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Abstract

We consider an obliquely reflected Brownian motion Z with positive drift in a quadrant stopped at
time 7, where T := inf{r > 0 : Z(t) = (0, 0)} is the first hitting time at the origin. Such a process can be
defined even in the non-standard case in which the reflection matrix is not completely-S. We show in this
case that the process has two possible behaviors: either it tends to infinity or it hits the corner (origin)
in finite time. Given an arbitrary starting point (u, v) in the quadrant, we consider the escape (resp.
absorption) probabilities P, ,)[T = o0] (resp. P, )[T < oc]). We establish the partial differential
equations and the oblique Neumann boundary conditions which characterize the escape probability and
provide a functional equation satisfied by the Laplace transform of the escape probability. Asymptotics
for the absorption probability in the simpler case in which the starting point in the quadrant is (u, 0) are
then given. We proceed to show a geometric criterion on the parameters which characterizes the case
in which the absorption probability has a product form and is exponential. We call this new criterion
the dual skew symmetry condition due to its natural connection with the skew symmetry condition for
the stationary distribution. We then obtain an explicit integral expression for the Laplace transform of
the escape probability and conclude by presenting exact asymptotics for the escape probability at the
origin.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

1.1. Model and goal

Let Z(t) = (Z(t), Z»(t)) be a reflected Brownian motion (RBM) in the quadrant, starting
from the point (u, v), with positive drift u = (i1, uo); that is, u; > 0, uy > 0. See below for

references and motivation. The covariance matrix is :) 1) with |p| < 1 and the reflection
matrix is (frl T ) We further assume that
r1>0, r2>0and1§r1r2. (1)

See Fig. 1 for a representation of the parameters. We define this reflected process up to the
first hitting time T of the corner, defined as

T :=inf{t > 0: Z(t) = 0}.
For ¢ < T, this process may be written as

:Zl(t) =u+ Wi(t) + pat + 1) — rala(2),

2
Z5(t) = v + Wa(t) + pat — rili(t) + (1), @

where [;(¢) (resp. [>(2)) is a local time on the vertical (resp. horizontal) axis and is a continuous
non-decreasing process starting from 0 which increases only when Z;(¢) = 0 (resp. Z»(¢) = 0).
Under condition (1), when ¢ > T, that is after that the process Z hits the corner, the process is
no longer defined by (2) for reasons of convexity. In lieu, for t > T, we define Z(¢) = (0, 0) and
say that the process is absorbed when T < oo. Further details on the existence and uniqueness
of this process will be given in Section 1.2.

The objective of the present paper is to study the probability of escape to infinity for a
process starting from (u, v). We denote this probability as

]P)(uyv)[T = OO]

The corresponding absorption probability at the origin is P, ,)[T < 0o] =1 — P, [T = oo].

Since its introduction in the eighties by Harrison, Reiman, Varadhan and Williams [25,26,
42,44 .45], reflected Brownian motion in the quarter plane has received significant attention.
Recurrence and transience of obliquely reflected Brownian motion were examined in [29,44].
The process has also been considered in planar domains [24,27] as well as in general dimen-
sions in orthants [26,41,46]. The stationary distribution of obliquely reflected Brownian motion
has been studied in [9,10,12,21,31] and its Green’s functions have been studied in [18]. The
roughness of its paths were studied in [32]. Obliquely reflected Brownian motion has played
an important role in applications concerning heavy traffic approximations for open queueing
networks [22,39]. It has also been utilized in queueing models as diffusion approximations for
tandem queues [33,34,37].

There are several possible interpretations in insurance risk of models involving reflected
Lévy processes in a quadrant [1,4,30]. For example, suppose there are two funds, each of
whose free surplus is modeled by a Cramér—Lundberg process, and which have the following
agreement: a deficit in one fund is instantly covered by the other fund, with ruin occurring
when neither company can cover the deficit of the other. In the case of the present problem, the
absorption probability may be interpreted as the probability of ruin; the escape probability may
be interpreted as the probability of survival and infinite capital expansion. The aforementioned
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Fig. 1. Reflection vectors and drift.

process also arises in the study of queueing models as diffusion approximations for some Lévy
tandem queues [7,17,43].

Previous works [3,13,16,17,21] have adapted an analytic method initially developed for
random walks by Fayolle and Iasnogorodski [14] and Malyshev [36] for studying obliquely
reflected Brownian motion. In particular, [17] focuses on a non-standard regime in which the
reflected process escapes to infinity along one of the axes. Some of the techniques employed
to solve the present problem are inspired by [17].

1.2. Definition of the process given in (2)

Brownian motion in a quadrant with oblique reflection is usually defined as a process
which behaves as a standard Brownian motion in the interior of the quadrant. It reflects
instantaneously on the edges with constant direction and the amount of time spent at the origin
has Lebesgue measure zero ([42]). Such a process is defined as a solution of a submartingale
problem [42]. An interesting case arises when the process is a semimartingale reflecting
Brownian motion (SRBM). Reiman and Williams [40] showed that a necessary condition for the
process to be an SRBM is for the reflection matrix to be completely-S.! Taylor and Williams
[41] showed that this condition was also sufficient for the existence of an SRBM, which is
unique in law.

Due to condition (1), the reflection matrix of the process in (2) is not completely-S. The
process indeed is not a standard SRBM as it can be trapped at the origin. Nonetheless, it
is possible to define this absorbed process up to the stopping time 7. The existence and
uniqueness as a solution of a submartingale problem for the absorbed process is given in [42,
§2.1, Thm 2.1]. Further, in Taylor and Williams [41, §4.2 and §4.3], the existence and
uniqueness of an SRBM absorbed at the origin are proven without assuming that the reflection
matrix is completely-S.

1.3. From the quadrant to the wedge

Franceschi and Raschel [21, Appendix] recently showed that studying reflected Brownian
motion in a quadrant is equivalent to studying reflected Brownian motion in a wedge with angle

' A square matrix R is said to be completely-S if for each principal sub-matrix R there exists ¥ > 0 such that
RX > 0.
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B, with identity covariance matrix, with two reflection angles § and €, and with drift angle 6
(see Fig. 2). The angles §, €, 8 and 6 (when the drift is nonzero) are in (0, 7) and are defined
by

sin 8 sin 8

sin 8
tand = ————, tane = —— tanf =

) ) =——, cosf=—p.
—ry 4 cos —r; +cosf W1/ +cos B

3)

The angles are equal to /2 when the denominators of the tangents are equal to 0. Further, we

denote « to be

_dt+e—m
5 .

Condition (1) is equivalent to § + € — 8 > 7 (or equivalently @ > 1) and § > B, € > B.

“

o

1.4. The case of zero drift

The case of zero drift (u = 0) was treated by Varadhan and Williams [42]. In this case
the absorption probability does not depend on the starting point. We recall from Varadhan and
Williams [42, Thm 2.2] that

1 ifa>0,

PI[T <o0] = ]
0 ifa<O.

If @ < 0, the corner is not reached. If 0 < o < 2, the corner is reached but the amount of time
spent by the process in the corner has Lebesgue measure zero. If o > 2, the process reaches the
corner and remains there. The previous properties remain valid in the case of zero drift. Under
condition (1), the case of positive drift poses a new challenge, as 0 < P, [T < oo] < 1. We
remark that condition (1) is equivalent to o > 1.

1.5. Escape probability and stationary distribution of the dual process

Harrison [22] and Foddy [16] showed that the hitting time on one of the axes is inherently
connected to the stationary distribution of a certain dual process. As the present article was
nearing completion, it came to our attention that Harrison [23] extended the results from his
earlier work [22] by introducing a dual RBM in the quadrant with drift —u and reflection
matrix

r —1
-1 r ’

where 1 < ryr,. This configuration of parameters is depicted in Fig. 3. This dual process has
an explicit connection with the study of the escape probability. In particular, Harrison [23, Cor.
2] states that

PuwlT = oo] = n(S(u, v)),

where 7 is the stationary distribution of the dual process and S(u, v) := {(u — r2z1 + 22, v +
Z1 — F22) € Ri (21, 22) € Ri} is a trapezoid as pictured in Fig. 3.
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rq -

Fig. 2. Reflected Brownian motion in a wedge with angle B, reflection angles § and €, and drift angle 6.

Y

-1

Fig. 3. Dual process parameters and trapezoid S(u, v) in brown.

1.6. Outline

The remainder of this paper is organized as follows. In Section 2 we explore some general
properties of the process of interest given in (2). This section’s key result is Theorem 10,
which states that the process has only two possible behaviors: either 7 < 0o, which means
that the process is absorbed at the origin in finite time, or 7 = oo, in which case the process
escapes to infinity, namely Z(#) — oo when t — oo. In Section 3 we present Proposition 11,
which provides a partial differential equation characterizing the escape probability. Later in this
section, we give Proposition 12, which provides a functional equation satisfied by the Laplace
transform of the escape probability. In Section 4, we study the kernel of this functional equation
and obtain asymptotic results for the absorption probability in the simpler case in which the
starting point is (#, 0) (Proposition 17). In Section 5, we find a geometric condition which
characterizes the cases where the absorption probability has a product form and is exponential
(Theorem 20). This result is reminiscent of the famous skew symmetry condition studied
for invariant measures [25,28]. In Section 6, boundary value problem (BVP) satisfied by the
Laplace transform of the escape probability (Proposition 22) is established. We continue with
Theorem 30, which gives an explicit integral formula of this transform. In Section 7 exact
asymptotics for the escape probability at the origin are obtained.

In memory of Larry Shepp. We dedicate this article in memory of our colleague, mentor, and
friend, Professor Larry Shepp. Professor Shepp indelibly contributed to many areas of applied
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probability, and one of the areas that interested him most concerned RBM in a quadrant as
well as in a strip [24,27].

