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ABSTRACT ARTICLE HISTORY
This paper first studies the optimal reinsurance problems for two compet- Received 12 April 2021
itive insurers and then studies the optimal reinsurance premium pricing Accepted 3 January 2022
problem for their common reinsurer by using the dynamic programming KEYWORDS
technique. The two insurers are subject to common insurance system- Reinsurance; dynamic
atic risk. Each purchases proportional or excess-of-loss reinsurance for risk  programming; compound
control. They aim to maximize the expected utilities of their relative termi- Poisson risk model;

nal wealth. With the insurers’ optimal reinsurance strategies, the reinsurer principal-agent model;
decides the reinsurance premiums for each insurer, also aiming to maximize model ambiguity

the expected utility of her terminal wealth. Thus, the optimal reinsurance

pricing problem is formulated as a Stackelberg game between two com-

petitive insurers and a reinsurer, where the reinsurer is the leader, and the

insurers are followers. Besides, all three players take model ambiguity into

account. We characterize the optimal strategies for the insurers and the

reinsurer and provide some numerical examples to show the impact of

competition and model ambiguity on the pricing of reinsurance contracts.

1. Introduction

With the development of the insurance business, in recent years, many companies enter the insurance
market. In an increasingly complex environment, these companies face new sources of risk. On the
one hand, these insurance companies call for efficient measures to reduce insurance risk and adapt
their optimal portfolio strategy for capital investment to stay in business. On the other hand, they
have to take efficient measures to fight for a market share against their competitors. This has attracted
interest from researchers in actuarial mathematics for some years. The primary tool for insurance
companies to control insurance risk remains reinsurance to reduce the shock of uncertain claims.
The insurers also invest their surplus into financial markets to improve profits compared to holding
pure cash positions. Consequently, for several decades, reinsurance and investment problems have
been studied in the literature using various optimization criteria.!
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The above-cited works, and many others, only consider a single insurer’s decision and ignore the
interaction among insurers in the insurance and reinsurance markets. In practice, however, insur-
ers tend to evaluate their performances relative to their peers, as established by some economic and
sociological research, emphasizing the importance of relative concerns (see, for example, Demarzo
et al. 2008).

Considering that different insurers have different risk-tolerance levels, many scholars have investi-
gated insurers’ relative performance concerns. Most of the problems are solved under the framework
of non-zero-sum stochastic differential games. Bensoussan et al. (2014) study the non-zero-sum rein-
surance and investment game between two insurers; Espinosa & Touzi (2015) discuss the optimal
investment strategy and prove the existence of the non-stationary Nash equilibrium in an N-person
game. Siu et al. (2017) study a class of non-zero-sum excess-of-loss reinsurance-investment games
between two competitive insurers subject to systematic risk described by a general compound Pois-
son risk model. Deng et al. (2018) study the reinsurance and investment strategy with defaultable
corporation bonds in a non-zero-sum stochastic differential game. Zhu et al. (2019) consider the
optimal time-consistent investment and proportional reinsurance strategies for two mean-variance
insurers subject to relative performance concerns. These works illustrate the importance of taking
competition into account in making reinsurance and investment decisions. Nevertheless, these works
all neglect to consider the reinsurer’s point of view in discussing the optimal reinsurance problem.
In fact, since the reinsurer typically has a monopoly position in the reinsurance market, one must
presume that the reinsurer plays a critical role in designing any reinsurance contract. Typically, the
reinsurer will decide the contract price of reinsurance, and at the very least, this reinsurance premium
will be the subject of negotiation with each insurer. Each insurer’s decision is then to determine what
level of risk transfer they can afford, in the view of their own constraints, risk aversion levels, and
concern about what their competition might be doing. Therefore, in this paper, we investigate the
reinsurer’s premium pricing optimization problem as well as the insurers’ reinsurance optimization
problem.

On the question of the joint interests of insurers and reinsurers, many scholars study this
as an optimization problem, but only between one insurer and one reinsurer. For example, Hu
etal. (2018a, 2018b) and Hu & Wang (2019) put one insurer and one reinsurer into the principal-agent
model and discuss the optimal proportional reinsurance problem for the insurer and the optimal
reinsurance premium pricing problem for the reinsurer. Gu et al. (2019) studied a similar optimiza-
tion problem, which focuses on the optimal excess-of-loss reinsurance and investment problem in the
principal-agent model. In a stochastic Stackelberg differential game setting, Chen & Shen (2018,2019)
depict the leader—follower relationship between reinsurer and insurer in the insurance market and
analyze an optimal reinsurance strategy. Recently, Bai et al. (2022) investigate a hybrid stochastic
differential reinsurance and investment game between one reinsurer and two insurers, including a
stochastic Stackelberg differential subgame and a non-zero-sum stochastic differential subgame. This
work is closest to our motivation. However, Bai et al. (2022) neglect modeling uncertainty (i.e. ambi-
guity), a form of uncertainty that cannot be measured accurately or hedged, but which is on the minds
of all insurance professionals who wonder about the robustness of the risk models which they use to
make their business decisions.

Ambiguity was introduced as a form of unmeasured uncertainty by Knight (1921). It has been
adopted and developed as a way of addressing modeling uncertainty in portfolio allocation. Some
scholars investigate modeling uncertainty on yields and other drift parameters in stochastic models
for risky assets. For example, Maenhout (2004, 2006) assume ambiguity about the stock’s expected
return rate and applies the general robust control framework of Anderson et al. (2003) to the dynamic
portfolio choice problem in finance, deriving closed-form expressions for optimal strategies for an
inter-temporal consumption problem. Some scholars study model uncertainty on interest rates (e.g.

et al. (2016) for minimizing the probability of ruin, and to Bi & Guo (2013), Zeng et al. (2012, 2016), Zhang et al. (2017), and Chen
& Shen (2019) for mean-variance criteria.
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Flor & Larsen 2013), and some discuss model uncertainty on the inflation rates. We refer to Munk
& Rubtsov (2014), who solve a stock-bond-cash portfolio problem by assuming that the investor is
averse to ambiguity about the inflation model. Branger & Larsen (2013) and Jin et al. (2013) inves-
tigate the optimal investment problem with ambiguity induced by the uncertainty over the intensity
of jumps in a market with event risk. It is worth noting that these works mainly focus on the drift of
assets in financial markets. In recent years, the idea of model ambiguity was also applied to actuar-
ial research. Some works consider the uncertainty of a diffusion risk model (see Yi et al. 2013, Hu
et al. 2018b); some consider the uncertainty over the claim intensity of a classic risk model (the
compound Poisson model), see Zeng et al. (2016) and Gu et al. (2017).

