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ABSTRACT. We propose a static Markowitz mean-variance portfolio selection
model suitable for long-term zero-coupon bonds. The model uses a multi-factor
term structure model of Vasicek (Ornstein-Uhlenbeck) type to compute the
portfolio’s expected return and its variance in the model. German Government
zero-coupon bonds with short to very long time to maturity are considered; the
data spans August 2002 to December 2020. The main investment assumption
is the re-investment of cash flows of zero-coupon bonds with maturities less
than the planning horizon at the current spot interest rate. Solutions for the
zero-coupon holding vector and the tangency portfolio are obtained in closed
form. Model parameters are estimated under an assumption of modeling ambi-
guity which takes the form of Knightian uncertainties at the level of the latent
factors, allowing the use of a Kalman filter. Different investment strategies
are examined on various risk portfolios. Results show that one- and two-factor
Vasicek models produce attractive out-of-sample portfolio predictions in terms
of the Sharpe ratio especially on long-term investments. It is also noted that a
small number of risky bonds can adequately produce very attractive portfolio
risk-return profiles.

1. Introduction. The optimal portfolio allocation of long-term securities and lia-
bilities in finance and risk insurance is associated with valuation problems (DeMiguel
et al., 2009). These challenges emanate from uncertainty surrounding financial in-
struments such as long-term interest rates. Many fluctuations may happen along
the way to maturity, for example a significant change in interest rates due to politi-
cal ambiguity and economic rumor. The quotes for bonds with very long maturities,
say over 30 years, are not very liquid, a reality which can be interpreted as partial
observation, or as a data quality issue. Market models based on these data may
not be very accurate and estimating model parameters can be difficult, with corre-
spondingly uncertain marking to market, and more generally modeling risk due to
ambiguity.
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Construction of an asset portfolio in an ambiguous environment involves math-
ematical modeling challenges. There will be a compromise on the level of trans-
parency of the model’s probability distribution. We take this up in this paper, as we
analyze a portfolio selection optimization problem for zero-coupon bonds where an
investor decides on a basket of various risky-asset bonds with different maturities,
some of which are very long. The main objectives are to derive, exploit, and analyze
the dynamics of an optimal portfolio of risky long-term bonds in a financial market
where bond trading only takes place at discrete time epochs.

Our portfolio selection model is constructed based on Markowitz’s mean-variance
portfolio selection framework (Markowitz, 1952), which has for decades been applied
to various risky asset portfolio optimization questions, including the discounted risk-
free bonds and other theoretical and empirical research (Korn and Koziol, 2006;
Wilhelm, 1992; Puhle, 2008; Fabozzi, 2004; DeMiguel et al., 2004; Svoboda, 2004);
also see Zhang et al. 2018; Bjork et al., 2014; Chang, 2015; Bessler et al., 2017;
and references therein. One may maximize an investment’s expected return subject
to a certain level of investment risk; or one may minimize the investment’s risk
subject to a desired level of expected return. Estimation of errors in parameters,
high transaction costs and portfolio reallocation when applied in asset management
can result in poor portfolio performance (Michaud 1989).

Vasicek (1977) was the first to introduce dynamic term structure models; short
rate models named after Vasicek typically include a linear time series model or
stochastic process (e.g. the Ornstein-Uhlenbeck process) featuring mean reversion.
Brennan and Schwartz (1980) discovered that dynamic term structure models can
be used for bond portfolio selection problem, reducing the data requirement burden.
Wilhem (1992) proposed a Markowitz bond portfolio selection model through the
use of dynamic term structure models. Unfortunately it was discovered that the
model in such contexts is very complex to solve practically, hence one is led to
consider a static model. We adopt such a strategy as well, with Vasicek multi-
factor dynamics, and a static portfolio selection with mean-variance optimization.
The important investment assumption we follow is that cash flows of bonds maturing
before the investment horizon are re-invested at the current spot interest rate up
to the planning horizon.

The specific literature context for our paper includes the following works. Bajeux-
Besnainon and Portait (1998) analyse the portfolio strategies by allowing continuous
re-balancing between the current data and the investment period. Korn and Koziol
(2006) apply Markowitz’s portfolio selection method to German government bond
portfolios. They estimate expected portfolio returns, portfolio variances and co-
variance using the multi-factor Vasicek term structure model. Results obtained
therein show that a small number of risky bonds are sufficient to obtain attractive
predicted risk-return profiles. Their assumptions in this term-structure framework
do not include the possibility of modeling uncertainty. Puhle (2008) introduced
a static bond portfolio optimization based on Markowitz’s mean-variance frame-
work. He derives the adjusted portfolio selection problem of zero-coupon bonds
and applies it to the Hull-White (1990) and Vasicek models. The assumption of
his model is similar to that of Wilhem (1992). In another study, DeMiguel et al.
(2009) make comparison between mean-variance strategies and a naive diversified
%-Weighted portfolio on different stock data sets to investigate which of these meth-
ods out-performs the other. Report indicate that the naive portfolio consistently
out-performs mean-variance strategies in an out-of-sample setting. Wu et al. (2014)



PORTFOLIO SELECTION MODEL WITH LONG-TERM BONDS 3

propose a discrete-time Markowitz mean-variance portfolio selection problem using
uncertain time-horizon. They derived the efficient frontier and the optimal invest-
ment strategy explicitly using an embedding method. Zhang et al. (2018) review
several techniques that sufficiently improve the Markowitz mean-variance model’s
performance, including robust portfolio optimization, portfolio optimization with
practical factors, dynamic portfolio optimization and fuzzy portfolio optimization.

Our paper has contributions to the literature by empirically analyzing Markowitz’s
mean-variance portfolio selection model performance in an out-of-sample setting
using German Government market data for the period August 2002 to December
2020. Our paper proposes the use of a multi-factor dynamic term structure model
of Vasicek type, using the Kalman filter for a parameter estimation method that
takes full advantage of the affine term structure of Vasicek models, simultaneous-
ly providing a clear interpretation of modeling ambiguity. We tackle zero-coupon
bond prices and yields. Our first objective is to construct a mean-variance portfolio
selection of zero-coupon bonds and obtain the solutions for the minimized variance-
covariance of the model given the initial and expected terminal wealth constraints.
The solution for the tangency portfolio is also obtained. As mentioned, the main
assumption of the model is that there is re-balancing of cash flows of bonds with
times to maturity below the planning horizon at the current spot interest rate un-
til the planning horizon. Secondly, we show how to estimate the parameters of
a multi-factor Vasicek, and further how to use them to compute moments of the
mean-variance portfolio model (expected return, variance-covariance of both the
bond prices and investor’s terminal wealth). The multi-factor Vasicek model con-
structed is also suitable for long-term maturity zero-coupon bonds, which are also
included in our analysys. Thirdly, we investigate the effect of different investment
strategies (short-term, medium-term, and long-term planning horizons) on various
risk portfolios and times to maturity for zero-coupon bonds. For this, we compute
the out-of-sample portfolio predictions using three of our multifactor Vasicek model
specifications, with one factor, two factors, or three factors.

2. Problem formulation. We formulate a static Markowitz portfolio selection
model for an investor who is skeptical about modeling risk due to interest rate de-
pendent long-term horizon securities. The investor seeks to select a mean-variance
efficient portfolio with high expected return with a given minimum variance of re-
turns. The portfolio model is static meaning that the investor is presumed to build
a portfolio today and sell it at the investment horizon (Puhle, 2008; Bjork, 2009).
That is between today (the day of investment) and the investment horizon, the
investor remains inactive. Another assumption is that the investor only cares about
the expected terminal portfolio wealth, expected portfolio return and the variance
of the portfolio return. Therefore, the main objective of the investor is to mini-
mize the variance of this terminal wealth given an expected terminal wealth, initial
wealth and the self-financing budget constraint. She considers a financial market
consisting of zero-coupon bonds with finite investment horizon maturities T; < oo.
We also assume that the maturity time T < oo for a risk-free zero-coupon bond
matches closely with the planning horizon of the investor’s portfolio selection prob-
lem. Let us consider a financial market where time is divided into periods of length
At and where financial transaction only takes place at the discrete points in time
nAt, n = 0,1,2,.... We suppose that the bond prices in the financial market are
affected by two state factors given by the following;:
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r(t) = the short interest rate at time ¢
y(t,T) = the yield to maturity for some fixed maturity 7.