2. General properties of process Z

In this section we investigate a few key properties of the process given in (2). We prove
three key results. The first is that if the starting point tends to infinity, then the probability that
the process does not hit the origin tends towards 1 (Theorem 4). The second is that when the
starting point tends to the origin, the probability that the process hits the origin in finite time
tends towards 1 (Theorem 6). The third key result is that the process has only two possible
behaviors: either 7' < oo, which means that the process is absorbed at the origin in finite time,
or T = oo, in which case the process escapes to infinity, namely Z(f) — oo when t — 0o
(Theorem 10).

2.1. Limits of the hitting probability

Our first key results of the section (Theorems 4 and 6) concern the probability of the process
hitting the origin. We wish to show that lim,,v)|—o0c P07 = 00] = 1. We shall prove this
with the aid of Lemma 1 and Proposition 3.

For ease of notation, let us define tf =inf{t : Z;(¢ AT) < &} and ‘L'§ =inf{t : Z,(t AT) <
&}. Further, let X(¢) ;== u 4+ Wi(t) + it and let X,(1) := v + Wa(t) + pot.

Suppose Z(t) is a one-dimensional reflected Brownian motion. The analysis of Z(t) is
converted to that of one-dimensional Brownian motion with a drift by the Skorokhod map.
However, in the case of obliquely reflected Brownian motion in a quadrant, this method does
not generally work due to the presence of /;(¢) and I,(¢). However, on the event {If = o0}, note
that /;(¢) = 0, and the previously reflected Brownian motion becomes an obliquely reflected
Brownian motion in a half-plane. This allows one-dimensional techniques to be applied to the
present problem. These considerations motivate us to consider the event {tf } below.

Lemma 1. Foru > & > 0, we have
IP’(L,YU)[rf = 00] = Py |:X1(t AT)—r . sup T(—Xz(s))Jr > & for every t > O:| , (5
<s<tA
where xt equals x if x > 0 and is O otherwise. Hence,
]P’(uyv)[tf =00] > Py, |:X1(t) -1 Osup (= Xo(s)t > & for every t > 0] . (6)
<s<t

A symmetrical result holds for v > & > 0 and ]P’(u,v)[rzE = 00].

Proof. On the event {tf = oo}, for every t > 0, we have /;(t) = 0, P, -a.s. Then
Z\WANT) =Xt AT)—=r Lt AT),
ZrdANT)=Xot AT)+ L1 AT).

Note that I,(t A T) increases only when Z,(t A T) = 0. By uniqueness of the Skorokhod map
(see e.g. [38] and references therein)

bt AT)= sup (=Xa(s AT) = sup (=Xa(s)'.

0<s<t 0<s<tAT
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Thus
ZitAT)=XtAT)—ry sup (—Xo(s)".

0<s<tAT
We may then write
{tf = 00} ={Z|(t AT) > & for every ¢ > 0}
={ZtAT)> & forevery t > 0 and /,(T) = 0}
= {Xl(t AT)—ry sup (—Xao(s))™ > & forevery t > 0 and [;(T) = 0} , @)
0<s<tAT

P, »)-a.s. We now wish to show that

Pov |:X1(t AT)—r, sup (—X»(s))" > & for every t > 0 and [,(T) > 0:| =0. (8

0<s<tAT

Note that there is a set N such that P, ,,(N) = 1 and for every w € N, we have

Z\W AT =X AT)+ L AT)—r 1t AT) >0, )
ZtAT) =X ANT)—r LG AT)+LEAT) >0, (10)
l1(t A T) increases only when Z,;(t AT) =0, )
I(t A T) increases only when Z,(t AT) = 0. (12)

Let w € N. We claim that the following statements

(@) X1(t AT) —ry supg_s;n7(—Xa(s))T > & for every 1 > 0;
(b) [i(T) > 0,
cannot hold simultaneously. The proof is by contradiction. For sake of contradiction, assume

that statements a) and b) hold simultaneously. By (10), (12), and the uniqueness of Skorokhod
map, we have

LEAT)= sup (ri li(s AT)— Xa(s AT

0<s<t

< sup (ry (s AT)* + sup (—Xa(s A T))*
0<s<t 0<s<t
=rnh(AT)+ sup (—Xx(s)".
0<s<tAT

Let n :=inf{t : [;(t AT) > &/(2r1rp)}. Then for every ¢t > 0,

ZIGANAT) =X AnNAT)+ LG ANAT)—=rlb(AnAT)
X1 AnAT)—rohtAnAT)
Xit AnAT) =1y sup  (=Xo(s))" —rinni(t AnAT)

0<s<tAnAT
§-£/2=£)/2,

where in the last inequality we have invoked statement a). Since /;(f A T') increases only when
Z(t ANT) =0, we have

\

LtAnAT)=0forevery t >0,

which contradicts statement b) and the definition of n. Therefore, by contradiction, (8) holds.
Combining (7) and (8), (5) follows. Note that (6) follows directly from (5). O
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Remark 2. To estimate the probability of the event
{X1(t) —ry sup (—Xo(s))T > £ for every t > 0},

0<s<t
we note that the above event contains the intersection of the event {X () > & + ¢ for every t}
and the event {supy.,., (—Xa2(s))* < c¢/r, for every t} for every positive ¢, both of which
correspond to the first hitting problems of one-dimensional Brownian motion with a drift. We
will use the idea repeatedly in the proofs of Theorem 4 and Lemma 8.

We now turn to Proposition 3, which is a reformulation of the formula 1.2.4(1) on p. 252
of [5].

Proposition 3. Ler B(t) be a one dimensional Brownian motion started from the origin under
P. For u > 0 and x > 0, we have
P(B(t) + ut > —x for every t > 0) = 1 — e~ >,

With Lemma 1 and Proposition 3 in hand, we state Theorem 4.

Theorem 4. When the starting point tends to infinity, the probability that the process does not
hit the origin tends to one. Namely,

lim P(u_v)[T = OO] =1.

|, v)[| =00

Equivalently,
lim P(u,v)[T < OO] =0.

Il G, v) | =00

Proof. Fix & > 0. For ||(u, v)|| sufficiently large, we have u > 2£ or v > 2. If u > 2£, by
Lemma 1, we have

PluolT = 00 1 = Py ptf = o0l

> Puv) |:X1(t) —rp sup (=X»(s))"T > & for every t > 0:|

O<s<t
> PuwlX1(t) > & +u/2 for every t > 0 and X,(t) > —u/(2r,) for every t > 0]
> Puw[X1(t) > & +u/2 for every t > 0]
+Puw[X2(t) > —u/(2rp) for every t > 0] — 1
= Puwn[Wi(t) + pnit > —(u — 2£)/2 for every t > 0]
+ P oy [Wa(t) + pot > —u/(2rp) — v for every t > 0] — 1
= 1 — ¢~ W=25)m 41— e~ /rat2vpy _

= 1 — ¢ W=20u1 _ p=/r+20uy

where the second to last equality invokes Proposition 3. Similarly, if v > 2&, we have
Pyl =00 ]>1-— e~ W22 _ ,—(/ri+2upy

Hence,

]P)(u,v)[T = OO]
> max{(1 — e~ W=26m _ e*(u/r2+2v)uz)1w>2é}’ (1- e~ (V2012 _ e*(v/r1+2u)/t1)1{v>zs}}_
Letting (u, v) tend to oo, the desired result follows. [
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We now turn to Proposition 5, which shall be needed to prove Theorem 6.

Proposition 5. We have the following subset relationship
{fu+ Wi(@#t)+ it <0and v+ Wy(t) + ust <0, for somet € Ry} C {T < oo}.
Proof. We prove this claim by contradiction. For the sake of contradiction, let us fix w €

{u + Wi(t) + 1t < 0and v + Wa(t) + uat < 0, for some ¢ € Ry} N {T = oco}. Assuming
T = oo, the process can be written as

Zy(t) = u+ Wi(@0) + pat + Li(1) — b (1),

Zy(t) = v+ Walt) + pat — rili (@) + ().

Solving the linear system for /; and [, we obtain

(riry — DIL() = (u + Wi(2) + it — Z1(1)) + r2(v + Walt) + pat — Zo(2)),
(riry = Dh(t) = ri(u + Wi(t) + pit — Zi(1)) + (v + Wa(t) + pot — Z5(1)).
For all + € R, such that

u—+ Wit)+ it <0,
and
v+ Wa(t) + uat < 0,

we have (rir, — )l1(t) < 0 and (ryr, — 1)lx(t) < 0, which is not possible since /() and
I>(t) > 0 and we have assumed (r;r, — 1) > 0. A contradiction has been reached. [

Theorem 6 considers the behavior of the process when the starting point tends to the origin.

Theorem 6. When the starting point tends to the origin, the probability that the process hits
the origin in finite time tends towards one. That is,

lim P(u,,}) [T < OO] = 1,
(u,v)—(0,0)

or equivalently,

lim P(u,u) [T = OO] =0.
(u,v)—(0,0)

Proof. By Proposition 5, we have that

PuwlT <oo]l Z2P[At e Ry :u+ Wi(t) + pit <0 and v + Wa(r) + ot < 0].
By the properties of planar Brownian motion, we have

P[3r e Ry : Wi(#) + pit < 0 and Wh(f) + pot < 0] = 1.