Motivated by the papers mentioned above and by the joint interest of two insurers and one rein-
surer, we study the optimization problems for all three parties. First, we consider the reinsurance
problem for two competing insurers who are subject to common shock (or systematic risk) from the
insurance business. They purchase reinsurance for risk control and invest their surpluses at a fixed
income rate. The aims are to maximize the expected utilities of their relative performances against
their competitors’ at a terminal time. Besides, we assume that the two insurers are averse to ambiguity
(model uncertainty) about the intensity of common shock. We formulate the insurers’ problem as a
robust non-zero-sum game for the proportional reinsurance case and the excess-of-loss reinsurance
case. The robustness is built against the model uncertainty mentioned above by adding an appro-
priate penalty term in the objective function and by considering the optimization problem within
a worst-case scenario. The penalty compactifies the optimization on the space of models, ensuring
a well-posed problem where the worst-case model can be computed. We characterize the insurers’
strategies theoretically and numerically.

Second, given the insurers’ optimal demand for risk control, we study the question of optimizing
reinsurance premiums (i.e. the prices of reinsurance contracts) for the reinsurer. Like the insur-
ers, the reinsurer is assumed to be averse to ambiguity about the intensity of common impact. She
determines the reinsurance premiums dynamically for both insurers, and she invests the premium
income into a risk-free asset. The aim is to maximize the expected utility of her terminal wealth. In
line with Hu et al. (2018a, 2018b), Hu & Wang (2019), Gu et al. (2019), and Bai et al. (2022), we
determine the optimal reinsurance premium under the principal-agent framework and, by applying
the dynamic programming principle, we write down the Hamilton-Jacobi-Bellman (HJ]B) equation
for the problem. Equilibrium strategies are considered for the cases of proportional and excess-
of-loss reinsurance contracts. Again, robustness is achieved in the optimization space by using a
penalty term to build a well-posed worst-case model. When the claims against the insurers are expo-
nentially distributed, we obtain the optimal reinsurance premium numerically. Further numerical
analyses are provided to illustrate the impact of competition, model uncertainty on the reinsurer’s
decision.

To our knowledge, we are the first to consider the robust optimal reinsurance and optimal rein-
surance premium for two insurers and one reinsurer. Recently, several papers have also considered
the optimal pricing of reinsurance contracts, see, e.g. Hu et al. (2018a, 2018b), Hu & Wang (2019),
and Gu et al. (2019). However, these papers only consider the game between one insurer and one
reinsurer. They cannot effectively reflect how competition in the insurance business impacts the pric-
ing of reinsurance contracts. We think that this aspect is particularly important in view of the fact
that reinsurers are often in a monopoly position, where the marketplace constraint on pricing can-
not come merely from supply and demand. Our numerics illustrate clearly how reinsurance pricing
responds to insurers’ competitive behavior; see for instance the explanations surrounding Figure 6 in
Section 3.

The outline of this paper is as follows. We introduce optimization problems for two insurers in
Section 2. This section assumes that the two competing insurers put their surpluses into the bank
and purchase reinsurance for risk control. Optimal reinsurance strategies are determined in the cases
of proportional reinsurance and excess-of-loss reinsurance. In Section 3, we study the optimization
problem for the reinsurer to derive the optimal reinsurance premium rate based on the insurers’
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strategies determined in Section 2. Numerical analyses are given in Sections 2 and 3 to illustrate our
theoretical results. Section 4 concludes the paper.

2. Optimization problems for two insurers

Let (€2, F, {Ft}icfo,1]- P) be a complete filtered probability space indexed by a finite time horizon
[0, T], where F; is right-continuous, P complete filtration. In this section, we consider the optimal
reinsurance problem for two competing insurers.

2.1. Model setup

We start by describing the surpluses of two competing insurers, namely Insurer 1 and 2, who are sub-
ject to common insurance shock. The surplus of Insurer k = 1, 2 is described by Cramér-Lundberg
(C-L) model, i.e.

Ni(£)4+N(t)
dWi(t) = e+ VG At —d Y0 Z Wi(0) = wg,
i=1

where wy > 0 is the initial surplus, {Z; ;};cn are the claims against Insurer k, which are indepen-
dent and identically distributed (i.i.d) positive random variables taking values in [0, Dg], where
Di(< +00) is the maximum claim amount for Insurer k. Zf&p N Zj; represents the total claims
that Insurer k pays up to time f and Nk () + N(f) represents the cumulative number of claims. We
assume that {N;(£)}t>0, {N2(f)}t=0 and {N(#) }s>0 are three mutually independent Poisson processes
with intensity A; > 0,A2 > 0 and A > 0 respectively. N(f) represents a common systematic insur-
ance risk that affects both Insurers 1 and 2,2 and Ni(f) represents Insurer ks idiosyncratic insurance
risk. C} is the premium rate of Insurer k determined according to the expected value principle, i.e.

(22 = (1 + nk)E[Zk,], where ni > 1 is the insurance safety loading of Insurer k.
Assumption 2.1: We assume that {Zy ;} have distribution function Fi(z) and
E[7;e %] < o0, k=122,

where ¢ :== max(y1, 2. ¥), Y1 and y are the risk preference parameters of Insurer 1 and 2, and y is the
risk preference parameter of the reinsurer.

