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ARTICLE INFO ABSTRACT

Handling Editor: Andrew Margenot Soil degradation on cultivated lands of Sub-Saharan Africa is a threat to food security. Even so, drivers of soil C
total and labile pools are little understood for smallholder farms. A unique opportunity to evaluate how envi-
ronment conditions management drivers was afforded by a systematically representative on-farm study of 1108
cultivated plots in marginal to mesic environments across Central and Southern Malawi. Soil sample collection
and analysis and surveys of farmer practice were conducted, and linked to remote-sensed data on environmental
and spectral factors. Soil properties included the following ranges (mean values per site), soil clay (6.41% to
17.36%), pH (6.09 to 6.54), soil organic carbon (SOC) (6.31 g C kg soil ! t0 16.17 g Ckg soil’l), and two labile
soil C assays: permanganate oxidizable carbon (POXC) (291.5 mg C kg soil ! to 504.5 mg C kg soil !) and 24-h
mineralizable C (Cmin) (28.71 mg C kg soil ! to 65.34 mg C kg soil_l). Incorporation of domain specialists’
expectation of uncertainty levels is key to carrying out a multiscale assessment of soil total and labile C status,
thus a Bayesian linear regression approach was used for determining the influential drivers. Overall, the soil clay
content is a strong predictor of SOC (0.479-0.517), POXC (0.139-0.266), and Cmin (0.125-0.223) at the 95%
Bayesian credibility level from the Gibbs posterior samples. Vegetative cover, reflected by Normalized Difference
Vegetation Index (NDVI), is also a dominant driver for SOC (0.234-0.329), POXC (0.163-0.285), and Cmin
(0.249-0.38). Of the management practices studied, crop diversity, residue incorporation, and weed presence are
all positive drivers for total soil C, whereas fertilizer N is not. At both regional and local scales, labile soil C pools
(as reflected by POXC and Cmin) are not consistently responsive to management. The drivers of SOC are highly
consistent, a strong indication of statistical robustness. This contributes to the understanding of patterns of
carbon pools in intensively cultivated fields in Sub-Saharan Africa.
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1. Introduction

Soil degradation is a growing concern in Sub-Saharan African (SSA)
smallholder farming systems, as intensive production is becoming
common (Tully et al., 2015). Understanding soil carbon dynamics on
smallholder farmers’ is important, particularly so in SSA where this
sector contributes over 90% of the food production (Wiggins and Keats,
2013). A widespread challenge is that there is limited access to organic
resources by smallholders, Soil Organic Carbon (SOC) status is often
degraded and soils are highly heterogeneous (Snapp, 2022). There is a
need for a better understanding of the environment and management
practices drivers for SOC pools. A unique opportunity is afforded in

Malawi, where smallholder farm soil status has been monitored over
time, at multiple scales, from mesic to marginal environments.
Malawi’s agricultural production system is typical of the SSA maize
belt that stretches across East and Southern Africa, and increasingly in
West Africa (Blackie et al., 2019). Malawi relies on rain-fed agriculture
produced largely by hand cultivation on smallholder farms (Mhango
et al., 2013; Snapp et al., 1998). Intensification trends in SSA and vul-
nerabilities to sustainability challenges more broadly are represented by
Malawi, which has high population density, limited resources, soil
depletion, and climatic risks, for multiple challenges to food security
(Funk et al., 2008; Mungai et al., 2016; Snapp et al., 2018). On-farm
studies that assess soil stable and labile carbon pools in Malawi thus
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provide unique insights to the global understanding of SOC accrual and
drivers on cultivated fields.

SOC is a critical component because of its role in supporting soil
structural stability and nutrients in addition to its other ecosystem
functions (Mponela et al., 2020). In 1998, Snapp (1998) documented the
status of soil on Malawian smallholder farms (generally sands and sandy
loam) and concluded that SOC is sufficient for structural stability with a
threshold concentration value of 8 g C kg soil *. Mpeketula (2016) re-
ported a SOC depletion in Malawi. Evaluating drivers of SOC change in
smallholder farms requires understanding the impact of management
practices. However, the methodological challenges and slow processes
associated with SOC accrual are such that it is often difficult to detect
how SOC responds to field management practices (Mpeketula and
Snapp, 2019).

Soil analytical procedures that act as an indicator of labile soil C
pools can provide insights into how management practices influence soil
carbon status (Awale et al., 2013; Bongiorno et al., 2019; Culman et al.,
2012; Culman et al., 2013). The labile carbon pools have been little
studied in relationship to climate gradients and how they interact with
management, and hardly at all on smallholder farms in SSA (Murage
et al., 2000; Ngwira et al., 2012). There are very few practical examples
with empirical values from on-farm study sites. Chamberlin et al.,
(2021) found poor fertilizer response in soils with a deficiency in the
labile SOC fraction, as indicated by permanganate oxidizable carbon
(POXC). This is one indicator of labile C calculated from the oxida-
tion-reduction process (Bongiorno et al., 2019). Fine et al., (2017) re-
ported POXC as the best single predictor under the context of
determining expected difference across the Northeast, Mid-Atlantic, and
Midwest U.S. Yet, Wade et al., (2020) pointed out the high variability of
POXC values, particularly for low SOC soils and other methodological
challenges. Mineralizable Carbon (Cmin) is widely used to assess the
biologically labile SOC fraction and reflects microbial activity (Awale
et al., 2013).

Environmental factors, including temperature and precipitation, are
usually viewed as the dominant predictor of total and labile C at the
regional level across landscapes, as they limit the biomass accumulation,
weathering, and erosion (Burke et al., 1989; Hontoria et al., 1999;
Johnson et al., 2011). Akpa et al., (2016) evaluated several models to
estimate SOC in Nigeria and found that soil type, climate, vegetation
indices, and terrain attributes are important proxies. Researchers have
found Normalized Difference Vegetation Index (NDVI), reflecting the
vegetative cover, as a predictor for SOC at multiple temporal and spatial
scales (Akpa et al., 2016; Kunkel et al., 2011, Page et al., 2013; Venter
et al., 2021; Yang et al., 2020; Zhang et al., 2019). For cultivated fields,
however, environmental factors are insufficient for understanding the
SOC variation due to the importance of anthropogenic management
(Calvo de Anta et al., 2020). Understanding the drivers in tropical
cultivated fields will benefit modelers in selecting parameters for SOC
prediction. There are some studies focused on the labile C variation
across precipitation gradient, while limited information on environ-
mental and management controls in Malawian smallholder farm soils
and tropical cultivated fields (Ngwira et al., 2012). Regional scale as-
sessments of labile C across precipitation gradients are needed to un-
derstand environmental controls and management, especially for
Malawi, which faces land degradation and climatic risks to a high
degree.

In SSA, farm practices that influence soil C are conditioned by the
scarcity of organic resources. Crop residue retention can act as a mulch
that provides physical protection to the surface layer, improves soil
aggregate stability, and increases the abundance of soil fauna. Thus, it
has been widely promoted to benefit crop yield and long-term soil
quality (Ghuman and Sur, 2001; Ngwira et al., 2013; TerAvest et al.,
2015; Tittonell et al., 2015). However, limited crop residues are used as
a soil amendment due to moderate crop growth and alternate uses,
including the need for livestock feed, and fuel (Tittonell et al., 2015).
There is limited understanding of farmer practices’ influence on
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cultivated field SOC at the regional scale. Chivenge et al., (2011) pointed
out that organic input is key to improving SOC on smallholder farms,
particularly those on sandy soils. In the Dedza and Ntcheu districts in
Malawi, crop residue retention is a widespread management practice
used by farmers, although they also carry out the burning of residues and
removal for livestock feed (Mungai et al., 2016).