In this paper, we construct interest rates models leading to analytically tractable
and accurate optimal portfolio strategies for long-term risky bonds. We formulate
state space representations of interest rate models to quantify long-term risk and
modeling uncertainty, by using a filtering-theoretic approach, (see Mawonike et al.,
2021) for more details on the topic of how to use Kalman filtering for estimating
state space models for long-term bonds). The challenge with modeling long-term
bond markets is that there is no classical single-factor stochastic short rate modeling
framework which can adequately represent the modeling uncertainty inherent in
these markets. No amount of statistical uncertainty on single-factor short rate
model parameters can deliver the required model ambiguity. In this sense, we need
to use a Knightian uncertainty framework, where we cannot expect any quantifiable
knowledge about some possible occurrences, as opposed to statistical uncertainty,
where this knowledge can be quantified. Specifically, we make use of multifactor
short rate models that capture our desired long-term features (illiquidity and partial
observation, which are sources of model ambiguity), together with the suitable
filtering framework developed in Mawonike et al., 2021) and (Babbs and Nowman,
1999; Bolder, 2001), such that the more liquid quotes of the interest rate models
(short to medium term) will be matched with a high signal-to-noise ratio (nearly
perfect signal), whereas the long-term part of the term structure model involves
instead a filtering problem, seeing less liquid quotes as more noisy observations. In
particular, a linear state-space representation of the continuous-time infinite horizon
short rate models and the Kalman filter are used to jointly estimate the current term
structure and its dynamics for markets with an illiquid long-term bond. We take the
measurement process to be the observed yields in the market, modeled as a linear
function of a multi-factor state variable, plus a noise term given by a Gaussian white
noise with an unknown time-varying covariance matrix to capture the embedded
long-term model risks. The state process driving the yields, on the other hand,
is the short rate process, which we assume is a sum of several unobserved factor
which are modeled by Gaussian Vasicek processes. The white noises driving these
Vasicek processes need to be correlated in specific ways to be consistent with the
term structure of bond markets; they depend on a limited number of maturity-
dependent variance parameters which must be estimated.

2.1. Optimal portfolio of short, medium, and long term bonds. We let
7 be the longest maturity of all zero-coupon bonds available in the bond market.
Therefore, there exists one bond for each maturity date 1,2,3,...,7. First, we
present a case where the portfolio is set initially at time ¢ = 0 and held until
maturity (planning horizon) ¢ = T without rebalancing (see, e.g., Korn and Koziol,
2006). The trading strategy is characterised by i = {hqg, fir}, where g represents
the initial wealth of the investor invested in the 7 zero-coupon bonds and A7 denotes
the investor’s terminal wealth at the end of the investment horizon. At time ¢ = 0,
the investor allocates his initial wealth Ag to the 7 zero-coupon bonds.

ho = Z NTiP(OaTi)7 (1)
T;=T
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where N7, is the number of zero-coupon bonds purchased with maturity date T; at
current price P(0,7;). The investor is only permitted to invest in one risk-free bond
and risky bonds over the finite investment planning horizon [0, T]. That is, T zero-
coupon bonds are divided into one risk-free and 7 — 1 risky bonds. A T maturity
zero-coupon bond invested in the investment horizon T is risk-free. Therefore,
holding any bond which matures later than the investment horizon is risky. Now
combining the risk-free and risky bonds in the holdings vector N and the 750 price
vector gives us:

ho = NPy + N P(0,T), (2)
with

Nl = Nry1, Nrya, s N7 ),
Po = (P(OvT + 1)7 P(OvT + 2)7 ) P(OaT)) :

where N7 is the number of T- maturity zero-coupon bonds purchased at time ¢ = 0.
An investment N7 P(0,T) of T - maturity zero-coupon bonds is risk-free. Holdings
of zero-coupon bonds with time to maturities greater than the planning horizon
are at time T value the sum of the prices of individual zero-coupon bonds (see,
Puhle, 2008). In addition, holdings of zero-coupon bonds with time to maturity
less than T' are more complex to value at time T'. In the investor’s selection prob-
lem, zero-coupon bonds with maturities less than the investment horizon 7' are not
incorporated into her model. However, she is allowed to reinvest cash flows in the
current, zero-coupon bonds with maturities greater than T at the current yield to
maturity, y(¢,T). Hence, the investor’s terminal wealth becomes:

hr = Nr + Z Nr,e” (=TT, (3)
T;=T+1
with )
y(tv T) = _T ¢ hl[P(t, T)]a
it follows that:
hT:NT+ Z NTIP(T7TZ) (4)
T;=T+1

We let N )
Pr=(PT,T+1),P(T,T+2),..,P(T,T1)),

then presenting fir in vector form gives:
hr = Nt +J\~//73T. (5)

(see e.g., Wilhelm, 1992 p217; Puhle, 2008 p44): As mentioned, our investor’s port-
folio selection problem adopts the mean-variance framework of Markowitz (1952).
Our investor only uses her expected return and variance of her return, at the start
of the investment period, ¢ = 0. We compute the expectation and variance at time
t = 0 of the terminal wealth %7 in Equation (5):

EF[ir] = N + N'EF[Pr], (6)

T

varflhr] = Y Y NpNyCov (P(T\T,), P(T,Ti))

T, =T+1 T, =T+1 (7)

N'SN
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where ¥ = Cov (P(T,T;), P(T,Ty)) for T; =T+ 1,T+2,....7and T,y =T+ 1, T+
2,...,7 is the covariance matrix of the vector of bond prices maturing after 7. With
these expressions in (6) and (7) plus the condition from Equation (2) on the initial
wealth, the Markowitz bond portfolio selection problem is formulated as:

min g %]\N//Eﬁ (8)
subject to: Ny + N EP[Pr] = hr (9)
and to: NrP(0,T) + N Py = hy (10)

Combining Equation (9) and Equation (10), the investor’s bond portfolio selection
problem becomes:

min 5 %J\N/‘/Eﬁ/ (11)
subi . rn _ A _F
subject to: 50.7) + N (E [Pr] P(O,T)) = hyp (12)

Equation (12) involves both the risk-free initial wealth and the vector of risk premia
(see, also, Puhle, 2008 for a detailed explanation). Solving the quadratic minimisa-
tion problem in Equation (11) is classical via Lagrange multipliers, to compute the
mean-variance efficient portfolio.

In the second case, we consider the more general scenerio where the portfolio is
constructed at time ¢t = 0 and held until maturity ¢ = T and there is an assumption
of rolling over. That is, the face value of each zero-coupon bond which matures
before the investment horizon T' is re-invested at time ¢ < 7' at the current yield
y(t,T) until the investment horizon. Hence, the holdings vector N and the price
vector Py must now include elements before T', beyond what was given in (2). They
are thus given by:

Jv/ = (./\/—17,/\/‘27 ...7NT717NT+17 '~'7NT)

Po = (P(0,1), P(0,2),..., P(0,T — 1), P(0, T + 1), ..., P(0, 7)) .

Therefore, the terminal wealth from (3) must be modified to become:

T-1 -
hy = ZNTie(TfTi)y(Ti,T) + Ny + Z N, e=(G=Ty(T.T)

1;_:11 ) T;=T+1 (13)
N Np N+ > NpP(T.T;)
- TzP(TZ’T) T T; s Li).