In this paper, both insurers are allowed to purchase proportional reinsurance or excess-of-loss
reinsurance for risk control, and to put their surpluses into the bank with risk-free interest rate r > 0.
At any time ¢t € [0, T, let ax(t) be the self-retention level of Insurer k and

Zy; = Ly i(ar(D) (< Zg;)

be the part of claims paid by Insurer k. Specially, Zi; = ax()Zi; with 0 < ar(t) <1 if the insurer
adopts a proportional reinsurance contract; and Zx ; = min(ax(t), Zx,;) if the insurer adopts an excess-
of-loss reinsurance contract. Then the remainder zk,; :i= Zk; — Z; is covered by the reinsurer. We
refer to {ak(f)}o<t<T as the reinsurance strategy of Insurer k. The surplus process with reinsurance

2 This setting is also adopted by Bai et al. (2013) who use a similar model to describe an insurer who has two lines of insurance
business that are subject to common shock in the industry, and Siu et al. (2017) who use N(t) to describe the common systematic
insurance risk, see also Liang & Yuen (2016), Bi et al. (2016), and s0 on.
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protection, denoted by {W:*( t)}¢=0. for Insurer k(k = 1, 2) then becomes

Nr(H)+N(t)
AWk () = [rWA () + (L + A Ce(t)] dt — d Z Zii | Wi(0) = w, (1)

i=1
where Ci(f) is the premium rate defined by

Ci(t) = C — (1 + OE[Zy; — Zy,]
=C — (1 + 60tk + (1 + 0)E[Zg,],

6k(= ni) is the reinsurance safety loading for Insurer k, and f1x := E[Z;]. Since 8 uniquely defines
Insurer k’s payment for his reinsurance protection, it can be seen as the price of the reinsurance
contract offered to Insurer k. In this section, we assume that 6, k = 1,2, are exogenous constants.
The topic of how the reinsurer adjusts the prices dynamically is the subject of Section 3.

Definition 2.1: A process {ai(t)}:c[o,1] is an admissible strategy if ax(f) is a F;-adapted process; and
the SDE (1) admits a unique strong solution. We denote by ITj the set of all admissible reinsurance
strategies for Insurer k(k = 1,2).

The two insurers are competing with each other. Each not only cares about his performance but
also puts an eye on that of his competitor. The optimization problem of each insurer is to choose an
optimal reinsurance strategy to maximize the expected utility of his relative performance over his
competitor at the terminal time T:

max E [ Ug (1 = k) WD) + k(Wi (T) = W[ (1) |

ake]'[k

= max E[Uy (WD) — W (D) |, )

ake]'[k
where ki € [0,1] is the sensitivity parameter of Insurer k towards Insurer j’s performance, with
j # k. A larger kj indicates that Insurer k cares more about his competitor’s performance. W *(T) —
:ckW;J(T) represents Insurer K’s relative performance at the terminal time T. Ui(-) is the utility
function for Insurer k, which measures his risk-return preference. In line with Yi et al. (2013), Li

et al. (2014), Siu et al. (2017) and Deng et al. (2018), we assume that Ug(-) is a constant absolute
risk-aversion (CARA) utility function, i.e.

1
Ur(w) = ——e™ Y, k=1,2,
Yk

in which yy is Insurer k’s absolute risk aversion coefficient representing Insurer k’s preference for risk.
Problem (2) is a typical non-zero-sum game between the two insurers that is rigorously formulated
as below.

Problem 2.1: Insurer ks objective is to seek the optimal reinsurance strategy aj to maximize his
objective given Insurer j(# k) adopts the optimal strategy a}" :

E[v (Wi —aw; )] <E[v (WD —aw; (D)],

11
E[: (WD — Wi (D)] <E[0, (WD — Wi (D)].
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Thus, (a},a}) is the Nash equilibrium of a stochastic differential game. To characterize a Nash
equilibrium, define the relative surplus of Insurer k to Insurer j as

Wi(t) == W) — W) (1),
for k,j = 1,2 and k # j. Then, it follows that

AW(®) = [1We(®) + O + DC®) — ik + DG D) | dt

Ni()+N(t) Nj(H)+N(1)
—d Z Zk.l — Kk Z Zj,i > Wk(o) = 'l?-"k = Wi — 'Cij-

i=1 i=1

We now model robustness due to concern about model misspecification or model ambiguity. Assume
that both insurers are averse to modeling ambiguity about the arrival of claims, and they wish to make
robust reinsurance decisions to guard against the possible model misspecification. We interpret this
by defending against a worst-case scenario while allowing each model to be penalized by how far it
deviates from the estimated model. Especially, since the systematic risk that impacts both insurers is
challenging to measure, and the intensity A is challenging to assess, in this paper, we only consider
that both insurers have ambiguity-averse attitudes towards the claim intensity A and the associated
probability measure P.> On the one hand, both insurers regard P as the reference probability mea-
sure; on the other hand, each insurer would like to consider other alternative probability measures
{Q¢}, k = 1,2, which preferably do not deviate very far from the reference model. We handle this by
assuming that (J is absolutely continuous and is equivalent to P, because it is in this sense that we
can measure distance between models in a tractable way. We denote this class of probability measures
equivalent to P by O:

O ={Qr|Qx ~P}, k=1,2

According to Girsanov’s theorem, for each @, € Oy there exists a progressively measurable process
{(D}icio,m such that

4%

— A%k
1P = A5 (D),

Fi
where

t t
A% (t) = exp [f In ¢y (s) AN(s) + f (1 — i) dSI
0 0

is a P-martingale and ¢ satisfies

T Dy
€xp [f (¢x(5) In @i (s) — @i (s) + 1)A dF(2) dSI < 00.
t 0

Under the new probability measure Q, the claim intensity A becomes Ay (f). Accordingly, the relative
surplus W (f) evolves according to

dWi() = [er(r) + (v Adk(B) Ci() — ki + wk(t))cj(r)} dt

Ni(t)+N% (1) Nj(6)+N#k (1)

—d Z Zy; — Kk Z Z; |, (3)

i=1 i=1

3 While uncertainty over A, k = 1,2, can also be incorporated in our model, such a modeling strategy deviates from our primary
concern and will not be considered in this paper, for the sake of presenting a tighter modeling framework.
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where the superscript on N emphasizes that the intensity A has changed to A¢x.

