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Abstract
We investigate the sources of variability in crop yields and
their relative importance in the context of weather index
insurance for smallholder farmers in India. Using parcel‐
level panel data, multilevel modeling, and Bayesian methods
we measure how large a role seasonal variation in weather
plays in explaining yield variance. Seasonal variation in
weather accounts for 14%–22% of total variance in crop
yields, a value that has rarely been convincingly estimated in
the economics literature. These calculations shed light on the
relatively low rates of uptake of index insurance by resource‐
constrained farmers. The results also provide direction for
designing more suitable index insurance products.
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1 | INTRODUCTION

Agricultural production is complex and risky. Weather is just one potential cause of yield variability,
along with the quantity and quality of inputs, the characteristics of parcels, farmer ability, the policy
environment, and changes in technologies (Hardaker et al., 1997).

In this paper we use parcel‐level panel data from India to measure the sources of variability in crop
yields and assess their relative importance. Ascertaining weather‐induced variation in yields is essential
when designing and implementing weather index insurance, a micro‐level risk management strategy
promoted in developing countries. However, pilot projects and randomized control trials in Asia have
found limited farmer uptake of index insurance (Bjerge & Trifkovic, 2018; Cai et al., 2015; Cole et al., 2013;
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Giné et al., 2012; Hazell et al., 2010; Matsuda & Kurosaki, 2019; Mobarak & Rosenzweig, 2013; Shirsath
et al., 2019; Stein, 2018). Using a multilevel modeling approach and Bayesian estimation we find that a
small, but not insubstantial, fraction of the variability in yields can be attributed to seasonal variation in
weather. Our Bayesian results reveal the presence of infrequent but potentially costly extreme weather
events. However, we find that, on average, weather variability plays a minority role in contributing to yield
variability. This result may help to explain the low rates of uptake of weather index insurance by farmers.

The goal of weather index insurance is to assist farmers in managing covariate risk. In
developing country agriculture, covariate risk is particularly difficult to informally insure against
since, by its very nature, it affects neighboring households and limits the effectiveness of traditional
risk sharing mechanisms. Several early studies looked at the role of weather risk on crop yields and
insurance in India. Townsend (1994) found that household consumption moves with village‐level
consumption and is not affected much by idiosyncratic shocks, which households cover via
borrowing, gifts, and asset sales. He concludes that while households can insure against individual
risks, covariate risk remains a problem. Rosenzweig and Binswanger (1993) find that village‐level
rainfall variables explain only a small proportion of household‐level profit variability. And, similar
to Townsend (1994), they find households insuring against non‐covariate risk. In part, the
recognition that households are less successful in insuring against covariate weather risk than in
insuring against non‐covariate risk motivates recent attempts to design and implement weather‐
based index insurance for poor farmers (Mobarak & Rosenzweig, 2013).

This apparent need for weather index insurance has been met by surprisingly little uptake of the
product by farmers in India (Giné et al., 2008, 2012, 2017). There are many potential barriers to uptake
of insurance, including trust in the insurance company, household liquidity constraints, and lack of
financial literacy of household decision makers (Cole et al., 2013).1 In addition to these consumer‐centric
explanations for low uptake, flaws in the product itself may be a cause, specifically the imperfect
correlation between crop yield and farm profit, the outcome of ultimate interest to farmers (Binswanger‐
Mkhize, 2012; Shirsath et al., 2019). This uninsured exposure, or basis risk, can be a significant deterrent
to purchasing insurance by reducing the utility gain for households. There are two potential sources of
basis risk. One is the loss caused by an event not measured by the index. This could include, for example,
low temperatures that retard crop growth or high winds that cause crop damage, when the insurance
index is based on rainfall. Another potential source of basis risk is low correlation between the index and
covered losses. This can occur, for example, when measurement stations that are used to trigger payouts
are spatially distant from insured crops and provide poor congruence with local conditions. A less
common example is potentially insured crops that are sufficiently resilient to the phenomena which
forms the basis for the insurance, such as drought‐tolerant varieties covered by rainfall‐based insurance
or pest‐resistant cotton to pest infestation (Liu, 2013).

The most common type of weather index insurance in India is rainfall insurance (Akter et al., 2009;
Barnett & Mahul, 2007; Matsuda & Kurosaki, 2019; Stein, 2018). However, surprisingly little economic
research has been conducted to confirm the underlying relationship between rainfall or seasonal weather
variability and yield variability. Barnett and Mahul (2007) suggest that rainfall variability accounts for
50% of yield variability and Giné et al. (2012) assert that as much as 90% of variation in Indian crop
yields is driven by rainfall volatility, citing Parchure (2002) as their source. But Parchure relies on a 1976
report by the Indian National Commission on Agriculture (NCA), the details of which are somewhat
opaque.2 Finally, to our knowledge, no data exist on covariate risk's share in explaining variance in crop
yield, which is where we focus our attention. Previous studies that have attempted such measurements

1
For example, Banerjee et al. (2014) find no demand among Indian households for health insurance bundled with microfinance, even among those for whom there was

clear value. They attribute this low uptake to poor understanding of the insurance product and poor support for enrolling by insurance underwriters.
2
According to Parchure (2002), the 90% variation is actually for cotton and groundnuts while variation in yield due to rainfall variability is 45% and 47% for wheat and

barley, respectively. Parchure (2002) actually cites the 1976 NCA report as stating “rainfall variations accounted for 50% of the variability in agricultural yields.”

This may be where Barnett and Mahul (2007) get their number. Examining the report, specifically pages 47–8, these numbers were obtained from a linear regression

“with yield as the dependent variable and total rainfall during the five crop growth phases as the independent variable” (National Commission on Agriculture, 1976).

The 50% number is apparently the R2 on the regression.
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were constrained by data, econometric techniques, and computing power so that they were unable to net
out measurement error and fully describe the sources of output variability. We attempt to rectify these
shortcomings and fill this information gap.

We examine the different sources of yield variability using a multilevel/hierarchical regression
framework. This approach more fully accounts for the covariance structure of the data than a standard
regression framework and allows us to control for inputs at the parcel‐level and also to isolate the
amount of yield variance due to differences between parcels, households, seasonal weather, villages, and
time. Using Bayesian methods, we draw the underlying distribution of the random error term
corresponding to different sources of variability, thereby providing a quantitative measure of potentially
insurable risk. Bayesian methods are particularly useful to this task because the underlying distributions
for several of the error terms turn out to be highly skewed and non‐normal. Considering all sources of
yield variance, we find that, depending on crop type, seasonal variation in weather accounts for
14%–22% of total variance in crop yields. This value is substantially below the 50%–90% figures
commonly cited in the economics literature, though our estimate is more in line with evidence from
agronomy and environmental science (Porter & Semenov, 2005; Ray et al., 2015).