Let (u,, v,) € Ri_ be a sequence of points such that (u,, v,) — (0, 0). Note that

[o el )

L () 3 e Ry s un + Wi(e) + pat < 0 and v, + Walt) + pat < 0}

n=1m=n
Df{Ar e Ry : Wi(t) + uit < 0 and Wh(t) + pot < 0}.
642
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Applying Fatou’s Lemma yields
liminfP[3r € Ry @ u, + Wi(#) + it < 0 and v, + Wa(t) + uat < 0] > 1.

n—oo

We may therefore conclude that
P(un,vn) [T < OO] —_—> l,
n—oo

and the desired result follows. [J
2.2. Complementarity of absorption and escape

We now turn to Theorem 10, which states that the process has only two possible behaviors:
either T < oo, or T = oo, in which case Z(¢) — oo when t — oo. The result first requires
the proofs of three auxiliary statements which we give below.

Proposition 7. Suppose B(t) is a one dimensional Brownian motion starting from the origin
under the measure P. Let a, b be two positive numbers. Then

P(—a — bt < B(t) < a + bt for every t > 0) > 0.

Proof. Let A =1n2/(2b) + 1. Note that 1 —2e=** > 0. Then
P(—X — bt < B(t) < A + bt for every t > 0)
> P(B(t) > —A — bt for every t > 0) + P(B(¢) < A + bt for every t > 0) — 1
=2(l—e?)—1=1-2e2*>0.
Let H, = inf{t : |B(t)] = a}. By standard exit time properties of Brownian motion,
P(H, > A/b+ 1) > 0. Then
P(—a — bt < B(t) < a + bt for every t > 0)
=P(H, > A/b+1)P(—a — bt < B(t) <a+ bt foreveryt >0 |H, > L/b+1).
By the strong Markov property of Brownian motion,
P(—a — bt < B(t) <a+ bt,Vt |H, > A/b+ 1)
=P(—a—-b(t+H,) <B(t+H,) <a+b(t+ H,),Vt |H, > 1/b+1)
=P(—a—-b(t+ H,)— B(H,) < B(t+ H,)— B(H,) <a
+b(t + H,) — B(H,),Vt |H, > A/b+ 1)
> P(—A — bt < B(t+ H,) — B(H,) < >+ bt,Vt |H, > A/b+ 1)
= P(—A — bt < B(t) < A+ bt,Vt)
> 0,
from which the desired result follows. [J

We now turn to Lemma 8.

Lemma 8. For a positive number «,
inf Py, o[t = oo] > 0, (13)
u>«a

inf P [ty = oo] > 0. (14)
v=>o
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Proof. We need only prove (13), since the proof of (14) is completely symmetric. Let us
consider § < «. By Lemma 1,

0
Pu,olt) = ool > ]P)(u,())[ff = o0]

> Pu.0) |:X1(t) —ry sup (—Xa(s))" > & for every t > 0]

0<s<t

= Pu.0) |:u + Wi(t) + it —ry sup (—Wa(s) — uat)™ > £ for every t > O:|

OSSS[
> Pu.o)[Wi(t) + it > —(u — §)/2 for every t > 0
and W(t) + uat > —(u — §)/(2r,) for every t > 0]. (15)

Let B;(t) and B,(¢) be two independent Brownian motions starting from O under P, ). Then,
under P, o), the process (W;(r), Wo(¢)) has the same law as (Bi(t), pB1(t) + /1 — p?Ba(1)).
We now show that (13) holds in three separate cases: p =0,0 < p <1 and —1 < p < 0.

Case I: p = 0. If p =0, then W;(¢) and W,(¢) are two independent Brownian motions. Then
(15) = Py o [W1(t) + 1t > —(u — &)/2 for every t > 0]

X P(u,())[Wz(l) + uot > —(u — &)/(2r,) for every t > 0]
— (1 _ e—(u—%‘)m) . (1 _ e—(u—é)uz/rz) ,

where the last equality invokes Proposition 3. Taking infimums yields

inf P 0)[1) = 00] 2 (1 — e @7) . (1 —7@79M2/72) > 0,

Casell: 0 < p < 1.If 0 < p < 1, then

(15) = Pu,o)[B1(2) + 1t > —(u — &)/2 for every t > 0

and pBi(t) + /1 — p2By(t) + ot > —(u — £)/(2ry) for every t > 0]
Pau,oy)[B1 () + (1 A u2)t > —(u — §)/(2r2) for every t > 0

and /1 — p2By(t) + (1 — p)uat > —(1 — p)(u — £)/(2r) for every t > 0].

v

Using the same argument in the case for p = 0, (13) follows.

Case Ill: —1 < p <0.If —1 < p <0, then for u > «

(15) = Pu,o)[B1(t) + p1t > —(u — &)/2 for every t > 0

and pBi(t) ++/1 — p2Ba(t) + ot > —(u — £)/(2r2) for every t > 0]
[P’(uﬁo)[Bl(t) + it > —(u — &)/2 for every t > 0,

pB1(t) — p(p1 A p2)t > —|pl(u — &)/(2rp) for every t >0
and \/1 — p2Ba(t) + 2 + p(p1 A p2)t > —(1 — [p)(u — §)/(2r2) for every 1 > 0]
Puol — (u —8)/Q2r2) — (n1 A p2)t < Bi(t) < (u —&)/(2r2) + (1 A u2)t, vt
and \/1 — p2Ba(t) + p2 + p(p1 A p2)t > —(1 — [p(u — §)/(2r2), Vi]
= Pu,ol— —§)/(2r2) — (u1 A p2)t < Bi(t) < (u —§)/(2r2) + (11 A p2)t, Vi]
x Pu,oyly/ 1 — p2Ba(t) + p2 + p(pr A po)t > —(1 — |p))(u — §)/(2r2), Vi]
P .o[—(a — &)/(2r2) — (u1 A pa)t < Bi(t) < (@ —§)/(2r2) + (11 A p2)t, Vil
X Puoly/ 1 = 0 Ba(t) 4+ p2 4 p(u1 A p2)t > —(1 — |p)a — §)/(2r2), Vi].

v

v

v

Taking infimums and invoking Proposition 7, (13) follows. This concludes the proof. [
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Let us define 7, :=inf{r > 0: || Z(t A T)|| < r}. We proceed with Lemma 9 below.

Lemma 9. For fixed n, on the event {Ty;, = 0o}, we have (P, )-a.s.) that
lim Z(t) = oo.
—00

That is,
Py [litminf Z(t) < 00, T) = oo] —0. (16)
— 00 n

Proof. We will first show that (16) holds when v = 0. Then (16) will follow immediately in
the case u = 0. We shall conclude by showing that (16) holds when u # 0 and v # 0.

Case I: v=0. When v =0, let

K :=sup Py, [liminf Z(t) <00, T1 = oo] .
11— 00 n

u>0

Foru < 1/n,
Puo, [litrgcigf Z(t) < 00, Ty = oo] —0.
Then
K = sup P [1513£f Z(t) < 00, Ty = oo] . (17)

u>1/n

We now define a stopping time

770 — inf{t > 1:10 1 ZH(t) = 0}, rlo < 00,
' ) o, ) = 0.
By Lemma 8,

inf P, 9=00]> inf P 0= 00] > 0,
ug}/n w.0)[m] ]_ug}/n w,0lT 1>

and hence,

sup P! < o0] < 1. (18)

u>1/n

Note that
P o) [litrgcigf Z(t) < 00, Ty = oo]
= Py [r,‘) = oo, liminf Z(r) < 00, T1 = oo]
+ P [z{) < 00, 1 = oo, liminf Z(1) < 00, 1 = oo]
+ Pu) [n‘f < 0o, liminf Z(r) < 00, T1 = oo]. (19)
On the event {rlo =00}, forall t > 0, T = oo and /() = 0. Then

Zr(t) = Xo(t) + () = Xo(t) = Wa(t) + uat — 00,

P 0)-a.s., by the law of the iterated logarithm for Brownian motion. Hence, the first term
on the right-hand side of (19) is 0. We now consider the second term on the right-hand side
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of (19). On the event {rlo < oo}, let us define ﬁ(l) = inf{r > 0 : Z,(t + 1:10) = 0} and
Typ = inf{t > 0: | Z(t + t))|| < 1/n}. By the strong Markov property, we have

Pu.o ‘L']O < 00, r)? = o0, liminf Z(t) < 00, T1 = oo]
L —>00 n
. 1 . -
= Pu.o) Tlo < oo, inf [|Z(9)| > —, ’7(1) = oo, liminf Z(t + tlo) <00, Tt =00
OSSST? n t—00 n

7

0 L
= Ew.o) IL{f10<°°vinf 0 1Z)I>1/n} ]P)Z(r?) |:771 = 00, htgclgf Z(t) <00, T1 = OO]:|
I

0<s<t n
= 0.
By the same argument used to show that the first term on the right-hand side of (19) is 0, for
v >0,
Po.0) [n? — o0, liminf Z(t) < oo, T1 = oo] —0.
—>00 n

This proves that the second term on the right-hand side of (19) is also 0. We now consider
the third term on the right-hand side of (19). On the event {77(1’ < 00}, let f“l /o= 1nf{t > 0:
Z(t+ 77(1)) < 1/n}. By the strong Markov property,

Pu.o n? < o0, liminf Z(t) < 00, T1 = oo]
L 1—>00 n

= Pu.0 |70 < o0, inf [|Z(s)| > — liminf Z(z + 1) < oo, T
— 00

1
1 =00
0<s<n? n "

= Ew,0) | L0 cooin O 1Z6)1=1/n) Pza0) [hgégf 2@) <0 Ty = OOH

0<s<

K - Ew, |:]l{n(l)<oo,inf 0 Z(S)>l/n}:|

IA

0<s<

IA

K - P00 < ool.
Combining (19) and the above estimates yields

P o) [litrgcigf Z(t) < 00, T1 = oo] < K -Puoln® < ool.
Taking supremums and invoking (17), we obtain

