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Abstract

Collecting massive amounts of image data is a common way to record the post event condition of
buildings, to be used by engineers and researchers to learn from that event. Key information needed to
interpret the image data collected during these reconnaissance missions is the location within the building
where each image was taken. However, image localization is difficult in an indoor environment, as GPS is
not generally available because of weak or broken signals. To support rapid, seamless data collection
during a reconnaissance mission, we develop and validate a fully automated technique to provide robust
indoor localization while requiring no prior information about the condition or spatial layout of an indoor
environment. The technique is meant for large-scale data collection across multiple floors within multiple
buildings. A systematic method is designed to separate the reconnaissance data into individual buildings
and individual floors. Then, for data within each floor, an optimization problem is formulated to
automatically overlay the path onto the structural drawings providing robust results, and subsequently,
yielding the image locations. The end-toend technique only requires the data collector to wear an
additional inexpensive motion camera, thus, it does not add time or effort to the current rapid
reconnaissance protocol. As no prior information about the condition or spatial layout of the indoor
environment is needed, this technique can be adapted to a large variety of building environments and
does not require any type of preparation in the post event settings. This technique is validated using data
collected from several real buildings.

1. Introduction

Natural hazard events remain a significant challenge to the engineering of our buildings. To reduce losses
and improve safety, engineers must exploit each natural hazard event as an opportunity to observe and
learn about the built environment for the purpose of improving the standards and guidelines that regulate
their design. Image collection plays an indispensable role in supporting these post event reconnaissance
activities. Perishable data about building performance must be collected as quickly as possible. Photos
and videos are the preferred method because they can be acquired rapidly in the field. Teams of engineers
travel to the site, identify structures that are relevant to the scientific questions they are most interested
in, and collect large quantities of image data as they walk through those buildings.

Due to the ease with which images can be taken, reconnaissance data collected during different events
are being amassed in several large repositories. Although these images are clearly useful to the
researchers who collected the specific data, labeling and organizing that data to make them accessible to



other researchers is quite time consuming. Thus, a large fraction of the data often goes unused. The rapid
organization, analysis, and publication of these data are valuable activities for the hazards community.

In the Unites States, the National Science Foundation supports several research facilities to collect and
store reconnaissance data. The Natural Hazards Engineering Research Infrastructure (NHERI) is a shared-
use facility developed to support natural hazards engineering research. Two components of NHERI, the
Rapid Response Research (RAPID) Facility and DesignSafe-Cl, serve in this capacity. RAPID supports field
data collection, and DesignSafe-Cl is a data repository for storing, publishing, and sharing. Around the
world, other organizations maintain data repositories with similar goals. These include the Earthquake
Engineering Research Institute, DataCenterHub, Pacific Earthquake Engineering Research Center, and
QuakeCore (Datacenterhub, 2014; EERI, 2009; PEER, 2013; QuakeCoRE, 2016). However, these platforms
do not offer functionalities to support researchers in sorting, classifying, organizing, and analyzing these
data. Other platforms have been developed, for example, Automated Reconnaissance Image Organizer
(ARIO), which are designed to provide automated image classification and report generation services
(Yeum, Dyke, Benes, Hacker, Ramirez, et al., 2019).

Clearly, tremendous resources are devoted to reconnaissance image data collection and storage.
However, the use of these data is severely limited without putting them into the proper context. For
instance, spatial location information is often lacking in such image data. Without knowing the location
where an image was taken, a researcher who did not collect the data cannot be certain where the image
was collected within a given building. Without such location information, interpretation of the data,
whether for a single image or an entire building, is challenging or impossible. For example, an engineer
may need to know the condition of components of a building that are relatively close to each other, or of
components at opposite ends of a building. Similarly, one may need to examine images of a column or
wall that extends vertically through multiple floors in a given building. Estimating the location information
among a group of images can consume a great deal of time and effort, and may lead to untrustworthy
results.

GPS metadata is a common approach to get spatial information for images. However, this method only
works in outdoor environments. In an indoor environment, GPS cannot provide accurate indoor location
data (Kos et al., 2010). To address this issue, we have previously developed a technique to localize
reconnaissance images on a single structural drawing (Liu et al., 2020). We used visual odometry
(hereafter, VO) to reconstruct the walking path and associate it with the visual data. In this work, the step
of overlaying the reconstructed path onto a drawing required manual user input, which is not preferred
(Liu et al., 2020). To overcome this limitation, here we develop the ability to entirely automate these steps
and evolve the single-floor image localization process into a fully automated multibuilding, multifloor
image localization capability. The technique developed herein has three distinct advantages over manual
human data organization. First, automation will save considerable time and human effort, especially when
the mission involves numerous buildings, each having several floors. Second, the final overlaid result will
have greater consistency in quality and fewer errors as the user is removed from the process along with
the potential for human error when it comes to such a tedious and repetitive task. Third, because we
automatically separate the data floor by floor, and building by building, and link them to the respective
structural drawings, the availability and use of such image data will be accelerated, empowering engineers
to improve the safety of our built environment to disruptions caused by natural hazard events.



In this work, a fully automated technique is developed to provide indoor localization. This technique
requires no prior information about the condition or spatial layout of the indoor environment. Moreover,
this technique only requires the data collector to wear an additional inexpensive motion camera, and does
not require costly equipment. Thus, it does not add time or effort to the current rapid reconnaissance
protocol. The input data include three types of data: (1) video footage (hereafter, PathVideo) to record
the scenes right in front of the data collector as they walk through the building; (2) visual data, or
inspection images (hereafter, Insplmgs) that are collected to document the consequences of natural
hazards on the buildings; and (3) digital images of the structural drawings (hereafter, SDI) of buildings
visited during the mission. The integrated technique developed requires data separation, VO, and
clustering steps. Here, “data separation,” which is driven by a convolutional neural network (hereafter,
CNN) image classifier (LeCun & Bengio, 1995), refers to splitting the input data according to the building
floors. After separation, Pathlmgs are used to reconstruct the 3D path (hereafter, Path) and associated
point cloud model (hereafter, Pcl) through VO. We then formulate an optimization problem to
automatically overlay Path and Pcl (hereafter, PathPcl) onto the structural drawings, and link Pathimgs to
their position on the structural drawings. In the end, the location of each of the Insplmgs is provided. For
convenience, the abbreviations used herein are defined in Table 1.

TABLE 1. Abbreviation table.

Abbreviation Definition

Insplmgs inspection images

Path indoor 3D path that data collector takes
PathVideo video footage recorded with motion camera
Pathlmgs frames of PathVideo

Pcl point cloud model

PathPcl Path and Pcl

SDI digital image of structural drawing

The remaining sections of this paper are organized as follows. Section 2 reviews the research relating to
this work. Section 3 explains the technical approach and the key challenges encountered and overcome,
mainly focusing on data separation and the automated overlay process. In Section 4, experimental
validation of the individual components of the technique is performed, including indoor—outdoor
separation, multifloor separation, and Path overlay. We then validate the entire technique with data
collected over a large-scale area. The conclusions are documented in Section 5.