By using a multilevel approach to measuring the roles of idiosyncratic and covariate risk in crop
yields in village India we contribute to two separate streams of research. The first is the literature
focused on production risk and insurance in the developing world. Our aim is to connect two
strands of this study. The first, originating with Townsend (1994), Rosenzweig and Binswanger
(1993), Rosenzweig and Wolpin (1993), Kochar (1999), and Mobarak and Rosenzweig (2013) has
focused on the theoretical and empirical relationship between production, risk, and insurance. The
second focuses on interventions to help insure production against risk (Akter et al., 2009; Barnett &
Mahul, 2007; Chantarat et al., 2013; Clarke et al., 2012a; Cole et al., 2013; Gaurav et al., 2011; Giné
et al., 2007, 2008; Skees et al., 2007). We empirically estimate the role different sources of variability
play in determining the mean and variance of crop yield. This information is informative for
determining the value and pricing of index insurance products.

The second body of literature to which we contribute is the empirical estimation of production
and yield functions (Griliches, 1963; Ker et al., 2016; Ramsey, 2020; Tack et al., 2012; Woodard &
Sherrick, 2011). Until recently it has been computationally difficult to estimate yield functions with
multiple nested levels of data. While panel data fixed effects methods mimic a multilevel model with
a single level, few alternatives exist for models with a large number of nested levels. Production data
are often collected at the farm or factory level, which suggests at minimum a two‐level model.
Adding additional levels to account for and distinguish among temporal and/or spatial variation can
provide more efficient estimation of production by more accurately modeling the data generating
process. We contribute to this strand of literature by comparing yield function parameter estimates
obtained by a standard linear model to multilevel regression estimates obtained by maximum
likelihood and Bayesian estimation techniques.

2 | DATA

To conduct our empirical analysis, we use household data from villages in India. These data were
collected as part of the Village Level Studies/Village Dynamics Study of South Asia (VDSA, 2015).
The data set combines high and low‐frequency household data from 30 Indian villages. The villages
include the three studied by Townsend (1994) and the 10 studied by Rosenzweig and Binswanger
(1993). However, while much of the previous research has relied on the low‐frequency data, we
utilize a newly available high‐frequency data set covering the years 2009 through 2013. These data
include monthly household observations on input purchases and labor expenditure for on‐farm
activities and crop production. The added value of a high‐frequency data set is that, with multiple
crops on multiple parcels for multiple seasons in a single year, it provides much more detailed and
accurate farm production information than the low‐frequency data.
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We utilize monthly parcel‐level data aggregated to the seasonal level. We focus on five crops:
paddy rice, sorghum, wheat, maize, and cotton. Together these crops account for 60% of total crop
observations in the VDSA and cover 78% of the total parcel‐level observations.3 This provides us
with 11,942 parcel‐level observations. Rice is the most common crop, accounting for 46% of total
observations. Next most common is sorghum, accounting for 23% of observations. Wheat, maize,
and cotton account for 14%, 9%, and 8% of observations.

The locations of VDSA villages provides us with a great deal of heterogeneity in climate,
weather, crop choice, and cultivation practices. Statistics describing these data, by crop, are
presented in Table 1. Twenty‐seven villages cultivate at least two crops, generally a single crop in
each of the two growing seasons. Only two villages cultivate all five crops. Cotton is the most input‐
intensive crop, using more labor, fertilizer, mechanization, and pesticide than any other crop.
Sorghum is the least labor intensive while wheat uses the least fertilizer, mechanization, and
pesticide. In total, our 11,942 parcel‐level observations come from 5100 unique parcels operated by
1079 distinct households, in 30 villages, farming across 10 seasons. We exploit this nested data
structure in our empirical analysis.

One final source of variation in the data structure, which plays an important role in our analysis,
is the number of time observations for each crop. Three crops (rice, wheat, and maize) are grown in
both the Kharif monsoon season and the post‐monsoon Rabi season. Sorghum is only grown in
Rabi while cotton is only grown in Kharif. The limited time series for these crops may affect our
estimation of seasonality's effects on yield variability, albeit in an unknown way.

3 | ECONOMETRIC FRAMEWORK

3.1 | The linear model

We begin by estimating a simple linear regression for yield via ordinary least squares (OLS). Let
yis denote the log of yield for parcel i in season s. We estimate

ϵy X β α= + + ,is is s is (1)

where Xis is a matrix of data and β is a vector of regression coefficients associated with various
crops. To account for the spatial dimension and allow our proxy for weather to vary across both
location and time, the seasonal indicator, αs, is a fixed or constant effect for each time period
t( = 10) in each village v( = 30) on yield. We assume the error term is ϵ σ~ (0, )is

2 so that
y X β α σ~ ( + , )is is s

2 , where β and σ2 are regression and variance parameters which are season
independent while αs depends on the season.

We note several drawbacks associated with this linear estimation of the yield function. First is
that it precludes one from discerning the role of weather in yield variability. Equation (1) can
estimate the impact of parcel‐level inputs on yield at each point in time as well as the impact of a
seasonal weather indicator on yield. But because these variables impact mean yield, the specification
does not allow us to measure the share of yield variability σ( )2 represented by seasonal variability in
weather. A second drawback is that the linear model limits our ability to account for additional
group effects, such as differences between parcels, households, villages, or time. While changes in
season clearly impact the effectiveness of parcel‐level inputs, equally relevant variation may exist at
these other levels. Some households may be more efficient in their application of labor compared to

3
With the exception of pigeon pea, a perennial crop, the five crops used in our analysis are the five most frequently observed crops in the data set. We include cotton

instead of pigeon pea for two reasons. First, pigeon pea is a perennial crop and therefore may be treated by farmers differently than annual crops when considering

insurance. Second, cotton is one of the crops considered by Clarke et al. (2012b) in their product design and ratemaking for insurance contracts in Gujarat. Thus,

despite it being a nonfood crop, we include it to bring our analysis more closely in line with existing literature.
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others, while some parcels may be of better quality, resulting in less need for, say, fertilizer. Some
households may live in villages in states with favorable agricultural policy, resulting in better access
to inputs. Finally, while we do not expect much technological change between 2009 and 2013, the
quality of inputs continues to evolve, which may impact yields over time. A third drawback, and
perhaps the most important for us, is that OLS requires the variance terms to be normally
distributed. While in many applications this assumption is appropriate, we should not expect
weather events to be normally distributed. If time‐specific variation in yield has a highly skewed
distribution, OLS will produce biased parameter estimates and estimates of risk severity may ignore
extreme events.