Another important farming practice besides crop residue retention,
that influences soil carbon accrual is the biochemical diversity of resi-
dues. This is influenced by crop species choice and sole versus mixed
cropping system arrangements. Spatial crop diversity, also referred to as
intercropping, is a sustainable intensification practice that produces
high grain yields per land area and, potentially, has soil fertility benefits
(Snapp et al., 2010; TerAvest et al., 2015). Intercropping of legumes
with cereals has been shown through the field and controlled environ-
ment studies to specifically enhance soil C and N pools, relative to sole
crop management (Cong et al., 2015; Garland et al., 2017). However,
there is a substantial research gap between the understanding of soil C
determinants based on experimentation, and that based on geospatial
characterization. Thus, prediction of SOC accrual is inadequate,
particularly for the smallholder farming sector, where environmental
context has not been investigated in relation to management practices,
at regional and local scales.

Overall, there are many challenges to understanding long-term sus-
tainability and SOC consequences of smallholder practices such as
intercropping, fertilizer, weed, and residue management practices
(TerAvest et al., 2015; Tully et al., 2015). Management of all sources of
diversity, including weeds, may influence soil properties. In the limited
studies of weeds’ ecosystem services, weeds have been found to have a
positive effect on soil nutrients, although they often suppress crop yield
(Blaix et al., 2018). We know of no other study that quantifies the broad
range of management practices implemented on smallholder fields,
including crop diversity and weed presence, and that considers their
influence on SOC. Farmers in Malawi utilize both sole and intercrop
management practices (Bezner Kerr et al., 2019; Mungai et al., 2016),
providing an opportunity to evaluate soil C variation and the potential
impact of management practices, within the context of tropical agro-
ecosystems. As labile SOC pools are expected to be highly responsive to
management, often more so than stable SOC (Culman et al., 2012;
Ngwira et al., 2012), a further research gap addressed is that of pre-
dicting labile SOC patterns on cultivated fields.

Thus, to better understand drivers for variation of stable and labile
carbon pools, we integrated Bayesian analyses of statistical models to
analyze the climate-induced and management-induced variables. The
Bayesian approach fills the gap of identifying sensitive drivers as this
method accommodates the domain specialists’ expectation of uncer-
tainty levels, as illustrated in a recent study utilizing Bayesian models to
interpret maize yield predictors in an agricultural survey (Wang et al.,
2019). The natural probabilistic interpretation of Bayesian outputs,
aided by cutting-edge computational methods, is typically much more
detailed than classical analyses, holding stronger predictive power,
especially for datasets of moderate size (Dunson, 2001; Neufcourt et al.,
2018), and it systematically avoids misinterpretations of p values
(McShane and Gal, 2017; Wang et al., 2019).

The objectives of this study were to 1) quantify the environment and
management drivers on African smallholder farms, leveraging purpo-
sive, stratified sampling of fields across Central and Southern Malawi; 2)
evaluate environmental and field management drivers that influence
stable and labile C pools; and 3) identify practices that are generally
associated with relatively high SOC status, at the regional and local
scale. We hypothesized that (i) labile C indicators would be more sen-
sitive to management practices than SOC, and (ii) the magnitude of
environmental and management controls of SOC would vary at regional
and local scales.
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2. Materials and methods
2.1. Overall site description

Malawi (9°45’-17°16' S, 32°35’-35°24’ E) is a landlocked country
bordered by Tanzania, Zambia, and Mozambique, and occupies 118,484
km? in Southeastern Africa. Malawi has an overall tropical climate and a
sub-tropical climate at high latitude. The hot and wet season lasts from
November to April, and the cool and dry season lasts from May to
October. The mean annual temperature ranges from 18 °C to 27 °C, and
the mean annual precipitation ranges from 725 mm to 2500 mm in
Malawi. Maize is the dominant crop planted in the country and also
contributes to the profit of smallholder farmers and the main calories
intake for households.

In 2016, seven Extension Planning Areas (EPAs) in Malawi were
selected based on a range of agricultural potential and representing a
variety of biophysical characterizations (Li et al., 2017; Mungai et al.,
2016). Golomoti and Mtakataka EPAs are located adjacent to each other
and were grouped into one study site that is referred to throughout as
Golomoti. This resulted in seven EPAs being represented, located in
Central and Southern Malawi (Fig. 1). Linthipe was the only site clas-
sified as high agricultural potential (Mungai et al., 2016). Kandeu,
Nsipe, Nyambi, and Nsanama were classified as medium agricultural
potential sites. Golomoti and Mtubwi were classified as low agricultural

Golomoti
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potential sites. A total of 614 households from seven EPAs were
randomly selected for the study, with farmers asked to select two plots
per household where maize was commonly grown, as described previ-
ously (Burke et al., 2020). Soil classes of the focal plots were summa-
rized in Table A1 based on the SoilGrids250m (Hengl et al., 2017).

2.2. Soil fertility Panel survey

A farm management practice survey of the 614 households and a soil
survey of two plots per household (total 1108 plots) were carried out in
September and October 2016. This survey was part of the Africa RISING
Panel Survey project that documented, through a questionnaire,
household socio-economic characteristics while also documenting plot
management practices employed, and rating of weed presence. Enu-
merators physically visited the plots with the farmer for the plot-specific
questions, to enhance the quality of data by asking specifics about their
plot management. The survey instrument and implementation protocols
were supervised by MSU IRB Human Subjects Board, including
following consent protocols, close supervision of enumerators by our
research team, local language translations, and visual aids for specific
questions.

Livestock variety and quantity were asked at the household level and
then used to calculate household Tropical Livestock Units (TLUs)
(Hockett and Richardson, 2018). For each household, a wealth score was

Nyambi

EPA boundary

32°E 33°E 34°E

———  Study EPA boundary

©  Sampling sites
Lake
Marginally not suitable
Marginally suitable
Moderately suitable
Highly suitable

not suitable or L

35°E 36°E

Fig. 1. Location of farm sampling sites surveyed (n = 1108) and agricultural potential (Li et al., 2017) characteristics of Extension Planning Areas in Central and
Southern Malawi. For more information, http://globalchangescience.org/eastafricanode/.
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calculated based on the asset indicators, employing the principal com-
ponents analysis described in (Cordova, 2008).

The survey was conducted on two primary plots per household,
which were rain-fed maize-based cropping systems. Most of the focal
plots were under 2 acres and the mean focal plot size per study site
ranged from 0.45 to 0.83 acres (Table 2). Enumerators were asked about
the slope of the plot with a visual aid, the fertilizer use, manure, and
compost use, residue management, crop diversity, and weed presence
for the plots. The slope was assessed at each plot by categorized at four
levels in the survey with a visual aid: nearly level, gentle, moderately
steep, and steep. Nitrogen (N) rate in kg ha™! of mineral fertilizer
applied in each plot was calculated based on the type and application
amount after converting from local units. Survey questions related to
compost and manure use on study plots allowed farmers to answer
regarding amounts and types of organic amendments based on local
language terminology. Compost and manure amendments were further
grouped into a single binary indicator of yes or no for data analysis due
to the low application amount found in the explanatory analysis. Res-
idue management was determined by categorizing the practices recor-
ded into three groups: removal, burning, and incorporation. For
assessing determinants of soil total and labile C, plot management data
from the year 2016 was used.