K = sup Pu.o [liminf Z({t) <00, T1 = oo] < K- sup ]P’(u,o)[r;? < o0].
1—>00 n

u>1/n u>1/n

Together with (18), we have K = 0. Hence, for every u > 0,

Peuo) [ntrg inf Z() < 00, Ty = oo] - 0. (20)
Similarly, for every v > 0,

Pio.0) [litrg inf Z(1) < 00, T) = oo] —0. Q1)
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Case II: u # 0 and v # 0. For the case when u #% 0 and v # 0, let T :=inf{t > 0: Z,(t) =
0 or Z,(t) = 0}. Then

P [lirminf Z(t) <00, T1 = oo]
—> 00 n
= Pu.y [r = 00, litminf Z(t) <00, T = oo]
— 00 n

+ Pu [z < 00, liminf Z(1) < oo, T = oo] . (22)
1—>00 n
On the event {t = oo}, T = oo and, for every t > 0, [1(t) = [,(¢) = 0. Then, as t — oo,
Z((t)=u+ Wi @)+ uit — oo,

P, v)-a.s. Hence the first term on the right-hand side of (22) is 0. We now consider the second
term on the right-hand side of (22). By the strong Markov property,

i) [r < oo, liminf Z(t) < 0o, T1 = oo]
=00 n

< B | Lie<oo) P [ liminf Z(1) < 00, Ty = oo
= 0’

where (20) and (21) have been invoked in the last equality. Hence the second term on the
right-hand side of (22) is also 0. Thus for u # 0 and v # 0,

Piuv) [liminf Z(t) < 00, T1 = oo] —0.
t—00 n
The proof is now complete. [

With the above results in hand, we now state Theorem 10.

Theorem 10. On the event {T = oo}, Py ) -a.s. the process Z(t) tends to infinity when
t — 00, namely

P [lim Z(t) = oo‘ T = OO] =1
t—00
Equivalently,
Pluv) [nminf Z(t) < 00, T = oo] _o
t—00

Proof. We have from Lemma 9 that for every n € N*.
Piu vy [liminf Z(t) < 00, T = oo]
t—00
= Py |liminf Z(1) < 00, T1 < 00, T = oo] :
L 1—>00 n

Applying the strong Markov property yields

P _lirminf Z(t) <00, T1 <00, T = oo]

L r—00

= B | Liry <o) P2y [ligg}f Z(t) <oo, T = 00]]
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< sup Py [lim inf Z(t) <00, T = oo]
l@.v)|=1/n =00

< sup Py [T = 00].
I, v)I=1/n

Applying Theorem 6 and letting n — oo, the desired result follows. [

3. Partial differential equation and functional equation

We now turn to the study of the escape probability P, ,,[T = oo]. We begin with Proposi-
tion 11, which provides partial differential equations characterizing the escape probability. We
then proceed with Proposition 12, which gives a functional equation satisfied by the Laplace
transform of the escape probability. Note that there is no particular difficulty in defining the
process starting from the edge (except the origin).

Let us define the infinitesimal generator of the process inside the quarter plane as

1
Gfu,v) = lim ;E(u,v)[f(z(t AT)) = f(u, v)],

where f must be a bounded function in the quadrant to ensure that the above limit exists and
is uniform. For f twice differentiable, the infinitesimal generator inside the quadrant is

L (02f  0f 22 f of  of
gf=s3 (— —5 12 ) + i e
T=2Goz Tz T 500m,) T r

0z 922
This leads us to Proposition 11.

Proposition 11 (Partial Differential Equation). The absorption probability
f(ua v) = P(u,v)[T < OO],

is the only function which is both (i) bounded and continuous in the quarter plane and on its
boundary and (ii) continuously differentiable in the quarter plane and on its boundary (except
perhaps at the corner), and which satisfies the partial differential equation

Gfu,v)=0, ¥(u,v)eR],
with oblique Neumann boundary conditions
9, £0,0) == L0, v) —r L0, v)=0  Vv>0, @3
Oy [, 0) = =128 (u, 0) + L (w,00=0 Vu >0,

and with limit values

f0,0)=1,
lim(u,v)eoo f(u, U) =0.

The same result holds for the escape probability
g(ua U) =1- f(u9 U) = ]P)(M,U)[T = OO]

but with the following limit values

£(0,0)=0,
limy vy 00 f (, v) = 1.
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Proof. This proof is inspired by Foddy [16, p. 86-89]. We assume that f satisfies the
hypotheses of the Proposition. Applying Dynkin’s formula, we obtain

tAT
Ewunlf(Z@ ATH]I = fu,v) + IE(u,m/O Gf(Z(s))ds

2 tAT
+ ) Eu) /0 0y, f(Z(5)) dli(s)
i=1

= f(u,v).
But,
Ewnlf(Z@ ATH] = Ewunlf(Z@ ANT)Lr<] + Ew ol f(ZE ATHL7,]
= [0, 0P [T < 1]+ Ew ol f(ZE)17s,]
—> IP)(u,v)[T < OO] + lim E(u,u)[f(z(t))]lT>t]
—00 —00
= ]P)(u,v)[T < OO]
Note that | l‘im f(z) =0 and that for T > ¢, Z(¢t) T, 0 as. By dominated convergence and
z7]—o00 — 00
by Theorem 10,
lim Eq, ) [/ (Z(0)) 17511 = Equ [ 1im f(Z(1))17=00] = 0.
t—00 [—00
We may thus conclude that
f(ua U) = P(u,v)[T < OO]

Conversely, denote f(u,v) = P [T < oo]. The function f is bounded. By the Markov
property, we have that

Equolf(Z@ AT = fu,v).

Since
1
G (. v) = lim — (o[ (ZU AT = f . v) =0,

we may conclude that Gf=0 on the quarter plane. The continuity and differentiability
properties of f are immediate from Andres [2, Thm 2.2 and Cor 2.4]. One may also refer to [35]
which establishes these properties in a greater generality. The Neumann boundary condition is
satisfied by applying [2, Cor 3.3]. The desired limit values at 0 and at infinity are obtained
by invoking Theorem 4 and Theorem 6. The result for g = 1 — f is straightforward, and this
completes the proof. [

In preparation for Proposition 12, let us define the Laplace transform of the escape
probability starting from (u, v) as

[e ] o0
Y(x,y) = / / e P, [T = oo dudv.
0 0

Further, let

o0

o0
Vi(x) = / e Py olT = coldu and ¥a(y) = / e P, [T = coldv.  (24)
0 0
We also define the kernel

1
K(x,y) = E(x2 + 2 4 20xy) + X + w2y, (25)
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and let
1 1
ki(x,y) = 5(r2x+y)+px4ruz, ka(x,y) = §(x+r1y)+py+m. (26)

We now provide a functional equation satisfied by the Laplace transform of the escape
probability.

Proposition 12 (Functional Equation). For (x,y) € C? such that ix > 0 and Ry > 0 we
have

K, y(x, y) =kilx, yi(x) + ka(x, y)ya(y). (27)
This functional equation is very similar to that obtained in [17, (32)] to compute an escape
probability along one of the axes.

Proof. Recall the partial differential equation in Proposition 11 with the oblique Neumann

boundary condition and limit values satisfied by g(u,v) = Py [T = oo]. Employing
integration by parts yields

o0 o0
0= / / e 1 TY2Ge(z1, 22) dz1dza
o Jo

S| - 0 © 0
0=/ —e Y (—i(o, zz)+X/ e ”‘fg(ZLZz)le) dzz
0o 2 071 0 071
1 0 © 9
/ ~e <—i(21,0)+y/ ffy”szg(szz)de) dzy
0o 2 922 0 922

© 0 e 0
/ pe” (—i(Z1,0)+yf e_>“2i(11,zz)dzz) dz;
0 071 0 071

o0 o0
+/ e ¥ (—g(O, zz)+x/ €7”‘8(z1,z2)d21> dzp
0 0

J’_

+

o0 o0
+/ poe (*g(m,O)erf e_“"“g(m,zz)dzz) dz;
0 0

L[ ., 08 x [ ©
0=—=r e 72 —=-(0,z2)dz2 + = e —g(0,z2) +x | e g(z1,z2)dzr | dz2
2 Jo 022 2 Jo 0
1 *© —xz1 ag y *© —xZ1 = -y
- =n e —(z1,0)dz; + = e —8(z1,0)+y e 2g(z1,22)dz2 | dzy
27 Jo 021 2 Jo 0

o0 3 o0 oo
_ *lei‘g 0)d s —yz2 [ _ 0 —Xx7] d d
o e (z1,0)dz1 + py e 8(0,z22) +x e "“lg(z1,22)dz ) dza
0 az1 0 0
o0 o0 o0
- m/ e 2¢(0, zz)dzz+mx/ / e T 26(z1, 20) dz1dzo
0 0 0
o0 ) o0 o0
- Mz/ e g(z1,0)dz +uzy/ / e T2 g(z1, 22) dz1dz2
0 0 0
1 2 2 *© *© —XZ1—Y22
0= i(x +y° +2pxy) + p1x + 2y e T2 e(zy, 22) dz1dz2
0 0
1 o0
- (5(r2x+y)+pX+Mz>/ el g(z1,0)dzg
0

1 o
- (§(x+r1y)+py+m>/ e 2¢(0,z2)dzn
0

0= K@, yx,y) —kilx, ¥i(x) — ka(x, y)vay).
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This concludes the proof. [

4. Kernel and asymptotics

We begin by studying some properties of the kernel K as defined in (25). Note that this
kernel is similar to that in [21] except that in the present paper the drift is positive. We consider
the functions X and Y satisfying

K(X(),y)=0 and K(x,Y(x))=0.