2 Literature review

Although to date no research has focused on tackling this problem, here we summarize past research
conducted to look at tasks that are somewhat similar to those that we brought together to solve this
problem. Researchers have considered indoor localization, projecting Pcl onto 2D surfaces, and nature-
inspired optimization algorithms for a variety of purposes. Studies on indoor localization have been
focused on accessing and sometimes integrating data from various sensors. These sensors include infrared
cameras, Bluetooth, Wi-Fi, and radio-frequency identification (Bahl & Padmanabhan, 2000; Gutmann et
al.,, 2013; Meng et al., 2012; Pierlot & Droogenbroeck, 2014; Want et al., 1992; Willis & Helal, 2004).
However, as these approaches rely on measurements between mobile devices and fixed landmarks, these



methods are not suitable for deployment in post event reconnaissance. Post event building
reconnaissance teams must operate without local electric or telecommunication services. Researchers
have also explored using feature matching to localize images. Li et al. (2018) match newly collected images
toimages in a data set by reading their geotags to provide localization. Geo tags would be GPS coordinates
in the outdoor environment, or location IDs (e.g., room IDs) in an indoor environment. This approach
requires time and effort to prepare the data set with geotags before the actual mission, and thus is of very
limited use in rapid reconnaissance missions. Potentially, indoor place recognition (Espinace et al., 2010;
Gupta et al., 2013; Quattoni & Torralba, 2009) could be adapted to support this problem. However, the
main limitation is again that the recognized scenery alone cannot provide localization results, and still
requires some prior reference information, for example, prerecorded geotags and beacons. Furthermore,
this technique cannot uniquely localize indoor components with identical or similar appearance, which is
of course quite common in buildings.

Linking or projecting a Pcl onto a 2D surface is sometimes needed. Work on this topic has mostly
considered outdoor scenarios. Kaminsky et al. (2009) formulated an optimization problem for carrying out
this task using two cost functions based on the Pcl and Ray models, respectively. Then a grid search—based
method was adopted to find the optimal overlay. This method may also leverage a GPS signal to improve
performance. Because a Ray model is mainly for structure-from-motion (hereafter, SfM) models that span
a limited region, it is not suitable for reconnaissance data collection where the environments normally
consist of hallways and are visited just once. Based on these constraints, VO, or simultaneous localization
and mapping (hereafter, SLAM) is chosen here over SfM because it is less time consuming for generating
the Pcland can directly provide Path results. Also, the grid-based search method developed can take time.
While these factors limit the use of this particular method for reconnaissance data, the formulation of the
Pcl cost function and coarse to fine search logic has inspired our work. In other past work, Ni et al. (2013)
use Hough transformation and scan match to perform the overlay of Pcl onto Google maps. They detect
plane surfaces such as wall elements from the Pcl, and try to match them with lines on the map. This
requirement inevitably limits the use of the method. In an indoor environment, wall elements are
normally featureless, and through approaches such as VO/SLAM/SfM, walls are reconstructed as regions
with no points or highly sparse points. This characteristic could lead to failure in detecting wall elements,
and correspondingly, the implementation of this method. Furthermore, it would not be useful for large
open indoor spaces with no walls. Alternately, Zhang et al. (2014) use edge detection to refine the overlay
of building roof onto satellite images. This method is for improving existing results, not for achieving an
initial overlay.

Another topic that has been considered by researchers is nature-inspired optimization algorithms. Genetic
algorithms (hereafter, GA), introduced by John Holland in the 1970s (Holland, 1992) are inspired by the
principles of genetics. Evolving over a number of generations, better genomes will survive over weaker
ones and lead to optimal solutions for a given problem. Particle swarm optimization (hereafter, PSO)
invented by Kennedy and Eberhart (1995) in the 1990s is inspired by the motion of swarms of birds. It
considers a group of randomly generated solutions and propagates them toward the optimal solution
based on information shared by all members of the group. Other nature-inspired optimization algorithms
have been developed, including Ant Colony Optimization inspired by foraging behavior of ants, Bat
Algorithm inspired by the echolocation ability of bats, and Spider Monkey Algorithm inspired by the social
behavior of a South American species (Akhand et al., 2020; Dorigo et al., 2006; Yang, 2020). Comparisons
among these have already been made, and serve to guide researchers in choosing the most suitable



algorithms. Hassan et al. (2005) compared PSO and GA over eight benchmark problems, and drew the
conclusion that PSO and GA yield the same level of solution quality, while PSO is generally more
computationally efficient than GA. Tharwat and Schenck (2021) also performed a comparison where a
total of five algorithms are compared in terms of their performance on six benchmark problems. Based
on a review of this past work, we adopt PSO for our overlay problem for its quality, robustness,
computation efficiency, and widespread availability.

3 Technical approach
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FIGURE 1. Overview of the technical approach

An overview of our automated technique is shown in Figure 1. The technique has three stages, including
data collection, data separation, and data processing, each with its own challenges, which we will discuss
here. The first stage is data collection. Engineers collect reconnaissance data over a large-scale area as the
inputs to the technique. In a large-scale area, engineers will walk through multiple independent buildings
to collect the visual data, and in each building, multiple floors may need to be visited for data collection.
For example, the data collection may cover one floor in the first building, three floors in the second
building, and so forth. There is no limitation regarding the number of floors, the number of buildings, or
the order of the buildings to be covered in a given reconnaissance mission. The reconnaissance data
include Insplmgs, PathVideo, and structural drawings for all the floors in each building visited in the
mission. Insplmgs are the primary images collected during a mission, and are intended to document the
structural condition of the building and the evidence of the consequences of the hazard event. At the
same time, PathVideo is collected to store the scenes visible in front of the engineer as the mission takes
place. Structural drawings may also be stored in advance as digital images with distinguishable file names,
such as building1floor1, building2floor3, and so forth.

The second stage is data separation. We aim to separate the data according to the individual floor on
which they were collected. After separation, the data belonging to a single floor will all be collected in one
folder. This process is mainly driven by the separation of PathVideo, by exploiting indoor—outdoor
classification, clustering, and Path reconstruction. After that, we will obtain Pathlmgs according to the
individual floor and put them in different folders. Following the separation of Pathimgs, the Insplmgs are
put to the corresponding floors by timestamp matching between Insplmgs and Pathimgs. And structural
drawings are simply arranged by their file names.

The third stage is to process the data that are stored in a single folder to generate the indoor locations of
Insplmgs and then localize them on structural drawings and repeat the process for each of the folders.
Thus, using the data in one folder, we apply VO to PathVideo and create PathPcl. These results are



automatically overlaid onto the structural drawing by solving an optimization problem. The locations of
Insplmgs are obtained by referring to their pairing with Pathimgs, which are matched using timestamps.
And a selection of Insplmgs and Pathimgs near any highly inspected location may be used to generate a
local texture 3D model. In the end, the locations of Insplmgs on the structural drawing and local texture
3D models are the output and provided to the engineers.

3.1 Data separation
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FIGURE 2. Workflow for completing the data separation stage

In this section, the details of our data separation method, Stage 2 in Figure 1, are explained. This stage is
to separate the reconnaissance data into folders according to the individual floor they belong to. All data
belonging to one floor are collected in one folder. The procedure is shown in Figure 2. Note that all steps
in this stage are completely automated. To begin with, the reconnaissance data are read in step |, including
Insplmgs, PathVideo, and structural drawings. Frames of PathVideo are stored as Pathimgs, and named
with corresponding indices. Each Pathimg is assigned with a timestamp by interpolating between the
beginning time and the end time of PathVideo. Insplmgs are also stored with their timestamp. The
structural drawings are read as digital images, and named based on the building index and floor index, for
example, as “buildinglfloorl.” With these file names assigned, they are directly put into the
corresponding folders.

For step Il, a two-class image classifier is designed using CNNs. This classifier intends to distinguish indoor
images from outdoor ones, and only needs to be trained just once before processing the data. Instead of
generating labels, the classifier is used to assign each of the Pathimgs with a probability ranging from 0 to
1, where a number closer to 0 indicates a higher chance of being an indoor image, while values closer to
1 are for outdoor images.

In step I, we aim to group the Pathimgs according to their indoor or outdoor labels or probabilities from
step Il. Each Pathlmg is treated as a 2D point with the image index being the x coordinate and the
probability being the y coordinate. After removing ambiguous points with probabilities between .1 and
.9, the left points are grouped using an unsupervised cluster based on 2D Euclidean distances between
each other. For any group, if all the images in it are enclosed in any other group based on the upper bound
and lower bound of the image index, then it is absorbed by that clustered group. At this point, the indoor—



outdoor separation is finished. Each remaining group represents Pathimgs taken inside one particular
building or taken during an outdoor passage between different buildings.