3.2 | The multilevel model

A multilevel or hierarchical modeling strategy addresses the first two drawbacks associated with the
standard linear approach to estimation. First, multilevel models offer a natural way to assess the role
of seasonal changes in weather on variation in yields by explicitly modeling the variance, not just the
mean of the data. This allows us to measure the different sources of variance in yields for particular
groups of data but also across groups, which would be difficult in classical linear regressions

TABLE 1 Descriptive statistics by crop

Rice Sorghum Wheat Maize Cotton Total

Yield (kg/ha) 3356 2368 1537 2596 1383 2658

(3252) (1429) (4038) (2397) (870.4) (2956)

Labor (hr/ha) 880.1 301.6 760.5 831.7 1156 749.8

(825.8) (265.9) (2777) (769.6) (644.4) (1239)

Fertilizer (kg/ha) 215.0 289.3 174.6 252.3 333.9 239.2

(213.6) (191.9) (724.0) (224.6) (210.0) (333.4)

Mechanization (Rs/ha) 1362 2891 805.6 878.7 2927 1716

(2781) (4887) (1289) (1755) (3778) (3369)

Pesticide (Rs/ha) 61.70 124.5 57.20 59.80 2066 235.0

(266.7) (566.3) (345.9) (319.0) (2748) (1012)

Parcel area (ha) 0.355 0.597 0.674 0.317 0.904 0.494

(0.501) (0.833) (0.733) (0.334) (0.662) (0.652)

Rainfall (mm) 539.1 395.0 286.5 456.3 426.3 468.4

(253.3) (166.6) (83.1) (192.2) (178.1) (234.8)

Number of observations 5572 2720 1625 1073 952 11,942

Number of parcels 2678 1636 1151 549 600 5100

Number of households 612 491 383 268 254 1079

Number of seasons 106 81 69 86 51 240

Number of villages 21 20 20 20 12 30

Number of time periods 10 5 10 10 5 10

Note: Means of data by crop with standard deviations in parenthesis are displayed. All monetary values are in real 2010 Indian Rupees (Rs).
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(Gelman & Hill, 2007). Second, a multilevel approach allows us to account for each grouping of the
data without adding to the computational burden and without violating independence assumptions.
While this is possible in classical linear regression by adding indicators for each individual or for
each group, it is often infeasible when there are many groups or few observations within a group.
Multilevel models offer a natural way to model group‐level variation in the uncertainty for
individual coefficients (Gelman & Hill, 2007). In our case, a multilevel approach also allows us to
disaggregate total variance in yields into its multiple sources, so as to measure the relative
contribution of seasonal weather risk in crop yield.

For expository purposes we start with an illustrative example of a simple two‐level model in
which realizations of yields are grouped within seasons. Let yn denote the log of an observed yield, n,
realized in season s. We estimate

ϵy X β α= + + ,n n s n (2a)

α μ ν= + ,s s (2b)

where Xn and β are as previously defined, and αs is a season index that is a function of an overall
mean, μ, and a random disturbance term, νs. Note that unlike the OLS model, where αs was the fixed
or constant effect of season on mean yield, αs in the MLM is a random variable, a component of the
error term, that allows the variance of yields to change from season to season. We assume that

 ϵ ϵσ ν τ~ (0, ), ~ (0, )n s ν
2 2 , and the ϵn are mutually independent, as are the νs.

To make explicit that our interest lies not in mean‐shifting fixed effects but in the variability of
yields, we can rewrite Equations (2a) and (2b) in terms of a probability distribution so that

y X β μ u~ ( + , ),n n n (3)

with ≡ ϵu τ σ+n ν
2 2. The above distribution is obtained by substituting (2b) into (2a) and using the

independence of ϵn and νs. Defining the regression equation in this way highlights the very specific
dispersion structure of the residual. What the formula for the variance un does not say is that, for
two data points n and n which belong to the same seasons s, the variables yn and yn are not
independent, while they are indeed independent when using two different seasons s and s . From
here we can easily define the intraclass correlation coefficient (ICC),

ϵ

ρ τ
τ σ

=
+

,ν

ν

2

2 2 (4)

which measures the proportion of yield variance that is attributed to uncertainty at the season level.
The value of a multilevel model becomes obvious as we add additional levels. In our analysis

each observation on yield, yn is a unique data point that corresponds to the index n, each data point
corresponds to a unique parcel i, each parcel corresponds to a unique household h, each household
experiences a unique season s, each season occurs in a unique village v, and all villages exists at
unique time t . Thus i h s v, , , , and t can be understood as functions of n. We can then write the
multilevel model for yields as

ϵy μ X β γ δ θ ξ ω= + + + + + + + ,n n i h s v t n (5)

with the following error structure:

ϵ ϵn σYields ( = 11,942) : ~ (0, ),n
2 (6a)
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( )i γ τParcels ( = 5,100) : ~ 0, ,i γ
2 (6b)

h δ τHouseholds ( = 1,079) : ~ (0, ),h δ
2 (6c)

s θ τSeasons ( = 240) : ~ (0, ),s θ
2 (6d)

v ξ τVillages ( = 30) : ~ (0, ),v ξ
2 (6e)

t ω τTime ( = 10) : ~ (0, ),t ω
2 (6f)

where again Xn is a matrix of input data and β is a vector of regression coefficients associated with
the various crops.

The estimating equation models the log of yield as a function of inputs, similar to that in
Equation (1), with yields being a function of a specific parcel i and an idiosyncratic error term

ϵ ϵσ~ (0, )n
2 , where ϵσ 2 is a constant variance parameter which we assume does not depend on

i h s v, , , , or t .
Each n observation (data point) comes from a parcel group i which we assign a unique index

value, γi, which is distributed γ τ~ (0, )i γ
2 . Though similar to intercepts or indicators in a fixed

effects regression context, in the multi‐level model γi is not a constant but rather a mean‐zero
normal variable. Said another way, the parcel‐level index is an error term (random variable) which
changes from item to item within the parcel level. This allows us to specify a relationship between
inputs and yield that differs across parcels depending on parcel‐level characteristics. While some
parcel characteristics can be observed, many are difficult to measure or costly to observe. Such
characteristics include soil micro‐nutrients, grade, and aeration or composition. By incorporating a
unique index value for each parcel we can partition out the portion of the error term that is due to
differences in these parcel characteristics.