The branches are given by

X*5(y) = —(oy + ) £ /3207 = D)+ 2y(uap — ) + 41},
YE) = —(px + ) /2207 — 1)+ 2x(u2p — ) + 13,

and the branch points of X and Y (which are roots of the polynomials in the square roots of
(28)) are given, respectively, by

(28)

pip — py £ \/(mp — w2)? + ui(l — p?)

v =
(1—p% (29)
L Hmp—mE \/(sz — w1)? + 3l — p?)
x* = .
(1—p%
By (3), we obtain that
1 —cos(B —0)
yt = p (30)

H sin Bsin(B —6)"
The functions X* and Y* are analytic on the cut planes C \ ((—oo, y~] U [y, 00)) and
C\ ((—o0, x~]U [xT, 00)), respectively. Fig. 4 below depicts the functions Y+ on [x~, xT].

Recall k; and k; as defined in (26) and consider the intersection points between the ellipse
K =0 and the lines k; = 0 and k, = 0. We define the following four quantities

Xo:=—2u1 <0 and yy:=—2u <0, (31
2 2

x| = _w <0 and y,:= _w <0. (32)
L+r;+2pr 1L+ ri+2pr

These points are represented on Fig. 4 and satisfy the following properties:

o K(xg,0) =ky(x9,0) =0, K(O, yo) = k10, yo) =0.
e Jy; € R such that K(xy, y;) = ka(x1, y1) = 0.
e dx; € R such that K (x2, y2) = ki(x2, y) = 0.

We now define the curve H, which is the boundary of the BVP established in Section 6.1.

H=X*([y",00)={xeC:K(x,y)=0and y € [y", c0)}. (33)

Lemma 13 (Hyperbola H). The curve H is a branch of the hyperbola with the following
equation
(0% = Dx? + p*y? = 21 — pu2)x = pi(p — 2p12). (34)
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Yo

Fig. 4. The ellipse K = 0, the function Y~ in blue, the function Yt in red, the two lines k; = 0 and k> = 0, the
branch points x* and y*, the points xo and yo in green, and the points x; and y, in orange. This figure is drawn
for the following parameters: w1 = 2, ua =3, p = —0.4, ry = 2, r, = 4. (For a colored version of this figure,
please see the electronic version of this article.).

The curve H is symmetric with respect to the horizontal axis and is the right branch of the
hyperbola when p < 0. Further, it is the left branch when p > 0 and it is a straight line when
p=0.

Proof. A similar kernel has already been studied; we refer the reader to [21, Lemma 4] and
[3, Lemma 9], where the equation of such a hyperbola is derived. [

Let H* denote the part of the hyperbola H with positive imaginary part. We also define the
domain G bounded by H and containing x*. This is depicted in Fig. 5.

4.1. Meromorphic continuation

This section focuses on establishing the boundary value problem. We begin by meromor-
phically continuing the Laplace transform ;(x) (which converges for x > 0).

Lemma 14 (Meromorphic Continuation). By the formula

—ka(x, Y)Y (Y (x))
— , 35
i) o) (35)
the Laplace transform yi(x) can be meromorphically continued to the set
S:={x €C:%x >0o0rRY*(x)> 0}U{0}, (36)

where the domain G and its boundary H _are included in the set defined in (36). Then Y is
meromorphic on G and is continuous on G.
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(a) p<O (b)p=0 (c)p>0

Fig. 5. Hyperbola # and domain G.

Fig. 6. The complex plane of x. The red curve of equation WY (x) = 0 bounds the red domain S| := {x € C :
RY*(x) > 0}. The orange dotted curve corresponds to the equation %Y~ (x) = 0. The domain G is bounded
on the left by the green hyperbola H, contains xT (see Fig. 5), and is included in § = S; U S,, where
S == {x € C: Rx > 0}. This figure is drawn for the parameters pu; =2, uy = 3, p = —0.4. (For a colored version
of this figure, please see the electronic version of this article.).

Proof. The Laplace transforms vr;(x) and v,(y) are analytic on {x € C:Nfx > 0} and
{y € C: 9Ny > 0}, respectively. The functional equation (27) implies that for (x, y) in the
set S :={(x,y) e C*>: %Rx >0, Ry > 0 and ¥(x, y) = 0}, we have

0 =ki(x, MY1(x) + kao(x, Y)Y(y). (37
The open connected set
S ={x e C:RYT(x) > 0},

intersects the open set S, := {x € C: fx > 0}. Forx € $1N Sy, (x, YT (x)) € §; equation (37)
implies that the continuation formula in (35) is satisfied for all x € S; N S,. Fig. 6 represents
these sets. With yr;(x) defined as in (35), we invoke the principle of analytic continuation and
meromorphically extend ¥, to S = S; U S,. Note that the inclusion of G in the set S defined
in (36) is similar to that in [21, Lemma 5]. This inclusion is depicted below in Fig. 6. [
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Fig. 7. On the left, we see that k;(x~, Y*(x_)) < 0 and that x| is a simple pole of ;. On the right, we see that
ki(x—, Yi(x_)) > 0 and that ¥, has no pole in S.

4.2. Poles and geometric conditions

Lemma 15 (Poles). On the set S defined in (36), the Laplace transform | has either one or
two poles, as follows:

o (One pole:) If ky(x~, YE(x7)) > 0, the point O is the unique pole of Y, in S and this
pole is simple.

o (Two poles:) If ki(x~, Y*(x7)) < 0, the points 0 and x, (defined in (32)) are the only
possible poles of ¥y in S and these poles are simple; x| € S if and only if x; > xo.

In addition, lim,_,o xvr1(x) = 1. Further, the point x| is a pole of Y\ and belongs to the domain
G if and only if ky(X*(y*), y*) < 0.

Proof. The final value theorem for the Laplace transform, together with Theorem 4, imply
that

lir%xwl(x) = lim P(uqo)[T = OO] =1.

We may thus conclude that 0 is a simple pole. On the set {x € C: %ix > 0}, ¢ is defined as a
Laplace transform which converges (and thus has no poles). Therefore, with the exception
of 0, the only possible poles in S are the zeros of ki(x, Y*(x)), which are the zeros of
the denominator of the continuation formula in (35). Straightforward calculations show that
equation k;(x, Y*(x)) = 0 has either no roots or one (simple) root, and that this depends on
the sign of k;(x~, Y*(x7)). When the root exists, it is x; (see (32)). The condition for the
existence of this root is depicted in Fig. 7. It now only remains to remark that when x; is a
pole, x; is in G if and only if x; > X*(y™). The latter holds if and only if k;(X*(y*), y*) <0
(see Fig. 8). O

Before turning to Lemma 16, we recall that the angles §, 8 and & were defined above in
(3) and that k; was defined in (26).
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HRSTTCTTTTTT TR b Y k=0 . :' ................................... b Y

Fig. 8. On the left, we see that k(X *(y1), y*) < 0 and that x| is in G. On the right, we see that k{(X*(y 1), y*) >
0 and that x; is not in G.

Lemma 16 (Geometric Conditions). The condition ki(x~, Y*(x7)) > 0 (resp. = 0 and < 0)
is equivalent to

26 —0 <,
(resp. = w and > 7). The condition ky(XT(y1), y*) > 0 (resp. = 0 and < 0) is equivalent to
26 —0 + B < 2m,

(resp. = 2w and > 2m).

Proof. By condition (1) and by the fact that the drift is positive, we have 0 < 6 < § < § < .
By (3) and (29),

X" /pe =

1 p—m/m2 | fp—m/n2 2+1 _ —col(§) = Yeol?(0) + 1 (38)
1—p2 | 1—p2 V1 —p? sin(B) '

We begin by proving the first equivalence for § > 7/2. In this case we have
™, YTx7) >0 & %(rzx_ +YECT) +px T+ a2 >0
&4 p < —pa/x” since YE(xT) = —px~ — puy by (28) and (29)
& 12— cos($) < sin(B) (cot®) +Veol(@) 1) by (38)
& —cot(d) (cot(e) + \/m) <1

<0< —cot((S)\/m < 1 + cot(8) cot(f) since we assumed § > /2
& cot?(8)(cot?(0) + 1) < (1 + cot(8) cot(9))?
& 2cot(8) cot(8) — cot>(8) +1 > 0
& 25in(8) cos(8) cos(d) — (cos2(8) — sin(8)) sin(§) > 0
< sin(28) cos(f) — cos(28) sin(@) > 0
< sin(26 —6) > 0
& 26 —0 < since 0 <25 —6 < 2m.
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It is straightforward to see that if § < m/2, then 26 — 8 < m. Further, by (3), § < 7 /2 is
equivalent to r,+p < 0, which implies that r,4+p < —uy/x~. Therefore, k{(X*(y*), y*) < 0.
This proves the first equivalence and thus the second equivalence is proved in exactly the same
way, and thus the details are omitted. This concludes the proof. [

4.3. Absorption a symptotics along the axes

In this section, we establish asymptotic results for the absorption probability (and escape
probability) in the simpler case where the starting point is (u, 0).

