150 

Note that although this technique is developed based on a selection of data from past 151 

reconnaissance missions, the data used here are from many locations around the world and are quite broad. 152 

Thus, we anticipate that our classifiers will be robust to variations in architecture and construction; they 153 

can be applied without any retraining. If architectural styles and construction were to vary significantly in 154 

some location or future mission from those used herein to develop the technique, the classifiers could 155 

readily be updated.  156 

 157 

2.1 Schema for the image classifiers 158 

To support the technique, four independent image classifiers are designed for use in step 2 in the overall 159 

workflow shown in Fig. 2. All image classifiers used in this step are binary classifiers. The schema for the 160 

classifiers is shown in Fig. 3. To make the classification result consistent and to avoid ambiguity, it is 161 

important to ensure that each classifier has a clear definition and a distinguishable boundary between 162 

positive and negative results. The definitions are provided here, and then used for labelling a training and 163 

testing dataset later. These definitions are built based on the guideline as described in Section 1.  164 
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 165 

 166 
Figure 3. Schema designed for the image classifiers 167 

 168 

The classifiers and the schema are as follows: 169 

First, the damage state classifier classifies an image into either MD, or ND. Here, a single classifier 170 

applies to both RC damage and M damage. This approach takes into account the fact that RC damage and 171 

M damage are likely to be correlated with each other in post-event buildings, that is, if RC and M structural 172 

components both exist in that building, i.e., when the building is a reinforced concrete building that 173 

contains nonstructural masonry walls. And, more importantly, RC damage and M damage may frequently 174 

be present in a single image. Thus, this classifier is not meant to capture all types of damage but to focus 175 

on RC damage and/or M damage. 176 

•  Moderate-to-collapse damage (MD): Image that contains building components having 177 

considerable damage. To be specific, the damage includes damage scales ranging from moderate, to severe, 178 

to collapse, as defined in the guideline. Moreover, it should be noted that damage in an image should be 179 

easily observed and identified, i.e., a significant part of the scene in the image should include the damage. 180 

Based on our past experience with similar classifiers, if the damage is extremely small in size as compared 181 

to the size of the image contents, it would be inappropriate to classify that image as an MD image. To 182 

quantify this relationship, we estimate that, to be classified as an MD image, the damaged region should 183 

take at least 30% of the entire area of that image without cropping. 184 

•  None-or-light damage (ND): Image that contains building components having minor damage or 185 

no damage at all. This class includes damage scales from none to light, as defined in the guideline. This 186 

class is determined based entirely on the visual contents in the image, not the actual state of the building 187 

component. Thus, if the component is seriously damaged, an image capturing a healthy side of the 188 

component would also be considered as an ND image. Furthermore, an image with MD damage only in 189 

the background or damage that is hard for a human to distinguish would also be a valid ND image. To 190 

quantify this relationship, if the region with MD damage takes up no more than about a few percent (less 191 

than 5%) of the entire area of a single image without cropping, we still expect that image to be classified as 192 

a ND image. 193 

Second, the RC classifier classifies an image into either RC damage, or other. 194 

•  RC damage (RC): Image that contains RC damage. This class includes damage scales of moderate, 195 

severe, and collapse with respect to the RC components as defined in the guideline. The damage should be 196 

visible on the RC structural components. The RC component should be easily recognized from the image, 197 

with visible concrete, rebar, etc. Images classified as RC should be a subset of the images classified as MD. 198 

•  Other: Image that is irrelevant to the condition classification of the building. Two types of images 199 

are included in this class. The first type is an image that contains no visible signs of MD damage to the 200 

building or the components. The image should not contain either RC damage or M damage, as defined 201 

above. Furthermore, the damage scale of moderate, severe and collapse are the target images that should 202 
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be excluded from this class. The second type is the image that does not have the evidence to classify the 203 

building as ND, as defined in the above. An image belonging to ND can show no signs of damage, but it 204 

suggests that the building component captured in the image is in ND condition, therefore, it contributes to 205 

the decision of overall damage state to the building based on the SOI in the later process. Thus, ND images 206 

should be excluded from ‘Other’ class. Specifically, this class includes images about everyday objects, e.g., 207 

we have observed GPS, watches, people, vehicle, natural scenes, scenery other than infrastructure, etc. 208 

Some images with damage are also included in this class, if the scene includes irrelevant subjects such as 209 

people, papers, vehicles, etc. that represent at least 2/3 of the area of the damaged region in the image, 210 

making the damage hard to identify from the image. 211 

Third, M classifier classifies images into either M damage, or other. 212 

•  M damage (M): Image that contains M damage. This class includes damage scale of moderate, 213 

severe, and collapse with respect to the masonry components, as defined in the guideline. Similar to the 214 

definition of RC, the damage should be visible in the M components of the structure. The M component 215 

should be easily recognized from the scenery, with visible bricks, mortar, stones, etc. Images classified as 216 

M should be a subset of images classified as MD. 217 

•  Other: this class is defined in the same way as ‘Other’ in the RC classifier. 218 

Fourth, the ND classifier classifies an image into either ND, or other. 219 

•  ND: this class is defined in the same way as ‘ND’ is defined in the damage state classifier. 220 

•  Other: this class is defined in the same way as ‘Other’ in the RC classifier. 221 

 222 

2.2 Use image classifiers to generate probability lists 223 

In this section, the details of step 2 in the overall workflow, as in Fig. 2, are explained. Using the schema 224 

for the image classifiers defined in section 2.1, we developed a process to generate two probability lists, one 225 

for RC damage and one for M damage. The process takes each image in the SOI as the input, and loops 226 

through each image in the SOI until it finishes. 227 

 

 
Step 1a. Form the RC image list Step 1b. Form the RC probability list 

Figure 4. Detailed process to form the RC probability list 228 

 229 

Fig. 4 illustrates the process for predicting RC damage. We divide the process into two steps. Step 230 

1a is to form the RC image list. First, each input image will be put through the RC classifier. The 231 

classification result determines whether or not the current input image should be included in the RC image 232 

list, i.e., if it contains RC damage with a sufficiently high probability. The decision is made by comparing 233 

the raw probability to a threshold, 𝑇𝑎. This approach is taken because the raw probability represents the 234 

confidence that the classifier should assign the corresponding label to that image. The closer the value is to 235 

0 (or to 1), the more confident the classifier will be. Specifically, if the raw probability is larger than 1 − 𝑇𝑎, 236 

we consider it to be valid to classify the image as RC damage, and it will be appended to the RC image list. 237 

The reason to use 1 − 𝑇𝑎 is to have the threshold parameter is a region easy to visualize in the later steps. 238 
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Simultaneously, we implement the ND classifier on the input image, and follow the same procedure. The 239 

image is added to the RC image list if the probability exceeds the corresponding threshold. To simplify the 240 

method, we use the same threshold parameter for each case, and it will take the same value in the process. 241 

In this way, we identify all of the images in the SOI that can contribute to derive a decision about the 242 

condition of the building components. These include images that are highly likely to focus on RC 243 

components, and thus add evidence that the building’s SOI is to be classified as a given MD state, and 244 

similarly for the ND classification.  245 

Step 1b is to form the corresponding RC probability list. For each entry in the RC image list, each 246 

image will pass through the damage state classifier. This classifier assigns a probability to the image 247 

representing its likelihood of being either ND or MD. After comparing that value with a chosen threshold, 248 