Crop diversity, the crop numbers per plot, was collected from 2016 in
Central Malawi and 2017 in Southern Malawi. For assessing de-
terminants of soil total and labile C, we used the crop diversity data
collected around the time of the soil sampling exercise in the year 2016.
For Central Malawi, Golomoti, Linthip, Kandeu, and Nsipe, 2016 data
was used; for Southern Malawi, Nyambi, Nsanama, and Mtubwi, 2017
data was used (as 2016 data was not available). Data on weed presence
at crop harvest was collected and used as an indicator of endogenous
weediness of a plot. Enumerators were asked to rate weed cover at six
random locations per plot, at four levels of weediness: zero weed pres-
ence, weeds cover soil equivalent to less than bare soil, equal to, or more
of the area (photos were used to calibrate). The data were summarized
into a range of 0-18 to quantify weed intensity per plot.

2.3. Remote sensing data

Geographical coordinates of each plot were collected and used to
obtain the remote sensing data of Mean Annual Temperature (MAT),
Mean Annual Precipitation (MAP), Normalized Difference Vegetation
Index (NDVI), and elevation. National Aeronautics and Space Adminis-
tration (NASA) Moderate Resolution Imaging Spectroradiometer
(MODIS) Land Surface Temperature (LST— MOD11A2) database was
used to calculate the 10-year mean annual temperature from 2006 —
2016, and the mean growing season temperature for the year of 2016.
Climate Hazards InfraRed Precipitation with Station (CHIRPS) database,
recognized as the only comprehensive precipitation data source avail-
able for Malawi, was used to calculate the 10-year average precipitation
from 2006 to 2016, and the growing season precipitation of 2016. Ten-
year growing season NDVI from 2006 to 2016 and single growing season
were calculated based on the MODIS Vegetation Indices (MODIS13Q1).
Elevation data was derived from Shuttle Radar Topography Mission
(SRTM) Digital Elevation Model at 90 m resolution.

2.4. Soil sampling and analyses

Soil sampling was conducted in October 2016, during the Malawian
dry season before planting through a random sampling approach in each
plot. The soil was sampled at 0-20 cm depth with a 5-cm diameter auger.
The soil samples were mixed, air-dried, passed through a 2 mm sieve,
and double-packaged before shipping to Michigan State University
laboratory and analyzed for pH, texture (Burt et al., 1993), SOC, POXC
(Culman et al., 2012), and Cmin (Culman et al., 2013).

Soil pH was measured in a one-to-two parts soil water solution with a
standard pH meter. Textures of the samples were determined by the
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micro-pipette method described in (Burt et al., 1993). Soil organic car-
bon was determined by dry combustion using Leco TruMac CN Analyzer
(Leco Corporation, St. Joseph, MI). Permanganate Oxidizable Carbon
was determined following the protocol by Culman et al., (2012) with
two analytical reps and batches of eight samples, to minimize challenges
with variability associated with this method. Two-and-a-half-gram soil
samples were weighed and added to 50 mL centrifuge tubes with 2 mL of
0.2 mol L. KMnO4 and 18 mL of deionized (DI) water. The centrifuge
tube was shaken for exactly 2 min at 240 rpm and settled for exactly 10
min. Then, 0.5 mL of the supernatant was mixed with 49.5 mL of DI
water, transferred to a 96-well plate, and the absorbance was read with
the BioTek Synergy Microplate reader at the wavelength of 550 nm.

Water Filled Pore Space (WFPS) was determined for each soil type,
classified based on the soil texture, with 5 replications through a
gravimetric method adjusted from Haney and Haney, (2010). Forty
grams of soil were measured for volume, added to a 50 mL plastic beaker
with drainage holes in the bottom, wetted by adding 30 mL DI water,
mounted on a funnel, and allowed to drain. After 24 h, wet samples were
weighed, oven-dried at 105 °C for 24 h, and weighed again. WFPS for
each soil type was calculated based on the wet soil weight, the oven-
dried soil weight, and the volume. Carbon mineralization was deter-
mined using the rewetted method adjusted from Franzluebbers et al.,
(2000) as follows. Ten grams of air-dried soil samples were rewetted to
50% WEPS based on the soil type in a 100 mL beaker and incubated for
24 h in a 237 mL mason jar at 24 °C in dark. The CO, concentration was
measured by injecting 0.5 mL into LI-COR LI-820 infrared gas analyzer
(LI-COR Biosciences, Lincoln, NE) at the time of sealing the jar and after
24 h. Carbon mineralization was determined by the difference of initial
and 24 h CO; concentration.

2.5. Statistical analysis and data visualization

Fishers’ Least Significant Difference (LSD) tests were used to assess
the means of variables at EPAs at the 0.05 probability level with Bon-
ferroni adjustment. The data was processed in the software R version
3.5.2. with agricolae package. Local village clusters were determined by
the geographical locations of the sampling plots, as shown in Fig. A1 and
in more detail at http://globalchangescience.org/eastafricanode. In-
verse Distance Weighting (IDW) interpolation map of SOC at village
level was performed for six village clusters. Visualization of sampling
locations and IDW maps were graphed in R.

A Bayesian approach was employed to determine drivers of SOC,
POXC, and Cmin at the regional level (across all sites) and at the local
level (village clusters). All the statistical analyses of Bayesian linear
regression were performed in Python software version 3.6.5 with
package PyMC3 package version 3.8. Prior distributions were set within
classes of weakly informative priors: normal distributions for the
regression coefficients and the inverse-gamma distribution for each
model’s error term, with relatively wide prior uncertainty level (rela-
tively large variances). Hyperparameters for these priors, particularly
those determining distribution variances, were chosen according to the
agronomists’ prior interpretation of model uncertainty, in accordance
with a systematic prior elicitation framework (Oakley and O’Hagan,
2019). In this framework, agronomist insights provide assurance
regarding the order of magnitude of a regressor’s influence on a response
variable, and the prior variance for that regressor’s coefficient can be set
consistently with that level, or at a moderate integer multiple thereof (e.
g. 2 or 3). The Bayesian analysis thus explores the posterior possibilities
for the coefficient. The use of a multiple is considered a conservative
approach, since in principle it may result in posterior credibility in-
tervals which are slightly larger than needed. In practice, this conser-
vative approach only lengthens the numerical methods for the Bayesian
analysis slightly, while not resulting in notably larger uncertainty re-
ports. We adopt this approach, since it comes at a very low additional
computational cost, and a very low risk of reporting credibility intervals
which are too wide. Two independent Monte-Carlo Markov Chains
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(MCMC) were used as a way to check for adequate convergence with
10,000 iterations after burn-in with 500 samples, from a standard Gibbs
sampler.