T;=1 T;=T+1

since bonds which have already matured at time T will continue accruing interest
at the corresponding spot rates. Letting

’

~ 1 1
Pr = (P(LT),..., PT = 1)T),P(T,T+1),P(T,T+2),...,P(T,7)) ,

then the terminal wealth A7 in vector form becomes:

hy = N + N Pr. (14)
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Now the expectation and variance of Ay become:

» B T—1 N 1 T 5 4
= Xl [y | Nee S EREI)

T—1 T-1 1 1

var® [hy] = Z Z Nr,Nr, Cov (P(E-,T)’ P(ﬂ/,T))
T;=1Ty=1

Y > NpNp,Cov(P(T,Ty), P(T,Ty))

_|_

T

T—-1
1
2 ) 7 —
+ E E N1, Nr, Cov (P(Ti7T)
T;=1 Ti/:T+1

=N'SN

,P(T, Ti/))

where Y is defined as:

Cov ﬁ,ﬁ) for Ti=1,..,.T—1;i=1,..T -1
%,P(T,Ti/) for Ti=1,...,T—1i{ =T+ 1,T+2,...,7
Cov P(T,Ti),ﬁ for Ti=T+1,T+2,...,71¢=1,...,T -1
Cov (P(T,T;),P(T,Ty)) for T, =T+1,T+2,...,7;Ty =T+ 1,T+2,...,7
(17)
In (20), EF[P(T,T;)] is the expectation at time 0 of the discount factor at time 7T
for the maturity 7; > T, and Ep[ﬁ] is expected accrual factor from time 7; to

time T" when T; < T (see, e.g. Puhle, 2008, pp47). Now our investor’s constrained
variance minimization problem of interest is of the same form as in (8), (9) and
(10), and can thus be formulated as:
. 1~
min g 5]\/ N
subject to:  Np + ./\7,IEP[75T] — Iy
NP0, T) + N Py = ho

with the new definitions of A , ﬁT, and Py in this section. As in the previous section,
equivalently this is:

min g %/\7/2./\7
T R A
subject to: P0.7) +N (E [Pr] P(O7T)> = hr,

using the expectation and variance of the terminal wealth given in (20), (21), and
(22). The solution to this constrained quadratic minimization problem is obtained
identically to the solution steps detailed in section (2.1), since the functional to be
minimized and the constraint functional are indifferent to how time is interpreted
in the allocation vector.
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2.2. Model uncertainty specifications. In this section, we present the Vasicek
term structure model for bond prices with maturity dependent model uncertainty
specifications.

We consider a complete probability space (£2, F,P) on a time horizon [0, 7] with
filtration, {F;},-, generated by n-dimensional correlated Brownian motions

{Wl(t)7W2(t)ﬂ [RES) Wn(t)} »t > 07

where therefore the probability measure P on €2 can be taken as the n-dimensional
standard correlated Wiener measure, with correlation matrix p, on the space of
continuous functions with values in R™. Any decision made at time any time ¢ > 0,
and any zero-coupon bond determined at such a time, must be based solely on F;,
the information available until time ¢; in other words, every random variable P(¢,t")
is Fi-measurable. As mentioned below, since we will use a so-called affine term-
structure model based on short-rate modeling, F;,t > 0 can also be understood
as the filtration generated by the short rate process r(t),t > 0. We assume the
investor can trade discretely in the financial market over time with no friction (no
taxes or other transaction costs). The investment planning horizon T of the market
is defined as the maturity date T}, of the n*® bond. The price process of the ‘P
zero-coupon bond, denoted by P(t,T;),t > 0, is given by:

T;
exp <—/ T(S)dS) Ft] B 1= 172737 - (18)
t

where F; is generated by the short interest rate process r(s), s € [0,¢], and E®= de-
notes the expectation under a risk-neutral probability measure for the bond market.
We posit that the dynamics of the short rate process r are given by:

P(t,T;) = E%»

J
r(t)=n—Y_ X;(t) (19)
j=1

where p is the long-term mean, and each economic factor X;(t) is assumed to
follow an Ornstein-Uhlenbeck (OU) process with zero long-term mean. Each factor
exhibits a constant risk premium A;. The short rate r(t) and factors X,(t) are
governed by (19) and the following SDEs under an objective (real, not risk-neutral)
probability measure: for each j =1,---,J,

de (t) = —ijj (t)dt + deWj (t) (20)

where §; is a mean-reversion rate, ¢; is the factor’s local volatility and W;(t) are
correlated standard Brownian motions. It is known (see Bjork (2006)) that the
model can also be specified under a risk-neutral probability measure as:

dX;(t) = =& (Aje; + X;(1))dt + ¢;dZ;(1) (21)

where Z;(t) are uncorrelated standard Brownian motions and the A;’s are the afore-
mentioned risk premia. Under the objective (real) market probability measure, we
assume that the market is liquid enough with sufficient data available for accurate
calibration of asset models, particularly the volatilities and risk premia c;, A;.

Equivalently to the previous formulation, the version of equation (25) with mod-
eling ambiguity under P is:

dX;(t) = —(& + A&)X;()dt + c;dW;(t) (22)
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The OU process in Equation (22) for X (t) is well known to have an explicit solution
(e.g. see Mastro (2013)):

t
X;(t) = e*(éﬁAfij)th(O) + Cjef(éﬁAEj)t/ 6(£j+A§j)dej(5)’ (23)
0

The expectation and variance of the j* factor X, (t) at t = T in Equation (23) are
also well known (as can be computed readily from the known normal distribution of
Wiener stochastic integrals with deterministic integrands) resulting in the following:

E§ (0 (T) = X, (0)e"© 26T
2

c*
Varf(X;(T)) = =2 (1 — e 2&+A8) T
o(X5(M) 2(€j+A€j)( )
Couvg (X;(T), X;/(Ty))
_ Pj,5'CiC5’ _ o ((&GH+AL)+ (& +AE ) (min[T,T;]) ; !
=2 1—e J J J J , 1<7
(&5 + A&) + (§ + AEyr) ( )
(24)

As is commonly done, we abuse the notation slightly by using the same letter P
for this deterministic function, known as a pricing function, as follows:

P(t,T)=P(X(t),t,T}), (25)

where P is not a function of r directly, but of the vector X of all J factors. The
Markovian dynamics also imply, by a straightforward application of Ito’s formula,
that the zero-coupon bond price dynamics from Equation (25) are: It is known that
Equation (23) together with the terminal condition P(T;,7T;; X) = 1 has a unique
closed form solution for a zero-coupon bond pricing function given by:

P(t,T;; X;) = P(t,T) = AT =w(T=0=55, B 1)X; (1) (26)
with 1 — e~ (E+AE)T—1)
B;(t,T) = NG
J 2
D=2 (520~ g i) )

b a0 S
1<fj+Aej (1 - eraer) (“”“JCJ) 2(sj+JAsj>2>>

J 02, 2
S s (1 _ 67(@%&).@4)) )
P (4(@- +AG)?

Let us call €. (T") to be the source of this modeling uncertainty in the zero-coupon
bond prices at the planning horizon T for any given maturity 7 # T (see, Puhle,
2008). We signify how this uncertainty comes in by introducing it directly at the
affine level in Equation (22) by adding it as an additive noise term next to the affine
function of the factors: for instance, for bond prices,

P(T,7) = AT T) = (1=T) =327y Bj(T,m)X;(T)+e-(T) (27)

A similar definition of €,(7") is used for accrual factors. The error terms e, (T)
are assumed to be independent and normally distributed random variables with
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mean zero and variance o2(e;) as 7 changes. We have already determined that
the state variables X;(T') are jointly normally distributed with mean E(X;(T))
and covariance matrix Cov(X;(T),X,;(T')). Since the short rate r(7T') is a linear
combination of these state variables (see (19)), it is normally! distributed as well
(see, e.g., Puhle, 2008. pp.50). Now, EP[ﬁT] and the variance-covariance ¥ of
terminal returns can be constructed as in Korn and Koziol, (2006).

Using the classical Laplace transform of the Gaussian distribution, elementary
calculations similar to what was performed in (see e.g. Bjork et al., 2014, Bold-
er,2001,and Cox et al.,1985), result in formulas for the expectations, variances, and
covariances of the zero-coupon bond prices and corresponding accrual factors. First,
the expected zero-coupon bond price at time T to maturity T;, under the objective
probability measure, is

EF[Pr] = Ef (P(T,T;))
) [6A<T7Ti>—u-<n—T>—z;’:1 By(T,T;) X <T>+eT<Ti>} (28)

. V(T + e D(T)?