In step IV, Path is generated for each indoor group using VO technique (Engel et al., 2017). The path that
the data collector takes through the building is rebuilt, including how she or he walks within floors and
across a particular floor. Climbing between floors through stairwells is captured because it results in
coordinate changes in the height dimension in 3D. This direction is recognized as being perpendicular to
the ground surface in the 3D coordinate system.

In step V, for images in each indoor group, Path is divided into segments based on the height information.
Each segment thus corresponds to Path formed on one single floor. By tracing back to Pathimgs through
the indices, we obtain Pathimgs taken at each floor level.

In step VI, Insplmgs are related to Pathimgs by comparing their timestamp, and the images from both
sides with the nearest timestamp are considered taken in the same physical location or the same floor.
By addressing the corresponding Pathlimgs, Insplmgs are localized to floors they are collected from.

Then in step VII, we can retrieve the reconnaissance data that are already separated into a number of
folders, and inside of each folder, it contains inspection data for a single floor, as Pathimgs, Insplmgs, and
the structural drawing.

3.2 Path overlay in data processing

Stage 3 in Figure 1 is data processing where we process data in each folder to generate the indoor
locations of Insplmgs and visualize them on the respective structural drawing. The process includes using
VO to rebuild PathPcl, automatically overlay the reconstructed PathPcl onto the structural drawings, and
perform timestamp matching. The details of Path overlay are discussed in this section, and PathPcl
reconstruction and timestamp matching will be explained later in the validation section.

Here we develop a method to automatically carry out the overlay without any manual assistance. To
achieve this goal, an optimization problem is defined such that the solution gives the optimal Path overlay
on the structural drawing. The optimization problem is formulated by minimizing the value of a cost
function to determine several unknown parameters that define the overlay position of PathPcl. The cost
function encodes a quantitative representation of how well PathPcl is overlaid onto the structural
drawing. The search process to obtain the optimal combination of these parameters is designed to be
practical, in that, it does obtain a useful and valid result quickly. Formulating the overlay problem as an
optimization problem requires that one take into account the complexities of structural drawings, as well
as the overall goal and what type of result is acceptable. Because this work is dealing with multiple floors
and multiple buildings, all of which need to be identified, and then the overlay of each of these must be
achieved.

It is worth mentioning that without defining the cost function in the following section, an overlay result
can only be evaluated by human judgment as to whether or not it is properly overlaid on the drawing. To
do that, a human would simply focus their attention on meeting two goals. The first is matching the shape
of Pcl with the markings that define the structural elements in the drawing. The second is to guarantee
that the Path object falls in an empty area in the structural drawing, specifically within the passage the
engineers take in the hallways. These two goals inspire our approach and are thus encoded into the cost
function discussed next.



3.2.1 Cost function formulation

The cost function is defined to quantitatively evaluate the quality of the overlay result. Thus, to define the
cost function, we must model the overlay process. For generating the model, the markings on the
structural drawing are considered to be fixed and impenetrable (i.e., the walking path cannot penetrate
walls and columns). We must first transform PathPcl from its original arbitrary coordinate system to the
coordinate system of the structural drawing. In the overlay model, PathPcl and the structural drawing are
the known data. The unknown variables to solve for are the set of the parameters needed to perform a
2D affine transformation for PathPcl. The parametersinclude a translation in the x-direction, a translation
in the y-direction, a rotation angle, and the scale. These are denoted as teity, 6, and s, respectively.
Collectively, we denote all the parameters to be tuned by ¢ = (4, t,, 6, 5).

The coordinate transformation for a point in PathPcl is defined as

s cos(0) py — ssin(0) p, +t,

p'(p;P) = s sin(6) p, + s cos(0) py +1t,

(1)

where p is a point from either Path or Pcl, p, and p,, are its x and y coordinates in the original coordinate
system, and p'(p; ¢) is the transformed point with the corresponding coordinate in the structural drawing
coordinate system.

Combining the input structural drawing and PathPcl with transformation parameters ¢, we can define the
cost function. The cost function is formed as a combination of two terms, based on Path and Pcl of PathPcl,
respectively.

The term in the cost function related to Path is defined as

Craen ($3 D) = - — Spery,, BO' (3 4, D) )
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where Pp,q, is the set of points in Path, p is a point in Pp,y,, and p’(p; ¢) is the transformed point of p. D
is the image of the drawings. B(p’, D) is the intensity value of binary D at the pixel whose 2D coordinates
are the ones of point p'. If the value is 0, it means that point p hits a white pixel on the binary image of
the structural drawing, and 1 means point p’ hits a black pixel. When Path is optimally, or even acceptably,
overlaid, all or most of the points along Path should encounter white pixels since Path must be placed in
regions with no structural components and open to passage. And, Np,p, is the number of the points in

PPath-

The second term in the cost function related to Pcl, and is defined as
Coct (93 D) = = Tper, E@' (03 $), D) (3)
Pcl

where, similarly, Pp is the set of points in Pcl, p is a point in Pp, and p’ is the transformed point of p.
E () is the Euclidean distance transform (hereafter, EDT) (Breu et al., 1995) of the structural drawing as a
binary digital image. And E(p') is the value of the EDT at the pixel whose 2D coordinates are associated
with point p’. EDT is a mapping method for a digital image where, for each pixel, EDT stores the Euclidean
distance from this pixel to the closest pixel measured by such distance. In this problem, EDT only serves
as a query table for analyzing and storing the Euclidean distance between Pcl points and SDI pixels. EDT is
computed just one time before the search is executed. During the search, we directly query EDT for the
distance information instead of repeatedly visiting the SDI. This approach greatly boosts the speed



required to solve the optimization problem. Again, if Pcl is optimally, or even acceptably, overlaid on the
structural drawing, the EDT mapping for most of the points in Pcl should be 0. Here, Np; is the number of
points in Pp.

The final cost function is defined as

@ Cpaen(P; D) + Coai(p; D),if p € ©
C(¢;D) = Cpenansif ¢ & )
Cgenal' ifp'(p; @) ¢ d)(tx; ty), for any p € Pp

where @ is the set of parameters that are bounded to yield a reasonable overlay, and how to retrieve the
exact ® for a Path overlay will be discussed in Section 3.2.2. When ¢ belongs to ®, the cost function,
C(¢; D), equals the combination of the two cost function terms defined above, while ¢ falls outside of @,
we simply set C;enal to C(¢; D), which is a penalty value set to 1100 in this work. And when a transformed
Path point exists, which is out of the bounds of t, and ¢, (really, outside of the building plan), we set
another C]fenal to C(¢; D), which is a penalty value set to 2200 in this work. The reason to set two different
penalty values is to simply keep track of the cases when a penalty is applied. « is a coefficient used to
provide a relative weighting between the two terms. This coefficient is set as the ratio of the number of
Path points to Pcl points to balance the Cp,, (¢; D) and Cpy(¢; D). Together with the factors including the
VO algorithm used in this work, Pcl filtering as explained in the next section, and so forth, «a is set as 0.1
in this work to provide the best overlay results, although the method is not sensitive to this parameter.
By minimizing the value of C, we obtain the values of the variables in ¢ that correspond to the optimal
overlay result. Note that we acknowledge the fact that it is possible that the hallways in a given structure
will be wide enough that there are several adjacent positions for Path that are equally acceptable, and
any of these would be an acceptable choice.