Equation (1) and equation (2) show the linear regression models
used in the Bayesian framework in this study for regional scale and local
scale, respectively:

Y, = a+ pX; + o€ (@)
Y; = & + B, X; + o€y (2)

where in equation (1): for each plot i, the 4-dimensional vector Y; is
formed of the 3 possible responses SOC (g C kg soil 1), POXC (mg C kg
soil’l), and Cmin (mg C kg soil ™) of plot i; the 3-dimensional vector a is
the set of three y-intercepts; X; is a p-dimensional vector that include all
p predictors (explanatory variables MAT, NVDI, slope, clay, pH, N rate
from fertilizer, compost adoption, residue management, crop diversity,
weed presence, and tropical livestock unit; when all predictors are
included in the model, p = 11); f is the 3-by-p-dimensional matrix of
regression coefficients; ¢ is a 3-dimensional vector of standard de-
viations; and «; is a 3-dimensional vector of Gaussian noise terms, whose
components are assumed to be independent across all responses and all
fields. In equation (2), the index j was introduced to the label the cor-
responding local village cluster; the same model structure was used for
each village cluster as for the regional model of Eq. (1). For the data
analysis, all variables in X and Y are standardized (their empirical means
and standard deviations are computed across all i, and the variables are
then scaled to result in variables with empirical mean = 0 and empirical
standard deviation = 1). This allows an evaluation of the relative
importance of each predictor in each model, by comparing the values of
their corresponding f’s directly, since all standardized variables are at
the same dimensionless scale, in addition to determining whether each
predictor is significant by checking that its posterior 95% credible in-
terval does not contain the value 0. These two checks are facilitated by
direct visual inspection of the so-called forest-plots produced by the
Python package. The distance of a credible interval to 0 is an indication
of its regressor’s significance beyond the 95% credibility level, the size
of its overlap with O is an indication of how nearly significant it might
be. The distance of the middle of a significant credible interval to O (its
/s posterior mean, indicated by a dot) is a way to measure the strength
of a predictor.

The elevation was highly correlated with MAT and MAP (Table A2)
and thus was not included in the Bayesian linear regression model an-
alyses for climate and management. A relatively high correlation (R= —
0.69, p < 0.05, Table A2) was found between the precipitation and
temperature for the long-term 10-year average and the three growing
seasons. While not necessarily of concern, such correlations can lead to
collinearity problems in cases where both regressors are dominant
predictors compared to other explanatory variables. This in turn can
result in spurious conclusions if the regression with respect to one var-
iable is not robust to the omission of the other. It can also adversely
affect the significance of less dominant predictors. In our study,
robustness was an issue when omitting temperature as a predictor.
Specifically, the results from models including both MAP and MAT, and
MAP only showed that the model was not robust to the influence of MAP
when MAP was present (Figs. A2, A3). Thus, only the temperature was
used in the model as a climatic indicator.

The robustness of the Bayesian linear regression was tested with
reduced variables (Fig. A4). With the removal of three variables in the
model, the results for the significance of drivers did not vary notably.
Thus, the robustness of the model was confirmed to support our
conclusion. We also tried classical, frequentist linear regression. We
found that both methods used on the core models draw the same
conclusion regarding the significance of each of the models’ regressors.
To be specific, we find that for any explanatory variable X whose
regression coefficient § has a 95%-credibility interval in the Bayesian
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analysis that does not contain the value 0, that same variable X has a
regression coefficient f whose reported p-value in the frequentist anal-
ysis is <0.05. We also found that the Bayesian analysis is more robust in
the sense that the significance of variables remained more often when
some of the variables were removed from the model. Finally, the
Bayesian output represents a safer and more efficient report on uncer-
tainty (Neufcourt et al., 2018) because it provides full explanatory and
predictive uncertainty profiles (posterior distributions) without relying
on assumptions about the distribution of the observed data as a vector
beyond the likelihood model, whereas the frequentist method provides
reports only on means and variances of the regression coefficients, under
more restrictive distributional assumptions on the data. Thus, we decide
to use the Bayesian approach.

3. Results
3.1. Site characterization and common management practices by EPA

3.1.1. The environmental context of the study sites

The Linthipe site had the highest elevation and Mtubwi site had the
lowest elevation. Mesic sites with sufficient rainfall (960-978 mm)
include Nsipe, Nyambi, and Linthipe (Table 1). The marginal sites of
Golomoti and Mtubwi had low precipitation, and were the hottest at
27.20 °C and 27.17 °C, respectively. The coolest sites were Nsipe
(24.64 °C) and Linthipe (23.97 °C). Thus the widest range of environ-
ments among the seven sites, were represented by Golomoti, a hot and
dry site near the lakeshore with generally coarse soils, while Linthipe
was the most mesic, being cool, with sufficient and well-distributed
moisture for maize production (Mungai et al., 2016). Long term NDVI
of the 10 growing season from 2006 to 2016 was the highest at the Nsipe
site (0.57) and the lowest at the Nsanama site (0.49) (Table 1). For
growing season 2016, NDVI was highest Nsipe site and lowest in Nsa-
nama site.

Slopes of the plots from the collected survey with visual aid were
mainly nearly level or gentle (Table 1). Nsanama and Mtubwi sites had
no plots with steep slopes. The Golomoti EPA had the highest percentage
of nearly level for the plots (57.82%), and it was the only one with nearly
level as the most dominant slope. All other EPAs were dominated by the
gentle slope (41.13% to 63.43%). Both Nyambi and Mtubwi had the
highest percentage of gentle slope for the plots (63%). The percent of
moderately steep slopes ranged from 2.67 % to 12.67%. Nsipe EPA had
the highest number of moderately steep percentages (12.67%). The
steep slope plots made up 0% to 9% to the total.

3.1.2. Management practices by study sites

Overall, the range and intensify of farm management practices re-
ported were consistent with an earlier survey of these farms, for the
Central Malawi sites (Mungai et al., 2016). The only exception was
compost use, which was substantially higher in this study (2016), at
46-60% of Central Malawi fields surveyed compared to 23 — 46% in a
baseline survey conducted in this area in 2013. Across all 7 sites, 69 to
90% of the plots were fertilized (Table 2). Golomoti and Mtubwi both
have the lowest percentage of plots with fertilizer use (69%). The
average fertilizer N rate for each EPA was calculated based on the data
from plots with fertilizer use. Fertilizer N rate was highest in the Nsipe
(85 kg N ha™!) and the Linthipe (84 kg N ha’l), different from the two
lowest sites of Mtubwi (54 kg N ha™!) and Nsanama (47 kg N ha™1).
Compost application was moderately high, ranging from 36% to 60%,
compared to high fertilizer application ranging from 69% to 90%
(Table 2).

Crop management followed limited use of burning residues at 2 to
23%, and widespread use of intercrops (Table 2). Residue management
of plots largely involved incorporation after crop harvest (71% — 93%),
with burning residues being relatively high in only one location
(Nyambi, at 23%). For the majority of plots, at least two crop species
were grown. A wide range of crops per plot was observed in Central
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Table 1
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Environmental properties based on remote sensing and observed slope of surveyed farms (n = 1108) on surveyed farms at seven sites (Extension Planning Areas, EPAs)
in Central and Southern Malawi. Precipitation and temperature are mean of 10 years from 2006 — 2016. NDVI data is mean of growing season from 11,/1-4/30 of
2006-2016. The range is based on the minimum and maximum value in that area. The letters indicate the Least Significant Difference (LSD) test category with one-way

ANOVA test (comparison is across a row).