Although both insurers are suspicious about the intensity A and the reference probability measure
P, they don’t want the alternative probability measure to deviate from P too far. According to their
model robustness preferences, each insurer puts a penalization term into his objective function and
considers his optimal problem under a robustness framework. Inspired by Maenhout (2004, 2006),
Hu et al. (2018a, 2018b) and Bai et al. (2022), we consider the distance between the reference measure
P and the alternative measure Qk, k = 1,2, as the penalty term. Both insurers aim to maximize the
expected utilities of their relative terminal wealth under a worst-case scenario. As such, each insurer
first takes infimum in the objective function to determine the worst-case probability measure Q}
Ot, and then determines his optimal strategy a; based on the worst-case probability measure.

Definition 2.2: A strategy {ar(f)}o<¢<T is called an admissible reinsurance strategy with ambiguity
aversion if the following conditions are satisfied

(i) ai(t) is adapted to {F:};
(ii) For any probability measure Q; € Oy, Equation (3) has a unique solution {Wk(t)}[)stgf such
that

G |:|Uk(Wk(T))| +

Tlfﬁk(S) In ¢ (s) — r(s) + 1 dsH - oo,
t @k(s)

for any t € [0, T), where EQt[.] denotes the conditional expectation operator under proba-

bility measure Qj and ftT A& ‘i’;ﬁ)s)_m(s)H ds is the penalty term.

To avoid confusion, we also denote the set of all admissible reinsurance strategies with ambiguity
aversion for Insurer k by Ij. Thus, given the optimal strategy of his competitor a}" € I, Insurer k’s
value function is defined as

I (t, W) = max min J (t, wk,ak,a ¢r), k=12andk #]j, (4)
agelly QreQy

where 7* is defined by

(5

. T 1 — 1
Jk(f, ﬁ"k; a, ﬂ;, ¢k) — EQk [Uk (Wk(T)) + l¢k(5) n Q)k(s) ¢k(5) + ds:l .

t @k (s)

The last term of (5) represents the deviation of Q; from I, in which ¢ (s), representing the intensity
of the ambiguity aversion, can be tailored to aid in tractability.

Problem 2.2 (Nash equilibrium under ambiguity aversion): With ambiguity aversion, the two
competing insurers aim to find a Nash equilibrium (a}, a3) such that

inf  J'(t, Wl,ﬂl,ﬂ2,¢1)<Qlﬂf T (t, W1, at, a5, 1),

e =
f t, Wy, az,at,¢;) < inf  J2(t, W, ak, at,
mQ T(t, W2, a2, a5, ¢2) < @iggz‘j (t, W2, a3, ay, ¢2),

for any (a1,az) € I x I15.
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For analytical tractability, we follow Maenhout (2004, 2006) and Hu et al. (2018a, 2018b) and
assume that

(2473
wJk(t, W)

where o > 0 is the ambiguity aversion coefficient of Insurer k, representing the extent of Insurer k’s
concern over his ambiguity to the claim intensity A. A larger ax means that Insurer & is more con-
cerned about the model robustness. When at = 0, Insurer k is ambiguous neutral, and his problem
becomes a standard optimization problem.

In the following, we proceed to find the optimal strategies for Problems 2. To start with, we write
down the HJB equation for each insurer according to the dynamic programming approach:

() = — (6)

JE(t, i) + max min [L’{,k (& W) [1Wk + Ok + A Cr — k(A + A0 G|
+ B [JH(t i — Z) — JFt 0 |+ E 4Gt i+ iz — (e |
+ AGE T4t — Zi + Zy) — T4t ) |
—nJk(t, @k)aik (GxIn dr — i+ 1)] =0 (7)

with terminal condition J¥(T, Wwi) = —#e_nﬁ’k, where

Cr = Cilap) = A + OYE[Zi] + C) — (1 + 6 juk

and Z, := Z(ay). The subscripts on J* denote partial derivatives resulting from time and diffusion
dynamics, and the stochastic jump terms result in finite differences where the spatial step sizes are
determined by claim sizes and reinsurance contract choices.

Theorem 2.1: Let 7% := yx e" T With given reinsurance safety loadings 6, and 6,, the value function

of Insurer k is given by J*(t, ;) = —%e—ﬁ‘?’kﬂ*(r}, where the function gi(t) is time-dependent and is
given by (A3) in the A.1. The equilibrium reinsurance strategies are determined by

. A
ay = arg min |MEQ* [e”z’f -1+ Sk)?kzk] + Vka—k¢:] , (8)

Jork = 1,2, where ¢ := e%ﬁ‘ and
fi = E& [eh(zk_xkzj)] — (Crlar) — i Ci@)) —1, k=12, j#k (9
Proof: See A.1. u
Remark 2.1: (i) Without systematic risk (i.e. A = 0),
ap = arg n}in E [ef"zk -1+ sk)}?kzk] . (10)

That is, the two insurers’ decisions are independent of each other. The result is consistent with our
common sense: Competition exists only if the two insurers are related to each other.
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(ii) When «x = 0, i.e. when Insurer k ignores competition,
fi = E& [ehz" —(1+ Bk)szk] ~+ constants.
Thus we also have Equation (10), i.e. Insurer k only cares about the risk control of his own busi-
ness. This result is straightforward. However, so long as «; # 0, Insurer j’s decision is still affected by

Insurer k.

When the insurers have full confidence on the claim intensity A, by performing a similar procedure
as in the proof of Theorem 2.1, we have the following results.

Corollary 2.2: When ay = 0, the equilibrium reinsurance strategies are determined by
aj = argmin {)\k]EQ" [ehz" —(1+ Bk)szk] + AR [e?*(z*_"*zf)] } . (11)
ag

Next, we propose detailed analyses over the optimal strategies when the insurers adopt propor-
tional or excess-of-loss reinsurance protection.

2.2. The proportional reinsurance case

In this subsection, we assume that both insurers purchase proportional reinsurance protection to
manage their insurance business risk. Then, Zi(a;) = a;Z;. We report our results in the following
proposition.