3.2.2 Search strategy

To avoid being trapped by local minima, we seek to form a search strategy that is highly likely to yield the
global minima. Given the design of our problem, it is guaranteed that at least one optimal solution exists
for this optimization problem, which corresponds to the optimal overlay result, and thus we can find a set
of the variables that give the optimal overlay result. This optimal result must exist within the range of the
structural drawing, as PathPcl are overlaid onto the structural drawing. Thus, among the large but finite
number of overlay results, we form a derivative-free method to search for the best values of the variables
and to obtain such a result quickly. Our search strategy is an adaptation of the original PSO method.
Compared to PSO, which would be likely to become stuck in a local minimum in this problem, our method
is able to achieve the global minimum with high robustness (this will be demonstrated in Section 4.1.3).
In the next paragraphs, we explain our approach, and in the last paragraph of this section, we briefly
discuss PSO and how PSO is integrated into our method.
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FIGURE 3. Workflow of the search strategy: (a) Overall workflow, (b) Detailed workflow of search in the top level, (c) Detailed
workflow of search in lower levels, (d) Detailed workflow of PSO search.

The front-end workflow of the search strategy is shown in Figure 3a. Step (A) is to load the input data of
a structural floor, including PathPcl and SDI. A series of preprocessing procedures are applied in step (B):
(B-1) transform SDI to a binary image, as binary SDI; (B-2) generate a multilevel image pyramid of binary
SDI (Adelson et al., 1984). The total level in the image pyramid is denoted as T (how to determine the
value of T will be discussed in the validation section). This step is to obtain T copies of binary SDI with
different sizes. Level 0 is the original binary SDI (the finest level), and level T — 1 is the highest level (the
coarsest level). Each level has half as many columns and rows of pixels as were in the previous level by
smoothing the pixel intensities in the neighborhood. (B-3) Filter the points in Pcl by their height coordinate
values, the coordinate axis perpendicular to the SDI. Along the height coordinate, the points at the center
area in the nearby region are kept. All of the preprocessing steps in step (B) are meant to shorten the
search process to a reasonable time. Then the following steps are used to perform the search over the
image pyramid. The search starts in the highest level (level T — 1) and moves down until reaching level 0
(Kaminsky et al., 2009). Step (C) is a judgment of whether the search is going to be in the top level of the
image pyramid, which has the smallest copy of binary SDI. If the answer is yes, it goes to step (D), which
applies the search at the top level. And if the answer is no, it goes to step (E) to carry out the search at
the lower levels. Then, step (F) is to check whether the process has gone through all levels. If no, it will
continue until it reaches level 0, and if yes, it proceeds to the final step, step (G), where we obtain the
output, the specific values of the variables ¢ yielding the optimal overlay result.

The details of step (D), to search in the top level, are shown in Figure 3b. Data passed from the previous
steps are preprocessed input data, with indices indicating that these data are for processing at the top
level of the image pyramid. Step (D1) is to set up the search boundary for all of the variables (ty, t,, 8, s).
For each one of the four variables, a lower bound and an upper bound are generated. These two bounds
govern the range of possible values for that variable, and when the value is outside of these bounds, a
large penalty is applied in the cost function for that candidate (see Equation (4)). In this step, all bounds
are set based on the top level in the image pyramid of binary SDI. If the binary SDI at the top level is
treated as a 2D matrix, the indices of the far left and far right columns containing less than 1% black pixels
are automatically set as the lower bound and the upper bound of t,, respectively. In the same way, t,, are



set up based on the indices of the rows. 8 is simply 0 and 360 degrees. For s, we calculate the Euclidean
distance of each black pixel in binary SDI in the top level from the origin, and get the standard deviation
of the distances, Stdy,ap, and for all the points of Path of PathPcl, Std,¢h. The ratio between Stdy,,p, and
Stdpaw is regarded as Sipjtial- Then, the lower bound is chosen as 50% of sjyjtial, and the upper bound is
chosen as 120% of sjpjtia)- Step (D3) is to apply PSO search (Kennedy & Eberhart,1995) to find the global
minimum of the cost function, as designed in Section 3.2.1. And in step (D4), a loop is carried out to repeat
steps (D2) to (D3). The purpose of this loop is to compensate for the random initialization of PSO, and this
approach is demonstrated to greatly increase the chance of generating the desired output. This procedure
will be further discussed in Section 3.2.3. When the iteration meets its preset limit, M, the process goes
to step (D5), which ends the search at the top level and gives the output of the search at this level. The
method used to determine M will be discussed in Section 3.2.3.

Once a combination of variables is obtained through the search at the higher levels, starting from the top
level, the search at the lower levels focuses on a small region based on the available outputs, as in Figure
3c. Step (E1) is to set up the search boundary based on the outputs from the previous level. In particular,
we set 80% and 120% of the output value of each variable as the lower bound and upper bound for the
current level, respectively. The search in the current level considers only options within these boundaries.
Step (E2) performs the initialization from the previous output, where it takes (2 - t,', 2- t,,', 8, 2 5") as
the initialization in the current level, and (t,’, t,’, 8', s") are the outputs from the previous level. Then
PSO search is used to search for the global minimum in step (E3). And then step (E4) is used to check
whether the loop meets the iteration limit, N. Compared to M, N is a small number. In this work, N is set
to 10. After N iterations, the process gives the output in step (E5).

The PSO algorithm used in step (D), search in the top level, and step (E), search in the lower levels, is
shown as in Figure 3d. In PSO, we have a group of candidates, which is referred to as a swarm of particles.
All candidates will have their own initial guesses for the variables (or denoted as positions in PSO)
simultaneously and independently. These guesses are not required to have the same values. Each
candidate follows a unique trajectory of searching, including initializing the variables and updating them.
To start, step (i) is to initialize all variables for each particle by giving them some values. Unlike the
traditional PSO, here these values are inherited from step (D2), random initialization, or from step (E2),
initialization based on output from the previous level. In step (ii), we evaluate the cost function at the
positions of each particle, yielding the corresponding values of the cost function. Then in step (iii), we
compare these values with the personnel best for each particle, and keep the smaller value of the cost
function as the updated personnel best for that particle. We do the same comparison between these
values and the global best, each time keeping the lowest one as the updated global best. The
corresponding values of the variables are passed along with the personnel best and global best. Then in
step (iv), the positions of the particles are updated based on personnel best and global best from the
previous step. More details on the update process are discussed in the next paragraph. In step (v), we
determine whether the iteration meets its limit, L, from step (ii) to step (iv). When the iteration limit is
reached, the output is generated in step (vi), which is the updated global best kept until now and its
corresponding combination of variables. The values of the variables are the outputs.

In step (iv) of Figure 3d, all particles update their positions. For instance, take a particle having the index
i, with the total number of particles being P, and the iteration index is k + 1 out of the iteration limit L.
The updated formula is given as
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where V; ., is the update for this particle in the current iteration. It is a 4D vector reflecting the changes
in the variables ¢, and V;; is the updated vector for the same particle from the previous iteration. Two
random variables, Zi,k’Z;,'k“‘U(O'l)- (f)i,k is a variable vector corresponding to the personnel best of this
particle up to iteration k, and qgg,k is the variable vector for the global best up to iteration k. ¢;  is the
current position of this particle; w, ¢;, ¢, are three coefficients to balance different terms in the update.

Then, the new position of this particle is calculated by adding the update vector to the previous position,
as

Diks1 = Pk + Vigsr (6)

The question yet remains as to how to determine the hyperparameters used in the search, including
M, L, P,w,cq,c,. This question will be discussed in Section 3.2.3.