The natural expressions for (1) (T;) and oM (T;)? are stated explicitly below, under
equation (30). The expected accrual factors from time T; < T to investment horizon
T are given by:

[

= <P<T1T>> (29)

_ |:67{A(TL-,T)7N-(T7Ti)7 7 Bj(Ti,T)Xj(T)+eT(Ti)}]

_ efA(Ti,T)+p(T7Ti)+Z_;7:1 B;(Ti, T)E[X;(T)]+% 37—y Bj (T:,7)*Var[X,; (T)]+0” (er;)
varf[Pr] = Covy (P(T,T;), P(T, T;))
—E[P(T,T})]-E[P(T,T})] - (eZ;’:1 By (T,13)? Var (X, (T)]+o% (er;) _ 1) (30)
_ 62M<1>(Ti)+g(1)(Ti)2 ) (eg(l)(Ti)z _ 1)

The covariances between discount factors at time T for maturities 7; > T and
T, > T can be expressed as:

Sy = X% = Covi (P(T,T;), P(T, Ty))
=E[P(T.T;)]-E[P(T,Ty)]
(T BT T BT ) VR, (D% e 4y _ 1) (31)
e P T oD (T T D T+ (T) 4+ 5 (6D (1) 40D (T)?)

with

J
pO(T) = AT —p (T —T) =Y {B;(T.T3) - Eo(X;(T))}
j=1

UIf y is Gaussian distributed, then classically, E[e¥] = B+ varlyl 4pq varle¥] = E[e¥]? -
(e'ua'r[y] _ 1)
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J
o(T) = || YABT ) Varf(X,(1) +0%(er)}
W® = AT.T) + AT, Ty) — - (T, + Ty — 2T)

J
= ABUT.T) + B(T,Ty)) - BG(X;(T))}

and

J
o N(T;, Ty) = Z [B,;(T,T;) + B(T, T - Varg (X;(T)) + o(er,) + o%(er, )
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The covariances between accrual factors for maturity 7" at times T; < T and Ty < T
can be expressed as follows:
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The covariances between the discount factors at time 7' for maturity 7; and accrual
factors at time T < T for maturity T can be computed as:
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The covariances between the accrual factors at time T; < T for maturity 7' and
discount factors at time T for maturity 7; > T can be computed as:
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The E[X;(T)], Var[X,;(T)] and Cov(X,;(T), X;(T;)) of the above moments are given
in Equation (24). The values of u and N can now be determined as described in
Sections 2.1, see formulas (16) and (17). Thus the portfolio selection problem of
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the investor is solved via these formulas and the expectations, variances, and the
matrix ¥ given in this section; the mean-variance efficient portfolios can also be
determined (see, e.g., Merton,1972; Huang and Litzenberger, 1988; Kallberg and
Ziemba, 1983; Korn and Koziol, 2006; Puhle, 2008; Wilhelm, 1992; Elton et al.,
2003; Zhang et al., 2018).

3. Empirical results. The previous two sections show that the Markovitz portfo-
lio optimization problem only requires us to compute the means of the zero-coupon
bonds maturing before and after T, and the covariances of these discount factors and
their inverses (accrual factors), depending on whether their maturities are before
or after the planning horizon 7. However, it is very challenging to estimate prices
consistently for medium-to-long term bonds under a single specification of interest
rate model. To address this, we follow the state-space bond market model developed
in (Mawonike et al., 2021) that incorporates uncertainty in the underlying interest
rate parameters. The state space model coupled with the complementary Kalman
filter provides us with a model uncertainty configuration designed in a consistent
fashion for parameter estimation with medium to long-term bond prices. In par-
ticular, we estimate parameters of a state-space bond market model formulated on
the multi-factor Vasicek interest rate process. There are two main results present-
ed in this paper. The first result is the formulation of optimal portfolio selection
consisting of short, medium and long-maturity bonds within a consistent modeling
and valuation framework. To do this, we follow the state-space bond market model
developed in (Mawonike et al., 2021) that incorporates maturity dependent un-
certainty in the underlying interest rate parameters we assume that the underlying
short rate follows the mean-reverting multi-factor Vasicek model. The second result
is the implementation of the optimal portfolio selection algorithm using observed
yield data.

3.1. A consistent state-space model of bond prices. In this section we present
in compact form the relationship between the multi-factor model X and the vector
of bond prices which we detailed in the previous sections, including the maturity
dependent error terms which represent our modeling uncertainty. Because our fac-
tors in X satisfy the OU (Vasicek) dynamics, and the term structure has an affine
form with respect to X, it is most convenient to work with bond yields. As we
have already hinted, as we are about to see, the relationship between yields y and
factors X is a linear (affine) one, and the presence of maturity dependent uncertain-
ty results in a multivariate linear model, for which classical statistical estimation
methods can apply. Because of the dynamic nature of the data, as we will see in
Section 3, it is most appropriate to use Kalman filtering for part of the estimation.
The relationship between yields and factors is sometimes known as a set of mea-
surement equations, whereas the time dynamics of the factors may be known as
transition equations. In order to lighten the notation, it will be convenient to de-
note 7; = 1; — t for all i: this is the remaining time to maturity at any given time
t > 0. The value of ¢ is thus implicitly contained in ;.
The Measurement Equations
Following basic accounting principles in continuous time, the relationship between
the zero-coupon bond yield and the zero-coupon bond price, over the interval [t, T,
for a bond written at time 0 and maturing at 7" > 0, is simply:
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Let {Ti}?zo be any given sequence of n bond maturities such that 0 < Ty < T7 <
... <T,. Our market observations consist of these n bonds, and specifically of their
price processes, each of them observed discretely and at N equally spaced times ¢y,
so that t := t; — tx_1 does not depend on k, and is proportional to N~! (Bolder,
2001; Mawonike et al. 2021). Then, the measurement equations for all n bonds,
with each component of the n-dimensional yield vector y;, at time ¢, being the
yield y(tg,tp + 1) for k=1,...,N, and i = 1,...,n, is given by a multivariate linear
regression model:

(35)
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Indeed, according to the bond pricing formula with modeling ambiguity given in
(36), by applying the logarithm in (44), we find that its discretisation produces the
following linear system of N measurement equations:
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where €, is assumed to be a vector of mean-zero independent normal statistical
error terms, sharing a common unknown variance.

The Transition Equation

The transition equations describe the evolution of the stochastic factors over discrete
time intervals of fixed length i —tx—1 = 0t. Since the factors follow OU (mean-zero
Vasicek) dynamics, the following transition equations result:
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where Q represents the J x J covariance matrix between the noise terms W; under
the objective (real) market probability measure. Here D is also J-dimensional, and
while F could be a matrix in principle, it is diagonal in our case. However, the factors
are correlated via Q. Thus for k = 1, ..., N, the dynamics of the J-dimensional state
vector of factors X from ¢;_; to t is given by:

X(ty) =D +FX(tr_1) +n(tp_1). (38)

3.2. Data description and numerical implementations. In this study, we
analyse the investment strategies using market data obtained from German Gov-
ernment bonds. We preferred German bonds to other European bonds because its
bond market is very large (Lynch, 2002) and consists of bond maturities covering all
years from as little as one year to more than 30 years. German Government bonds
are issued by the Deutsche Bundesbank based on the approach in Svensson (1994)
(see Korn and Kozoil, 2006, section 3). In our analysis, we used two different sets
of bonds depending on their maturities. The set consists of bonds with maturities;
(a): 1,2,3,4,5,6,7,8,9 and 10, and we call this set ‘short - medium maturity’. (b):
20,21, 22,23, 24, 25, 26,27, 28,29 and 30, and we call this set ‘long-term maturity’.
Thus we consider 21 German Government bonds for our analysis. We obtained
daily data from Germany’s central bank; there are missing values in this daily data,
especially during weekends. We obtained monthly average data, to avoid this prob-
lem of missing data. The data span from August 2002 to December 2020, making it
220 months per each bond type, which is an amply adequate number of data points
per bond type in terms of our statistical needs. Considering both the time series
and cross-sectional data, we have 2200 data points for short-medium maturity and
2420 data points for long-term maturity. We use the yield spot rates from the yield
curve provided by the Bundesbank.