Parcels are grouped within households, with each household, h, being given a unique index
value, δh, which is distributed δ τ~ (0, )h δ

2 . The household‐level index allows variation in parcel‐
level yield to vary by household characteristics. In most applications, the analyst attempts to control
for unobserved household ability through proxy variables such as age or education. The multilevel
approach allows us to partition out the portion of the error term that is due to differences in any
unobserved household‐level characteristics by assigning each household a unique index value
without the need to rely on proxies. Modeling variance in this way across all data points n
corresponding to a given parcel group allows for this by imposing a covariance structure which is
consistent with variation at the parcel group level.

Households are grouped within seasons, which vary across villages as well as within a village
across time. Here each season, s, has a unique index value, θs, which is distributed θ τ~ (0, )s θ

2 . As
with the indices at every other level, θs is not a constant but a mean‐zero normal variable. Each
unique season‐level index value allows for season‐on‐season variation of average yields within each
village. By making seasonality a function of both village and time, we are able to account for both
the spatial and temporal nature of weather. The unique season index value allows us to partition out
the portion of the error term that is due to differences in weather that occurs in a given village at a
given time and is not attributable to variation in yields coming from other levels of the model.

The final two sources of variation in yields come from the time‐invariant village‐level and the
spatial‐invariant time‐level. Here the set of village‐level index values, ξv, are distributed ξ τ~ (0, )v ξ

2 .
These index values allow us to partition out the portion of the error term that is due to cross village
differences in culture, politics, society, or policy, which vary across space but not time. The set of time‐
level index values, ωt , are distributed ω τ~ (0, )t ω

2 and allow for variation across time. While our data
cover only 5 years, we cannot rule out national changes in policy, technology, or both during the period
that results in variation in yields. The time‐level index allows us to determine what portion of the error
term is due to differences across time but not space.
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Having partitioned out all other potentially relevant sources of yield variability, we interpret
seasonal variation as coming solely from weather events. The main goal in uncertainty
quantification is to estimate the disturbance terms. Indeed, this is the key to evaluating the share
of variance in yield corresponding to each level in the hierarchy.

Given the various sources of variability in the MLM, there are different ICCs that one could
define for the model. We follow Lambert et al. (2004) in defining the ICC as the percentage of
the total variance that is explained by the variance within groups or clusters of groups. Analagous to
the two‐level model, in our MLM the total variance is ϵu τ τ τ τ τ σ= + + + + +n γ δ θ ξ ω

2 2 2 2 2 2. So, the
correlation between realizations of yield within the same parcel is

ρ
τ
u

( intra‐parcel) = ,γ

n

2
(7)

which is a measure of the similarity between observations on parcels across all parcels. The
correlation between realizations of yield on parcels within the same household is

ρ
τ τ
u

( intra‐household) =
+

,γ δ

n

2 2
(8)

which is a measure of the similarity between observations in a households across all households. The
correlation between realizations of yield within the same season is

ρ
τ τ τ

u
( intra‐season) =

+ +
,γ δ θ

n

2 2 2
(9)

which is a measure of the similarity between observations in a season across all seasons. The
correlation between realizations of yield within the same village is

ρ
τ τ τ τ

u
( intra‐village) =

+ + +
,γ δ θ ξ

n

2 2 2 2
(10)

which is a measure of the similarity between observations in a village across all villages in India.
And, the correlation between realizations of yield during the same time period is

ρ
τ τ τ τ τ

u
( intra‐temporal) =

+ + + +
,γ δ θ ξ ω

n

2 2 2 2 2
(11)

which is a measure of the similarity between observations at a given time across all time in India. By
construction the ICC increases as we move to higher levels of aggregation. Thus, we also calculate
each level's contribution to total variance in the model. This is simply the variance at each level
divided by un, the total variance in yields.

3.3 | Bayesian estimation of the multilevel model

While multilevel models address the first two drawbacks of linear OLS models, they still rely on the
standard, though potentially unsupported, assumption of normality of the disturbance term at each
level.

We can verify if the normality assumption placed on each of the random disturbance terms is
reasonable using a likelihood ratio (LR) test. We visualize the results of these tests using zeta profile
plots, which plot the sensitivity of the model fit to changes in values of particular parameters. While
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these plots are not equivalent to drawing the underlying distributions of the estimators, they
represent a similar idea and can be interpreted as representing the underlying distributions. First, we
estimate the model in Equation (5) using maximum likelihood. Then we hold a single parameter
fixed and vary the other parameters, assessing the fit of each new iteration compared to the globally
optimal fit using the LR as our comparison statistic. We then apply a signed square root
transformation to the LR statistic and plot the absolute value of the resulting function,  ζ , in
comparison to the estimated parameter values. The zeta profile plots resulting from the model fit to
Equation (5) is presented in Figure 1. Parameters with underlying normal distributions have straight
line zeta profile plots. When this is the case these parameters provide a good approximation to the
normal distribution and standard confidence intervals can be used for inference. When zeta profile
plot lines are not straight, the normal distribution is a poor approximation of the underlying
distribution. For parameter estimates on data, a nonnormal distribution simply requires an
adjustment of the relevant test statistics. But, if the underlying distributions of our disturbance
parameters are non‐normal, we are faced with a violation of the normality assumptions of the error
term. In Figure 1, zeta profile plots for the data, the parcel variance term ( )τγ2 , and the idiosyncratic

variance term ϵσ( )2 come from distributions that are good approximations of normality. The zeta
profile plot for the weather variance term τ( )θ2 and the village variance term τ( )ξ2 are slightly skewed.
The zeta profile plot for the household variance term τ( )δ2 and the time variance term τ( )ω2 are highly
skewed, meaning they cannot be assumed to come from a normal distribution. Thus, we cannot
assume normality of the individual error terms nor the composite error term. Since we do not, a
priori, know the distribution of ϵn , maximum likelihood methods cannot be used to reliably estimate
the model.