Golomoti Linthipe Kandeu Nsipe Nyambi Nsanama Mtubwi

n =147 n =132 n =141 n =150 n =175 n =187 n =176
Latitude 14.39° S 14.22° S 14.36° S 14.87° S 14.75° S 14.99° S 15.10° S
Longitude 34.58° E 34.11° E 34.62° E 34.74° E 35.56° E 34.53° E 35.27° E
Elevation (m) 549.41e 1235.09a 908.43b 919.48b 817.84c 663.48d 514.85f
Precipitation (mean, mm) 782.21f 959.54b 939.91c 978.30a 965.92ab 858.49%¢ 903.9d
Precipitation (range, mm) 754 1001 925 1048 912 989 937 1073 936 1001 850 891 844 1119
Precipitation 2016 GS* 641.86f 850.11a 733.65¢ 731.91c 759.92b 655.14e 665.42d
Temperature (mean, °C) 27.20a 23.97f 25.05d 24.64e 25.35¢ 26.23b 27.17a
Temperature (range, °C) 25.24 27.71 23.20 24.27 24.82 25.55 24.02 25.44 24.97 25.82 25.92 26.67 26.65 27.57
Temperature 2016 GS 30.41a 26.99f 28.25d 27.38e 28.28d 29.79¢ 30.03b
NDVI (mean) 0.54cd 0.53d 0.55bc 0.57a 0.52e 0.49f 0.53b
NDVI (range) 0.46 0.62 0.46 0.59 0.47 0.67 0.51 0.66 0.44 0.65 0.39 0.59 0.48 0.63
NDVI 2016 GS 0.49¢ 0.46e 0.47d 0.54a 0.49¢ 0.46e 0.51b
Slope
Nearly Level (%) 57.82 36.37 39.01 36.00 23.43 46.52 28.41
Gentle (%) 30.61 58.33 41.13 48.67 63.43 50.80 63.07
Moderately steep (%) 10.88 3.79 11.35 12.67 11.43 2.67 8.52
Steep (%) 0.68 1.52 8.51 2.67 1.71

@ GS is growing season from 11/1 to 4/30 of that year.

Table 2

Farm management practices of plots (n = 1108) on surveyed farms at seven sites (Extension Planning Areas, EPAs) in Central and Southern Malawi. The letters indicate
the Least Significant Difference (LSD) test category with one-way ANOVA test (comparison is across a row).

Golomoti Linthipe Kandeu Nsipe Nyambi Nsanama Mtubwi
n =147 n=132 n =141 n =150 n=175 n =187 n=176
Wealth score 0.039 be —0.150c 0.331 a 0.243 ab 0.002 be 0.249ab —0.021c
Average plot size (acre) 0.63 0.45 0.68 0.49 0.62 0.59 0.83
Range of plot size (acre) 0.08-3.00 0.05-2.00 0.08-2.50 0.04-3.00 0.10-3.00 0.11-2.00 0.01-4.00
2016 Fertilizer Nitrogen
Yes (%) 69 79 920 79 75 76 69
Mean at where applied (kg N ha™1) 64abc 84a 8lab 85a 59abc 47¢ 54bc
2016 Compost
2016 Yes (%) 46 56 60 49 39 45 36
2016 Residue Management
Incorporated (%) 81 89 93 92 71 92 81
Removal (%) 1 7 1 1 6 6 9
Burning (%) 18 4 6 7 23 2 10
2016 Crop diversity
Sole maize (%) 18.37 9.09 2.84 8.67 0.57 4.28 8.52
Range 1-5 1-5 1-5 1-5 1-3 1-3 1-3
No. per plot at when crop diversity > 1 2.53d 3.18a 3ab 2.83bc 2.88bc 2.73cd 2.67cd
Weeds (0-18)"
Mean 9b 10ab 11a 11a 9b 7c 10ab
Median 6 8 10 11 7 6 9
Tropical Livestock Unit
Yes (%) 76.87 81.82 66.67 81.33 68.57 64.17 54.55
Mean at when livestock present 0.63ab 0.46bc 0.93a 0.68ab 0.23c 0.19¢ 0.24c
Median 0.20 0.17 0.12 0.20 0.04 0.03 0.01
Max 6.60 2.60 9.33 6.50 1.22 1.00 1.55

@ Observations of weed presence at crop harvest of 2017.

Malawi (1 to 5) compared to Southern Malawi (1 to 3). Linthipe had the
highest numbers of crops per plot (3.18). A sole maize cropping system
made up 0.57% to 18.37% of all plots, with few sole maize plots in
Southern Malawi. Mean weed presence at all sites was above 9, equiv-
alent to 50% coverage of the ground at harvest (Table 2). Nsanama (6)
and Golomoti (6) had a low median weed presence, whereas Nsipe had
the highest median weed presence (11). In each EPA studied, the ma-
jority of households had livestock, which ranged from 54.55% to
81.82% (Table 2). However, the number of livestock were very low, with
a mean tropical livestock unit that ranged from 0.19 (Nsanama) to 0.93
(Kandeu).

3.2. Characteristics of soil properties

Overall sites were slightly acid, with the highest pH at the hot and
dry site of Golomoti (6.54) and the lowest at the cool and wet site of
Linthipe (6.09) (Table 3). Linthipe also had the lowest percentage of
sand (58.64%). Highest mean sand content was in Nsanama (82.62%),
followed by Nyambi (72.53%) and Mtubwi (70.69%), the three sites
located in Southern Malawi. Clay percentage means was highest in
Linthipe (17.36%), followed by Nsipe (15.22%) and Kandeu (15.14%).

Mean of SOC ranged from 6.31 g C kg soil ! to 16.17 g C kg soil !
(Table 3). Linthipe site had both the highest SOC (16.17 g C kg soil™).
The three sites with the highest sand percentage, Nyambi, Nsanama, and
Mtubwi, also the three lowest SOC means. The mean POXC value was
highest in Linthipe (504.52 mg C kg soil 1), and lowest in Nsanama
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Table 3
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Mean soil properties of plots (n = 1108) on surveyed farms at seven sites (Extension Planning Areas, EPAs) in Central and Southern Malawi. The letters indicate the LSD

test category with one-tail ANOVA test (comparison is across a row).

Golomoti Linthipe Kandeu Nsipe Nyambi Nsanama Mtubwi

n =147 n =132 n =141 n =150 n =175 n =187 n =176
pH 6.54a 6.09d 6.13cd 6.33bc 6.19bcd 6.33bc 6.34b
Texture
Sand (%) 69.20bcd 58.64e 67.58 cd 67.06d 72.53b 82.62a 70.69bc
Silt (%) 18.09bc 24.00a 17.27cd 17.72cd 15.80d 10.97e 19.91b
Clay (%) 12.71b 17.36a 15.14a 15.22a 11.67b 6.41d 9.41c
SOC (g C kg soil 1) 10.29¢ 16.17a 12.39b 12.25b 8.07d 6.31e 8.97cd
Coefficient of variation 0.50 0.47 0.44 0.41 0.43 0.54 0.55
Skewness 2.69 0.57 0.85 0.78 1.93 1.87 2.93
POXC (mg C kg soil 1) 386.9bc 504.5a 432.3abc 479.6a 369.3c 291.5d 446.7ab
Coefficient of variation 0.42 0.41 0.52 0.52 0.52 0.69 0.64
Skewness 0.65 0.49 0.61 1.19 2.01 2.41 1.72
Cmin (mg C kg soil 1) 52.76b 44.96¢ 56.99b 65.34a 28.71d 39.25¢ 40.73c
Coefficient of variation 0.43 0.37 0.41 0.40 0.44 0.52 0.40
Skewness 0.78 1.03 0.78 1.00 1.75 1.52 0.68

(291.49 mg C kg soil™!). This followed the pattern observed for SOC.
However, Mtubwi site with low SOC, had relatively high POXC. Cmin
value was highest in Nsipe site and lowest in Nyambi site, and generally
followed the SOC status.