Proposition 17 (Absorption Asymptotics). Let us assume that x~ € S. For some constant C,
the asymptotic behavior of P, o)[T < 00] as u — o0 is given by

el if28 — 60 > m,
Pu,olT < ool ~C u"3en if28 —6 <m,
w2 if25— 60 =

Proof. The largest singularity of the Laplace transform of Py [T < oo] determines its
asymptotics. We proceed by invoking a classical transfer theorem, see [11, Theorem 37.1].
This theorem says that if a is the largest singularity of order k of the Laplace transform (that
is, the Laplace transform behaves as (s —a)~* up to additive and multiplicative constants in the
neighborhood of a), then when u — oo, the probability P, ¢)[T < oo] is equivalent (up to a
constant) to u*~1e? . The Laplace transform of P, 0)[T < co] is 1/x — v1(x). By Lemma 15,
the point 0 is not a singularity and the point x; is a simple pole. When that pole exists, the
asymptotics are given by Ce**! for some constant C. When there is no pole, that is, when
ky(x~, Y*(x7)) > 0, the largest singularity is given by the branch point x~. The definition of
Y+ and (35) together imply that for some constants C; we have

Ci+Co/x —x—+0x —x7) ifki(x—,Y*x")) >0,
Yi(x) =

C;
-~ | —=+0() if kj(x~, YE(x7)) =0.
Vx —x~ :
The proof is then completed by applying Lemma 16 and invoking the classical transfer
theorem. [

Remark 18 (Asymptotics Along the Vertical Axis). In Proposition 17, we obtained the asymp-
totics for the absorption probability and for the escape probability along the horizontal axis.
A similar study for i, would lead to the following asymptotics along the vertical axis. As
v — 00,
e if2e +0 — B > m,
Po.n[T < ool ~C vrewTif 2¢ +60—-8<m,
vTren T if 2e 46 — B=m.

Remark 19 (Bivariate Asymptotics). The bivariate asymptotics of the absorption probability
may be derived using the saddle point method and studying the singularities, see [13,19].
We would obtain some functions a, b, ¢, such that for (u, v) = (r cos(?), r sin(¢)) in polar
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coordinates,

P(u,v)[T < o] ~ a(t)rb(l)e—c(f)r‘
r—0Q

Typically b would take the value O or —1/2.

5. Product form and exponential absorption probability

In this section, we consider a remarkable geometric condition on the parameters charac-
terizing the case where the absorption probability has a product form and is exponential. We
call this new criterion the dual skew symmetry condition due to its natural connection with
the famous skew symmetry condition studied by Harrison, Reiman and Williams [25,28],
which characterizes the cases where the stationary distribution has a product form and is
exponential. The dual skew symmetry condition gives a criterion for the solution to the partial
differential equation of Proposition 11 (dual to that satisfied by the invariant measure) to be of
product form. Theorem 20 below states a simple geometric criterion on the parameters for the
absorption probability to be of product form; the absorption probability is then exponential.

Theorem 20 (Dual Skew Symmetry). Let f(u,v) = PunlT < oo] be the absorption
probability. The following statements are equivalent:

1. The absorption probability has a product form, i.e. there exist fi and f, such that
flu,v) = fi(u) f(v);

2. The absorption probability is exponential, i.e. there exist x and y in R such that
fu,v) = et

3. The reflection vectors are in opposite directions, i.e.
riry =1;

4. The reflection angles in the wedge satisfy a =1, i.e.
+e—pB=m.

In this case we have
fu, v) =1t

where x1 and y, are given in (32).

Proof. (1) = (2): The Neumann boundary conditions in (23) imply that f(0)f>(y) —
ri fi(0) f5(y) = 0 and —r, f{(u) f>(0) + fi(u) f;(0) = 0. Solving these differential equations
imply that f; and f, (and thus f) are exponential.

(2) = (1): This implication is straightforward.

(2) = (3): The Neumann boundary conditions in (23) imply that for all v > 0, xe* —r;ye"” =
0. Further, for all u > 0, —ryxe™® 4 ye** = 0. It follows that r; = x/y, r, = y/x, and thus
rirp = 1.

(3) = (2): Let us define f(u,v) = e*“11%2 We need to show that f satisfies the partial
differential equation of Proposition 11. This will imply that f is the absorption probability.
The fact that r; = 1/r,, combined with (32), gives r; = x;/y,. This implies that f satisfies
the Neumann boundary conditions in (23). The limit values are satisfied because f(0,0) = 1
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and lim, 4)— o0 f(u, v) = 0 for x; < 0 and y, < 0. It now only remains to show that G f = 0.
We now only need verify that K(x;, y») = 0, see Fig. 9. By the definition of y, (see (32)), we
have

»2 X1 : X1 X1
Kxi,yo=»nl=[—) +14+20— ) +ui—+ 12
2 \\» »2 »

Yy
=y (72 (r12 + 1+ 2pr1) + i + /Lz) =0.

(3) < (4): The following equivalences hold:
riry = 1 & (sin(B)/ tan(8) — cos(B)) (sin(B)/ tan(e) — cos(B)) =1 by (3)

sin(f) _ tan(d) " )= tan(6)(1 — cosz(ﬁ)) + cos(B) sin(B)
n(e) — sin(B) — cos(p)tan(@) T OB = sin(B) — cos(B) tan(3)
tan(B) — tan(s)
& tan(e) =

1 + tan(§) tan(B)
& tan(e) = tan(f — §)
se=pf—-5+n. O

Remark 21 (Standard and Dual Skew Symmetry). The standard skew symmetry condition
—r)

for the matrix |

is 2p = —r; — rp or equivalently € + § = . The standard

—1

skew symmetry condition for the dual matrix defined in Section 1.5 is 2p =

2
—1 ry

—1/r;1 — 1/rp or equivalently € 4+ § — 28 = . Note that the dual skew symmetry condition
obtained in Theorem 20 is different from these two conditions. Further properties of the dual

skew symmetry condition will be explored in future work.

6. Integral expression of the Laplace transform v

In this section, we establish a boundary value problem (BVP) (for reference, see [8]) satisfied
by the Laplace transform (Proposition 22). The section’s key result is Theorem 30, which gives
an explicit integral formula for the Laplace transform of the escape probability.

6.1. Carleman boundary value problem
We state a Carleman BVP satisfied by the Laplace transform ;.
Proposition 22 (Carleman BVP). The Laplace transform v, satisfies the following boundary

value problem:

(i) Y1 (x) is meromorphic on G and is continuous on G.
(ii) Y1 (x) admits one or two poles in G. 0 is always a simple pole and x| is a simple pole
if and only if 26 — 0 + 8 > 2.
(iii) lim,_, o x¢r1(x) = 0.
(iv) Y satisfies the boundary condition

Yi(x) = G)yi(x), VxeH,

where

G(x) = ]ﬂ(x, Y+(X))12(i Y (x)). (39)
ko ki
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\i_o )
T 0 N
_ e Y -

Fig. 9. Dual skew symmetry: on the left, we see that K(xz, y2) = 0; on the right, we see that condition rir, =1
implies that the reflection vectors are in opposite directions.

Proof. Statement (i) immediately follows from Lemma 14. Statement (ii) immediately follows
from Lemmas 15 and 16. Statement (iii) follows from the initial value theorem for the Laplace
transform, which implies that lim,_, o, x¥(x) = P,0)[T = oo] = 0. To prove statement (iv),
we recall the functional equation in (27). For x € H, we evaluate this equation for (x, ¥ T(x))
and (X, Y*T(X)). By the definition of Y*, we have K(x, Y*(x)) = KX, Y (X)) = 0. By the
definition of the hyperbola H in (34), we have that Y *(¥) = Y *(x). This enables us to obtain
the following system of equations

0 =ki(x, YTO)Y1(x) + ko, YT)) Y (Y T (X)),
0="ki(x, Y ) Y1(X) + ko (X, YT) Y (Y T (x)).

Solving this system of equations and eliminating ¥ (Y *(x)), we obtain the boundary condition
in statement (iv). [

6.2. Gluing function

To solve the BVP, we need a conformal gluing function which glues together the upper and
lower parts of the hyperbola. This conformal gluing function was introduced in [20,21]. For
a > 0 and for x € C\ (—o0o, —1], the generalized Chebyshev polynomial is defined as

T,(x) := cos(a arccos(x)) = % ((x Ve (= x2 — 1)“) .
We define the angle
B := arccos(—p).

We also define the functions
2x — (xT + x‘))

xt —x—

w(x) = T ( (40)
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and
wx) — wX*(yH))
w(x) — w(0)
We now recall a useful lemma from Franceschi and Raschel [21] for the conformal gluing
function W.

W(x) =

Lemma 23 (Lemma 9, [21]). The function W satisfies the following properties

(i) W is holomorphic in G \ {0}, continuous in G \ {0} and bounded at infinity.
(ii) W is bijective from G \ {0} to C\ [0, 1].
(iii) W satisfies the gluing property on the hyperbola

Wkx)=W(k), VxeH.
6.3. Index

We proceed with some necessary notation. Let the angle A be the variation of the argument
of G(x) when x lies on H*:

k
A = [arg G(x)]y+ = |:arg ix, Y+(x))] .
ko -
Further, let d be the argument of G at the real point of the hyperbola H:

d :=arg G(Xt(y")) € (—m, 7).

We define the index « as
_ld+ A
K= 7 .

The index shall prove useful to solving the boundary value problem in Proposition 22.

Lemma 24. We have

S0 ifki(x™, YE(x7)) # 0 ie. 26 — 6 + B # 2,
) kG, YE(xT) =040e 25— 60+ B =2m,

and
@A (1 = (r1 4 2p)(r2 4 2p))/1 — p2 _ tante + 5+ B)
2 ridrn43p—rinp =2 +r)pt—4p3 ’

Note also that € + 8§ + B = 2m is equivalent to 1 — (r; + 2p)(r, + 2p) < 0.