Proposition 2.3: When both insurers adopt proportional reinsurance protection, for any t [0, T,

let (@), ay) be the pair of non-negative solutions (the solutions” non-negativity is to be proved below in
Proposition 2.5) to the following system:

M (B2 [z 95 — (140011 ) +A¢f (@1,0) (EQ (21 7 @A—%2)] — (1 4 01)iy ) =,
%2 (B2 (2, €727 — (1 +6)jiz) + A¢5 (@1, 82) (E® (2, 7 @2202)] — (1 4 03)3,) = 0,
(12)

where ¢} and @3 are defined in Theorem 2.1. Then, the equilibrium reinsurance strategies (a}, a3) admit

one of the following four cases:

(1) If(ar,a2) € [0,1] x [0,1], then (a}, a}) = (a1, a2);
(2) Ifa; > 1anda, < [0,1], then a} = 1 and a’ is determined by

X (E% (2, e292) — (1 + 6z
+203(1Lay) (EQ([2, 2 @20D)) — (146, ) = 05 (13)
(3) Ifa, > 1anda, € [0,1], then a5 = 1 and aj is determined by
M (EQ [z e8] — 1+ 00 )
+ gt (@, 1) (EQ [z N@A—D] - (14 0) ) =0 (14)

(4) Otherwise, (a},a3) = (1, 1).
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The worst case measures are given by ¢} (a},a3), k= 1,2.
Proof: See A.2. u

Note that we do not specify the distribution of claim sizes here. Thus the equations in (12), (13)
and (14) are very nonlinear in a; and a,, so that analytic solutions in closed form are impossible. How-
ever, we will prove the existence of solutions (a;,a,), and will present some economically intuitive
properties.

The following result is consistent with literatures considering a single insurer, see e.g. Hu et al.
(2018a).

Corollary 2.4: When A = 0 or ki = 0, the equilibrium reinsurance strategy a; = gﬁ A 1, where gz is
determined by

EQ[Z "% Z5) = (1 + O)jaks  ax > O, (15)

fork=1, 2.

Proof: When A = 0 or kj = 0, from Equation (12) we have Equation (15). It is clear that E® [Zk
e?Zk] is strictly increasing in a with E%[Z;] = ik < (1 + 6) ik and limg, 00 E [ 7, ePeokZk] =
+oc. Thus gﬁ is uniquely determined by Equation (15), and aj = gﬁ A 1 is the optimal reinsurance
strategy. u

Corollary 2.4 shows that, in the absence of systematic risk or without competition intention,
Insurer k’s decision is only affected by time-adjusted risk preference ¥, the expected value of each
claim fi, and the cost of reinsurance protection 6.

However, when k. # 0and A # 0, Insurer k’s decision is further affected by the competition level
«k and the prior estimation of systematic risk intensity A. Specially, when aj < [0, 1], Insurer k deter-
mines his reinsurance strategy by making a tradeoff between the controls of his own heterogeneity
risk and the systematic risk:

M (B (2 5] — (1 + 0pa) + 207 (B2 (29D — (1 99u) =0, (16)

control on heterogeneity risk control on systematic risk

in which the first and the second items on the left-hand side (LHS) decide the risk control for the het-
erogeneity risk and the systematic risk, respectively. Since Insurer k is ambiguous about the systematic
risk, i.e. he is uncertain about , the intensity of the systematic risk is adjusted from A to A¢;. When
Insurer k overestimates the intensity of N(f), he focuses more on the control of systematic risk and
aj approaches the systematic risk control. However, due to competition, Insurer k does not always
overestimate systematic risk, but will underestimate it in certain cases. We will numerically illustrate
this counter intuitive phenomena later.

Insurer K’s decision is also affected by the factor E@ [e”‘(_'q‘af‘ %) ], which represents the effect of
competition and affects the risk control on systematic risk. When Insurer k is more concerned about
his competitor, he has a larger risk control on the systematic risk (i.e. @, which is defined below in
Equation (17), is larger) and thus his equilibrium strategy aj increases.

The following proposition shows the existence of solutions to Equation (12). It also illustrates the
influences of the prior estimation of the systematic risk and the prices of the reinsurance contracts on
the optimal reinsurance strategies.
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Figure 1. Proportional reinsurance strategies and worst case measures for fixed reinsurance safety loading. The model parameters
are r=0.03,A =1,A =2,k = 1,k3 = 05,31 = 03,33 = 0.3, = 02,1 = 03,7 = 10,6, = 04,6, = 04,01 = 03,07 =
03,z =F@ =1—e1,

Proposition 2.5: For any A > 0, Equation (12) has a pair of solutions (a,, a;) withgz <a < a, k=
1,2, where ﬁi is the risk control for the systematic risk and is determined by

EQ[Z; e @445 ] — (1 + Gk,  ax > 0. (17)
Moreover, ay, is strictly increasing with A and 6.
Proof: See A.3. u

Proposition 2.5 shows that, in a competitive market, with larger systematic risk intensity both
insurers counter-intuitively increase their risk exposure to have a better performance against their
competitor. Similar results have been reported by Siu et al. (2017), Chen et al. (2018), whereas these
papers mainly focus on models with diffusion risk processes and do not consider the uncertainty
on systematic risk. It is straightforward that a larger reinsurance price 6 also leads to less reinsur-
ance demand for reinsurance protection, and thus a larger self-retention level a.. Due to competition
and systematic risk, the increase of 4 also leads to an increase of the self-retention level of his
competitor a;.

We now turn to numerical solutions to verify our theoretical results above. By numerically solving
the system of equations (12), we may determine the insurers’ optimal controls (a}, a;) and the worst
case measures (¢}, ¢3) as illustrated in Figure 1. As expected, a} and a} increase as t approaches T.
That is, both insurers take more risk for themselves to have better performances at time T. Similar
results have been reported by Chen et al. (2018). However, ¢} and ¢; behave differently with time
t. In fact, when t approaches T, on the one hand both insurers have larger risk exposures, leading to
higher estimation over claim intensity A¢*. On the other hand, as the expiration time T—t decreases,
the impact of the uncertainty over A decreases, leading to underestimation over systematic risk. As
for Insurer 1, the latter dominates the former, thus ¢} decreases with . However, as for Insurer 2,
both factors seem to be equal, thus ¢3 does not change with t.