F IGURE 1 Zeta profile plots for multilevel model Note: The figure presents the zeta profile plots, representing the
underlying distribution of the parameters resulting from the model fit to Equation (5). Plots are calculated by first estimating
the model. Then, holding a single parameter fixed, the other parameters are varied to assess the fit of each new iteration
compared to the globally optimal fit. The comparison statistic is the likelihood ratio test. Finally, a signed square root
transformation is applied to the LR statistic. The plots are the absolute value of the resulting function,  ζ , in comparison to
the estimated parameter values. Parameters with underlying normal distributions have straight line zeta profile plots. The
vertical lines delimit 50%, 80%, 90%, 95%, and 99% confidence intervals. For zeta profile plot lines that are not straight, the
normal distribution is a poor approximation of the underlying distribution

We address this drawback to classical estimation of multilevel models by adopting a Bayesian
framework and using Markov Chain Monte Carlo methods to obtain posterior estimates. For
estimation of posterior distributions we use the Gibbs sampler, which iteratively constructs a
sequence of samples from the univariate random values of each response variable, and of each
model parameter, conditional on all other parameters and variables. This method allows us to
compute all features of the marginal and joint distributions because the marginal samples are
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iteratively fed back into the conditional posterior densities of all other parameters and variables for
each sampling. This allows us to calculate unbiased point estimates and confidence intervals for all
variables without recourse to normality assumptions.

We define the Bayesian estimator using our illustrative two‐level model and then provide
parameter definitions for the specific model defined by Equation (5) and the variance structure in
Equations (6a)–(6f).4 For a general two level model, let ykm be a unique observation k K= 1, …,
from the group m M= 1, …, . Within each group m, the data are distributed according to a
particular distribution G with parameter γ such that y G γ~ ( )km m . We assume that parameter γm
comes from a distribution L with parameter λ such that γ L λ~ ( )m . Finally, we assign a distribution
to the hyperparameter λ so that λ Q a b~ ( , ), where a is the mean and b is the variance of the
distribution. The joint posterior distribution of all unknown parameters is derived using Bayes'
theorem:

∝  p λ γ y p y γ λ p γ λ p λ( , ) ( , ) ( ) ( ), (12)

where y y y y y= ( , …, , …, , …, )K M MK11 1 1 is all the data, γ γ γ= ( , …, )M1 is the group level parameter,
and λ is the population parameter. The density of the data is obtained through

 ∏ ∏p y γ λ p y γ λ( , ) = ( , ).
m

M

k

K

km m
=1 =1

(13)

This is an independence assumption, and the individual density, p y γ λ( , )km m , is assumed to be
known. By the independence assumption, the prior for the group level effect is assumed to be

 ∏p γ λ p γ λ( ) = ( ).
m

M

m
=1

(14)

From the joint posterior distribution we can derive the conditional posterior distributions.5

The multilevel model estimated by Bayesian techniques is exactly the same model as estimated
via MLE and specified in Equations (5) and (6a)–(6f). But Bayesian estimation requires that we
define a set of hyperpriors, or the prior distributions of the hyperparameters:



ϵ ϵ ϵ

μ a b
σ IG r q
τ IG r q

τ IG r q
τ IG r q
τ IG r q

τ IG r q

Hyperpriors: ~ ( , )
~ ( , )
~ ( , )

~ ( , )
~ ( , )
~ ( , )

~ ( , ),

γ γ γ

δ δ δ

θ θ θ

ξ ξ ξ

ω ω ω

2

2

2

2

2

2

(15)

where IG is the inverse gamma distribution. The assumption that the priors are distributed inverse
gamma is a common assumption in Bayesian econometrics to facilitate the mathematical analysis

4
Cameron and Trivedi (2005) and Hanmaker and Klugkist (2011) outline Bayesian estimation of multilevel models.
5
In terms of the independence assumptions made for the MLE multilevel model, assumption (13) corresponds exactly to assuming that the error terms ϵ( )n are

independent of each other while assumption (14) corresponds exactly to assuming that the elements in each group‐level are independent of each other. The Bayesian

multilevel setup in which each group‐level parameter is assumed to have its own prior distribution is consistent with assuming in the MLE multilevel model that ϵn and

the group indices are independent.
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via the Gibbs sampler. We select values for the distributions (0, 10) so that priors are very weakly
informative. We then use a burn‐in period of 5,000 iterations and an additional 5,000 iterations to
ensure convergence of the iterative simulations and sufficient mixing of the Gibbs sampler.6

4 | ECONOMETRIC RESULTS

We present the results from a large complement of regressions in Tables 2–4. Table 2 presents a trio
of results from fitting the yield function using OLS, MLE, and Bayes. Table 3 presents estimated
variances, ICCs, and variance shares from the MLE and Bayesian versions of the yield function.
Table 4 presents both MLE and Bayesian estimation results from crop‐by‐crop yield functions.7 All
models are estimated using the log of yield as the dependent variable and log values of inputs as
independent variables.8

4.1 | Yield function results

The three yield functions presented in Table 2 rely on the same sample and contain the same set of inputs.
To account for heterogeneous input response across crops, we allow all slope and intercept estimates to
vary by crop. Model 1 is the classical linear model estimated via OLS as represented by Equation (1). This
regression model contains fixed effects for seasons but does not account for the multilevel structure of the
data. Models 2 and 3 are the MLE and Bayesian regressions and explicitly account for the indexing of
observations at the parcel, household, season, village, and temporal levels. The point estimates from the
Bayesian regression are based on posterior density estimates derived from iterating from our weakly
informative priors. Results from these regressions point to a fairly robust set of basic patterns that are
repeated with few exceptions. These include (i) positive and significant production relationships between
yields and measured inputs (labor, fertilizer, mechanization and pesticides), and (ii) diminishing returns to
inputs other than labor. We observe only one instance in which the point estimate for an input is negative
and significant (for pesticides in the case of wheat). Returns to scale appear to be increasing for all crops.
The Bayesian estimation of the yield function generates point estimates that are broadly similar in sign,
magnitude, and significance to those of the OLS and MLE multilevel regressions.

Table 3 reports estimated variance parameters (Panel A), ICCs (Panel B) and variance shares
(Panel C) for the multilevel MLE and Bayes regressions. These statistics establish the key findings
that inform our insights into the potential role of weather index insurance.9 We focus attention on
Panel C of Table 3, which compactly summarizes the data expressed in the upper panels of the table.
Reading down the rows of the table allows us to assess the decomposition of variance and, by
extension, the relative importance of each level in explaining overall variance in yields. We find for
the MLE specification (Model 2 reported in Table 2) that 23% of the total variance in yields comes
from between‐parcel differences, 19% is attributed to between‐season differences, 15% comes from
between‐village differences, 3% is attributed to differences across time, and 40% of the total residual
is idiosyncratic noise. In the Bayesian specification (Model 3 reported in Table 2) 24% of total
variance in yields comes from between‐parcel differences, 20% is attributed to between‐season
differences, 15% comes from between‐village differences, 6% is attributed to differences across time,
and 35% is idiosyncratic noise.