3.2.3 Hyperparameter tuning

The search algorithm requires the hyperparameters to be selected before the optimization is performed.
The choice of the hyperparameters may influence the reliability of the search algorithm and its
computation time. Thus, we use a simple method to tune the hyperparameters and find appropriate
values. We run the algorithm 100 times using data collected only on a single floor, and count the number
of runs during which the algorithm reaches a threshold, which indicates that the algorithm vyields
acceptable results in one run. For each run, instead of deciding if the overlay result is acceptable or not
through human effort, we compare the value of the cost function to a predetermined threshold. If the
value obtained is larger than the threshold, it is considered as a failed run, otherwise, as a successful run.
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FIGURE 4. The overlay result with the global minimum of the cost function

We use the data collected in the underground floor in Armstrong Hall, Purdue, to tune the
hyperparameters. The data generate 1428 Path points and 489,930 Pcl points. To save time, we perform
the hyperparameter tuning only at the fourth level of the image pyramid. This adjustment shrinks the
original image of the structural drawing from 8400 x 6000 pixels to 525 x 375 pixels. After using the
algorithm (with a temporary hyperparameter settingas M = 50,L = 50,P = 50,w = 1.0,¢; = 1.0,¢; =



1.0), the optimal overlay result at the fourth level is shown in Figure 4, which corresponds to the global
minimum of the cost function. In this figure, the blue colored points correspond to the points in the Pcl,
as the Pcl is rebuilding the visible environment along the path, including walls, doors, and so forth.
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FIGURE 5. Results of validation by brute-force grid search

The next part of the process is to find the threshold. We use the brute-force grid search to evaluate the
cost function with all possible values of unknown variables ®. A brute-force grid search will examine all
possible values of each variable within the search boundaries, as indicated in Section 3.2.2. Sample results
from the brute-force grid search are shown in Figure 5. To illustrate the behavior of the cost function near
the optimal overlay result, we plot the brute-force grid search over the values of any two of the variables
while keeping the other two at the optimal values. Note that the results are plotted in log and rescaled
for better visualization. As indicated by the color bar, if a point is plotted with a darker color, it means the
cost function at that point is smaller and therefore, it is closer to the global minimum. Take Figure 5a as
an example. For t, = 230, t,, = 158, the point represents the global minimum. Notice in Figure 5a, the
values of 8 and s are set to achieve global minimum. This approach is simply for aiding visualization. As
we move away from this point, the color of the points becomes brighter, which means that at those points,
the cost function is becoming larger. It is obvious that in the region around the global minimum, there are
scattered dark points compared to those in their neighborhood. These points represent local minima, and
yield comparatively poor overlay results with respect to the global minimum. A key motivation for the
development of our method is to avoid falling into a local minimum. As mentioned in Section 3.2.2, any
values of the variables that cause any portion of the PathPcl to stray out of the valid structural drawing
boundary are not acceptable, and the cost function is accordingly assigned a large penalty value. These
outcomes correspond to the gray background in each plot. It is easy to imagine that outside the gray
region, the values of the variables lead to a cost function with such a penalty. So, there is no need to
search in those areas. From these results, we easily see that the global minimum of the cost function
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corresponds to the overlay result. In addition, it is the sole point where the cost function reaches the
global minimum. Thus, we use this global minimum and the corresponding value of the cost function
(0.273) as the criteria in the evaluation discussed next.

TABLE 2. Candidate values of hyper-parameters.

Hyper-parameter Candidate values

M 10, 20, 30, 40, 50, 100, 150, 200, 250
L 10, 20, 30, 40, 50, 60, 70, 80

P 10, 20, 30, 40, 50, 60, 70, 80

w 0.5,0.8 1,1.2, 1.5

¢ 0.5,0.8 1,1.2, 1.5

Cy 0.5,0.8 1,1.2, 1.5

After determining the threshold, the hyperparameter tuning can begin. Candidate values of the
hyperparameters are listed in Table 2. To save time, we perform two tunings. Since it is obvious that the
accuracy rises when M is increased, the first tuning is performed at a fixed M, set at 10, while L, P, w, ¢4, c;
are tuned. After the first tuning finishes, we pick the hyperparameters with the highest accuracy, and tune
the value of M on top of that until a good accuracy is achieved. The results are shown in Figure 6. The
results from the first tuning are plotted in blue color (with M = 10,L =50,P =80,w = 0.5,¢; =
1.5, c, = 1.5). The results of the second tuning are then plotted in orange, and it is apparent that the
accuracy grows along with the value of M. In the end, we choose the first set of hyperparameter values
that reach an accuracy of 100%, which is M = 200,L = 50,P =80,w = 0.5,¢; = 1.5,¢, = 1.5, and
these are the values used in the final validation of the entire technique. This result also demonstrates that
with the selected hyperparameter values, our search method has a high likelihood of obtaining the
optimal overlay result.

Note that the objective here is to find an optimal overlay result for purposes of visualizing Path and linking
it to the building locations visited by the field engineer when collecting data, instead of the optimal overlay
result in the precise mathematical way.



100 i
B Tuning 1 ocq
i A-1-
90 Tuning 2 EE e
le-ll-l
80 3
70
=
s =)
< &0 >
o
oy ©
gso o
[v] o m
s N
g 40 ®
30 =
-
20 m
10
O e e e e o o o o
MNANNANONAN®INNINGINNNNN NN NN NN
ke e e e e e =R e e R B e R R I R I A A A ]

[100
[150
[200

Hyper-parameters
FIGURE 6. Result of hyper-parameter tuning

4 Experimental validation

The validation is divided into two parts. First, we individually verify each of the major steps in this
technique. These steps include indoor—outdoor separation, multifloor separation, and Path overlay, which
are tested separately with independent data collected from actual buildings. The focus of these sections
is on explaining the implementation details, generalizing the methods for broad applicability, and verifying
each with several sample datasets.

Next, to emulate a real reconnaissance mission, we collect image data covering a large-scale area. Data
are collected using the recommended procedures while walking continuously through three buildings.
Details are given for each of the buildings and floors used for this validation, as well as for the devices
used, their configuration, and the lessons learned in this process. The results are provided to illustrate the
method and type of results that are obtained.

4.1 Verification of essential steps
4.1.1 Verification of indoor and outdoor separation

As explained in Figure 2, step | to step Ill, we must process PathVideo and separate Pathimgs into indoor
and outdoor groups. This function is the first key component of this technique. Here we discuss the design
of the indoor—outdoor image classifier, and the verification of the indoor and outdoor separation with
several test data.

4.1.1.1 Classifier design

The indoor—outdoor classifier is designed to classify each PathImg as being either in the indoor or outdoor
category. These two categories are defined as follows: (1) indoor images—the context of these images is
indoor environments. Indoor objects are likely to be present in these images, for example, walls, doors,
corridors, staircases; and (2) outdoor images—the context is outdoor environments, which are formed by
elements, for example, pavement, trees, grass, facades of buildings, vehicles. Outdoor images are the



negative of indoor images. Regarding the two categories, we build a training and testing data set based
on the data set organized and labeled manually by the authors, as well as other published data sets. Some
sample images and the number of images we used from each data set are listed in Figure 7. Data sets used
in the training and testing include CDSE, SUN, DOIDE, and Indoor scene (Quattoni & Torralba, 2009;
Vasiljevic et al., 2019; Xiao et al., 2010; Yeum, Dyke, Benes, Hacker, Gaillard, et al., 2019). Images from
the two classes are not equally selected from each data set. Instead, we choose images that are correctly
labeled and with no ambiguous visual contents. However, the total number of images in both classes are
balanced (indoor: 11,583 images, outdoor: 11,078 images). This approach will help to avoid
misclassification.

Outdoor images from
DOIDE (8,949 images)

Indoor images from
CDSE (3,197 images

Outdoor i 1mages from
CDSE (2,011 images {

Indoor i 1mages from
Indoor scene (2,320
images)

Indoor images from SUN Outdoor images from
(270 images) SUN (118 images)

FIGURE 7. Sample images in the dataset (Yeum et al., 2019; Xiao et al., 2010; Vasiljevic et al., 2019; Quattoni & Torralba, 2009)

The structure of the classifier is configured based on a popular CNN model, VGG16 (Simonyan &
Zisserman, 2014). This model performs among the best in the ImageNet competition in 2014, with high
accuracy for classifying images into nearly 1000 classes. The five main convolutional blocks are kept, and
the top block is replaced, since the output is binary, indoor or outdoor. To replace the original top block,
a new top block is added after all of the convolutional blocks. This new block generates a probability
between 0 and 1 for each image. A value closer to 0 means that the image has a high probability it is an
indoor image. Otherwise, it is determined to be an outdoor image.