𝑇𝑏, the probability value will be appended to the RC probability list. It should be noted that we include 249 

images with a probability larger than 1 − 𝑇𝑏 which is inclined toward MD, and images with a probability 250 

smaller than 𝑇𝑏 which corresponds to ND. The RC probability list serves as part of the inputs to step 3 (from 251 

Fig. 2) for generating the overall RC damage state for the SOI. 252 

 253 

 254 
Step 2a. Form the M image list Step 2b. Form the M probability list 

Figure 5. Detailed process to form the M probability list 255 

 256 

A similar process is adopted for predicting M damage, as shown in Fig. 5. We use the M classifier 257 

and the ND classifier to select images that should be appended to the M image list in step 2a, then use 258 

damage state classifier to generate the M probability list in step 2b. The thresholds in the process, 𝑇𝑎 and 259 

𝑇𝑏, are chosen to be the same parameter in the process for RC damage, as in Fig. 4. They will be tuned 260 

simultaneously in Section 3.3. Also, we should point out that neither the RC image list and M image list, 261 

nor the RC probability list and M probability list, are mutually exclusive because an image can contain both 262 

RC damage and M damage at the same time. In that case, the image will be included in both lists, and 263 

measured by the damage state classifier in two separate processes. 264 

 265 

2.3 Information fusion 266 

After acquiring the RC probability list and the M probability list, information fusion is used to fuse each of 267 

the probability lists into a single probability value, as in Step 3 in Fig. 2. A single probability value is used 268 

to represent the damage state of either the RC components or M components of the building based on the 269 

SOI. In the following sections, we will explain the details of the information fusion algorithm. Subsequently, 270 

we will introduce a concern regarding the computational time of the algorithm. To address this concern, 271 

we integrate a sampling method to speed up the computations and the entire procedure will be explained.  272 

 273 

2.3.1 Details of the information fusion algorithm 274 

We use naïve Bayesian fusion to fuse each probability list with the goal to arrive at the fused probability 275 

indicating the damage state of the building based on an SOI [2,18]. This procedure is applied separately to 276 

generate a damage state for both RC and M components. Let 𝑥1, … , 𝑥𝑛 represent each image associated with 277 
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the probability list, and 𝑝1(𝑥1),… , 𝑝𝑛(𝑥𝑛) represent the damage state probability of each image. Using these 278 

values, the probability of the building based on an SOI is written as 𝑝(𝐷 = 𝑑| 𝑥1, … , 𝑥𝑛). And it is expressed 279 

as  280 

 281 
𝑝(𝐷 = 𝑑| 𝑥1, … , 𝑥𝑛) 283 

=∑ 𝑝(𝐷 = 𝑑|𝐷1 = 𝑑1 , … , 𝐷𝑛 = 𝑑𝑛, 𝑥1, … , 𝑥𝑛)𝑝(𝐷1 = 𝑑1, … , 𝐷𝑛 = 𝑑𝑛|𝑥1, … , 𝑥𝑛)
𝑑1,…,𝑑𝑛∈𝒟

 284 

=∑ 𝑝(𝐷 = 𝑑|𝐷1 = 𝑑1 , … , 𝐷𝑛 = 𝑑𝑛)𝑝(𝐷1 = 𝑑1, … ,𝐷𝑛 = 𝑑𝑛|𝑥1, … , 𝑥𝑛)
𝑑1,…,𝑑𝑛∈𝒟

 285 

=∑ 𝑝(𝐷 = 𝑑|𝐷1 = 𝑑1, … , 𝐷𝑛 = 𝑑𝑛)∏ 𝑝(𝐷𝑖 = 𝑑𝑖|𝑥1, … , 𝑥𝑛)
𝑛

𝑖=1𝑑1,…,𝑑𝑛∈𝒟
 286 

=∑ 𝑝(𝐷 = 𝑑|𝐷1 = 𝑑1, … , 𝐷𝑛 = 𝑑𝑛)∏ 𝑝(𝐷𝑖 = 𝑑𝑖|𝑥𝑖)
𝑛

𝑖=1𝑑1,…,𝑑𝑛∈𝒟
 287 

 282 

To start with, 𝑥1, … , 𝑥𝑛 are treated as the prior for the fused probability, since 𝑝(𝑥𝑖) only relates to 288 

𝑥𝑖. 𝑛 is the total number of the images in the probability list. Then, we define 𝐷 as the random variable 289 

indicating the damage state of the building based on an SOI. And 𝑑 will be a realization of the numerical 290 

value, as either 0 or 1, 0 denotes the damage state ND, and 1 denotes MD. Following that, we use the sum 291 

rule of probability to expand 𝑝(𝐷 = 𝑑|𝑥1, … , 𝑥𝑛) to all the possible scenarios that each 𝑥 has a chance being 292 

classified as ND or MD. Similar to the damage state of the building based on an SOI, 𝐷𝑖 is the random 293 

variable for 𝑥𝑖, and 𝑑𝑖  is its numerical value. Then, 𝑝(𝐷1 = 𝑑1, … , 𝐷𝑛 = 𝑑𝑛|𝑥1, … , 𝑥𝑛) is written as the product 294 

of the probability for each 𝑥, this is because we consider the chance for each 𝑥 being classified as ND or MD 295 

are independent from each other. In the end, 𝑝(𝐷𝑖 = 𝑑𝑖  |𝑥𝑖) is the probability for 𝑥𝑖 being classified as 𝑑𝑖 . 296 

And 𝒟 is the set consisting of all the possible combinations of 𝑑𝑖 = {0, 1}.  297 

The conditional probability is defined as,  298 

 299 

𝑝(𝐷 = 𝑑|𝐷1 = 𝑑1, … , 𝐷𝑛 = 𝑑𝑛) =

{
 
 

 
 ∑ 𝑑𝑖

𝑛
𝑖=1

𝑛
, ∀ 𝑑𝑖 = 1,𝑝(𝐷𝑖 = 𝑑𝑖|𝑥𝑖) < 0.5

⌈
∑ 𝑑𝑖
𝑛
𝑖=1

𝑛
⌉ , ∃ 𝑑𝑖 = 1, 𝑝(𝐷𝑖 = 𝑑𝑖|𝑥𝑖) ≥ 0.5 

 300 

 301 

where ∀ 𝑑𝑖 = 1,𝑝(𝐷𝑖 = 𝑑𝑖|𝑥𝑖) < 0.5 means for all 𝑑𝑖 = 1, 𝑝(𝐷𝑖 = 𝑑𝑖|𝑥𝑖) < 0.5 or all 𝑥 are classified as more 302 

likely to ND over MD. In such case, we use the ratio of sum of 𝑑𝑖  to 𝑛 as the conditional probability. On the 303 

second case, ∃ 𝑑𝑖 = 1, 𝑝(𝐷𝑖 = 𝑑𝑖|𝑥𝑖) ≥ 0.5  means there exists 𝑑𝑖 = 1, 𝑝(𝐷𝑖 = 𝑑𝑖|𝑥𝑖) ≥ 0.5   or at least one of 𝑥 304 

is classified as more likely to MD over ND. In such case, we use ⌈∙⌉ of the ratio to compute the conditional 305 

probability. ⌈∙⌉ is the mathematical ceiling of the argument. This indicates if at least one 𝑥 is classified as 306 