Table 1 shows the influences of reinsurance prices, competition, and model ambiguity on the insur-
ers’ self-retention levels and the worst-case measures. Since the influences are similar for any time
t € [0, T], we just need to show the results for f = 0. As has been proved in Proposition 2.5, when A
and #; increase, both insurers tend to keep more risk for themselves. Especially, #; has a more remark-
able impact on Insurer 1’s self-retention level while it has a very limited indirect impact on that of
Insurer 2. When 6, increases from 0.4 to 0.5, Insurer 1 increases his self-retention level by 0.0632
when A = 1 and 0.0628 when A = 1.5. In contrast, Insurer 2 only increases his self-retention level by
0.0033 when A = 1and 0.0043 when A = 1.5. However, since his relative risk exposure over Insurer 1,
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Table 1. The impact of model parameters on reinsurance strategies and worst case measures at t = 0 when both insurers adopt
proportional reinsurance protection.

A=10 A=15
ai a3 % % ai a3 % %
6 =04 0.4297 0.6042 1.0166 1.0283 0.4465 0.6124 1.0172 1.0285
6 =05 0.4929 0.6075 1.0248 1.0254 0.5093 0.6167 1.0254 1.0258
k1 = 0.0 03521 0.5999 1.0207 1.0267 03521 0.6058 1.0207 1.0266
k1 =05 0.4097 0.6031 1.0157 1.0278 04221 0.6108 1.0161 1.0280
k1 =10 04571 0.6056 1.0207 1.0289 0.4801 0.6148 1.0216 1.0292
a; =02 0.6574 0.6162 1.0261 0.9931 0.6762 0.6300 1.0266 0.9938
a; =04 0.6585 0.6162 1.0528 0.9932 0.6773 0.6301 1.0539 0.9939

Note: The model parameters are r=0.03, A1 = 1,03 =2,k =07,k =051 =1 =03, =02, =03,T = 10,6y =
6 =040 =03 =03F@ =FRHE=1—e 1

a3 — af, decreases, Insurer 2 will instead decrease his estimation over the systematic risk from 1.0283
down to 1.0254.

Table 1 also shows that, as «; increases, a} increases dramatically and a; increases slightly. That
is, Insurer 1 takes more risks by himself when he becomes more concerned about the relative per-
formance of his competitor. As a response, Insurer 2 also increases his self-retention level. We also
observe that the impact of x; becomes more prominent when A becomes larger.* Thus, higher sys-
tematic risk intensity and more intensive competition jointly lead to less demand for reinsurance
protection.

Finally, we observe that «; has negligible impact on both insurers’ decision making. This result
is somewhat confusing. In fact, when the insurers are less certain about the systematic risk, they
tend to overestimate it. However, due to competition concern, both insurers choose not to seek more
reinsurance protection. This result indicates that, in a competitive insurance market, insurers may
do nothing over systematic risk, no matter how serious it might be. It emphasizes the importance
of risk supervision on insurance companies, and possibly increasing this supervision on companies
engaging in more competitive insurance markets.

Remark 2.2: We consider the special case where both insurers are certain about the systematic risk.
From Equation (11) and the first-order condition, we see that in this case aﬁ (€ (0, 1)) satisfies
ME[Z) en4] 4 AB[Z) N GA—KGE)] = (3 + A)(1+ 0z, (18)
ME[Z; e729%22] + AR([Z; eP(322—%a 20 ] = (; 4 2) (1 + 62) 2z

According to (18), the optimal reinsurance strategies {aﬁ(t)}, k = 1,2 are the functions of reinsur-
ance premiums 6; and 6. Conversely, for each t € [0, T], we can also consider 6y as the function of
optimal reinsurance strategies a} and a3. In other words, the reinsurer can, given the insurers’ optimal
reinsurance strategies, determine the reinsurance premium (i.e. 6;) and try to adjust it for maximizing
her profit and attracting more reinsurance business. We will discuss this point in the next section.

2.3. The excess-of-loss reinsurance case
In this subsection, we assume that both insurers adopt excess-of-loss reinsurance for risk control, i.e.
L, =7 Aay.

Proposition 2.6: When both insurers adopt excess-of-loss reinsurance protection, for any t € [0, T,
let (a1, az) be the pair of non-negative solutions (the solutions’ non-negativity is to be proved below in

4 This result can also be inferred from (16).
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Proposition 2.8) to the following system:

M [eflﬂl —(1+0)]+ k¢f [eflﬂl[EQl [e—'ﬁfl(zzf’\ﬂz)] —(1+ 91)] =0,

A2[e%2 — (1 + ;)] + A} [e2EQR [e22Z1na)] — (14 6,)] =0, (19)
where ¢} and ¢ are defined in Theorem 2.1,
- aj _ -
E& [e—*k7k(Zira)] — _ f F@ae ™ dz+1, k=12, j#k
0
Then, the equilibrium reinsurance strategies (a}, a3) admit one of the following four cases:
(1) If (a1, @2) € [0, D] x [0, D], then (a},a3) = (@1,a2);
(2) Ifa, > D, and a; < [0,D,], then a} = D, and a; is determined by
AaleP = (14 0y)] + Ag} [2ER [P ] — (14 0y) | = 0
(3) Ifay > D, and a, € [0,D,], then a5 = D, and a7 is determined by
MM = (14 0] + ag} [ EX 7] — (1 4-0)] = 0
(4) Otherwise, (a},a3) = (Dy,D5).
The worst case measures are given by (¢} (a},a3), ¢5(a}, a3)).
Proof: See A4. u

The system of equations (19) is almost identical to Equation (12) in the previous subsection for
the proportional reinsurance contract.

Without systematic risk or competition, by setting A = 0 or x; = 0 in Equation (19) we have the
following results directly.”