To train the classifier efficiently, we balance the training of new weights with the use of the pretrained
network. We use the pretrained VGG16 weight trained with ImageNet data set (Krizhevsky et al., 2012).
During the training process, the weights of the first two convolutional blocks in VGG16 are fixed, and the
latter three blocks are tuned. Together with the top block, the weights of the last three blocks are the



only ones that are trained with the indoor and outdoor data set. The data set gathered and formed in the
above is randomly separated into 80% for training and 20% for testing.

The training process is shown in Figure 8. The classifier is trained for 100 epochs. The accuracy of the
classifier in Figure 8a rises rapidly to a high level within the first few epochs, then subsequently increases
with a gentle trend. From the loss history in Figure 8b, the training process is clearly quite successful. Both
the training loss and testing loss drop steadily in the first few epochs. The weights obtained after 100
epochs are used for the final classifier. The confusion matrix of this classifier on the testing data set is
shown in Table 3. Clearly, our model achieves both high recall and precision in predicting indoor and
outdoor classes.
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FIGURE 8. Training process of the indoor-outdoor classifier: (a) accuracy history, (b) loss history

TABLE 3. Confusion matrix of the classifier on the testing dataset.

Indoor pred. Outdoor Recall
pred.
Indoor 2309 21 99.10%
Outdoor 53 2150 97.59%
Precision 97.76% 99.03%

4.1.1.2 Results of indoor and outdoor separation

To increase the confidence in assigning the images into indoor or outdoor categories, we also develop a
method we call image separation. Indoor—outdoor image separation is needed to separate the indoor
image groups from outdoor image groups, rather than entirely based on the classification result of every
single image. To start the process, PathVideo is read and the frames are saved as Pathimgs. The indoor—
outdoor classifier then labels each Pathimg, and the raw probabilities from the classifier are stored nstead
of the labels. We remove Pathimgs that have probabilities between .1 and .9, and leave all of those
remaining. Then we apply an unsupervised cluster on the remaining Pathimgs. Here, we perform
hierarchical clustering with the single linkage algorithm (Gower & Ross, 1969). To perform the cluster, the
data are treated as 2D points, and the clustering is based on the 2D Euclidean distance between the points.
We scale the image indices by a scaling factor, which is roughly the total number of Pathimgs. Here, we



use 1000. This scaling factor is used to keep the values of probability and the image indices at about the
same order of magnitude. The distance threshold for clustering is set to 0.1. Based on the raw clustering
results, we remove any redundant clusters, which fall within other clusters. The remaining clusters are
the final separation results.

We test this image separation approach on two data sets. They are collected with a motion camera, a
GoPro HERO 8. The camera is set to 240 fps with all other options as default. Each frame is 1920 x 1080
pixels. Each of the two data sets is real footage recorded while the data collector is walking through one
or more buildings. Both are mixed and contain indoor and outdoor passages. The first data set beginsin a
passage starting from the first floor of Knoy Hall on the Purdue campus, and then moves outside of the
building, down in the alley between the ME building and the ECE building. To speed up the process, we
use one Pathimg from every 200; 1039 Pathlmgs are used. The raw probability results from the classifier
are shown in Figure 9a. Here the x axis is the image index of Pathimgs, and the y axis is the raw probability
value. In the figure, each point corresponds to one Pathimg. A few select Pathimgs are shown in Figure
9c. From the plots, it is obvious that the basic trend of indoor and outdoor is captured. Most Pathimgs are
correctly labeled, as Pathimgs with an index from 1 to 686 are Pathimgs collected indoors, and after that,
Pathimgs are collected outdoors. Following the technical procedure mentioned previously, the final
separation result is in Figure 9b. Different colors represent different clusters. There are two clusters in
total, which is exactly as expected. By comparing the mean probability of each cluster with respect to .5,
one readily associates the first cluster as indoors, and the second one as outdoors. Tracing from the
clustered results back to PathImgs indices, we can easily determine the boundary between the two groups
in the Pathlmgs. As shown in Figure 9c, the Pathimg that begins each group is bounded by a green box (B),
and the ending Pathimg for each group is bounded by a red box (E). Notice that the ending Pathimg for
the indoor group and the beginning Pathimg for the outdoor group are not immediately next to each
other. This is because, to further avoid bad separation, we remove 10 Pathimgs from the starts and the
ends of each indoor or outdoor group to determine the best Pathimgs to designate as starting and the
ending except for the very first Pathimg and the last Pathimg.
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FIGURE 9. Results of indoor and outdoor separation with dataset 1: (a) probability, (b) final separation, (c) separation of PathImgs

Similarly, data set 2 starts in a passage on the second floor in the ME building on Purdue’s campus,
continues outside from the side door in the southeast direction of the building, then walks along the way
besides Potter Center, and ends with an arrival inside the first floor of Knoy Hall; 1274 Pathimgs are used.
The results are shown in Figure 10, including the intermediate probabilities and final separation results.
The data are successfully separated into three clusters. Also, the boundary Pathimgs are marked as in
Figure 10c.
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FIGURE 10. Results of indoor and outdoor separation with dataset 2: (a) probability, (b) final separation, (c) separation of
PathImgs

4.1.2 Verification of multifloor separation

After indoor—outdoor image separation, we must process each indoor Pathimg group. As in Figure 2, step
IV to step V, if the Pathimgs of one building contains data from multiple floors, we use the height
information in the Path reconstruction to separate data collected at different floors. The multifloor
separation is tested with a PathVideo spanning three floors in Armstrong Hall on Purdue’s campus. The
passage begins from the underground floor, then the data collector climbs the stairwell to walk through
part of the second floor, and then to the third floor. The first floor is skipped here to show that there is
no need to collect the data from every floor to use this method, rather the data collector can choose to
enter a given floor based on the need for data. The PathVideo is also collected with a motion camera, a
GoPro HERO 8. All camera settings are the same as in the previous section.
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FIGURE 11. 3D coordinate system for the Path reconstruction: (a) x — y coordinate plane (Google Street View, 2021), (b) x — z
coordinate plane (Google Maps, 2021)

Before demonstrating the results, we need to explain the 3D coordinate system used. The coordinate
system is defined at the moment when the first Pathimg is taken. As shown in Figure 11, the z axis is
defined along the direction the data collector faces from backward to forward. The x axis similarly
corresponds to the direction from the left to the right. The y axis is then perpendicular to the ground,
from downward to upward.
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FIGURE 12. 3D reconstruction of PathPcl of the dataset: (a) 3D reconstruction, (b) Path reconstruction in z-y plane, and (c) Path
reconstruction in z-x plane

We use VO to rebuild the 3D PathPcl using Pathimgs. The 3D reconstruction is displayed in the z—y
coordinate plane, as in Figure 12a (Engel et al., 2017). There are 3387 points in Path and 1,336,847 points
in Pcl. The red-colored lines correspond to the Path, the Path that the data collector takes when walking
through the building. The blue-colored points correspond to Pcl. They are meant to capture the exposed
infrastructure components. Clearly, the 3D reconstruction rebuilds all contents in the environment
including the stairwell when the Path changes in the height direction or along the y axis. The Path
reconstruction is plotted in the z—y coordinate plane as in Figure 12b, and in the x—y coordinate plane as
in Figure 12c. Obviously, the height values along the y axis separate the entire path into three parts, as
the Pathlmgs belong to three floors. In Figure 12b,c, the unit of the x, y, and z axis is a hypothetical unit,
which is determined by the VO algorithm. It is proportional to the corresponding real-world unit.
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FIGURE 13. Clustering results of segments using unsupervised clustering and final separation results using supervised clustering: (a) cluster results
of segment 1, (b) cluster results of segment 2, and (c) cluster results of segment 4, (d) cluster results of segment 10, (e) final separation results