Soil organic carbon was correlated to POXC, with high Person’ co-
efficient in three of the central sites, Golomoti, Linthipe and Kandeu
(Table 4). However, SOC was not significantly associated with the Cmin
at two sites, Linthipe and Nyambi. The two labile factions, POXC and
Cmin, were not correlated at the Nyambi and Mtubwi sites, whereas on
other sites there was an association at low levels (0.19 to 0.47).

3.3. Regional drivers of soil properties

The regional analysis was conducted for all plots included in this
study. Posterior results of the Bayesian regression analysis with 2 chains
of 10, 000 iteration were shown in Fig. 2. The dependent variable is at
95% Bayesian credibility if the interval of the drivers (blue line) resides
on one side of the value zero. The posterior result lines show the range of
95% Bayesian credible intervals, where the two lines depict the credi-
bility intervals for the two chains, as a convenient visual gauge of
convergence of the regression’s computational method.

3.3.1. soC

The dominant drivers of SOC were environmental and soil edaphic
factors, including MAT, slope, NDVI, and clay content, where the latter
two were highly positive drivers (Fig. 2a). The 10-year average MAT was
negatively related to SOC, at medium magnitude (Fig. 2a, Table 4). The
slope had a modest negative influence and soil pH had a modest positive
association with SOC. Management practices’ effects were identified, at
a small magnitude (Table 5). These included weed presence, which was
a larger determinant for SOC than residue management and crop di-
versity. The number of tropical livestock units per household was found
to be negatively associated with SOC.

3.3.2. Labile carbon

The main determinants of POXC were identified as NDVI and clay,
which were also important determinants of SOC (Fig. 2b). Soil pH was
also significant at a small magnitude. The only significant management

Table 4

practice indicator was crop diversity. However, environmental factors
did not show an effect on POXC and only one management factor was
influential in a positive way, that of crop diversity. Mineralizable C was
also not associated with the climatic indicator, MAT. Yet, mineralizable
C was more sensitive to drivers in the model compared to POXC
(Fig. 2¢). Four environmental variables and two management indicators
were determinants of Cmin. Similar to the SOC, NDVI, soil pH, and clay
percentage were positively related to Cmin. The N rate from fertilizer
application was found to be positively associated with Cmin, while no
significance was shown for SOC and POXC. Residue retention was also a
positive driver for Cmin.

3.4. Local level drivers of soil properties

The climatic indicator, ten-year average MAT, was a dominant
determinant of SOC at the regional level and associated with SOC var-
iations at three local sites (Fig. 3 and Fig. 4). Clay content and NDVI
showed markedly positive influences on SOC at several sites, and the
magnitude was considerably larger than all other indicators in the local
model.

At the Central Malawi sites, NDVI was a positive driver for SOC at
varying magnitude for two local sites, but none of the management
controls had shown influence on SOC except livestock ownership in the
Linthipe cluster (Fig. 3). At the Golomoti cluster, the low agricultural
potential site, NDVI did not show any influence on SOC variation. Soil
organic carbon in plots at the Linthipe village cluster was highest
compared to other clusters. At the Linthipe cluster, three main de-
terminants in the order of large to small magnitude are clay content,
NDVI, and livestock. Compared to the Golomoti and Linthipe village
clusters, plots in Nsipe had more steeper slopes (Table 1). The slope was
identified as a negative determinant for SOC at the Nsipe site. In addi-
tion, the Nsipe site was identified as the coolest site in this study
(Table 1), thus temperature was a positive determinant for SOC besides
NDVI and clay content. Crop diversity was also positively associated
with SOC in Nsipe.

In Southern Malawi, a distinctly positive effect of clay on SOC was
found at all sites (Fig. 4). Compost had a positive influence on SOC in
Nyambi, where few plots were sole maize. Even within the same EPA,

Pearson correlations between SOC, POXC, and Cmin by Extension Planning Areas in Central and Southern Malawi. Values with ***,** and * indicate correlations are

significant at the levels p < 0.001, p < 0.01, and p < 0.05, respectively.

Golomoti Linthipe Kandeu Nsipe Nyambi Nsanama Mtubwi

n =147 n =132 n =141 n =150 n =175 n =187 n =176
SOC (g C kg soil ) and POXC (mg C kg soil 1) 0.70%** 0.86%** 0.31%** 0.29%** 0.43%** 0.32%**
SOC (g C kg soil ') and Cmin (mg C kg soil 1) 0.14 0.40%** 0.093 0.63*** 0.51%**
POXC (mg C kg soil ') and Cmin (mg C kg soil 1) 0.37%** 0.21* 0.19* 0.026 0.27%** 0.14
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Fig. 2. Posterior results of Bayesian regression model with 2 chains of 10, 000 iterations explicit the 95% credible intervals associated with drivers of SOC, POXC,

and Cmin across all plots (n = 1108) in Central and Southern Malawi.

Table 5

Bayesian statistics summary, significant variables are in bold with red indicate positive influence and black indicate negative influence. Values with * indicate 95%

credible significant at the level of p < 0.05.

socC POXC Cmin

Mean (sd) 95% Credible interval | Mean (sd) 95% Credible interval | Mean (sd) 95% Credible interval
alpha 0.001 (0.02) (-0.036,0.038) 0(0.025) (-0.041, 0.046) 0.003 (0.026)  (-0.045, 0.052)
Temperature -0.124 (0.024)  (-0.172, -0.086)* -0.036 (0.037)  (-0.096, 0.029) -0.035(0.029)  (-0.084, 0.019)
NDVI 0.287 (0.026)  (0.234, 0.329)* 0.231(0.034)  (0.163, 0.285)* 0.309 (0.036)  (0.249, 0.38)*
Slope -0.078 (0.023)  (-0.122,-0.039)* -0.016 (0.032)  (-0.07, 0.046) -0.067 (0.033)  (-0.126, -0.003)*
Clay 0.479 (0.024)  (0.439, 0.517)* 0.189 (0.033)  (0.139, 0.266)* 0.172 (0.027)  (0.125, 0.223)*
pH 0.067 (0.023)  (0.03, 0.104)* 0.048 (0.027)  (0.006, 0.104)* 0.161(0.028)  (0.117, 0.215)*
N fertilizer rate | 0.01 (0.024) (-0.027, 0.056) -0.028 (0.032)  (-0.084, 0.032) 0.042 (0.024) (0.001, 0.092)*
Compost 0.039 (0.023)  (-0.008, 0.081) 0.043 (0.031)  (-0.007, 0.094) -0.012 (0.026)  (-0.058, 0.034)
Residue 0.058 (0.025)  (0.015, 0.103)* 0.018 (0.027)  (-0.039, 0.059) 0.066 (0.03) (0.012, 0.122)*
Crop Diversity | 0.072(0.022)  (0.037,0.115)* 0.074 (0.029)  (0.009, 0.126)* 0.015(0.028)  (-0.029, 0.07)
Weed 0.093 (0.03) (0.038, 0.136)* 0.035(0.032)  (-0.02, 0.09) 0.045 (0.028)  (-0.002, 0.096)
Livestock -0.047 (0.024)  (-0.082, -0.006)* 0.018 (0.028)  (-0.036, 0.071) -0.006 (0.027)  (-0.051, 0.04)
sigma 0.552(0.022)  (0.509, 0.59) 0.877(0.038)  (0.81,0.943) 0.823(0.038)  (0.75, 0.881)

SOC spatial distribution in the cultivated field varied (Fig. 4b and
Fig. 4c). The Mtubwi village cluster 1 had a higher SOC than the Mtubwi
village cluster 2. At the low SOC village cluster, Mtubwi 2, several in-
dicators had positive effects on SOC including clay content, fertilizer
application, weed presence, and livestock. The tropical livestock unit
was found to be positively related to the highest SOC cluster in central
Malawi and the lowest SOC cluster in southern Malawi.