6
Diagnostic trace plots of convergence for each of the variance terms are presented in Supporting Information Appendix Figure A1.
7
In the interests of parsimony we focus on the residual estimates for the crop specific models. The point estimates on inputs are presented in Supporting Information

Appendix Table A1.
8
Given the prevalence of zero values in the input data, and to a lesser extent in the output data, we use the inverse hyperbolic sine transformation to convert levels to

logarithmic values.
9
An expanded set of results from models estimated using different hierarchical structures is provided in Supporting Information Appendix Tables B1 and B2.

MICHLER ET AL. | 71

 27692485, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jaa2.9 by Test, W

iley O
nline Library on [10/12/2022]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



TABLE 2 Results of yield function regressions

(1) (2) (3)

Rice

Log labor 1.635*** 1.531*** 1.127***

(0.043) (0.043) (0.032)

Log fertilizer 0.598*** 0.512*** 0.542***

(0.019) (0.019) (0.018)

Log mechanization 0.206*** 0.176*** 0.147***

(0.010) (0.009) (0.009)

Log pesticides 0.123*** 0.093*** 0.088***

(0.011) (0.010) (0.010)

Sorghum

Log labor 0.585*** 0.559*** 0.987***

(0.063) (0.060) (0.042)

Log fertilizer 0.087** 0.108*** 0.214***

(0.042) (0.040) (0.038)

Log mechanization 0.321*** 0.342*** 0.491***

(0.030) (0.029) (0.026)

Log pesticides 0.009 0.012 0.009

(0.018) (0.016) (0.016)

Wheat

Log labor 0.993*** 0.988*** 1.217***

(0.054) (0.053) (0.036)

Log fertilizer 0.110*** 0.108*** 0.073***

(0.021) (0.020) (0.036)

Log mechanization 0.386*** 0.350*** 0.366***

(0.019) (0.018) (0.036)

Log pesticides −0.059** −0.069*** −0.100***

(0.026) (0.025) (0.025)

Maize

Log labor 1.126*** 1.174*** 1.584***

(0.100) (0.097) (0.043)

Log fertilizer 0.048 0.016 −0.005

(0.041) (0.039) (0.040)

Log mechanization 0.111*** 0.096*** 0.109***

(0.018) (0.017) (0.017)
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An intuitive interpretation of these results is that much of the differences observed in yields
reflects differences between parcels, such as soil quality. Household or farmer capability, relative to
other sources of variability, is unimportant in explaining differences in yields. In other words, good
farmers cannot make up for bad soil but bad farmers can still prosper if they have good soil. Similar
to Townsend (1994) and Rosenzweig and Binswanger (1993) we find that idiosyncratic sources of
risk play a much larger role in determining observed yields than covariate sources. Unlike
Townsend (1994) and Rosenzweig and Binswanger (1993), we are able to quantify these differences.
Considering all sources of variance in yields, only 37%–41% comes from what could be considered
covariate sources while the remaining 59%–63% comes from what could be considered idiosyncratic
sources. Thinking in terms of insurable weather risk, 19%–20% of the variability in crop yield is due
to seasonal weather variation. While this share is by no means tiny, it is a minority source of
variation in yields and much lower than the amount typically cited in the literature to justify the
need for weather index insurance. These basic patterns highlight the relatively small importance of
between‐season yield variance compared with other sources of yield variance.10

TABLE 2 (Continued)

(1) (2) (3)

Log pesticides 0.086*** 0.094*** 0.098***

(0.033) (0.030) (0.029)

Cotton

Log labor 1.047*** 1.064*** 1.291***

(0.129) (0.124) (0.057)

Log fertilizer 0.220*** 0.230*** 0.230***

(0.057) (0.053) (0.053)

Log mechanization 0.072** 0.033 0.036

(0.031) (0.031) (0.029)

Log pesticides 0.128*** 0.115*** 0.095***

(0.029) (0.028) (0.027)

Observations 11,942 11,942 11,942

R2 0.964

Log Likelihood −22,268

Akaike Inf. Crit. 44,598

Deviance Inf. Crit. 44,828 42,578

Note: Dependent variable is log of yield. All specifications include statistically significant crop‐specific intercept terms as controls. Column (1)
is a classical OLS regression that includes season fixed effects but does not account for the multilevel structure of the data. Column (2) is the
maximum likelihood estimate of the multilevel model and contains covariates, and data indexed by parcel, household, season, village, and time.
Column (3) is the Bayesian estimation of the multilevel model. Bayesian calculations use a burn‐in period of 5000 iterations and an additional
5000 iterations to ensure convergence. Standard errors are reported in parentheses (**p < 0.05; ***p < 0.01).

10
Note that the share of variance that remains unexplained is not the appropriate measure of model fit. The Akaike Information Criterion (AIC) and Deviance

Information Criterion (DIC) reported in Table 2 provides a measure of model fit. In both the AIC and DIC, lower values correspond to better model fit. The DIC is a

generalization of the more common Bayesian Information Criterion (BIC) and is used here to facilitate comparison between the ML and Bayesian estimations of the

same models.
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Strictly speaking, the non‐normality of the error term means that the OLS and MLE
regressions are misspecified. Accordingly, we would expect estimates from these models to be
biased. However, in our application, only the disturbance terms associated with households and
time are highly skewed and non‐normal (recall Figure 1). Furthermore, these two sources of
variance make up a very small share of total variance. Thus, any bias that is introduced through
model misspecification is mitigated by the small impact of the skewed noise term on the overall
estimation. We highlight that this is an artefact of the current application and data. If non‐
normal variation accounted for more of the total variance we would expect to find greater bias
in our OLS and MLE estimates.