It is obvious that the Path(s) of different floors are joined at the stairwell. Without any prior knowledge of
where in the Path the stairwell is located, separating Path by associating it with the floors requires some
assumptions. Because Path for the stairwell only exists over a limited range along the z axis, we first divide
Path into a number of segments (here, the number is set to 10 by experience) along the z axis, and apply
an unsupervised clustering method to each of the segments. As with the method in Section 4.1.1, we
perform the hierarchical clustering with the single linkage algorithm (Gower & Ross,1969) based on the
2D Euclidean distance between Path points. Representative results of some segments are shown in Figure
13. Although the first segment is clustered into one cluster corresponding to the location of the stairwell,
as shown in Figure 13a, most other segments yield the correct number of floors, three, as shown in Figure
13b—d. Because segment 10 does not contain Path at floor 3, these two segments yield the number of the
clusters which is 2. Thus, among all of the results given by the unsupervised clustering of each segment,
those with the maximum number of clusters determine the correct number of floors. Using this number
as the input for the number of clusters, we apply another supervised clustering method along the direction
of y axis. Here, we adopt the K-Means clustering methods (Hartigan,1975). This process generates the
final results shown in Figure 13e. As denoted in the figure, different colors represent path points belonging
to different floors. It should be mentioned that we can only determine the relative floor index, for
instance, floor 1, floor 2, or floor 3, using the mean value of the coordinates cluster along y axis. Because
the points of Path link to specific Pathimgs, they are thus separated by referring to the separated Path.
Thus, the multifloor separation of Pathimgs of one indoor group is complete. It should be pointed out
that, in a multifloor separation, for each floor, we also automatically cut a number of Pathimgs (the
number is set to 60 times step 200) from the beginning and the end after we apply multifloor separation.
This is merely to remove Path in the stairwell and to avoid the possibility of including bad boundary
Pathlmgs between floors.

4.1.3 Verification of path overlay

The Path overlay step is performed to automatically overlay the PathPcl of one floor onto the
corresponding structural drawing. This step follows both the indoor— outdoor separation step, and the
multifloor separation step. PathPcl for each floor is reconstructed using VO (Engel et al., 2017), while
structural drawings are saved as digital images. Prior to solving the optimization problem of Path overlay,
we implement an automated step to rotate the skewed PathPcl to the nominal coordinate system of the



SDI. A plane surface is fit to the reconstructed Path. Then, we find the transformation matrix by projecting
the normal vector of this plane to the normal vector of the x—z plane. In this way, the skewness is
corrected.

In the Path overlay step, we automate this overlay process. Hyperparameters are tuned and set up before
the validation, as discussed in Section 3.2.3. The only term that will vary with the specific structural
drawing is the total level of the image pyramid, in Step B-2 in Figure 3. Based on our experience, the total
level should be chosen such that the top level has both a width and height that are larger than 350 pixels.

Here we use data collected from the underground floor in Armstrong Hall, which is part of the data used
in Section 4.1.2. There are 1254 points in Path and 1,904,234 points in Pcl. In this case, the structural
drawing is 8400 x 6000 pixels. Thus, the total level of the image pyramid is chosen to be 5, with the top
level defined as level 4 to the origin level defined as level 0. As explained in Section 3.2.2, the search
results are mainly determined by the search at the top level, in this case level 4. For instance, the cost
function history at the top level is shown in Figure 14. The red-colored points are the minimum value of
the cost function in each iteration during the entire search process of our method. The orange-colored
line corresponds to the global minimum value of the cost function with our method. Clearly, only one
iteration or one PSO cannot guarantee reaching the global minimum. With our iterative scheme, the
chance of reaching the global minimum is greatly increased. As a comparison, we apply the original PSO
on the same data to search for the optimal results. The global minimum value of the cost function of PSO
is plotted in blue color. PSO is also found to hit a stable minimum result. However, this is merely a local
minimum and after several iterations the PSO remains at that result, while our method robustly finds the
global minimum.
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FIGURE 14. Cost function history at level 4

The results for level 4 and level 0 are shown in Figure 15, where both the overall view and the detailed
view are shown. In the figures, the red-colored lines are the path taken by the data collector, and the blue
colored points are the points in Pcl. Herein, the alignment and location of the blue points on the black
lines of the structural drawing show that the automated overlay algorithm is quite successful.

Often photos are taken of paper drawings for older buildings, and we have addressed how to reassemble
such photos into a drawing (Yeum, Lund, et al., 2019). This stitched image can serve as the role of SDI in
this work when a digital SDI is not available.
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FIGURE 15. Results of automated overlay for underground floor of Armstrong Hall: (a) overlay results in level 4, (b) overlay results in level 0
(origin structural drawing)

4.2 Validation with large scale reconnaissance data

To assess the complete technique, we also perform an end-to-end validation. We collect continuous data
from three buildings on Purdue’s campus, starting from Armstrong Hall, to ME building, and ending after
walking through Knoy Hall. The buildings are shown on the map in Figure 16, along with the walking route
that the data collector takes between each building. The data collection route covers two floors in
Armstrong Hall, the underground floor, and the second floor. It also includes the third floor in the ME
building and the first floor in Knoy Hall. We continuously walk through all of the floors in each of these
buildings to collect data, and also move between these buildings without making any stops. In this way,
the data collection aims to imitate a real reconnaissance mission.
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FIGURE 16. Buildings covered in the validation data (Google Maps, 2021)

In this experiment, we manually collect Insplmgs using a DSLR camera (Nikon D90) and PathVideo using a
motion camera (GoPro HERO 8). Before the data collection, the two cameras are set to have the same
timestamp. In total, 811 Insplmgs are collected along with a 53 min PathVideo at 240 fps. Each Insplmg is
4288 x 2848 pixels, and each frame of the PathVideo is 1920 x 1080 pixels. The DSLR camera is set to fully
automated mode for collecting Insplmgs. The motion camera is set to 240 fps video mode and all other
settings are set to their default values. In the experiment, two people work together to collect Insplmgs
and PathVideo at the same time. In practice, however, one person can perform the entire data collection
by attaching the motion camera to one’s body to record the PathVideo. Meanwhile, the person holds and
operates the DSLR camera to collect Insplmgs. Insplmgs are select images targeting structural
components, damage spots, and so forth that the data collector deems important to document with
images, while the PathVideo is continuously recording the scenes in front of the data collector regardless
of where that person directs their attention.

We use a workstation with an Intel i9-7920x CPU, 32 Gb memory, and an NVIDIA GeForce RTX 2080Ti
video card to apply the technique to the collected data. The entire process is fully automated and the
results of the main steps are given here. To start with, the indoor—outdoor separation results are shown
in Figure 17. Again, we use one Pathimg from every 200, and here 3806 Pathimgs are used. In Figure 173,b,
the probability and the final separation results are presented. The Pathlmgs of the PathVideo are
successfully separated into five clusters. Starting from the left side to the right side of the plot in Figure
17b, one can see the first indoor group corresponding to Armstrong Hall, the first outdoor group
corresponding to the passage from Armstrong Hall to the ME building, the second indoor group
corresponding to the ME building, the second outdoor group corresponding to the passage from the ME
building to Knoy Hall, and the third indoor group corresponding to Knoy Hall. Whether a group is located
indoors or outdoors is determined by its mean probability value. The boundary Pathimgs for each indoor
or outdoor group are determined and marked in Figure 17c. Images with green-colored box correspond
to the beginning Pathimg for each group, while red-colored ones correspond to the ending Pathimg.
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FIGURE 17. Results of indoor and outdoor separation: (a) probability, (b) final separation, (c) separation of PathImgs