While bonds with multiple coupons are transacted in the bond market, we base
our analysis on zero-coupon bonds, as the most intuitive way to analyze the effect
of diversification with respect to different times to maturity (see, e.g., Korn and
Kozoil, 2006; Puhle, 2008). We consider two different investment strategies per set
for our investor (she). Firstly, the investor considers one year investment horizon
(very short investment). In this case the one-year zero coupon bond becomes a risk-
less bond and there is no re-balancing strategy. Secondly, she considers a medium
term investment of 5 years. That is all zero-coupon bonds with maturities below
the investment horizon are reinvested as all cash flows that are received before the
investment horizon are reinvested at the current spot rate until 7. On the second set
of long-term bond maturities, the investor considers 20-year and 25-year investment
horizons.

To determine the values of the expected return and variance-covariance matrix
of returns on zero coupon bonds, the investor uses the multi-factor term structure
model of the OU (Vasicek) type analyzed in Section 3.1. The computation of
these risk-return portfolio moments depends on the unknown model parameters in
the term structure model. To consistently estimate these parameters accross bond
maturirties, we combine maximum likelihood estimator (MLE) with the Kalman
filter derived in (Mawonike et al., 202) which incorporates the observed time series
data. The OU (Vasicek) model is expressed in state space form (see Equation (36)
and (37). The State space formulation allows the use of the Kalman filter algorithm
in order to extract/reconstruct the latent factors X (see e.g. Babbs and Nowman,
1999; Bolder, 2001, Mawonike et al., 202).
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TABLE 1. Vasicek: parameter estimation based on one- two- and
three-factor models with bond maturities: 1,2,3,4,5,6,7,8,9,10

Parameter | One-factor | two-factor | Three-factor
m 0.0255 0.0292 0.0243
& 0.3245 0.2554 0.2966
&o 0.3017 0.3288
&3 0.2860
c1 0.0256 0.0208 0.0211
Co 0.0228 0.0232
c3 0.0191
A1 0.1172 0.1151 0.1124
A2 0.1073 0.0963
A3 0.0954
p1 0.9396 0.9531
D2 0.8077
p3 0.8247
L 1033.4 1048.8 1047.0
Oc2 0.00267 0.00019 0.00018
Oc3 0.00268 0.00021 0.00019
Oeca 0.00266 0.00021 0.00018
Ocs 0.00263 0.00021 0.00020
Oc6 0.00259 0.00020 0.00019
Oecr 0.00092 0.00020 0.00019
Ocs 0.00251 0.00020 0.00018
Te9 0.00248 0.00021 0.00018

Oc10 0.00246 0.00021 0.00019

Table 1 shows estimates of the Vasicek model parameters. The long-term mean
rate increases when the number of economic factors increases by one and then drops
afterwards. The reversion rate decreases as the number of factors increases. The re-
version rate is significantly relevant to our mean-variance model as it provides some
degree of state dependence and predictability of expected returns. The volatility of
the Vasicek model also decreases with an increase in the number of state variables.
The latent factors X are highly positively correlated with the minimum correlation
being 0.8247. In addition, the maximum likelihood function L increases when more
state factors are incorporated into the model. The standard deviation of the mea-
surement errors on the risky zero-coupon bonds indicates that the yield basis points
(hundredths of a percent) fluctuate between 1.8 and 27. This means that the rise
and fall of bond yield rates is minimal.

Table 2 shows estimates of the multi-factor Vasicek model. Long-term zero-
coupon bonds with time to maturity: 20,21,22,23,24,25,26,27,28,29,30 were
used. Standard deviations of measurement errors were also obtained. The like-
lihood function values L for long-term bonds are slightly higher than those in Table
1 but the statistical error basis points have dropped slightly, and are thus even more
minimal.

3.3. Long-term investment of 25 years. Here the investor’s problem is to invest
in government zero-coupon bonds with very long maturities over a 25-year invest-
ment period, selecting from the following zero-coupon bond maturities: 20,21, 22,
...,30. That is, the investor selects from eleven zero-coupon bonds, among which
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TABLE 2. Vasicek: Parameter  estimation based on
one-two-and  three-factor models with bond maturities:
20,21, 22,23, 24, 25, 26,27, 28, 29, 30. Here the shorthand no-
tation o; represents the estimated standard deviation o(er,).

Parameter | One-factor | two-factor | Three-factor
I 0.0353 0.0405 0.0369
&1 0.3245 0.2551 0.2523
& 0.3011 0.3297
&3 0.2846
c1 0.0226 0.0184 0.0165
c2 0.0200 0.0203
c3 0.0167
A1 0.1172 0.1152 0.1125
A2 0.1072 0.0999
A3 0.0941
1 0.9396 0.9515
P2 0.8050
03 0.8209
L 1042 1057 1052

Oe21 0.00236 0.00019 0.00018
Oc22 0.00236 0.00019 0.00019
023 0.00236 0.00018 0.00018
Oe24 0.00236 0.00018 0.00020
Oe25 0.00235 0.00019 0.00019
Te26 0.00237 0.00019 0.00019
Oc27 0.00237 0.00018 0.00018
Oc28 0.00238 0.00019 0.00018
Te29 0.00237 0.00019 0.00019
T30 0.00238 0.00019 0.00018

ten are risky and one is risk-free (maturity 25 years). The investor is fully aware of
the probability distribution of long-term bonds and the risk associated with them.
In Table 9 are spot prices of long-term maturity zero-coupon bonds, based on our
market-calibrated parameters, in our three models. These spot prices diminish with
further maturities, as it should be according to ordinary term-structure intuition.
More specifically, these bond prices are much smaller than those in Table 3 for
much shorter maturities, a reflection, out of our modeling, of the higher levels of
uncertainty, the realities of partial observation in the long-term bond markets, as
well as economic distortion of prices and yields in these markets. Pricing models
of long-term maturity zero-coupon bonds should be able to filter the noise coming
from the attenuation of signals and economic and political ambiguity, with an ac-
knowledgement of the additional aggregate uncertainty incorporated into the prices.

Table 10 presents the expected zero-coupon bond prices and standard deviations
of long-term maturity bonds invested over our 25-year planning horizon. We note
that expected bond prices are slightly higher than those in the one-year and five-
year investment periods. The two-factor Vasicek model gives us highest expected
values and smallest standard deviations as compared to other model variants. This
is consistent with the one-year and five-year investment horizons.

Table 11 presents the Vasicek expected zero-coupon holding period returns over
25-year investment period of long-term maturity bonds. These returns are very high
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as bonds are invested for a long period. The least expected percentage zero bond
return is 448.5% and the highest is 679.3%. That means if an investor decided to
invest in a 20-maturity zero-coupon bond today over a 25-year investment period,
she would be expecting to be rewarded over 450% at the end of the 25th period
under the one-factor Vasicek model. Results show that the two-factor Vasicek model
gives higher returns as compared to other the two other models, showing again that
one is best advised to take a balanced view of how many economic indicators should
be used in portfolio allocation in the bond markets.

We also calculated tangency portfolios for the three Vasicek models on risky
long-term maturity zero bonds. Here a 25-year zero bond is considered a free-risk
bond.

13.6741 587.5 —223.0498
4.6604 513.3 66.4082
31.3523 102.8 —33.1601
—22.8920 —1216.2 189.2082
N — 23.1610 1272.3 82.8295
tan = —2.3390 |’ —677.2 |’ 476.8828
—10.6770 717.1 —489.6733
—0.5735 294 381.7088
—79.2575 345.0 —698.8905
19.3764 —756.9 239.9164
1-factor 2-factor 3-factor

Results from the tangency portfolio shows high figures especially on the two- and
three-factor models, particularly the 23, 24, 27 and 30-year zero bonds under the
two-factor model. Over a 25-year investment period of long-term maturity zero
bonds, we expect higher values both positives (buying) and negatives (short-selling)
on the tangency portfolio because the investment decision is made today and the
investment spans over a very long time. We strictly adhere to the model assumption
that there is no re-balancing to those zero-coupon bonds with maturities greater
than the planning horizon; that assumption of remaining static amplifies the market
leverage in optimal allocation under a long-term planning horizon.