Figure 2 reports distribution profiles based on the Bayesian regression results for the associated
sources of variance measured by Model 3 in Table 2. These histograms are constructed from the
posterior distributions estimated using the Gibbs sampler. We can draw several conclusions from
this graph. First, several of the variance terms are not normally distributed, which violates the

TABLE 3 Estimated variance, ICCs, and variance shares from multilevel regressions

MLE Bayes

Panel A: Variance parameter estimates

Parcel ( )τγ2 0.933 1.098

Household τ( )δ2 0.002 0.004

Season τ( )θ2 0.790 0.903

Village τ( )ξ2 0.623 0.682

Time τ( )ω2 0.126 0.261

Idiosyncratic ϵσ( )2 1.623 1.613

Panel B: Intraclass correlation coefficients

Parcel 0.228 0.241

Household 0.228 0.242

Season 0.421 0.440

Village 0.573 0.589

Time 0.604 0.646

Panel C: Shares of variance from each level

Parcel 23% 24%

Household 00% 00%

Season 19% 20%

Village 15% 15%

Time 03% 06%

Idiosyncratic 40% 35%

Observations 11,942

Note: In Panel A, estimates of the variance parameters on each level's residuals come from estimation of models reported in Columns (2) and
(3) in Table 2. Variances τ τ τ τ τ, , , ,γ δ θ ξ ω

2 2 2 2 2 represent the variance in crop yield that comes from the corresponding level. The final variance
parameter ϵσ( )2 corresponds to the idiosyncratic or unexplained portion of the model. Intraclass correlation coefficients (ICC) in Panel B are
calculated using the formulas in Equations (7)–(11). Panel C decomposes the ICC into percent of variance accorded to each level. For
comparison, Supporting Information Appendix Tables B1 and B2 reports alternative specifications of the models presented here.

Abbreviation: ICC, intraclass correlation coefficient.
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normality assumption in OLS and non‐Bayesian multilevel regression. Second, normal confidence
interval calculation for the parameters will be inaccurate. Third, the long right‐hand side tails in the
distributions for households and time, and to a lesser extent season, indicates that these levels by
themselves are insufficient to explain the observed yield variability in a classical setting. Said
differently, our model relies on indices to determine which portion of the error term varies due to
differences in household ability, occurrences of weather, and technical change but does not take into
account their severity. The skewed output of our Bayesian analysis hints that while most households
are similar in ability there are a few outlying farmers with exceptional ability. Similarly, while
weather events account for only 20% of variance in yields, severe weather events remain important
in considering tools to mitigate risk.

TABLE 4 Estimated variance, ICCs, and variance shares by crop

Rice Sorghum Wheat Maize Cotton
MLE Bayes MLE Bayes MLE Bayes MLE Bayes MLE Bayes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Variance parameter estimates

parcel ( )τγ2 1.858 1.852 0.000 0.002 1.092 1.059 0.564 0.557 0.000 0.018

Household τ( )δ2 0.000 0.003 0.048 0.046 0.046 0.034 0.000 0.007 0.013 0.010

Season τ( )θ2 0.832 0.865 0.166 0.174 2.323 2.573 0.234 0.266 0.367 0.401

Village τ( )ξ2 1.098 1.266 0.133 0.156 5.527 6.411 0.185 0.177 0.000 0.041

Time τ( )ω2 0.203 0.298 0.000 0.011 0.612 0.694 0.000 0.013 0.521 0.689

Idiosyncratic ϵσ( )2 1.918 1.918 0.686 0.684 1.598 1.626 0.517 0.518 0.785 0.766

Panel B: Intraclass correlation coefficients

Parcel 0.314 0.299 0.000 0.002 0.098 0.085 0.376 0.362 0.000 0.009

Household 0.314 0.299 0.046 0.045 0.102 0.088 0.376 0.366 0.008 0.015

Season 0.455 0.439 0.207 0.207 0.309 0.296 0.532 0.539 0.225 0.223

Village 0.641 0.643 0.336 0.352 0.803 0.813 0.655 0.654 0.225 0.244

Time 0.675 0.691 0.336 0.363 0.857 0.869 0.655 0.663 0.534 0.602

Panel C: Shares of variance from each level

Parcel 31% 30% 00% 00% 10% 09% 38% 36% 00% 01%

Household 00% 00% 05% 04% 00% 00% 00% 00% 01% 01%

Season 14% 14% 16% 16% 21% 21% 16% 17% 22% 21%

Village 19% 20% 13% 15% 49% 52% 12% 12% 00% 02%

Time 03% 05% 00% 01% 05% 06% 00% 01% 31% 36%

Idiosyncratic 32% 31% 66% 64% 14% 13% 34% 34% 47% 40%

Observations 5572 2720 1625 1073 952

Note: In Panel A, estimates of the variance parameters on each level's residuals come from estimation of models in corresponding columns in
Supporting Information Appendix Table A1. Variances τ τ τ τ τ, , , ,γ δ θ ξ ω

2 2 2 2 2 represent the variance in crop yield that comes from the corresponding
level. The final variance ϵσ( )2 parameter corresponds to the idiosyncratic or unexplained portion of the model. Intraclass correlation coefficients
(ICC) in Panel B are calculated using the formulas in Equations (7)–(11). Panel C decomposes the ICC into percent of variance accorded to
each level. Bayesian calculations use a burn‐in period of 5000 iterations and an additional 5000 iterations to ensure convergence.

Abbreviation: ICC, intraclass correlation coefficient.
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4.2 | Variance results by crop type

Up to this point, our analysis has accommodated heterogeneity in the input‐response curves of the
crops under consideration by allowing slopes and intercepts to vary across crops. By pooling these
data, however, the variance results reported in Table 3 are implicitly derived under the assumption
that the same variance structure of the hierarchical model applies to all crops under consideration
and that, by extension, the same weather risk profile applies to each crop. We now relax that
assumption and re‐estimate the MLE and Bayesian regressions, in each case using five separate,
crop‐specific sub‐samples of the data. Our goal is to allow for a more comprehensive assessment of
the variance structure of yields, to gain additional insights into the nature of weather risk exposure
among farmers in the sample. The new samples vary in size and coverage, which also permits us to
limit the influence of rice in our results, since rice dominates the pooled sample by contributing
roughly half of all observations. In three cases (rice, wheat, and maize) we observe data across all
10 seasons. In the case of sorghum and cotton we observe data for only five seasons.

To complement the results reported in Table 3, we present in Table 4 a full set of estimated
variance parameters, ICCs, and variance shares for the crop‐specific versions of our regressions.11

As in the case of the regressions with the pooled samples, the MLE and Bayesian regressions
explicitly account for the indexing of observations at the parcel, household, season, village, and

F IGURE 2 Histograms of level variance from Bayesian estimation. Histograms are drawn from posterior distributions of
variance terms estimated from Column (3) reported in Table 2

11
We relegate the discussion of the point estimates for parcel‐level inputs to Supporting Information Appendix A and Table A1.
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temporal levels. The point estimates from the Bayesian regression are based on posterior density
estimates derived from iterating from our weakly informative priors.