MD or 𝑑𝑖 = 1, then the conditional probability is 1. 307 

 308 

2.3.2 Use of sampling to speed up the process of information fusion 309 

There are two characteristics we are looking for in an information fusion algorithm. Without a doubt, the 310 

first one is ‘accuracy’. The algorithm should be designed to reflect the damage state of the image set as 311 

much as possible. An evaluation of accuracy will be carried out in Section 3. Aside from accuracy, we are 312 

also interested in computational efficiency to get the fused result. To illustrate why this is important, an 313 

example of how to perform information fusion is provided in Table 1. The input, the probability list, is 314 

chosen to have four elements, with values [0.0115, 0.1635, 0.6988, 0.1226]. It should be noted that this 315 

hypothetical example pertains to step 3 in Fig. 2, which means we are explaining what happens after all the 316 

image classification and filtering. The resulting list of probabilities is put through the information fusion 317 

algorithm. As explained in Section 2.3.1, the fused probability is formed by the sum rule. Thus, the 318 



10 
 

algorithm must consider all possible combinations of the input list to compute the associated products and 319 

add them together. That will yield the fused probability. However, the total number of combinations is 320 

𝐶𝑡𝑜𝑡𝑎𝑙 = (
𝑁
1
) + (

𝑁
2
) + ⋯+ (

𝑁
𝑁
), where 𝑁 is the number of elements in the input list. Using the example in 321 

Table 1, 𝐶𝑡𝑜𝑡𝑎𝑙 = 16 , and it consumes a computation time of  0.9975  milliseconds in total. While this 322 

computation time is acceptable for a four-element list, 𝐶𝑡𝑜𝑡𝑎𝑙 , will grow drastically as 𝑁 increases. When 𝑁 323 

is 10, 𝐶𝑡𝑜𝑡𝑎𝑙  will be 1,024. When 𝑁 reaches 20, 𝐶𝑡𝑜𝑡𝑎𝑙  will be 1,048,576. And when 𝑁 approaches 25, 𝐶𝑡𝑜𝑡𝑎𝑙  324 

will be a whopping 33,554,432. Since the computational time for each combination varies with the number 325 

of elements in the input list, consider that a single combination requires 0.06234 milliseconds (roughly the 326 

average time taken in the example), then, 𝑁 of 25 will be about 34.86 minutes. This value is a comparatively 327 

long time to endure for our technique to assess one building. Given the fact that an SOI will easily contain 328 

tens or hundreds of images, potential large computational times will inevitably limit the value of our 329 

technique for larger image sets. This remark is based on the assumption that 𝑁 will increase as the total 330 

number of images in an SOI increases.  331 

 332 

Table 1. Example of the time required for the conventional information fusion algorithm 333 

 Combinations Product 

1 [] 0.000000 

2 [1] 0.000636 

3 [2] 0.010678 

4 [3] 0.506983 

5 [4] 0.007634 

6 [1, 2] 0.000248 

7 [1, 3] 0.005898 

8 [1, 4] 0.000178 

9 [2, 3] 0.099093 

10 [2, 4] 0.002984 

11 [3, 4] 0.070841 

12 [1, 2, 3] 0.001153 

13 [1, 2, 4] 0.000052 

14 [1, 3, 4] 0.000824 

15 [2, 3, 4] 0.013846 

16 [1, 2, 3, 4] 0.000161 

Input and output 

Input: probability list, [0.0115, 0.1635, 0.6988, 0.1226] 

Output: fused probability, 0.721209 

 334 

To address this issue, we adopt a sampling method to speed up the fusion process. The basic idea 335 

is to sample a smaller number of elements from the input list, and iteratively perform the information 336 

fusion using the sampled list. Then, the process is repeated until the result converges.  337 

The entire implementation is shown in Algorithm 1. To start with, we have the input probability 338 

list, 𝐴, and we define an empty list 𝑝_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 for keeping track of the temporary fused probability, 𝑝_𝑡𝑒𝑚𝑝, 339 

which is the fused probability computed at each iteration, an empty list 𝑒_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 for holding all the 𝑒, 340 

which are the errors. Before the iteration, we first check whether or not 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴), the number of the 341 

elements in the input list, is larger than 5; if not, we simply compute the fused probability with 𝐴 and return 342 

the fused probability as the output. The function fuse_probability() applies the original fusion algorithm as 343 

introduced in Section 2.3.1. However, if the answer is yes, the process moves to the iteration steps. We 344 

define two stop conditions, either of which will stop the iterations: one is 𝑒 reaching 𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 which is 345 
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set to 0.01, since the maximum possible value of a probability is 1, 𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 can be regarded as 1% of 346 

the maximum value, 𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is chosen for practical reasons so that the algorithm will reach a relatively 347 

accurate result in a reasonable iterations; and the other is reaching the 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑙𝑖𝑚𝑖𝑡 which we set to 1,000. 348 

Based on experience developed during the present study, we define the number of the elements in the 349 

sampled list, 𝑁_𝑠𝑎𝑚𝑝𝑙𝑒, as 5. Inside each iteration, the process moves to the sampling steps.  350 

To fairly represent 𝐴  with the sampled list, 𝐵 , we adopt the proportional stratified sampling 351 

strategy [20]. This strategy is typically used when the sampling group (here, 𝐴) can be divided into several 352 

subgroups. This strategy samples from each of the subgroups independently. If we consider the procedure 353 

in step 2 from Fig. 2, the RC probability list and M probability list are filtered by 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑏 to select 354 

candidates that fall into their respective classes with high confidence. This approach offers the chance to 355 

cluster 𝐴 into two subgroups, one associated with probability values smaller than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑏 which is 356 

defined in Section 2.2 and its value will be discussed and assigned in Section 3.3.2, and the other associated 357 

with probability values larger than 1 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑏 . We use proportional allocation to determine the 358 

number of elements to sample from each subgroup. Simply, the two sampled lists, denoted 𝐴_𝑙𝑜𝑤_𝑠𝑎𝑚𝑝𝑙𝑒 359 

and 𝐴_𝑢𝑝_𝑠𝑎𝑚𝑝𝑙𝑒, are sized to be proportional to the ratio between the size of the two subgroups, and they 360 

must add up to 𝑁_𝑠𝑎𝑚𝑝𝑙𝑒. Then, 𝐴_𝑙𝑜𝑤_𝑠𝑎𝑚𝑝𝑙𝑒 and 𝐴_𝑢𝑝_𝑠𝑎𝑚𝑝𝑙𝑒 form 𝐵. This sampling process is shown 361 

in lines 8 to 14 in Algorithm 1.  362 

After sampling, 𝑝_𝑡𝑒𝑚𝑝 is computed from 𝐵 with the fusion algorithm. After appending 𝑝_𝑡𝑒𝑚𝑝 to 363 