In Table 12, we present four different zero-coupon risky portfolios. In each bond
portfolio, the risky-free bond (25-year maturity zero bond) is included. We start
with one risky zero bond with time maturity of 27, followed by two risky bonds
with maturities 24 and 30, the average of their maturities is equal to one risky bond
in the first portfolio, to make fair comparisons as noted earlier in this section. The
same holds for the two other portfolios, with maturities 24, 27 and 30, and with all
risky bonds in our basket. Table 12 reports expected portfolio returns, expected
portfolio terminal wealth, portfolio Sharpe Ratio and the portfolio risk (standard
deviation).

Results from Table 12 indicate that the expected returns from a 25-year planning
horizon, which vary from 491.6% to 655.1%, depend largely on what model is used,
the two-factor model being preferred, and are otherwise highly consistent across
portfolios. The same holds for the portfolio terminal wealth. Its increase over the
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5-year investment horizon is quite notable. The risk profiles are very attractive for
all models, with very high Sharpe ratios except for the extremely diversified portfolio
(all maturities) which is not to be recommended. Again, the two-factor model gives
us the best portfolio profiles. As suggested by Korn and Koizol (2006) and also by
Puhle (2008), a portfolio with risky zero-coupon bonds roughly equal in number to
the number of state factors in the model, appears to gives us better risk profiles.
Though our results do not confirm that the numbers should be exactly equal, we
clearly recommend against using a much higher number of bonds compared to the
number of factors.

Portfolio Frontier

Partfolio Return (%)

54 5.6 5.8 & 6.2 6.4 6.6

Portfolio Stdev (%)

FiGURE 1. Portfolio frontier of two risky zero-coupon bonds; 24-
year and 30-year under two-factor Vasicek model invested over 25-
year investment period

Figure 6 presents the portfolio frontier of two risky zero coupon bonds invested
over 25 years under the two-factor Vasicek model. The straight-line aspect of this
frontier is due to the portfolio containing two risky assets only, similarly to what
we presented in the one-year horizon case.

3.4. Short-term investment of one year. Spot interest rates of different ma-
turities are only functions of the short rate in this one-year maturity case. In the
Vasicek model, this function is affine. Risky zero coupon bonds are known for being
highly positively correlated. We present the correlation matrix p of risky zero bond-
s with maturities: 2,3,4,5,6,7,8,9,10. The matrix shows that risky zero-coupon
bonds with a short investment period of one year are highly positively correlated.

1 0.998 0.994 0.989 0.983 0.976 0.970 0.964 0.957
0.998 1 0.999 0.996 0.992 0.987 0.982 0.977 0.972
0.994 0.999 1 0.999 0.997 0.993 0.990 0.986 0.982
0.989 0.996 0.999 1 0.999 0.997 0.995 0.992 0.989
p=1 0983 0.992 0.997 0.999 1 0.999 0.998 0.996 0.994
0.976 0.987 0.993 0.997 0.999 1 0.999 0.998 0.997
0.970 0.982 0.990 0.995 0.998 0.999 1 0.999 0.999
0.964 0.977 0.986 0.992 0.996 0.998 0.999 1 0.999
0.957 0.972 0.982 0.989 0.994 0.997 0.999 0.999 1
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FIGURE 2. Vasicek: Expectation structure of r(T) over one-year
investment horizon

We present our Vasicek short rate model in state space model where the short r(t)
is represented by J economic state factors X;(¢). The distribution of these state
variables is the same as that of r(t). Since r(¢) is an affine function of X (¢), and X
is Gaussian process, then so is 7, and we find, using (31), that: Eq[r(1)] = 0.0242,
Eo[r(1)] = 0.0275 and Eo[r(1)] = 0.0242 for one-factor, two-factor and three-factor
model respectively. Furthermore, the standard deviations of r(1) are 0.019, 0.0194
and 0.017 for one-, two- and three-factor model respectively. Figure 1 shows the
graph of expected values of 7(T'). It indicates that the 2-factor model produce higher
expected values of the short rate r(t), followed by the 1-factor model. The expected
values decrease as the discount bond maturity increases. This situation is expected
since expected values of individual state factors decrease as the number of factors
increases, i.e., Eo[X71(T)] > Eo[X2(T)] > E¢[X3(T)]. The value or contribution of
the economic factors appears to decay exponentially with the increasing number of
factors. In the 3-factor model, we see the graph increases after a few maturities.
This upward movement is caused by the third factor in the model which turns to be
negative in our estimation, thus increasing the total value of the expectation (see
Equation (24)). Figure 2 shows the volatility of the short rate r(¢) measured in
the one-, two-, and three-factor models on different bond maturities. At one-year
maturity (7' = 1), v/Var[r(1)] = 0.0192 for 1-factor model, v/Var[r(1)] = 0.0273 for
a 2-factor and v/Var[r(1)] = 0.0305 for the 3-factor model. The volatility of r(T’)
increases with an increase in the numbers of state factors in the model. The longer
the maturity of a discount bond, the higher the volatility associated with it, though
this moderates significantly for longer maturities.

Figure 3 graphs the zero-coupon bond prices over one year investment planning
horizon with respect to different Vasicek factor models. The zero-coupon bond
prices decrease rapidly as the bond maturity increases. The one-factor and three-
factor models have higher bond prices.



22 DENNIS IKPE, ROMEO MAWONIKE AND FREDERI VIENS

0.045 T T T T T T T T

0.04

0.035

Stdev[r(T)]

0.025 B
002 q
1-factor
0_015 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Maturity in years

FIGURE 3. Vasicek: Volatility structure of r(T) over one-year in-
vestment horizon
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Table 3 shows the same information (expected bond prices) and includes standard
deviations over one year investment horizon using the Vasicek multi-factor model,
where we note a seven-to-ten-fold difference in size between the expected bond prices
and their standard deviations, with lower number of factors generally resulting in
lower standard deviations.

We can also compute the current spot prices P(0,7T;) and use them to calculate
the continuously compounded expected returns on each zero bond over the next
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period, via the formula below in Equation (48) for expected holding bond returns,
with results collected in Table 4. The two-factor model results in significantly higher
returns than the other two models, the one-factor model yielding the lowest returns.
_ER(P(ILT))

‘ P(0,T;)
We also draw attention to the mean-variance efficient portfolios. We let the
initial wealth Ay = 1 and calculate the tangency portfolio for three model variants.

1 (39)

—3.7614 —0.1692 0.4856
23.1263 3.8492 4.8729
1.4057 1.5905 —2.9893
19.8599 —0.3968 —4.4380
Nign = | —41.7431 |, or | —0.1588 |, or 5.2781
30.0286 —3.3247 —11.7924
—46.7030 —3.8359 12.8108
—25.5748 -3.1119 —-0.9761
41.2788 6.2418 —2.1595
1-factor 2-factor 3-factor

The tangency portfolios of zero bonds contain long and short positions primarily due
to high correlations of bonds, especially immediately preceding and following the
bond’s maturity (Puhle, 2008). High correlations means that zero bonds are highly
inter-dependent resulting in instability in the optimization scheme. The scheme
tries to give way to arbitrage opportunities by purchasing one kind of zero bond
and shorting the other. For instance, in the one-factor model, the investor is to buy
23.12 units of the 3-year zero-coupon bonds and short 2-year zero-coupon bonds
by 3.7 units. The one-factor model exhibits higher long and short positions than
the other models. This corresponds to higher values in the Tobin fund. The long
positions in all models vary from 0.07 to 41.28 while the short positions range from
—0.19 to —46.7, with the two-factor and three-factor model positions not exceeding
13 in absolute value. We view these ranges as reasonable given the high correlations
of bonds, meaning that they represent levels of leverage which are not unrealistic,
especially for the two- and three-factor models. This is an indication that one should
presumably not attempt to reduce the bond market’s financial economic indicators
to a single factor, even at a one-year horizon, when forming a portfolio of such
bonds.