Corollary 2.7: When A = 0 or ki = 0, the optimal reinsurance strategy is a; = aj A Dy, where af :=
% In(1 + 6y).

In both cases, each insurer decides his risk exposure (or self-retention level) according to his time-
adjusted risk preference and the price of reinsurance contract.

With systematic risk and competition, when af; € (0,Dy), Insurer k determines his reinsurance
strategy by making a tradeoff between his controls over heterogeneity risk and systematic risk:

aile% — (14 60)] + A [enGEX [e ™G] _ (1 4 g)] =, (20)

control on heterogeneity risk control on systematic risk

in which we can use the first and second items on the LHS of the above to define the risk control
determined by the heterogeneity risk, a;, and the risk control determined by the systematic risk, aj,
by setting each aforementioned item to zero. See for instance a; defined below in Equation (21). Thisis
consistent with our previous definition of gz from Corollary 2.4. The intensity of the systematic risk is

adjusted from 1 to A} due to model uncertainty. The multiplier E@* [e~"%"%)] in the second item
reflects the impact of Insurer k’s competitive preference. When Insurer k becomes more competitive
or the reinsurance becomes more costly, Insurer k has a larger risk exposure to the systematic risk aj;
thus his self-retention level a increases.

5 This result is consistent with literatures considering a single insurer, see e.g. Hu et al. (2018a, 2018b) and Hu & Wang (2019).
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Figure 2. Equilibrium excess-of-loss reinsurance strategies with fixed reinsurance safety loading. The model parameters
are r=0031=1,4=2A=1,K=051=03,1p=03,7=02,113=03,T=10,0 =6 = 04,01 =y =
03,F(@) =FRE=1—e%

Table 2. The impact of model parameters on reinsurance strategies and worst-case measures at t = 0 when both insurers adopt
excess-of-loss reinsurance protection.

A=10 A=15
ai a; # 4 ai a; # 4
0 =04 0.8071 0.7184 1.0229 0.9773 0.8340 0.7301 1.0231 0.9775
& =05 0.9469 0.7205 1.0263 0.9774 0.9740 0.7327 1.0265 0.9776
ky = 0.0 0.6803 0.7158 1.0026 0.9761 0.6803 0.7261 1.0026 0.9760
ky =05 0.7720 0.7177 1.0146 0.9770 0.7915 0.7291 1.0147 0.9771
Ky =1.0 0.8582 0.7192 1.0391 0.9778 0.8962 0.7314 1.0395 0.9780
a; =02 0.8066 0.7184 1.0152 0.9773 0.8336 0.7301 1.0154 0.9775
a1 =04 0.8076 0.7184 1.0307 0.9773 0.8345 0.7301 1.0310 0.9775

Note: The model parameters are r=0.05,A1 = 1,03 =2,k =07,k =03, 1 =1 =03, =02, =03,T = 10,6y =
=040 =w2=03F@)=FR@E=1—eZ

Similar to the previous subsection, we present the following results to characterize the equilibrium
reinsurance strategies.

Proposition 2.8: For any A > 0, the system of equations (19) has a solution (ay,dz) with a; < ai <
ag, k= 1,2, where

- 1 146
f=aln—— (21)
Ve EQ [e—xkn(z;f\a,) ]
and where aj_is defined in Corollary 2.7. Moreover, ay. is strictly increasing with A and 6.
Proof: See A.5. u

By solving Equation (19), we show the equilibrium excess-of-loss reinsurance strategies and the
worst-case measures as functions of t in Figure 2, and the impact of model parameters in Table 2. The
results are similar to the proportional reinsurance case, and thus the discussions are omitted.

Remark 2.3: When both insurers are certain about the systematic risk, similar to Remark 2.2, we see
that in this case af (< [0, Dy]) satisfies

eNai[A) + AEQ [em 111D ]] = () 4+ A)(1 4 61),

e (4, + AEQ [e—2RiAaD]] = (4, + ) (1 + 6). (22)
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3. Optimization problem for reinsurer

In the previous section, we have shown that reinsurance prices significantly impact the demand for
reinsurance protection. Thus, it is vital for the reinsurer to determine the reinsurance prices according
to her risk-return preferences. Recently, Hu et al. (2018a, 2018b), Hu & Wang (2019), Gu et al. (2019),
and Bai et al. (2022) have considered the dynamic reinsurance pricing problem in a continuous-
time principal-agent framework, under which the reinsurer observes an insurer’s optimal decision
and then prices the reinsurance contract dynamically. In line with these works, in this section, we
dynamically determine the reinsurer’s optimal safety loadings 6, k = 1,2 for the two competing
insurers to investigate the impact of their competition and the common shock (systematic risk) on
the reinsurance prices. As the reinsurer has less information about the systematic risk than the insur-
ers, we assume that both insurers are certain about the intensity of {N(t)}, whereas the reinsurer is
ambiguity-averse about it.5

With possible misspecification in A, the reinsurer would make conservative pricing strategies to
ensure robustness of the reinsurance business across A and its nearby values. That is, she considers
a possible rate, A2, relative to a new probability measures Q belonging to the set of probabilities
measures Q that are absolutely continuous and equivalent to P, i.e. Q = {(Q|Q ~ P}. According to
Girsanov’s theorem, there exists a progressively measurable process, v(t), such that

where

t t
u(t) = exp |[o In ¢ (s) dN(s) —|—)Lf0 (1 —¢(s))ds}

is a P-martingale and {¢ (s)}o<¢<T Satisfies

T /D
exp |[ f k(q)(s)lnq)(s) —¢(s)+ l)ldFk(z)ds} <00, k=1,2.
t Jo

According to Branger & Larsen (2013), under the probability measure (), N(f) has jump intensity
A(D), ie. AQ = A (D).