𝑝_ℎ𝑖𝑠𝑡𝑜𝑟𝑦, we calculate 𝑒 which is defined as the absolute difference between the current 𝑝_𝑡𝑒𝑚𝑝 and the 364 

mean of 𝑝_ℎ𝑖𝑠𝑡𝑜𝑟𝑦. When either 𝑒 is less than or equal to 𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 or the process reaches 1,000 iterations, 365 

the iteration stops. When the iterations stop, if the total number of iterations is smaller than 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑙𝑖𝑚𝑖𝑡, 366 

we take the last 𝑝_𝑡𝑒𝑚𝑝 as the fused probability, 𝑝. Otherwise, we take the mean of 𝑝_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 as 𝑝. This 367 

case applies in the rare cases in which the process does not converge early and the maximum iterations is 368 

reached. In our experience, this case has a very small chance of occurring. When it does happen, the 369 

modified process using sampling is still able to fulfill the goal of capturing the damage state of the image 370 

set, assuming that the input probability list is correctly provided. This approach works because we design 371 

the entire technique to predict a building based on an SOI as either MD or ND, rather than aiming to 372 

provide an exact probability value. 373 

 374 

Algorithm 1. Implementation of the modified information fusion algorithm 375 

Algorithm 1: 

 Input: probability list, A 

Output: fused probability, p 

1 p_history = [], e_history = [], e_threshold = 0.01, iteration_limit = 1000, N_sample = 5 

2 if length(A) <= N_sample 

3 return p = fuse_probability(A) 

4 else 

5 e = 1, iteration =0, e_history = [1] 

6 while e > e_threshold and iteration < iteration_limit 

7 B = [] 

8 A_low = [element for element in A if element < threshold_b] 

9 A_up = [element for element in A if element > 1-threshold_b] 

10 Number_low = round(N_sample*length(A_low)/length(A)) 

11 Number_up = N_sample – Number_low 

12 A_low_sample = random(A_low, Number_low) # randomly sampling 

Number_low of elements from A_low 
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13 A_up_sample = random(A_up, Number_up) # randomly sampling 

Number_up of elements from A_up 

14 append elements of A_low_sample, A_up_sample to B 

15 p_temp = fuse_probability(B) 

16 append p_temp to p_history  

17 e = abs(p_temp – mean(p_history))  

18 append e to e_history 

19 iteration = iteration+1 

20 if iteration < iteration_limit 

21 return p = p_history[end] 

22 else 

23 return p = mean(p_history) 

 376 

We examine the modified information fusion method with sample data consisting of a probability 377 

list with 27 elements, as [0.9630, 0.9594, … , 0.03351]. The process stops at the 94th iteration where it reaches 378 

the stopping criterion when 𝑒 meets 𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 which is set to 0.01. The results are shown in Fig. 6. The 379 

error history is plotted in Fig. 6(a). Clearly, 𝑒 decreases as the process proceeds. For a detailed view of the 380 

94th iteration when 𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is reached, the error history from iterations 86 to 96 is shown in the upper-381 

right corner of Fig. 6(a). The history of fused probability, 𝑝_ℎ𝑖𝑠𝑡𝑜𝑟𝑦, is shown in Fig. 6(b). The final outcome 382 

of the modified algorithm is 0.9983 . As a comparison, the fused probability for the original fusion 383 

algorithm is 0.9999, and the number of combinations for the original algorithm would be 134,217,728. 384 

Meanwhile, the modified process drops this number to 94 ∗ 𝐶𝑡𝑜𝑡𝑎𝑙(𝑁 = 5) = 3,008. The actual computation 385 

time for the modified process is 0.0728 seconds, while the original algorithm requires 3.15 hours. 386 

 387 

 
(a) (b) 

Figure 6. Results of the modified information fusion algorithm: (a) error history, (b) fused probability history 388 
 389 

3 Validation of the Technique 390 

3.1 Validation dataset 391 

We validated the technique with real world datasets from reconnaissance missions. The datasets were 392 

collected from the reconnaissance missions after several earthquakes, including Bingöl, Turkey in 2003; 393 

Haiti in 2010; Nepal in 2015; Taiwan in 2016; Ecuador in 2016; and Mexico City, Mexico in 2017 [10,21-25]. 394 

In these missions, 33,248 reconnaissance images were collected from 800 buildings. The images cover a 395 

various of structural components with different health conditions. And they are taken from both inside and 396 

outside of buildings. Some sample images are shown in Fig. 7. 397 

During the missions, the reconnaissance teams walk through each of the buildings and manually 398 

collect each of the images in the datasets. For this work, we organized the datasets according to the building 399 
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that they were collected from. We do not specifically make use of the event itself. For each building, the 400 

datasets tend to include a number of reconnaissance images and a building survey form, as shown in the 401 

sample in Fig. 1. It should be noted that the images and the building survey forms in the original datasets 402 

do not exactly correspond to each other perfectly. Some buildings have images but lack of building survey 403 

forms, while some lack the images instead. Also, some building survey forms are empty or not legible for 404 

various reasons. As our technique aims to evaluate a building based on an SOI instead of single images, 405 

thus, we only use the data that has both an SOI and a valid building survey form for the same building. 406 

After examination of the data, there are 29,543 images and 720 buildings left for use in the following 407 

validation. 408 

 409 

 

Haiti earthquake in 

2007 (129 buildings, 

3,129 images) 

Ecuador earthquake in 

2016 (171 buildings, 

6,442 images) 

Taiwan earthquake in 

2016 (119 buildings, 

9,164 images) 

Mexico City 

earthquake in 2017 (81 

buildings, 3,245 

images) 

 410 

To fully test the technique, we divide the full dataset mentioned above into two parts, validation 411 

dataset 1 and validation dataset 2. The detailed assignments for the dataset are shown in Table 2. From 412 

validation dataset 1, we select some of the images to form the training set and the testing set for each of the 413 

classifiers used in this technique. The total number of images in validation dataset 1 is 26,298, and we select 414 

5,119 of them for this purpose. Next, validation dataset 1 will be used to tune the thresholds. In the end, 415 

validation dataset 2 will only be used for validating the technique. Since the process to develop the 416 

technique has not seen any of the data from validation dataset 2, using it for validation of the method is 417 

intended to represent an assessment of the performance of the technique on newly collected data. To form 418 

the two validation datasets, the events are randomly split as 90% (as 5) for validation dataset 1 and 10% (as 419 

1) for validation dataset 2.  420 

 421 

Table 2. Details of validation datasets 422 

Validation 

dataset 1 

 Bingöl Ecuador Haiti Nepal Taiwan Total 

RC: MD – ND 36 – 19 118 - 53 76 – 53 83 – 82 32 – 87 345 - 294 

M: MD – ND 49 – 6 133 - 38 91 - 38 119 – 46 33 – 86 425 - 214 

Total 55 171 129 165 119 639 

Validation 

dataset 2 

 Mexico City      

RC: MD – ND 33 – 48      

M: MD – ND 46 - 35      

Total 81   (unit: SOIs) 

Figure 7. Sample images from the reconnaissance image database [10,21-25] 
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 423 

Also, as explained in Section 1, reconnaissance teams manually evaluate the RC damage state and 424 

M damage state of each target building and document them in the building survey form. The RC damage 425 

state or M damage state is given in the building survey form as one of five possible states, based on the 426 

following set of options: {none, low, moderate, severe, collapse}. The guidelines used by the reconnaissance 427 

teams were consistent across all the different datasets used in this validation section. As discussed in 428 