3.5. Efficient portfolios with risky returns. In this section, we still consider
the investment planning horizon of one year. We construct efficient portfolios for
this short investment horizon, shown in Table 5, for 10 different zero-coupon bonds
with maturities ranging from 1-year to 10-years. Following Korn and Koziol (2006),
we grouped these bonds in different portfolios. We thus have at our disposal 9
risky zero-coupon bonds and one risk-free zero-coupon bond with time to maturity
of one year. The first combination reported in Table 5 consists of two bonds, one
risk-less and a 7-year zero-coupon bond. The second portfolio consists of one risk-
free and two risky zero-coupon bonds: a 4-year bond and a 10-year bond. Table 5
can be consulted for four other portfolio we consider, and various statistics under
our usual three models with one, two, and three factors. Following the argument
in Korn and Kozoil (2006), to compare bond combinations directly, the average
maturity of risky bonds all have to be equal, thus equal to the time to maturity
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of one risky bond in the first portfolio which is 7. To calculate each portfolio’s
expected terminal wealth E[hi] and expected return, we allocated equal portfolio
weights to each risky zero-coupon bond, for instance, two bonds contribute each 0.5
weight.

We report also in Table 5, the Sharpe ratio and the risk or standard deviation in
each efficient portfolio. According to Sharpe (1966), a Sharpe ratio is the measure
of risk adjusted return of a financial portfolio (excess return per unit volatility). Re-
sults indicate higher Sharpe ratios in one-factor model than the other models. The
Sharpe ratios range from 0.09 to 0.78 considering all model variants. The Sharpe
ratios in the one-factor and two-factor models are favourable as they are more
than the traditional 0.3 minimum threshold (Sharpe, 1966), which is appreciable
considering that risky zero-coupon bonds used in these combinations are highly
correlated, which would typically imply higher risk (less benefit of diversification)
than less correlated assets. As we can see from the table, higher risks are associated
with lower Sharpe ratios. The three-factor model produces higher risks and very
low Sharpe ratios on each portfolio, which do not meet the minimum requirements
of the aforementioned threshold. The investor sets the initial wealth to 1 in her
portfolio allocation problem, the expected terminal wealth at the end of the one-
year investment period ranges from 1.039 to 1.060. The two-factor model produces
higher expected terminal wealth and expected portfolio returns with moderate port-
folio risks. The Sharpe ratio improves in the one-factor. In addition, the portfolio
expected terminal wealth and the Sharpe ratio improve as one increases the number
of risky bonds in the portfolio. On the other hand, portfolio risk increases with the
increase of bonds in the combinations. The question is whether it is worth com-
bining more risky bonds to increase portfolio performance, and the answer appears
to be that on the contrary, low expected portfolio returns and expected terminal
wealth come as a result of having more risky bonds, i.e. a riskier portfolio.

Figure 4 shows the portfolio frontier of two risky zero coupon bonds; 4-year and
10-year maturities invested over the one-year planning horizon, under a one-factor
Vasicek (OU) model. The blue dotted line represents the inefficient portfolio frontier
and the orange line indicates the efficient portfolio frontier. On the bottom end of
the frontier, the portfolio risk is very much minimised but the portfolio return is
low. On the other hand, at the top end of the frontier, the investor receives higher
returns but accepts higher portfolio risks.

3.6. Medium-term investment of 5 years. The correlations of risky bonds
measured over the 5-year investment vary from essentially zero (e.g. —0.001) to
0.99, as can be seen in the correlation matrix p given here for risky bonds with
maturities.1,2,3,4,6,7,8,9 and 10 years:

p=
1 0.329 —-0.214 -0.207 0.131 0.130 0.131 0.130 0.128

0.329 1 —0.112 -0.103 0.084 0.086  0.089 0.089 0.091
—-0.214 -0.112 1 0.023 —-0.007 -0.001 0.004 0.010 0.014
—0.207 —-0.103  0.023 1 0.121 0.126  0.132 0.137 0.141
0.131 0.084 —0.007 0.121 1 0.99 099 099 0.99
0.130 0.086 —0.001 0.126 0.99 1 099 099 0.99
0.131 0.089 0.004 0.132 0.99 0.99 1 0.99  0.99
0.130 0.089 0.010 0.137 0.99 0.99 0.99 1 0.99

0.128 0.091 0.014 0.141 0.99 0.99 0.99  0.99 1
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Note that highly correlated zero-coupon bonds are exactly those pairs with both

maturities greater than 5 years, while other pairs are more correlated when one
bond has shorter maturity.

Portfolio Frontier

Partfolio Return (%)

0 1 2 3 4 5 &

Partfolio stdev (Risk])

FI1GURE 5. Portfolio frontier of two risky zero coupon bonds; 4-year
and 10-year, under one-factor Vasicek model invested over one-year
period

Table 6 shows the expected zero-coupon bond prices over a 5-year investment
period, for the one-, two-, and three-factor models, and their standard deviations.
Bonds with maturities less than the planning investment horizon have higher bond
prices and higher standard deviations. That is short maturity bonds with maturities
less than the investment period are exposed to more risk than bond with maturities
higher than the investment horizon. The expected bond holding returns over the
5-year investment period are given in Table 7. Here the expected bond returns
have significantly increased as compared to the one-year investments discussed in
the previous subsections. The least zero bond holding return is 22.6%, the highest
is 40.0%. The two-factor model gives us highest bond returns among the three
models. Longer-maturity bonds have higher expected holding returns but have low
expected zero-coupon bond spot and continuously compounded prices.

Letting the initial wealth fig = 1, we calculate the tangency portfolio on all three
different Vasicek models:

—4.8281 —371.5681 —31.6031
—55.7762 25.9509 256.0999
19.2126 720.1300 —290.2897
80.5810 —383.5450 71.6459
Nian = 41.8448 , 148.3111 —241.1885
—63.3895 446.8819 240.1848
—33.2324 —307.6525 65.0307
—22.8307 —784.3152 —75.5351
39.3304 498.0267 8.3501
1-factor 2-factor 3-factor
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TABLE 9. Expected returns, Expected terminal wealth and Sharpe
Ratios of risky zero-coupon bond portfolios over one-year invest-
ment period

Risky bonds(yrs) Exp Returns (%) Elhi] Sharpe Ratio Risk (%)

1-factor
7 5.4990 1.039 0.78 3.0
4;10 5.3900 1.042 0.57 3.9
4;7:10 5.3720 1.043 0.50 4.4
3;7;8;10 5.3820 1.043 0.47 4.7
4;6;7;8;10 5.4475 1.045 0.46 5.0
2;3;...;10 5.1885 1.047 0.47 6.2

2-factor
7 6.8590 1.054 0.37 6.2
4;10 6.6990 1.055 0.39 5.5
4;7:10 6.6851 1.057 0.34 6.3
3;7;8;10 6.7270 1.057 0.32 6.7
4;6;7;8;10 6.7934 1.059 0.30 7.3
2:3:..:10 6.4894 1.060 0.24 8.2

3-factor
7 4.9073 1.043 0.09 11.9
4;10 4.8451 1.044 0.08 7.3
4;7:10 4.8172 1.045 0.11 8.5
3;7;8;10 4.8550 1.045 0.11 8.9
4;6;7;8;10 4.8822 1.046 0.11 9.8
2:3;...;10 4.7184 1.046 0.09 10.7

Results from the tangency portfolios suggest that, using one-factor model, the
investor should short sell significant units of 1-year, 2-year, 7-year, 8-year and 9-year
zero-coupon bonds, whle buying similarly significant units of the other four bonds.
Similar results hold for the two-factor model, though the amounts of bonds are
greater by more than an order of magnitude, a highly leveraged portfolio. The three-
factor model suggest a similar level of investments as the two-factor model, slightly
less leveraged than with two factors. Which bonds are shorted is not consistent
across models.

Table 8 shows the expected zero bond holding returns, the expected terminal
wealth of the risky bond portfolio, the Sharpe ratio, and the portfolio risk over the
S-year investment period, for a $1 investment. In each risky bond portfolio, there
is a risk-less 5-year zero-coupon bond.