Proof. The proof is (in each step) similar to the proof of Franceschi and Raschel [21,
Lemma 13]. Firstly, note that the value of d is obtained by the fact that G(X*(y™)) = 1
if kj(x~,Y%(x7)) # 0 and that G(X*(yT)) = —1 if ky(x~, YE(x7)) = 0. Recall that, by
definition, we have A = lim s arg G(x) — d and that by (39) we have

G+ YY) /0) + o+ /)G + 1Y H)/T) + pY F()/F + 11/X)

G+ Y@)/E) 4 o+ 12/DGA A+ YT (@)/x) + pY () /x4 1 /x)
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By (28), we compute the limit
Y*t(x —
x( ) =—p +l 1 - )027

from which we obtain

lim
X—>00
xeHt

ei(A+d): !LTC G(x)
xeHt

(A p+i/I=pHU—rip—2p —i(r +2p)/1— p?)
o —iV1— P = rip =202 +i(r + 2001 — p?)
()1 —r1p—=2pH) + (r1 +2p)(1 — pH) +i(1 — riry — 2(r1 + r2)p — 4pH)y/1 — p?
T+ o)1 = rip — 202 + (11 +20)(1 — p2) — (1 — rira — 2(r1 + r2)p — 4p)/1— p?
We then see that
d+A  (1—=rirp =21 +r)p —4p>)y/1 — p?
2 (0 =rp =20+ +20)1 = p?)

where the last equality follows from (3) and by straightforward calculation. The proof concludes
by recalling the two following facts:

tan

= tan(e + § + B),

1. For @ = £2=" > 1 and for ¢, § and B € (0,m), we have that —mr < 28 — m <
€e+6+B—-2m <m.

2. By (3), sin(e + & + B) has the same sign as that (r; + 20)(r2 + 2p) — 1, where
(11 +2p)(r2 +2p) — 1 = sin(e + 8 + f) gm0

We now proceed to state Lemma 25. For 1 — (r; 4+ 2p)(r; 4+ 2p) # 0, let us define

pa—pi(ra+2p) 5 sin(B + § — 0) sin(e)
i +20)m+2p) =1 Psin(B —@)sinc + 6 + B)’
where the last equality holds by (3).

yi=2

(41)

Lemma 25. Ify —yt <0orif1—(ri +2p)r2 +2p) =0 then
(Gx)=1and x € H) & x = XT(y™*),
and thus d + A € (=27, 27m). If y — y* > 0 then
(Gx)=1and x € H) & (x = X)) or x = X)),
and thus d + A € (—4mn, 4rm).
Proof. Assume that x € H, where x = a 4+ ib fora,b € R and y = Y*(x). Then by (39),
G(x) = 1 is equivalent to J(ki(a +ib, y)ko(a —ib, y)) = 0. Straightforward calculations yield
. ) b
S (a+ib. Ykala = ib,y)) = 7 [ 31 +20)(r2 +20) = 1) = 2412+ 212+ 20) .

from which we may obtain that G(x) = 1 is equivalent to » = 0 or to y = y. We conclude the
proof by noting that

1. b =0 and x € H together imply that x = X*(y*), the latter being the only real point
of the hyperbola.
2. By the definition of (33), x € H and y = y imply that y € [y*, 00). O
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Table 1
Value of the index «.
e+8+pB=22m €e+8+pB8<2m
26—60+pB>2n Kk =-—1 Kk=-=2
2§ —0+ B <2n k=0 Kk =-1

We continue with Lemma 26.
Lemma 26. Assume that 26 — 0 + B > 2. Then ¥ > y™ is equivalent to € +§ + B < 2.

Proof. We first note that 26 — 6 + 8 > 2 implies that 71 < § — 6 + f < 27, and thus
sin(6 —0 + B) < 0. Recall that we have previously seen that the conditions in (1) are equivalent
toa >1and § > B, € > B, and thus m < € + 8§ + B < 3w. We employ the following steps to
conclude the proof:

1. Assume that ¥ > y*. Then for y* > 0, we have that y > 0. Then by (41) we have that
sin(e +8 + B) <0 and thus € + 6 + B < 27.

2. We now assume that € +§ + 8 < 2. Hence sin(e + 8 + 8) < 0. By hypothesis we have
B <€ < 2w — B — 8. Employing (41), we may easily see that € — ¥ is increasing for
B <€ <2m — B — 4. Replacing € by g in (41), we deduce that

sin(8 4+ 8 — 0) sin(B)
'sin(8 — 0)sin(2B + &)

By hypothesis, we have that = + % < § < 2w — 28. Note that § — y; is increasing
in this interval. We then see that

sin(B + 7 + 52 — 0)sin(B)
sin(8 — 0)sin(2B + 7 + £)
Employing (30) and performing straightforward calculations, we obtain
BN 200
| -2 SIH(T) s (T) -0
sin(8 — 6)sin(e 4+ § + B) sin(B)

Before stating the main lemma of this section, we introduce the following indicator
variable y, which is associated with the results of Lemma 15 and Lemma 16.

_ —1 if25—60+ B >2w < x;is apoleof Y in G,
X =10 if25—6+B <27 < ¥ has no pole but 0 in G.

Y >y i=2u

Y > Yinf = 201

Y=y > ye—y"=pn

(42)

Lemma 27 (Index). The index « satisfies
X ife+8+p8 > 2m,

K=
x—1 ife+d6+8 <2m.

The value of the index appears below in Table 1.

Remark 28 (Index and Argument Principle). Notice that the index can take the values 0, —1
and —2 whereas in [21, Lemma 14] the index takes only the values 0 and —1. The difference
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aQ

At At

/

(a) If e+6+8 > 2mrand 26—0+8 > (b) If e+d+8 > 2m and 26—0+3 < (c) If e+0+0 < 27w and 26 —0+ 3 <
27, then Kk = —1. 27, then k = 0. 27, then k = —1.

Fig. 10. When 5 — y* < 0: a plot of the curve C := {%(x, YT (x)): x € H} and the point A" := %(X*’(y*’), yh.

comes from the fact that ¥ can have two distinct poles while in [21] the Laplace transform
has at most one simple pole. The index is inherently connected to number of zeros and poles
of ¥;. In the case of a closed curve, the argument principle implies that the index is equal
to the number of zeros minus the number of poles counted with multiplicity of the function
of the BVP. See Fomichov et al. [17, Lemma 6.9] which presents a case where the boundary
of the BVP is a circle. In our case, the boundary is an (unbounded) hyperbola and ¥ is not
meromorphic at infinity. Therefore we cannot directly apply the argument principle and the
index « is not always equal to the opposite of the number of poles .

Proof. The proof proceeds with two separate cases.

Case I: Y — yt < 0. In this case, by Lemma 25, we have that d + A € (—2x,27) and that
G(x) # 1 for all x € H such that x # X*(y*). Then ¥ = 0 or —1 depending on the sign of
d + A. This sign is given by the sign of arg G(x) when x € H* and x — X=(y*). Note that
x=a+ibeH" and y = Y1 (x). We then compute

b2 b
ki(a +1ib, y)ka(a +ib, y) = ki(a, y)ka(a, y) + ?(rz +2p) — iZ(l —(r1+2p)r2 + 2000 = .

Fig. 10 represents the curve C := %(x, Y*(x)) : x € H}. It is useful to remark that

arg %(x, YT (x)) = argki(x, YT (x))/ ka(X, Y T(x)). We may thus deduce that

sgnarg G(x) = sgnarg(k,(a + ib, y)ko(a — ib, y))
n—b(l —(r1 +2p)(r2 + 20))(y — }’)'
ki@, yYa(a, y) + 5 (r2 + 2p)
For x € H*, we have kxy(XT(y*), y*) > 0, b > 0. When x — X*(y1), we have that b — 0
and a — X*(y*). Thus for x € H* and x — XT(y"),
sgnarg G(x) = —sgn(ky(X(y™), yH(A = (r1 +2p)(r2 + 20))(y — 7))
= —sgn(26 — 0 + B —2m)sgn(e + 8 + B — 2m),

:Sg

where the last equality comes from Lemmas 16 and 24, as well as from the fact that in this
case y —y > 0 for y > y™. This allows us to conclude the following
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oeIfe+8+pB>2m and 28 — 6 + B > 2, then for x € H* and x — Xi(y+), the sign of
arg G(x) is negative. We may thus deduce that « = —1, see Fig. 10(a).

e Ife+68+p >2m and 286 — O + B < 27, then for x € HT and x — X*(y*), the sign of
arg G(x) is positive. We may thus deduce that x = 0, see Fig. 10(b).

o Ife+8+ B <2 and 26 — 60 + B < 2m, then for x € Ht and x — XT(y+), the sign of
arg G(x) is positive. We may thus deduce that « = —1, see Fig. 10(c).

We pause to note that by Lemma 26 it is not possible to have € + 6 + 8 < 27 and
28 — 60 + B > 2. This is because we have assumed y < y*.

Case II: Y — y* > 0. In this case, by Lemma 25 we have that d + A € (—4m,4m) and
(Gx)=land x € H) & (x = X*(yT) or x = X*(9)). Then « € {—2, —1,0, 1}. To obtain
the value of the index we study the curve C = {%(x, Y*(x)) : x € H}. By straightforward

calculations we see that A = %(X *(3), ¥) is positive. The study of the sign of the real and the
imaginary parts of %(x, Y*(x)) for x € H* and x — X*(yT) gives the value of k. Following

the same logic as that of Case I above, we see that the real part of ]]Z—;(x, Y*(x)) for x € HT
and x — X*(y*) has the same sign as —(28 — 6 4+ B — 2m). Further, the imaginary part has
the same sign that —(¢ + 8 + B8 — 27). We may then conclude as follows:

elfe+d5+ B <2mand 25 -0+ >2m, k =-2, see Fig. 11(a).
elfe+d6+pP2>22mand 25 — 0+ B < 2m, k =0, see Fig. 11(b).
elfe+d6+ P <2mand 25 -0+ B < 2m, k =—1, see Fig. 11(c).