Section 2.1, we merge the five states specified in the guidelines into two states, designated MD and ND. 429 

The number of building SOIs that include the corresponding ground truth are also listed in Table 2.  430 

 431 

3.2 Classifier design 432 

To train the classifiers, we manually select images from validation dataset 1 and label them based on the 433 

guidelines used by the reconnaissance teams. Several sample images from each class are shown in Fig. 8. 434 

In general, we label four categories of images, including RC damage, M damage, ND and other. For training 435 

and testing the classifiers, RC and other form the dataset for the RC classifier, M and other form the dataset 436 

for the M classifier, ND and other form the dataset for the ND classifier, and RC and M form MD, together 437 

with ND, they form the dataset for the overall damage state classifier. Note that RC and M images are not 438 

mutually exclusive, as we discussed in Section 2.1. Also, RC and M damage can occur simultaneously and 439 

be captured in one image. The detailed number of images labelled and used are also listed in Fig. 8. The 440 

number of images in each class are not uniformly selected. Instead, we select images with ambiguous visual 441 

contents, and manually label them strictly by the definitions formed in Section 2.1. This approach results 442 

in a more robust classifier that can correctly classify the more challenging scenes. In total, 5,119 images are 443 

used here, as compared to the total number of images in validation dataset 1.  444 

 445 

 
Image samples labelled 

as RC damage  

(843 images) 

Image samples labelled 

as M damage  

(887 images) 

Image samples labelled 

as ND (2363 images) 

Image samples labelled 

as other (1026 images) 

Figure 8. Labelled image samples for each class [10,21-24] 446 

 447 

We use the same model for building all the classifiers. VGG16 is selected to be the base model of 448 

the classifiers, as its performance is one of the best in the ImageNet competition in 2014 [26]. The 5 main 449 

convolutional blocks are kept, and a new top block is attached to replace the original top block. The new 450 

top block generates a probability from 0 to 1 for each image, representing one of the binary categories of 451 

each classifier. During the training process, the pre-trained VGG16 weights, trained with ImageNet dataset, 452 

is used. The weights of the first two convolutional blocks in VGG16 are fixed, and the latter three blocks 453 

are allowed to be tuned. Together with the top block, the weights of the last three blocks are the only ones 454 

that are trained on the datasets. Since the training datasets for each classifier are not balanced, we set class 455 

weights to compensate for the imbalanced dataset in the training process.  456 

 457 
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 458 
Figure 9. Training and testing of the RC classifier 459 

 460 

Each classifier is trained for 100 epochs, and we use the final weights as the ones in the following 461 

test. As an example, the training and testing history for the RC classifier is shown in Fig. 9. In the first 20 462 

epochs, the loss drops quickly while the accuracy rises, then both histories change gradually. The training 463 

accuracy and testing accuracy for each classifier that occur in the final epoch are listed in Table 3. The 464 

overall performance of the classifiers is acceptable. We observe the scenes in damage state classifier are 465 

more complex as compared to the scenes for the other three classifiers, thus attribute its slightly lower 466 

accuracy to this fact. 467 

 468 

Table 3 Final metrics of all the classifiers 469 

  Trained epochs  Final training accuracy  Final testing accuracy 
Damage state classifier  100  94.28%  92.88% 

RC classifier  100  96.17%  95.70% 
M classifier  100  98.29%  98.97% 

ND classifier  100  95.86%  94.38% 
 470 

3.3 Threshold tuning 471 

In this section, we tune 𝑇𝑎 and 𝑇𝑏 to find the values that yield the best performance of the overall technique. 472 

As mentioned in Section 2.2, the results of the RC classifier, M classifier and damage state classifier are 473 

filtered using the corresponding thresholds before moving to the next step in the process. Conceptually, 474 

the filters remove the portion of the results based on the confidence with which the categories are assigned 475 

to the images. To carry out the tuning, we implement the technique with validation dataset 1 using a range 476 

of values of 𝑇𝑎 and 𝑇𝑏. After generating the RC probability list and the M probability list, we fuse each 477 

probability list using the method explained in Section 2.3 to form the two overall probability values, RC 478 

fused probability (RCFP) and M fused probability (MFP). Then, we simply use a threshold of 0.5 to decide 479 

whether the building based on an SOI should be classified as ND (< 0.5) or as MD (> 0.5). The result is 480 

evaluated by the metrics of recall and precision on the entirety of validation dataset 1.  481 

 482 

3.3.1 Metrics for evaluating the technique and on an imbalanced dataset 483 

 484 

First, we explain the metrics used for evaluating the results [27]. Then for demonstrating how to interpret 485 

the metrics, we generate hypothetical data, and the associated results are shown with the confusion matrix 486 

in Table 4. The main items in the confusion matrix are denoted as follows: for the predicted damage state 487 

classification, the damage type (RC or M) followed by a “--”, the prediction (MD or ND), followed by a “-488 
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-”, and true (or false) of the prediction, e.g., RC-MD-True means the RCFP prediction is RC MD and it is 489 

True. Similarly, RC-MD-False means the RCFP prediction is RC MD and it is False. The latter indicates that 490 

the ground truth for the classification is RC ND; for the column of total, the damage type (RC or M)-the 491 

ground truth (MD or ND)-Total; for metrics, the damage type (RC or M)-the ground truth (MD or ND)-492 

recall, and the damage type (RC or M)-the prediction (MD or ND)-precision. After introducing the main 493 

items, the metrics are defined as follows:  494 

 495 

RC-MD-recall =
RC-MD-True

RC-MD-True+RC-ND-False
 496 

RC-MD-precision =
RC-MD-True

RC-MD-True+RC-MD-False
 497 

 498 

The ND and M related confusion matrix and metrics follow this same pattern. Nevertheless, when 499 

the dataset is imbalanced, there is an issue regarding the metrics shown in Table 4. The recall values for 500 

RC-MD and RC-ND are both pretty high, and this means the technique is quite successful in retrieving 501 

overall damage classification, both those classified as MD and ND. However, the precision values vary 502 

considerably; RC-MD-precision is 100% and RC-ND-precision is merely 1%. This outcome indicates that in 503 

the results that are predicted as ND, only 1% of them is True. The reason for this biased indication brought 504 

by the metrics is the imbalanced dataset. Because the total number of samples with a ground truth of RC 505 

MD is 101,000 while the number with RC ND is only 10, no matter how well the technique performs, RC-506 

ND-precision will always struggle and have a relatively low value [28].  507 

 508 

Table 4. Hypothetical data and results of the demonstration  509 

RC (Hypothetical data and results) 

Ground 

truth\prediction 

MD ND Total  

MD RC-MD-True: 

100,000 

RC-ND-False: 

1,000 

RC-MD-Total: 

101,000 

RC-MD-Recall: 

99% 

ND RC-MD-False: 0 RC-ND-True: 10 RC-ND-Total: 10 RC-ND-Recall: 

100% 

 RC-MD-Precision: 

100% 

RC-ND-Precision: 

1% 

  