Expected holding zero-coupon bond returns have been at least multiplied five
for the 5-year investment period compared to the one-year investment period. Con-
sidering all portfolios and model variants, expected returns range from 24.89% to
37.0%, with the two-factor model recording the highest bond return percentages,
and higher Sharpe ratios, while risk and expected terminal wealth are largely con-
sistent across all models and all portfolios. Also, the expected terminal wealth have
significantly increased when the investment period shifts to 5 years. When one risky
zero-coupon bond is combined with a single risk-free zero-coupon bond, we get the
highest Sharpe ratio (or nearly highest, for 3-factor model). Judging by our Sharpe
ratios our portfolios seem to be less attractive when the number of risky bonds is
close to or equal to the number of factors in the model. This modeling inconsistency
was identified to some extent previously in the literature: Puhle, 2008; Korn and
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Kozoil, 2006; Wilhelm, 1992. The greater the number of risky zero-coupon bonds
are included in a portfolio, the more the risk is potentially included. Therefore it is
imperative to reduce this number, while not not compromising on diversification.
For instance, when the investor includes all risky zero-coupon bonds available at her
disposal in one portfolio, the expected percentage return shrinks and the Sharpe ra-
tio reduces, due to high portfolio risk (standard deviation). Overall, the two-factor
model seem to produce more attractive portfolio risk profiles, indicating that trying
to identify a higher number of financial economic factors may produce more risk in
a systematic portfolio allocation procedure.

Figure 5 shows the portfolio efficient frontier for five risky zero-coupon bonds (4,
6, 7, 8, and 10-year maturity zero-coupon bonds). The frontier is slightly curved
because the portfolio contains only securities with similar characteristics and expect-
ed holding returns. The orange dot indicates the portfolio on the efficient frontier
where risk is minimized. The portfolio frontier becomes less efficient as it shifts
away from this orange point.

4. Conclusions. In this paper, we analyse a portfolio selection problem of default-
free zero-coupon bonds with times to maturity varying from one year to thirty years.
The portfolio is constructed based on the Markowitz’s mean-variance approach of
portfolio selection. The paper proposes the use of dynamic term structure models
of the Vasicek (Ornstein-Uhlenbeck) type because of their flexibility, their analytic
(albeit complex) tractability (closed-form expressions for zero-coupon bond prices),
and they being accommodating to model reconstruction techniques like the Kalman
filter. In particular, the paper proposes various multi-factor Vasicek models for
analysis. Emphasis is on long-term maturity zero-coupon bonds in terms of our
initial motivation. However short-term and medium-term maturity bonds are also
considered in this research. Since the investor’s main focus is on expected terminal
portfolio wealth and variance of the expected portfolio return, her main objective
is to minimize the variance of this expected terminal portfolio wealth given the
expected terminal wealth and the budget (self-financing) constraint.

Portfolio frontier

efficient
B frontier,
03742799

Paortfolio Return

0 0.02 0.04 0.06 0.08 0.1

Portfolio stdew

FIGURE 6. Portfolio frontier of five risky zero-coupon bonds; 4-
year, 6-year, 7-year, 8-year and 10-year under two-factor Vasicek
model invested over 5-year investment period
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TABLE 12. Expected returns, Expected terminal wealth and
Sharpe Ratios over 5-year investment period

Risky bonds(yrs) Exp Returns (%) Elhs] Sharpe Ratio Risk (%)

1-factor
7 29.5 1.271 0.58 6.9
4;10 27.1 1.263 0.23 7.1
4;7;10 27.6 1.268 0.30 7.0
3;7;8;10 28.25 1.271 0.38 7.2
4;6;7;8;10 28.42 1.273 0.41 7.1
1;2;3;...;10 26.54 1.261 0.14 75

2-factor
7 37.0 1.339 0.62 7.7
4;10 35.25 1.337 0.51 5.6
4;7;10 35.48 1.343 0.50 6.2
3:;7;8;10 36.20 1.345 0.56 6.6
4;6;7;8;10 36.20 1.347 0.56 6.8
1;2;3;...;10 34.09 1.333 0.26 6.2

3-factor
7 25.8 1.246 0.26 7.4
4;10 25.70 1.250 0.31 5.9
4;7;10 25.48 1.251 0.22 7.1
3;7:8;10 25.88 1.252 0.26 7.5
4:6;7:8;10 25.76 1.252 0.24 7.9
1;2;3;...;10 24.89 1.247 0.16 6.2

Theoretical calculations, based on the affine term structure for bond price models
with arbitrary numbers of Vasicek factors, yield explicit (closed-form) formulas for
expected returns, variance-covariance matrices, expected terminal wealth, tangency
portfolios as well as Tobin funds.

We calibrate these models by assuming some level of modeling ambiguity for the
pricing formulas, in the form of statistical errors at the level of the factors; this leads
naturally to a Kalman filtering method for estimating latent factor model param-
eters statistically via maximum likelihood. This is based on German Government
bond data. We use these estimated models to test various portfolio strategies on
one-year, five-year and twenty-five investment periods. The investor considers re-
balancing strategies where the face value of zero-coupon bonds with maturities less
than the investment period is reinvested at times less than the investment period
at the current spot interest rate until the investment horizon. To understand the
effect of varying the number of economic variables (state factors in the model), we
consider models with one, two, and three latent Vasicek factors. We analyze the
impact of different planning investment horizons on different portfolio strategies of
both short and long-term maturity zero bonds. We report on the impact of different
investment planning horizons on expected terminal portfolio wealth, Sharpe ratio
(excess return per unit volatility) and other risk and reward indicators.

We report that risky zero-coupon bonds with a very short investment period
(one year say) are highly positively correlated, while pairs of bonds with medium
to long investment periods have correlations which can be much lower, often indis-
tinguishable from zero. We find that bond portfolio risk profiles are attractive (e.g.
from the standpoint of Sharpe ratios) under different investment planning horizons.
However, the three-factor model’s predictions are rejected (based on a minimum
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Sharpe-ratio threshold of 0.3) in 11 out of 16 cases in all investment strategies. The
Sharpe ratios however improve as the planning horizon increases to 25 years when
long-term zero-coupon bonds are invested. Results also suggests that the investor
should consider significant short-selling positions especially when investing in long-
term maturity bonds over a long period of time. Short selling is encouraged in this
paper’s reported portfolios even though its negative effects are known when the
dynamics on interest rates are volatile. The one-factor model produces attractive
risk portfolio profiles. The two-factor model consistently ranks as the best of all
three models in this respect. The two-factor model’s predictions are rejected, via
the 0.3 threshold on Sharpe ratio, in only 2 out of 16 cases. The one-factor model’s
predictions are rejected in 3 out of 16 cases. These numbers of rejected cases are rea-
sonable, leading us to accept these two models for in- and out-of-sample predictions.
This indicates that risky investments in the bond market can benefit from multi-
factor risk modeling to some extent, but that considering more than two financial
econometric factors in modeling is not recommended, particularly when one admits
to some degree of modeling ambiguity. We note that under longer investments, the
Sharpe ratios, the expected terminal portfolio wealth, and the expected holding
portfolio returns, all increase significantly (e.g. when the investment horizon in-
creases from one year to five years, the expected terminal portfolio wealth roughly
increases by 30%.) This confirms that long-term risky investments in bond markets
are attractive in terms of their high reward-to-risk profiles despite their inherent
higher risk. On the modeling side, our study is largely consistent with reports in
the literature that a portfolio strategy with a number of risky zero-coupon bonds in
excess of the number of state model factors, is less attractive than those portfolios
with a number of risky bonds roughly equal to the number of state variables.

Finally, some comments on future directions which lie outside the scope of this pa-
per. Our portfolio selection models and methodology are restricted to zero-coupon
bonds. In practice, it will be helpful also to handle coupon bonds. There are several
short-rate term structure models which can be used in portfolio selection strategies
(e.g. the Hull White, Cox, Ingersoll, Ross (CIR), and others). The Vasicek mod-
els used herein allow the convenience of tractable closed-form solutions, but some
of these other models, which may require numerical, non-closed form, resolution,
might produce better prediction performance, and/or lower uncertainty levels in
the statistical estimation.
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