After indoor—outdoor separation, we apply multifloor separation for each indoor group. We use VO (Engel
etal., 2017) to reconstruct the Path for each indoor group. There are 4135 points in Path of the first indoor
group, 1785 points in Path of the second indoor group, and 1459 points in Path of the third indoor group.
The multifloor separation results are shown in Figure 18 in the same coordinate system as Figure 11,
where the y axis is proportional to the height from the ground, while the x axis and z axis are determined
by the orientation of the first Pathimg collected. Note that we choose different stairwell as in Section 4.1.2
for the Armstrong Hall to justify multifloor separation can deal with different cases. The first indoor group
for Armstrong Hall is separated into two floors, while the second and the third indoor groups are identified
as belonging on the first floor. By tracing back from the boundary points in each part of Path, we
determine the index of the Pathimgs that define the boundaries for the Pathimg group for a single floor.
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FIGURE 18. Results of multi floor separation for each indoor group: (a) indoor group 1, (b) indoor group 2, and (c) indoor group 3

On each floor, VO (Engel et al., 2017) is used to reconstruct PathPcl using the local PImgs. PathPcl is then
overlaid onto the structural drawing using the overlay algorithm. For the underground floor in Armstrong
Hall, there are 1796 points in Path and 1,252,363 points in Pcl, and the structural drawing is 8400 x 6000
pixels. For the second floor in Armstrong Hall, there are 1671 points in Path and 624,747 points in Pcl, and
structural drawing is 8600 x 6143 pixels. For the third floor in the ME building, there are 1785 points in
Path and 858,257 points in Pcl, and the structural drawing is 656 x 570 pixels. For the first floor in Knoy
Hall, there are 1459 points in Path and 522,189 points in Pcl, and the size of the structural drawing is 2533
x 1428 pixels. The overlay results for these cases are shown in Figure 19a—d. Again, the match between
the shape formed by Pcl and the lines in the structural drawing demonstrates that the overlay is
successful. Note that the PathPcl of the ME building and Knoy building are overlaid onto floor plans. This
demonstration is to illustrate that the overlay algorithm adapts to typical field scenarios other than using
formal structural drawing.
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FIGURE 19. Overlay results of each floor: (a) results of underground floor in Armstrong Hall, (b) results of 2nd floor in Armstrong
Hall, and (c) results of 3rd floor in the ME building, (d) results of 1st floor in Knoy Hall

With these results, the locations of Insplmgs on a structural drawing can be extracted and the images can
be reviewed. Each Insplmg links to a Pathimg that has the closest timestamp to that of the Inspimg, and
that Pathimg corresponds to a point of Path based on the image index. With those relationships
computed, Insplmgs can be automatically localized onto the structural drawing by tracing through the
corresponding Pathimgs. A representative result is shown in Figure 20. Using data for the second floor in
Armstrong Hall, we illustrate how one Insplmg and its location can be obtained and plotted on the overlaid
structural drawing. The Insplmg is shown in Figure 20a. The 3D textured model reconstruction at the
selected Insplmg is also shown in Figure 20b. This model is constructed using the Insplmgs and Pathimgs
that are identified as being within a specific range of the selected Insplmg. Here we define the range
according to the timestamp, using 5 s for Insplmgs and 30 s for Pathimgs. This step in the 3D
reconstruction is performed with commercial software, Pix4D mapper 4.4.4. In Figure 20c, the location of
the Insplmg is shown on the overlaid structural drawing as a green colored dot. In practice, a user can
select any Insplmgs for review, and the entire process will be performed automatically.

The total time to process the data and output the localization results consisted of PathVideo format
changing (about 100 min); Pathimgs undistortion (about 50 min); PathPcl reconstruction (about 35 min);
indoor— outdoor separation, including classification, clustering, outputs (about 3 min); Path overlay (about
77 min); 3D reconstruction (about 50 min for one Pcl). Any steps that are not mentioned here normally
require less than 1 min. In total, it takes about 4.5 h to process all of the data covering these three
buildings (this is sufficient for rapid reconnaissance). Notice the video format changing step, which takes
the major time is due to the special format of GoPro videos. Using motion cameras to output MP4 videos



can avoid this step. An extra 50 min would be needed for generating a textured 3D reconstruction for one
Pcl.
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FIGURE 20. Representative results of image localization and local 3D textured model generation: (a) selected InspImg, (b)
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4.3 Discussion of the overall results

The results illustrate that the integrated technique is successful in automating the process for general
indoor environments. That is to say that the environment has to possess floors, walls, and ceilings (or
most portions of them). When data are collected from such environments, this technique can rapidly and
automatically process the data and provide the locations of the Insplmgs to the user. With this capability,
an engineer interested in reviewing the damage to a given building can easily browse through the Insplmgs
together with their indoor locations. This option adds value to the data collected, because the images can
be automatically associated with their location in the building, which is necessary for interpretation of the
damage. The added value also increases the value of these data to engineers that were not present when
the data were collected, that is, their potential for re-use.

To obtain successful results with this technique, some recommendations are provided:

1. To reconstruct the PathPcl, the data need to be collected with sufficient lighting. If the indoor
environment is not illuminated well, it is recommended that the data collector bring extra lights
and use these to illuminate the scene captured by the motion camera.



2. The multi-floor separation is developed under the most common case that a building will be
visited during a reconnaissance mission. This assumes that each floor is sufficiently visited, and
typically the same stairwell is used to walk from floor to floor. In rare cases such as partial
exploration of corridors and simultaneously using different stairwells, an alternate strategy to
determine the correct number of total floors may need to be proposed.

3. Formultifloor separation, there may be ambiguity regarding how to determine whether an indoor
group corresponds to a multifloor or single floor situation. One can determine this using the
height value, or simply use the number of structural drawing files input to the technique.

4. For indoor—outdoor separation, when the number of Pathimgs is really large, an alternative is to
break the entire set into several sets. Based on our experience, it is reasonable to use about 1000
Pathlmgs per group, then apply indoor—outdoor image separation, and join the individual results
together to obtain the final separation results.

5. For successful Path overlay, PathPcl needs to cover at least 80% of the floor along one of the
directions in the structural drawing. This requirement ensures that the automated overlay step
will provide rational results. In an extreme case, one can imagine that if the inspection only takes
place within a small portion of a floor (perhaps a small portion of a hallway or just one room within
a large building), the Path overlay is likely to fail to yield an acceptable result. This
recommendation is used to define the search boundary for Sinitial in Section 3.2.2.

5 Conclusion

Rapid reconnaissance data collection is a critically important tool that civil engineers use to identify gaps
in design procedures and in construction practices. These data are collected at great expense by
reconnaissance teams after each natural hazard event. Evidence from post event reconnaissance missions
informs building code changes and suggests new research directions, and the amount of available data is
growing rapidly. However, due to the time involved in organizing the images, currently the data collector
is typically the primary individual that is able to actually use such data.

We aim to alleviate this constraint by enabling the engineer in the field to automatically determine and
document the indoor location of image data. The new technique described herein can automatically
provide indoor localization of image data collected during such a mission. The inputs to the technique
include the indoor image data and a single continuous video stream. The output is the structural drawings
overlaid with the path walked and the location of each image collected. Collecting the data needed to
deploy this technique does not alter the normal data collection procedure or add significant cost to
conducting the mission. The data collector only needs to carry an additional motion camera to record a
PathVideo. With this added video stream, we developed an integrated technique that can separate the
input data by individual buildings and floors, reconstruct the path, and use overlay this information onto
the structural drawings by solving an optimization problem. We formulate the optimization problem here
by designing a suitable cost function that places the path on the structural drawings and links the images
to their 3D position in the building.

Both the individual steps, and then the entire technique, are validated using data collected from real
buildings. This automated technique provides simple tools to increase the accessibility of post event
reconnaissance images, supporting a safer built environment and accelerating the adoption of new design
procedures and codes.
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