 510 

To compensate for this imbalance, we use a similar idea to the one adopted in Section 2.3.2 for 511 

accelerating the information fusion process. For the imbalanced dataset, we use a sampling method and 512 

sample from the categories with a larger number of SOIs. With these sampled results we compute the 513 

metrics, and then repeat the process until the metrics converge. The number of samples used is chosen as 514 

the number of SOIs in the smaller category, e.g., for the hypothetical data in Table 4, we simply sample 10 515 

SOIs, which is the total number of RC-ND from the 101,000 SOIs as RC-MD, and use the 10 samples from 516 

RC-MD together with all of those in RC-ND to compute the metrics. We define the error to be  517 

 518 

Error = ∑ |i-mean(i_history)|

𝑖∈𝑚𝑒𝑡𝑟𝑖𝑐𝑠

 519 

 520 

where 𝑖 is one of the metrics, including: RC-MD-recall, RC-MD-precision, RC-ND-recall, RC-ND-precision, 521 

M-MD-recall, M-MD-precision, M-ND-recall, or M-ND-precision. |⋅| is the absolute value, and 𝑖_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 is 522 
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the history of the metrics, and mean() is its expected value. Similar to Algorithm 1, we define the stopping 523 

criteria of the iteration as 0.01, as the maximum possible value of each metric is 1, or 100%. When Error ≤524 

0.01 or the iteration exceeds a predefined number (here, we set it to be 10,000), the iterations stop. If the 525 

number of iterations is smaller than the pre-defined limit, we use the last computed metrics; if the limit of 526 

iterations is reached, the mean of the history is used. 527 

It is worth noting that even though similar sampling methods are utilized in both Section 2.3.2 and 528 

this section, the reasons for choosing to use them are fundamentally different. For the information fusion 529 

algorithm in Section 2.3.2, the sampling method is used to reduce the computation time that would be 530 

needed for the conventional method as much as possible. However, the goal for introducing the sampling 531 

method in this section is to overcome the issue caused by the imbalanced dataset. As the metrics are only 532 

computed one time after implementing the technique on the entire dataset, and, furthermore it will not be 533 

computed when the technique is actually implemented to classify the SOIs, the computation time is not of 534 

concern here. 535 

 536 

3.3.2 Detailed procedure for threshold tuning 537 

For tuning the thresholds, we begin by proposing candidate values of 𝑇𝑎 as 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 538 

and 𝑇𝑏 as 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5. The technique is run with each combination of these candidate 539 

values. Thus, with these candidates we perform 49 trials of the technique. For each trial, we classify all 540 

buildings in validation dataset 1 based on their respective SOI. The metrics are generated by the method 541 

introduced in section 3.3.1, and for each run 8 metrics are generated.  542 

To illustrate the tuning, we plot a portion of the results for when 𝑇𝑎 is fixed as 0.01 and 𝑇𝑏 cycles 543 

through all its candidate values. In Figure 10(a), we plot the resulting metrics as a function of the values of 544 

𝑇𝑏. As mentioned earlier, there are 8 metrics in total. As shown in the plot, these metrics drastically change 545 

with 𝑇𝑏 . For example, RC-ND-recall drops from 84.07% to 50.17%, as 𝑇𝑏  changes from 0.01 to 0.5. 546 

Meanwhile, M-MD-recall increases from 62.62% to 86.45%. To understand the reason behind why some 547 

metrics are larger when 𝑇𝑏 is large, while other metrics have the opposite behavior, we plot the number of 548 

SOIs being predicted in Fig. 10(b). As shown in the plot, all the values related to MD are increasing as 𝑇𝑏 549 

increases, and all the terms related to ND are decreasing. This trend occurs because when 𝑇𝑏 is getting 550 

larger, or 1 − 𝑇𝑏 is getting smaller, the filters allowing images to be classified as MD and ND are getting 551 

less strict, allowing more images to be passed to the next stage of the process as MD and ND images. 552 

Because the MD images tend to dominate in the information fusion process to classify the damage state of 553 

the SOI as MD, this outcome results in an increasing number of SOIs being classified as MD, or equivalently, 554 

a reduced number of SOIs that are classified as ND. The consequence of this behavior is the significant 555 

changes in the values of the metrics. 556 

To select an optimal combination of thresholds, we simply use the minimum metrics in each case 557 

as the indicator. For instance, we use 64.95% to identify the case in which 𝑇𝑎 is 0.1 and 𝑇𝑏 is 0.01. From all 558 

the indicators, we select the highest, which represents the thresholds that yield the approach with the best 559 

performance. The results are shown in Fig. 10(c). In this figure, we show the minimum metrics for each 560 

combination of different values. The most appropriate one is selected to be 𝑇𝑎  as 0.01 and 𝑇𝑏  as 0.05 561 

corresponding to an indicator of 72.45%, which is pointed out by the arrow in Fig. 10(c). 562 

 563 
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(c) 

Figure 10. Thresholds tuning results: (a) results of metrics, (b) results of number of SOIs, (c) overall 564 

results 565 

 566 

3.4 Validation results 567 

3.4.1 Validation results on an SOI example 568 

In this section, we demonstrate the technique using an SOI. Several sample images from the SOI are shown 569 

in Fig. 11 [24]. The SOI is from the Taiwan dataset, and contains 129 images. First, we walk through the 570 
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workflow to demonstrate how the RC list is updated for one image. Updating the M list will be similar. 571 

The details relating to step 1a in Figure 4 are provided in Algorithm 2. The input is an image "𝒎" and the 572 

output is the updated RC list, 𝑅𝐶_𝑙𝑖𝑠𝑡. To begin, we obtain 𝑝_𝑅𝐶  by applying the RC classifier and 𝑝_𝑁𝐷 by 573 

applying the ND classifier on 𝒎, respectively. Then, the following decision is made: 𝑝_𝑅𝐶 or 𝑝_𝑁𝐷 is larger 574 

than 1 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑎, the RC list is updated by appending the image 𝒎 to the RC list; otherwise, the RC 575 

list stays the same. This terminates the process of step 1a in Figure 4 for 𝒎. 576 

By going through this process, the algorithm avoids the extreme case of having an image classified as both 577 

RC and ND at the same time (a high probability from both the RC classifier and the ND classifier is an 578 

indication of misclassification). Take the forth sample image in Figure 11 as 𝑝_𝑅𝐶 = 0.8831, 𝑝_𝑁𝐷 = 0.9778, 579 

1 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑎 = 0.99, this means 𝑝_𝑅𝐶 < 1 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑎 and 𝑝_𝑁𝐷 < 1 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑎, thus, this image 580 

will not be put in, thus, this image will not be appended to the RC list. For the second sample image in 581 

Figure 11, as 𝑝_𝑁𝐷 > 1 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑎, then, the image will be appended to the RC list. 582 

 583 

Algorithm 2. Updating of the RC list with one image 584 

Algorithm 2: 

 Input: m # image 

Output: RC_list # the updated RC list 

1 p_RC = RC_classifier(m) 

2 p_ND = ND_classifier(m) 

3 if p_RC > 1-threshold_a or p_ND > 1-threshold_a 

4 append m to RC_list 

 585 

For the SOI example, the ground truth is MD for RC and MD for M. The resulting probabilities are 586 