4. Discussion
4.1. Soil total and labile C
Overall, soil C status was low at the lakeshore site of Golomoti

(10.29 g C kg soil 1) site and the Southern sites of Nyambi (8.07 g C kg
soil’l), Nsanama (6.31 g C kg soil’l), and Mtubwi (8.97 g C kg soil™1).

In contrast, at the cool, mid-altitude site, Linthipe, soil C was 16.17 g C
kg soil !, and we note that this site was fine-textured, with an average of
17.36 % clay. This site was at 0.67 — 3.23 °C cooler than other sites
(Table 3). These findings are consistent with the widely reported role of
fine-textured soil in SOC accrual through physical protection (Negasa
et al., 2017; Shang and Tiessen, 1997). Cooler temperatures are also
often associated with slow SOC turnover, as seen here (Fissore, et al.,
2008).

The moderate soil C values we observed on Malawi farmers’ fields
generally are consistent with previous reports. A study with sites both
north and south of our survey, reported values of 6 to 7 g C kg soil ! and
0.3 to 0.5 g N kg soil™! (Kihara et al., 2016). On the other hand, the
mean value of SOC (19.5 g C kg soil 1) in Nsipe reported by Mponela
et al., (2020) was higher than our findings for Nsipe, a mean value of
12.25 g Ckg soil~}. We note that the soil survey of Nsipe by Mponela and
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Fig. 3. Inverse Distance Weighting (IDW) interpolation map of SOC and posterior results of Bayesian regression model with 2 chains of 10, 000 iterations explicit the
95% credible intervals associated with drivers of SOC at three village clusters, Golomoti (n = 115), Linthipe (n = 96), and Nsipe (n = 112) in Central Malawi.
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Fig. 4. Inverse Distance Weighting (IDW) interpolation map of SOC and posterior results of Bayesian regression model with 2 chains of 10, 000 iterations explicit the
95% credible intervals associated with drivers of SOC at three village clusters, Nyambi 1(n = 115), Mtubwi 1 (n = 61), and Mtubwi 2 (n = 115) in Southern Malawi.

colleagues (2020) included non-cultivated natural sites as well as possible to discern here. Perspective is, however, provided by a study by
cultivated sites, which is expected to lead to a higher mean value overall. Snapp (1998) who reported a mean value of 17 g C kg™ from hundreds
The extent to which soil C values have changed over time is not of cultivated fields in Central Malawi, substantially higher than
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observations reported here from the same region. Changes in soil C over
two decades are reported in a longitudinal study in the Machinga district
(which included three of our surveyed sites), consistent with a decline in
SOC having occurred specifically for intensively cultivated fields
(Mpeketula, 2016).

There is limited data on thresholds for soil C, which poses a challenge
to the interpretation of the soil C status we observed. Literature sum-
marized by Mponela et al. (2020) indicated critical limits of SOC for
agricultural productivity that ranges from 5 to 20 g C kg soil . Burke
et al. (2020) evaluated the SOC threshold from cultivated fields from our
site locations and found that 9.4 g C kg soil ™! was the critical value in
terms of a positive maize yield response to N fertilizer application. Based
on these reports, the three EPA sites in Southern Malawi have poor SOC
status generally, with a limited potential for high yield response to
fertilizer amendments.

Active C indicators such as POXC and Cmin provide insights into soil
C trends and function (Frost et al., 2019). Generally, a high correlation
of these indicators was observed relative to SOC status. Cmin was found
to be an exception at Linthipe and Nyambi, two sites with intensive
production practices, as there was almost nil relationship to SOC at these
sites. Cmin is sensitive to frequent disturbance, possibly more so than
SOC (Jilling et al., 2020). The other exception was POXC levels in
Southern Malawi at 291.5 mg C kg soil ! to 446.7 mg C kg soil !, which
were levels similar to those observed in Central Malawi, and did not
follow the low SOC observed in Southern Malawi (6.31 to 8.97 g C kg
soil1). The high turnover rate of POXC in Southern Malawi could be due
to the (modestly) higher temperature range observed at these sites.
Active carbon fractions may be easily decomposed under high temper-
atures (Janzen et al., 1992), and lost through cultivation (Shang and
Tiessen, 1997). We also note that sand fraction associated labile C is
susceptible to oxidation and less stable compared to clay and silt (Shang
and Tiessen, 1997), and we found high sand content in Southern sites.
Such findings confirm that processes widely studied under controlled
environmental conditions, such as temperature accelerated carbon loss
from labile pools, can help explain POXC and Cmin distribution patterns
found on cultivated fields. Model prediction of labile and stable C pools
can be informed by this study, especially in setting parameters for soil
types common on smallholder farms of Southern Africa.

4.2. Environmental factors

The surveyed smallholder farm sites with warmer temperatures were
consistently associated with low soil organic C in this study (Fig. 1). Soil
C loss is biologically mediated, thus a temperature rise is expected to be
associated with rapid soil C loss due to high activity. Studies in the U.S.
Central Plain Grassland found low SOC at sites with high annual tem-
peratures (Burke et al., 1989). Indeed, the SOC to climate relationship is
a vital component in most regional assessments of SOC (Burke et al.,
1989; Calvo de Anta et al., 2020; Hontoria et al., 1999; Page et al.,
2013). At the same time, variability in terms of climate is expected to be
modest at a local scale. Not surprisingly, temperature was not always a
significant driver of the SOC at individual sites. However, SOC was
found to be positively related to temperature and NDVI at Nsipe, the
coolest site; there could be high biomass accumulation within this area
which had the highest NDVI mean value of 0.57 (Fig. 3, Table 1). The
strong temperature the soil C pools are essential to predict the soil C
change with future management and potential climate change.

The negative relationship of slope with SOC we observed has been
found in other studies, due to processes associated with cultivated
sloping lands, that of erosion and translocation of clay and silt particles
(Negasa et al., 2017; Ottoy et al., 2017; Seibert et al., 2007). In a study
conducted in Southern Ethiopia at smallholder farmers’ managed land,
SOC was found to be negatively influenced by the slope (Negasa et al.,
2017). Though the majority of the fields were flat or moderately sloped,
slope still showed a negative influence on SOC. This is consistent with
erosional processes having a large effect on SOC loss, which may well be
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underappreciated on fields that have almost no appreciable slope.
Similarily, study across a range of land use classes in Southern Tanzania
found erosion to be high on cultivated ground with less steep slopes
(Wickama et al., 2014).