As before, we focus attention on Panel C of Table 4. Once again we see a close correspondence
between the MLE and Bayesian results. Reading across the table, however, we observe substantial
variation in the sources and relative importance of each level in explaining overall variance in crop‐
specific yields. For example, over 30% of variance comes from between‐parcel differences for rice
and maize, compared with less than 2% for sorghum and cotton. Of particular importance for index
insurance, we observe only moderate variation in the contribution of between‐season weather
differences, which range from 14% of variance in the case of rice, to as much as 22% in the case of
wheat and cotton. We also find more notable differences between the estimated variances from MLE
and Bayesian regressions, with implications for the role of non‐normality and the inability of the
MLE approach to properly account for skewness in several of the disturbance terms. As noted above,
to the extent that nonnormal errors account for more of the total variance one would expect to find
greater bias in the OLS and MLE point estimates vis‐à‐vis the Bayes estimates. This is evident when
level variance terms tend to be small, resulting in MLE estimates that collapse to zero while Bayesian
estimates are small but non‐zero.

5 | IMPLICATIONS FOR WEATHER INDEX INSURANCE

The results from our estimation of the sources of variability in yields has implications for both the
demand for and the supply of weather index insurance, particularly in village India. Much of the
previous literature on index insurance has focused on consumer‐centric barriers to demand, such as
financial literacy or household liquidity (Cole et al., 2013). Results from both the MLE and Bayesian
estimation of the multilevel model show that, relative to previous statements in the economics
literature about the role of weather in yield variability, weather is a minority source of variation in
yield. At least in our data, weather accounts for 14%–22% of variance in yield, a substantial amount
but far short of the 50%–90% figures that are frequently cited to justify the need for farmers to
purchase weather index insurance.

The implication for the demand for index insurance is clear. With so many other sources of
variation in yields, farmers may rationally choose to expend limited resources to help improve yields and
ensure against the variety of risks they face. This could include purchases of improved inputs to try and
reduce the variability in yields due to parcel‐level differences. It could also include purchases of stress
tolerant seed varieties, which have been shown to improve yields, reduce risk to abiotic stress, and crowd
in the purchase of other inputs (Emerick et al., 2016). That weather makes up a minority source of
variability in yields means that weather index insurance carries a substantial amount of basis risk, at least
in terms of insuring the outcome of ultimate interest to farmers—profit. While indemnity insurance
contracts can be written to cover losses from a variety of sources, index insurance contracts payout
contingent on a change in the index. With a majority of variation in yield coming from non‐weather
sources, that means an insurance contract based on weather can only ever insure against a minority of
potential risks. While from an insurer's point of view, these other sources of risk are not meant to be
covered by the index insurance product and are therefore not a relevant part of the “basis risk” of the
contract, from a farmer's perspective any loss not covered by the insurance contract is basis risk, that is,
uninsured exposure (Binswanger‐Mkhize, 2012).

The implication for the supply of index insurance is not that insurers should stop writing index
insurance contracts but rather that they need to develop better insurance products. While weather
variability accounts for a much smaller share of yield variability than has been previously argued, it
still makes up a substantial source of total variation. The likely importance of extreme and
infrequent weather events in yield variability, evidenced by the skewness in the posterior
distribution of τθ2, highlights the need for farmers to have access to affordable risk‐management
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tools. In other words, despite the relatively low share of seasonal weather variation in yield
variability, our data still suggest that potential insurance purchasers need to consider weather risk,
since extreme weather events, while rare, are nevertheless potentially costly over the long run. This
motivates us to ask whether tools for managing this type of risk are adequately accessible. As we
show in Supporting Information Appendix C, current index insurance in the market in India from
the major insurers is overpriced, with extremely high loading factors, when compared to index
insurance in developed or other developing countries.

We conclude that these compounding factors—weather being less important than previously
assumed and current contracts being overpriced—have led to the observed low uptake of weather
index insurance. The practical outcome is that farmers operate in an environment where they
experience risk from a variety of sources but have few good options for insuring against that risk.
Evidence shows that farmers adapt their crop portfolios and inputs based on the need to manage
risk across seasons and within seasons (Jagnani et al., 2021; Mobarak & Rosenzweig, 2013), meaning
farmers likely operate below their production possibility frontier. Weather index insurance, as
currently marketed, is unlikely to be an attractive risk management tool on its own, given the
various sources of variability in yields. But, improved products may be able to play an important
role in a risk management portfolio that include tools such as stress tolerant seed varieties (Emerick
et al., 2016), improved forecasting (Rosenzweig & Udry, 2013), microfinance (Assah & Sberro‐
Kessler, 2017), and a variety of digital technologies (Benami & Carter, 2021).

6 | CONCLUSION

Despite long standing evidence that rural households are unable to fully insure covariate risk, few
studies have attempted to measure just how large a role covariate events, such as weather, play in
agricultural yields. We address this information gap using agricultural production data covering
11,942 parcel level observations from India. Using a multilevel/hierarchical regression framework,
we estimate the different sources of yield variance. This approach controls for inputs at the parcel‐
level and also isolates the amount of yield variability attributed to parcel‐level effects, household‐
level effects, seasonal weather effects, village‐level effects, and time effects. Adopting Bayesian
estimation techniques allows us to account for the highly skewed distribution of several of the
disturbance terms.

Overall, we find that variability in weather makes up a small but not insubstantial share of the
total variance in crop yields. This suggests that basis risk on the production side (i.e., low correlation
between the weather index and yield loss) may be large. The majority of variation in yields does not
come from seasonal variability, which is our proxy for rainfall or weather variability. Rather, the
majority of variation in yields comes from differences in parcels and from the random disturbance
term which captures idiosyncratic events which would be, by definition, not covered by index
insurance. Given the long history of evidence that farmers are effective in using self‐insurance and
mitigation measures to protect against idiosyncratic risk, and given the small role covariate seasonal
risk plays in crop variability, farmers may rationally prefer to forgo weather index insurance to focus
their risk management choices on minimizing other sources of risk.

Although there are many potential impediments to insurance uptake, this study also provides
evidence for an obvious but until now unsupported explanation, at least in the case of India: existing
insurance contracts are overpriced from the perspective of the farm household. Product design and
ratemaking of index insurance in India has generally taken a long view, utilizing rainfall data
extending as far back as four decades to calculate actuarial rates. From the perspective of the
insurance company, such a long time horizon may support the company's longevity in managing it's
own financial risk. However, it may not easily align with the planning horizons of rural households.
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