0.9999 for RC and 0.9999 for M. Thus, the prediction is MD for both RC and M, which agrees with the 587 

ground truth. Notice that our design approach, with a separate damage state classifier and category 588 

classifier, increases the robustness of the method to correctly predict the damage state for each image. 589 

Evidence of this robustness is found here with the forth sample image where the RC classifier assigns 0.8331 590 

to the image indicating the image can be classified as RC-MD while the damage state classifier assigns 591 

0.1365 indicating low damage state as the true condition of the image. The time required to generate this 592 

decision is 9.27 seconds, including the time for both image classification and information fusion. 593 

 594 

 595 
Figure 11. Sample images from a Taiwan mission SOI including testing results [24] 596 

 597 

3.4.2 Validation results on the validation datasets 598 

As demonstrated in Section 3.3.2, the technique achieves good performance using the pre-determined 599 

thresholds with all metrics being above 72%. The detailed results corresponding to validation dataset 1 are 600 

shown in Table 5(a). We provide the results as a confusion matrix grouped by the buildings surveyed 601 
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during each event, and also provide the results over all events. For this work and similar implementations 602 

of classification methods, recall plays a more important role than precision. In particular, in this application 603 

it is critical to successfully identify as many buildings as possible in each class, without neglecting classes 604 

that happen to contain a smaller number of buildings [14]. Thus, we only calculate and show the recall for 605 

each category. Recall values are calculated directly, since the imbalance in the dataset only significantly 606 

affects the precision values, as shown in Section 3.3.1.  607 

In general, the performance is good. The results do vary somewhat with the specific event. In most 608 

cases, the performance is above or close to the overall metrics, for instance, the Bingöl, Ecuador, and Haiti 609 

datasets. However, in a couple of cases the performance is noticeably lower, including the M-MD for the 610 

Bingöl dataset, and M-MD of the Taiwan dataset, etc. We believe this outcome is mainly because the 611 

misclassification of images occurs more frequently in certain datasets. A possible solution is to collect more 612 

images containing a variety of damage conditions and architectural styles to add to the overall dataset. The 613 

variety of the training dataset is generally a strong indicator of the robustness of the classifiers trained. Also, 614 

adding more SOIs to the datasets will also reduce the likelihood of outliers in the metrics. For instance, the 615 

M-ND-recall of the Bingöl dataset is 100%. Here the M-ND-Total is only 6, and thus the high recall value does 616 

not necessarily reflect the technique. It is reasonable to expect that datasets containing more SOIs in M-ND, 617 

the recall will drop to a level closer to the overall performance. 618 

The results for validation dataset 2 are shown in Table 5(b). Here it is clear that the approach also 619 

achieves good performance, especially considering the technique has not seen any images in validation 620 

dataset 2 before this test. Note that M-ND-recall is higher here than in the results for validation dataset 1. 621 

The reason for this outcome is possibly the limited number of SOIs. Increasing the number of SOIs in 622 

validation dataset 2 can lead to a more representative result.  623 

 624 

Table 5(a). Results for validation dataset 1 625 

Ground truth\prediction MD ND Total Recall 

Bingöl 

RC 
MD RC-MD-True: 27 RC-ND-False: 9 RC-MD-Total: 36 75.00% 

ND RC-MD-False: 3 RC-ND-True: 16 RC-ND-Total: 19 84.21% 

M 
MD M-MD-True: 30 M-ND-False: 19 M-MD-Total: 49 61.22% 

ND M-MD-False: 0 M-ND-True: 6 M-ND-Total: 6 100% 

Ecuador 

RC 
MD RC-MD-True: 102 RC-ND-False: 16 RC-MD-Total: 118 86.44% 

ND RC-MD-False: 17 RC-ND-True: 36 RC-ND-Total: 53 67.92% 

M 
MD M-MD-True: 107 M-ND-False: 26 M-MD-Total: 133 80.45% 

ND M-MD-False: 13 M-ND-True: 25 M-ND-Total: 38 65.79% 

Haiti 

RC 
MD RC-MD-True: 69 RC-ND-False: 7 RC-MD-Total: 76 90.79% 

ND RC-MD-False: 18 RC-ND-True: 35 RC-ND-Total: 53 66.04% 

M 
MD M-MD-True: 72 M-ND-False: 19 M-MD-Total: 91 79.12% 

ND M-MD-False: 9 M-ND-True: 29 M-ND-Total: 38 76.32% 

Nepal 

RC 
MD RC-MD-True: 73 RC-ND-False: 10 RC-MD-Total: 83 87.95% 

ND RC-MD-False: 25 RC-ND-True: 57 RC-ND-Total: 82 69.51% 

M 
MD M-MD-True: 86 M-ND-False: 33 M-MD-Total: 119 72.27% 

ND M-MD-False: 12 M-ND-True: 34 M-ND-Total: 46 73.91% 

Taiwan 
RC 

MD RC-MD-True: 26 RC-ND-False: 6 RC-MD-Total: 32 81.25% 

ND RC-MD-False: 18 RC-ND-True: 69 RC-ND-Total: 87 79.31% 

M MD M-MD-True: 20 M-ND-False: 13 M-MD-Total: 33 60.61% 
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ND M-MD-False: 15 M-ND-True: 71 M-ND-Total: 86 82.56% 

Total 

RC 
MD RC-MD-True: 297 RC-ND-False: 48 RC-MD-Total: 345 86.09% 

ND RC-MD-False: 81 RC-ND-True: 213 RC-ND-Total: 294 72.45% 

M 
MD M-MD-True: 315 M-ND-False: 110 M-MD-Total: 425 74.12% 

ND M-MD-False: 49 M-ND-True: 165 M-ND-Total: 214 77.10% 

 626 

Table 5(b). Results for validation dataset 2 627 

Ground truth\prediction MD ND Total Recall 

Mexico 

City 

RC 
MD RC-MD-True: 26 RC-ND-False: 7 RC-MD-Total: 33 78.79% 

ND RC-MD-False: 16 RC-ND-True: 32 RC-ND-Total: 48 66.67% 

M 
MD M-MD-True: 30 M-ND-False: 16 M-MD-Total: 46 65.22% 

ND M-MD-False: 6 M-ND-True: 29 M-ND-Total: 35 82.86% 

 628 

3.3.3 Influence of corrosion and other types of nonstructural damage 629 

As we have mentioned before, the data collection procedures do play a major role in the success of this 630 

technique. For instance, note that some of the damage visible in the images collected during the 631 

reconnaissance missions already existed prior to the seismic event. Additionally, some of the damage to 632 

concrete components was to nonstructural components. The presence of these images does bias the 633 

performance of the technique and can yield false predictions. To explore these as possible reasons for false 634 

predictions, we consider the influence of these images on the overall results. We manually remove two 635 

types of images, those with: pre-existing damage, which is evident by the level of corrosion visible, and 636 

nonstructural damage, for instance to components such as balconies or parapets.  637 

During a reconnaissance mission, such evidence of distress in the building does not participate in 638 

the decision process because the human engineer is able to disregard this information.  However, the 639 

computer is not yet able to distinguish between such cases. The design of new classifiers to filter out such 640 

data would be a viable option, however, we first must understand the role these images play in the overall 641 

success of the technique. We noticed that these situations are especially evident in the Ecuador dataset [10]. 642 