Note that by Lemma 26 it is not possible to have € +§ + 8 > 27 and 26 — 6 + B > 2z. This
is because we have assumed that y > y*. O

We now state a technical lemma which shall be invoked in Section 7.

Lemma 29. The following equality holds

d+A+ ln_ 1
5 X 5= o )

Proof. First, we recall by Lemma 24 that

d+ A
tan

= tan(e + § + B).

Foroc:EHT_”>1ande,8 and B € (0, ),
2B—nm<e+6+B8—-2m <m.

Further, recall that by definition, x = L%J.
We now consider two cases for the value of € + § + 8 — 2m. The first case considers
€+6+4+ B —2m > 0. In this case,
d+ A {e+8+,8—271 if 44 > 0ie k =0,
5 = o d+A :
2 e+8+p—3n if 52 <0ie x=—1.
By Lemma 27, we have x = x. We may thus deduce that

d+ A
T=e+8+ﬂ+(x—2)n.
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/A
\

(a) Ife+d+ 8 <2mand 26 — 0+ 5 > 2m,

then k = —2.
A 'y
C
C
AT A
A

(b)Ife+d+ 8 >2mand 26 — 0+ B < 2, (c)Ife+d+ B <2mand 26 — 0+ 8 < 2,
then k = 0. then kK = —1.

Fig. 11. When ¥ — y* > 0: a plot of the curve C := {%(x, Y*(x)) : x € H}, the point A" = %(X*(y*),y*),
and the point A = %(XJr(y), y).

The second case considers € +§ + 8 — 2w < 0. In this case,

2 e+8+p -3 if —27 <2 < —ywie k=-2.

d—i—A_{e—i—S—l—,B—Zn if —7 < EA <0ie k=1,
2w

By Lemma 27, we have k = x — 1. We may thus deduce that

d+ A
T:e+8+ﬂ+(}(—2)n.

Thus, in both cases we have

d+ A kA 5 5 I |
<_T+X_ )E—(—G— -B—(x— )7T+X7T—7T)E——Ol— :

This concludes the proof. [
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6.4. Solution of the BVP

The following theorem gives an explicit integral formula for the Laplace transform of the
escape probability ;.

Theorem 30 (Explicit Expression for yry). The Laplace transform | is given for x € G by

w'(0) (w(O) - w(x1)>_X
w(x) — w(0) \w(x) —wlx)

) w'(t) w'(®)
X exp (E /7# log G(1) [w(t) —wx)  w)— w(O):| dt> ’

where x1 is defined in (32), G is defined (39), w is defined in (40), x is defined in (42) and H
is defined in (34).

Yi(x) =

(43)

Remark 31. We now provide some remarks about Theorem 30.

e The poles 0 and x; in Lemma 15 can be easily visualized by Theorem 30. The indicator
variable x defined in (42) indicates clearly whether or not the pole x; is in G.

e A symmetrical result holds for v,. Using the functional equation (27) we obtain an
explicit formula for . By inverting this Laplace transform we obtain the escape
probability, which constitutes the main motivation for our work.

e It is still possible to deduce some concrete results from the integral formula obtained
in Theorem 30. In Section 7 we derive a very explicit and simple expression for the
asymptotics of the escape probability at the origin.

e Similar to [6, Thm 2.3, §9.1], we can show that v, is differentially algebraic if 8 €
7Q. When v is differentially algebraic, it satisfies a differential equation, allowing us
to deduce a polynomial recurrence relation for the moments of the escape/absorption
probability. See [6, §6.3] which gives an explicit example for the SRBM stationary
distribution in the recurrent case.

e The methods and techniques employed to prove this theorem are inspired by those used
to study random walks in the quarter plane ([15]).

Proof. Let
~ = WE)
) = ST e

Proposition 22, Lemma 23 and Lemma 27 together imply that

° 121 is analytic on C \ [0, 1].
® Y1(y) ~oo cy™* for some constant c.
e ih=0.
e For y € [0, 1], ¥ satisfies the boundary condition
U o) = GOy (),
where {;;”(y) is the left limit and gl_(y) is the right limit of 1’/71 on [0, 1], (W~1)~ is the
right limit of W~! on [0, 1], and G(y) = G o (W)~ (y).

Yo W)

We now define
~ . 1 ["log Gu)
Sy =0-1 eXp<2.—f g—)-
it Jo u—y
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Following the classical boundary theory results in [15, (5.2.24) and Tlleorem 5.2.3], the above
function is analytic and does not cancel on C\ [0, 1] and is such that S(y) ~« ¢’y for some
constant ¢’. Furthermore, for y € [0, 1], it satisfies the boundary condition

ST =G»S~ (),

where §:(y) is the left limit and g’()L) is_the right limit of S on [0, 1]. By the properties of
Y and S detailed above, the function v;/S is analytic on C and bounded at infinity. Therefore
there must exist a constant C such that

¥1(y) = CS(y).
Invoking the definition of %, we have that
(W) = Wxp) _ e (1" logGu)
W) = Drer 10 = CWO =D exp (zm /0 - W(x)) : “4
Noting that

~ w(0) —w(XE(yT) _wx) — wx) wXE(yT)) — w(0)
Vo= e M YOV =0 T00 e —w©)
and making a change of variable u = w(¢) in the integral in (44), we obtain for some constant
C/

1 () ) (e f )
Vi) = w(x) — w(0) w(x) — w(xy) P 2in Ht o8 w(t) — w(x) ’
The final value theorem for the Laplace transform gives

lim xwl(x) = lim P(M'O)[T = OO] =1.
x—0 Uu— 00

This enables us to compute the constant

, , B —1 w'(¢)
C' = w'(0) (w(0) — w(x;)) * exp <E /7-¢+ log G(t)mdt> ,

which gives us (43), completing the proof. [
7. Asymptotics of the escape probability at the origin

In this section we use the explicit expression in Theorem 30 to obtain the asymptotics of
the escape probability at the origin. We begin by computing the asymptotics of i, at infinity.
Lemma 32 (Asymptotics of V1). Let « be defined as in (4). For ease of notation, allow C to
be a constant which may change from one line to the next. For some positive constant C,

Yi) ~ Cxmh
X—>00

A symmetrical result holds for vr,. That is, for some positive constant C,

Ya(y) ~ Cy .
y—)DO

Proof. This proof follows the same steps as those of Franceschi and Raschel [21, Prop 19].
The key idea is to invoke [15, (5.2.20)], which states that

1 ['logG

exp(—. [ (“)) ~ Co =D
2im Jo u—y )yl
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Recall that w(x) ~ Cx% and that W(x) — 1 ~ Cx_%. The explicit expressions of
X—>00 X—>00
obtained in (43) and in (44) imply that

_d+A L\
Yi(x) ~ Cx'" o E
X—>00

The proof concludes by invoking Lemma 29, which states that (—% +x - 1)
—a—1. O

s
B

Lemma 33 (Asymptotics of V). Let a defined as in (4). For t € [0, 2] and some positive
constant C,,

Y(rcost,rsint) ~ Cuor 972
r—00

Proof. The result is immediate from the functional equation (27) and from Lemma 32. [

Proposition 34 (Asymptotics at the Origin). For positive constants cy and c; we have the
following asymptotics

]P)(u’())[TZOO] ~ cou“ and ]P)((),v)[TZOO] ~ clv“.
u—0 v—0

Proof. The result follows by combining the asymptotic results of ¥, and i, at infinity that
we computed in Lemma 32 with the reciprocal of the result in [11, Thm 33.3].> We begin by
denoting g(u) = Py, 0)[T = oc]. Then, by definition, ¥(x) = fooo e “g(u)du. As ¥1(x) has
no singularities greater than 0, for every A > 0, the inverse Laplace transform gives

1 A+ioco
gu) = — e Y1 (x)dx.
2iw A—ioco
By Lemma 32, we have ¢ (x) = %, where 7 is a function such that lims, 7 = 0. Recalling

that the Laplace transform of u®/I'(a + 1) is x %! and performing a change of variables
s = ux, we obtain

A+ioco eux C 4 n(x)

s =sr e
C 1 Au+ioo
=y — + - e’ n(S/u)dS .
F(Ol + 1) 2imw Au—ioco sotl

It remains to show that the last integral tends to 0 when ¥ — 0. To do so, consider € > 0
arbitrarily small. Then there exists B > 0 sufficiently large such that n(x) < € for all |x| > B.
For all u such that u < 1/B, let us consider A := 1/u. This gives

1 /Au+ioo . T](S/M)
A

2im sotl

€ 1+ioco 1
< — ds,

ds —_—
2i Ji_joo ST

U—ioo
where the last integral converges for ¢ > 1. The proof concludes by letting € tend towards
0. O

Theorem 35 (Asymptotics at the Origin). For t € (0, Z) and some positive constant ¢; we have

o
IP)(rcost,rsint)[T:OQ] ~ CiF.
r—0

2 Doetsch [11, Thm 33.3] establishes that if for some constant a a function is equivalent to u“® at 0, then at
infinity, its Laplace transform is equivalent (up to a multiplicative constant) to x~%~!.
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Proof. This proof follows directly from the asymptotics of the double Laplace transform
computed in Lemma 33. Recall the result used in the proof of Proposition 34 linking the
asymptotics of a function at O to the asymptotics of its Laplace transform at infinity. The
only necessary modification is to apply this result with a polar coordinate transformation. The
desired asymptotics then follow with nearly identical calculations. [J
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