Consistent with the literature, we found a markedly positive rela-
tionship of clay content and high SOC (Burke et al., 1989; Meersmans
etal., 2008; Tan et al., 2004). This was due to the large surface area and
organo-mineral complexes associated with fine particle size (Chaplot
etal., 2010; Six et al., 2002). This edaphic factor was a highly consistent
positive driver of SOC, POXC and Cmin. It was an important positive
factor at almost all sites at the local scale, as well as at the regional scale.
Soil pH was positive at varying magnitudes for the total and labile C
fractions. The positive relationship of soil pH and SOC in slightly acid
soil was found earlier in forest soils in North America due to enhanced C
stabilization through reduced mineral surface charges (Fissore et al.,
2008).

The key role of soil texture shown in our study, as a determinant of
total and labile soil C, is consistent with the need for management that
targets organic amendments and continuous cover to coarse textured
soils to maintain soil carbon. In addition, erosion control measures must
be implemented on all sloped fields, including those of moderate degree,
or with micro-topographical features.

4.3. Normalized Difference Vegetation Index

Vegetative cover, as reflected by NDVI values, is an important pre-
dictor of SOC (Kunkel et al., 2011; Page et al., 2013; Zhang et al., 2019).
This is expected for natural areas where biomass inputs are a key
determinant of SOC. However, cultivated soils are subjected to diverse
management practices that influence decomposition as well as accrual
processes, (e.g., soil disturbance, organic and inorganic amendments,
and diversity of crops grown). Few studies of intensively cultivated lands
have been conducted, and this is the first that we know of conducted at
multiple scales for smallholder farms in the sub-humid tropics. The 10-
year growing season average NDVI we used is a highly significant driver
of both stable and labile C pools. This was observed at the regional scale
and for SOC at three out of six sites at local scale. Golomoti village
cluster is hot and dry with low SOC, and in this environment NVDI was
not a significant positive driver for SOC. Modeling SOC in tropical
cultivated fields requires consideration of vegetative cover, through
remote sensing proxies such as NDVI. Further studies are needed to
assess if NDVI is less useful at marginal sites, and local scales.

4.4. Farm management factors

This is one of the first reports of management practices as drivers of
soil C pools at multiple scales across a cultivated smallholder landscape.
Over 1000 farm plots are monitored in this project, where management
practices were evaluated for effects on soil organic matter fractions at
the regional and local scales. The documentation of the management
practice across Central and Southern Malawi can serve as a guide for
extension educators and policymakers regarding the preconditions for
opportunities and challenges in promoting sustainable practices. Over-
all, we found consistent evidence for biomass in the form of crop di-
versity and weed presence that had positive effects on SOC. POXC, on
the other hand, was not influenced by management practices except
crop diversity. This may be related to the existence of high sand fractions
in the soil, which has previously been shown to be associated with low or
variable POXC values (Plaza-Bonilla et al., 2014; Wade et al., 2020).
Crop diversity is a key component of sustainable agricultural intensifi-
cation, and several studies have recently pointed to a unique role for
intercrops in soil C accrual (Cong et al., 2015; Garland et al., 2017;
Powlson et al., 2016).

Residue retention through incorporation had positive associations
with SOC and Cmin in the regional level study. At the local level, residue
retention was not associated with SOC, this may be due to the modest
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size of the datasets at local levels which reduces the ability to detect
drivers. Overall, the biological fraction Cmin appears to be sensitive to
crop management, including crop residue use, more so than POXC. A
previous study of conservation agriculture trials conducted on-farm in
Malawi over multiple years provides experimentation evidence that
crop residue retention can enhance Cmin (Ngwira et al., 2013). In our
survey, farmer adoption of no-tillage was almost nil, so it was not
possible to evaluate the effect of tillage, only the crop diversity aspect of
conservation agriculture practices.

One of the challenges to promoting crop residue retention to build
SOC is the high competition for this organic resource. It is often
preferred to use crop stover as feed, rather than to retain to amend the
soil (Tittonell et al., 2015; Valbuena et al., 2015). In Central Malawi,
however, livestock ownership is low, and a survey in 2013 indicated that
residues are generally retained, with the incorporation of residues re-
ported for three-quarters of plots either soon after crop harvest or within
six months (Mungai et al., 2016).

Mixed cropping, which enhances residue biomass quantity and di-
versity of tissue types, is widely practiced in Malawi (Bezner Kerr et al.,
2019; Wang et al., 2019). In our study, crop diversity (more than one
crop per plot, grown as an intercrop) was found to be associated with
enhanced SOC, and POXC. Maize intercrops are the dominant cropping
pattern in Malawi (Silberg et al., 2017). This adds to growing evidence
that biochemical diversity of residue tissues through crop diversity can
positively influence soil organic matter fractions. Such processes may be
influenced by the quantity of belowground root biomass, which appears
to be high in an intercrop compared to a rotational system or a mono-
culture (Naab et al., 2017). Root inputs and high SOC accrual were also
found in a six-year field experiment, associated specifically with inter-
crop diversity (Cong et al., 2015).

Weed presence is often considered as a negative factor in agriculture
development, in terms of plant competition, and thus suppression of
crop productivity. It has not, to our knowledge, been previously re-
ported on in relationship to soil organic matter accrual at the regional
scale, at least for cultivated fields in Malawi. Weeds are a source of
biomass above and belowground in field plots, and thus would be ex-
pected to generally enhance soil organic carbon (Arai et al., 2014).

The management practices associated with high soil C status were all
related to biomass, notably crop diversity, residue incorporation, and
weed presence. Taken together with the key determinant of NDVI, this is
indicative of the need to pay close attention to biodiversity and man-
agement of organic inputs as SOC regulating factors in agricultural
landscapes. Consistent with these findings, a meta-analysis of small-
holder farm studies recently highlighted the role of legume intercrops in
providing enhanced organic inputs belowground, relative to sole crop-
ping, leading to modest but significant SOC accrual (Powlson et al.,
2016). Jayne et al., (2019) called for policies that support the man-
agement of organic in conjunction with inorganic inputs, for sustainable
intensification to be achieved in Africa. Our findings corroborate the
need for agricultural policies and mapping of soil carbon efforts, that
pay close attention to mixed cropping patterns and weed distribution as
mediators of soil carbon accrual in cultivated fields.

5. Conclusions

Through integrating the Bayesian statistical approach and on-farm
study in Malawi cultivated fields, we found environmental and soil
edaphic variables are determinants of labile and stable soil C pools.
Overall, soil clay content and NDVI were key determinants, at both
regional and local scales. Interestingly, the one exception was the hot,
dry site of Golomoti, where SOC status was low, and there was no effect
of NDVI. Local scale studies of marginal farm sites may not be able to
rely on remote sensed NDVI, in contrast to countrywide and larger scale
studies. Management variables had modest effects, but a consistent
pattern was observed in that management associated with enhanced
biomass quantity and diversity were positively associated with soil C
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pools: namely, crop diversity, weed presence, and residue retention.
Inorganic nutrient amendment (fertilizer) was associated with the
operationally defined fraction of mineralizable C, but it did not show
any positive influence on other C fractions that were evaluated in this
study. Policy implications are that fertilizer access is not sufficient on its
own for sustainable SOC management, that crop diversity should not be
overlooked as a means to enhance soil C accrual. Weeds in resource-
limited cropping systems in Sub-Saharan Africa may also provide SOC
benefits, a research topic that may have been entirely overlooked.
Overall, the benefits associated with enhancing the quality and quantity
of organic resources on smallholder farms require urgent attention, to
reverse soil degradation in support of sustainable intensification.
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