Thus, to examine the influence of these images, we manually remove such images (those with corrosion, 643 

indicating pre-existing damage; and with major nonstructural damage) from the Ecuador dataset. Then we 644 

re-run the technique on the reduced dataset and compare the results.  645 

Several sample images that were removed because they contain corrosion are shown in Fig. 12. In 646 

total, 16 images from 5 SOIs are removed to examine their influence on the technique. As shown in the 647 

figure, they would be classified as MD images with varying probabilities. However, when the SOIs include 648 

these images, the predictions are likely to be MD, which does not match the ground truth and thus will 649 

reduce the associated metrics. The results of the Ecuador dataset without these images are shown in Table 650 

6. It is obvious that the performance in RC-ND and M-ND improves, while RC-MD stay the same and a 651 

decrease happens in M-MD. One additional SOI is falsely evaluated as compared with the original 652 

predictions shown in Table 5(a). It is likely, with the tuned thresholds, that the removed images contribute 653 

to the MD prediction in this particular SOI. The improvement in the metrics agrees with the number of 654 

SOIs being altered. Because images with pre-existing damage are in 4 SOIs, RC-ND-True and M-ND-True 655 

increase by 2 and 2, respectively. Removing these images from the SOI, or not collecting them in the first 656 

place, would improve the results of the technique. This observation will be important for improving the 657 

data collection procedures.  658 

 659 
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 660 
Figure 12. Sample images with corrosion as evidence of pre-existing damage from the Ecuador dataset 661 

[10] 662 

 663 

Table 6. Results for the Ecuador dataset without corrosion images 664 

Ground truth\prediction MD ND Total Recall Original 

recall 

Ecuador 

w/ 

corrosion 

RC 

MD RC-MD-True: 

102 

RC-ND-False: 

16 

RC-MD-Total: 

118 

86.44% 86.44% 

ND RC-MD-

False: 15 

RC-ND-True: 

38 

RC-ND-Total: 

53 

71.70% 67.92% 

M 

MD M-MD-True: 

106 

M-ND-False: 

27 

M-MD-Total: 

133 

79.70% 80.45% 

ND M-MD-False: 

11 

M-ND-True: 

27 

M-ND-Total: 

38 

71.05% 65.79% 

 665 

A similar situation is considered for images with purely nonstructural damage. Several sample 666 

images of this case are shown in Fig. 13. In total, 49 images from 10 SOIs are removed and the predictions 667 

are repeated. The results for the Ecuador dataset without these images are shown in Table 7. Two categories 668 

see improved metrics, raising the number of true predictions, while RC-MD stay the same and M-MD-True 669 

decrease by 1 likely due to the same reason in the corrosion case. Based on the sample here, it is clear that 670 

the data collection process does bias the results of the technique. These images, containing corroded 671 

components with pre-existing damage and damage to nonstructural components, contribute to the number 672 

of false predictions made by the technique. This sample case motivates the need for either new classifiers 673 

that can automatically filter out these images, or guidelines that discourage teams in the field from taking 674 

such images. The performance of such techniques will be improved with awareness about the overall 675 

process. 676 

 677 

 678 
Figure 13. Sample images with nonstructural damage from the Ecuador dataset [10] 679 
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 680 

Table 7. Results for the Ecuador dataset without images of nonstructural damage 681 

Ground truth\prediction MD ND Total Recall Original 

recall 

Ecuador w/ 

nonstructural 

damage 

RC 

MD RC-MD-True: 

102 

RC-ND-

False: 16 

RC-MD-Total: 

118 

86.44% 86.44% 

ND RC-MD-

False: 11 

RC-ND-True: 

42 

RC-ND-Total: 

53 

79.25% 67.92% 

M 

MD M-MD-True: 

106 

M-ND-False: 

27 

M-MD-Total: 

133 

79.70% 80.45% 

ND M-MD-False: 

9 

M-ND-True: 

29 

M-ND-Total: 

38 

76.32% 65.79% 

 682 

4. Conclusion 683 

Post-event reconnaissance teams collect perishable data that can be studied, leading to research and new 684 

knowledge about the performance of our infrastructure. In such missions, an important task is to develop 685 

methods to classify the damage state of buildings after an event. For instance, the Hassan index is an 686 

example of a convenient and expeditious method that can help with regional vulnerability models for the 687 

built environment. However, the process of collecting the data can be both exhausting and dangerous for 688 

the reconnaissance teams, and efforts to increase the reuse of those data collected under such difficult 689 

conditions should be energetically pursued. Automating the steps will facilitate an increase in the amount 690 

of data collected and used to develop new knowledge, while also building greater confidence in 691 

vulnerability models developed from the reuse of such data.  692 

The automated technique developed and validated herein is intended to classify the overall 693 

damage state of a building based on a set of images collected in the field. We target damage to both the RC 694 

structural components and masonry components of a building, based on a set of tasks that a reconnaissance 695 

team has actually performed in the field. For RC damage or M damage, the technique will process a set of 696 

input images and generate a list of probabilities, each corresponding to the probability that the 697 

corresponding image is either MD or ND. Then, we apply an information fusion algorithm to each 698 

probability list and yield the fused probability which is used to predict the overall damage state of the 699 

building as either MD or ND. The technique is demonstrated and validated with real world datasets from 700 

past earthquakes in different locations around the world. After building the classifiers and tuning the 701 

thresholds, the technique is able to predict the damage state of an SOI in less than one minute. Thus, this 702 

technique provides the ability to analyze a vast volume of reconnaissance images to predict the damage 703 

state of buildings. This technique also has potential to support the use of drones or robots for field data 704 

collection, which in turn, reduces life-threatening situations for reconnaissance teams. We also anticipate 705 

that it will promote the collection and reuse of more reconnaissance data to inform building design 706 

procedures.  707 

The collection of the data collection can influence the outcomes of such automated techniques, and 708 

thus there is value in considering best practices for collecting data that will yield robust results from this 709 

and possibly other techniques. First, reconnaissance teams are encouraged to collect more images from 710 

each target building. As the number of images gathered from a given building grows, better damage 711 

classifications can be made. Second, the set of images should cover as many building components as 712 

possible.  This technique is meant to anticipate an image is taken for every visible building region, whether 713 

or not those components contain damaged or undamaged building components, structural or non-714 
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structural components, relevant or irrelevant to the damage state of buildings, etc. The technique can make 715 

more robust predictions when buildings are sufficiently covered by the reconnaissance images. Third, 716 

images should not be taken from so close that the context of the scene is not clear. A close in view of a crack 717 

can be useful, but does not provide information about whether the damage is to structural or nonstructural 718 

components, nor does it provide any sort of scale information. And finally, as mentioned earlier, when 719 

damage is intended to be captured with an image, the damage should consume a reasonable portion of the 720 

image area (we estimate 30%).  721 

 Limitations of the technique do exist, offering challenging directions for interested researchers. It 722 

is important to keep in mind that the technique can only base the outcome on the images that were collected. 723 

Note that when the images collected are not sufficient to cover every component of the building, the 724 

prediction yielded by this technique may not reflect the true state of the building. And as the image sets 725 

become larger, for instance with drones or other methods of gathering large volumes of images, more 726 

challenges do exist.  727 
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