Based on the insurers’ strategies {aj (t)} given in the previous section, the reinsurer decides the
reinsurance prices {6(f)} dynamically. Besides, the reinsurer invests her wealth in the bank with
the same return rate 7. Then, under probability measure (Q, the reinsurer’s wealth process X has the
following dynamics:

X = | XO + Y 1+ 6() ok + 2 0)E[Zi] | dt
k=1,2

Ni(+N®(5)

-dl Y >z, x0=x (23)

k=12 =1

where zk,; = Zy; — Zxi(aj (1)) is the reinsurer’s payment for the ith claim of insurer k. A strategy
{61(), 02() }[0,1] is said to be admissible if 6 (f) is F;-measurable and that (23) has a unique solu-
tion. The reinsurer’s objective is to maximize the exponential utility of her wealth at terminal time

6 |n this model, reinsurance price is determined based on demand for reinsurance protection. The insurers’ model ambiguity impact
the reinsurer’s decision indirectly through ag; however, our numerical experiments in Section 2 show that model ambiguity has
very limited impact on both insurers’ decisions. Thus, our assumption that both insurers are certain about the intensity of sys-
tematic risk is rational. Besides, this assumption greatly simplifies our notations and calculations without affecting our main
result.
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T under the worst case scenario, with a penalty term added in the objective function to penalize any
probability measure (Q that is far from the priory probability measure P:

(24)

V(t,x) = max min EQ [
{61.62

lexw y [1,8086) — 6O +1 ds]
)¢ ’

Y t @, V)

where y > 0 is an absolute risk aversion coefficient representing the reinsurer’s risk preference,
@(s, V) > 0 captures the degree of concern over model robustness. A larger ¢ means that the rein-
surer is more uncertain about the intensity of systematic risk and is more concerned about the model
robustness. As in the previous section, we set

yV(t,x)

e, V)=

where « > 0 is the reinsurer’s ambiguity aversion parameter describing her attitude toward model
uncertainty. When o = 0, the reinsurer is certain about A, and Problem (24) becomes the standard
dynamic optimization problem.

Based on the insurers’ optimal equilibrium reinsurance strategies (aj, ;) and the reinsurer’s sur-
plus process (23), we are able to write down the corresponding HJB equation of the optimization
problem (24):

Vi(t,x) + max min { Vi(t,x) [ =x+ Y (1+ 6k + SLE[Z]
(61.62) ¢ 12

+ 3 MER [V(tx—Zp) — V(t,0)]
k=12

_ _ A
+AES [V(t,x — 21— Zo) = V(0] - yVE0—@Ing —p+ 1) p =0, (25)

with boundary condition V(T,x) = _?le_?”‘.

Theorem 3.1: Let y = y e"T=). With given insurers’ self-retention levels (a},a3) in Section 2, the
value function for the reinsurer is given by

V(t,x) = — e PxHhO),
y

where the function h depends only on t. In the reinsurance contract, the optimal safety loadings of
reinsurer are given by

(67,63) = arg min { > MEQ—7Z(1 +6p) + 5] 42197 L (26)
0162} | & o
1,2
where Z, = Zj, — Zy(ay), ¢* = E%f, and

f=faha) =EQ | 7B+ 5 N (14 6pZ | 1.
k=1,2
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Remark 3.1: When A = 0, aj is the function of 6, yet is independent of 6;, j # k (see Remark 2.1).
Thus, we have

0 = afgfginEQ[—}’Zk(l + 00 + e,
k

That is, the reinsurer only needs to specify the prices for each insurer respectively. The prices are
independent of the claim intensities.

Next, we consider the case where the insurers adopt proportional reinsurance or excess-of-loss
reinsurance respectively. According to Eqs. (18) and (22), 6k can be seen as the function of a} and
ay, ie. Ox = Ox(ay, a3). Thus, instead of seeking the optimal reinsurance prices {6} directly, in the
sequel we first seek the optimal reinsurance strategies (denoted as ;) to minimize the RHS of (26)
among all the optimal reinsurance strategies determined in the previous section; then, we determine
the optimal reinsurance prices by 6} = 6;(aj}, a3). The reinsurer’s problem can be rewritten as

(a1, a3) = arg min(gr 1) I'(ay, 43),

s.t. (18) or (22), (27)

where

[(a},a3) = Yjyp ME? [—}7(1 +00Zk + e}_’z"] + ke,

f= EQ I:e};zl+};zz - Zkzl,z(l + 9k)fzk:| — 1.
After solving Problem (27), we may obtain the safety loading 6} = 6} (a},a3), k = 1,2, for the
reinsurer.

To simplify our analysis, we further assume that the claim sizes {Zy;};cyy are exponentially
distributed with density functions %ﬁl = g e 52, k= 1,2, with & > 7.

Example 3.1 (Proportional reinsurance case): Direct calculation shows
EQ[ePZk] = EQpe?(1-aD%] — F—k,
& —v(—ap)
EQZ] = EU[(1 - a)Z] = (1 — a)ia,
and
(1+00[(h + A)iik] = E[Z4 5] (o + AE[e 755 %)
8k &
=— Mt rA——)
&k — Vkap)? ( k & + Kkyay

Since I is highly nonlinear in a} and a}, we cannot prove the existence of a maximum point and have
to resort to numerical solutions. In fact, we determine the optimizer (a7}, a3) by solving the following
system of equations

or ar
day  0a;
numerically. Then, the Insurer k’s optimal reinsurance price o; (1) and the worst-case measure ¢*(f)

are determined. Next, we present some numerical results that provide more insights into the nature
of the solution.

Figure 3 shows the dependence of the reinsurance prices, worst-case measures, and the insur-
ers’ self-retention levels on the competition levels. From Panel (b) we see that, as Insurer 1 becomes
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Figure 3. The impact of competition. The model parameters are:r = 0.03,t =0,T=10,A1 =1, = 2,4 = 1,k = 0.7,y =
n=y=03m=m=02=8=2a=03.

more competitive against Insurer 2, he increases his risk exposure by keeping more risk a7 for him-
self. This result is similar to the case with fixed reinsurance prices (see Table 1). Accordingly, the
reinsurer will appropriately decrease the reinsurance price 6} to drag Insurer 1 back to business (see
Panel (a)). For example, when Insurer 1 is totally indifferent about his competitor’s business, he keeps
68.73% of each claim payment for himself, and receives a reinsurance contract with 8] = 0.3495; how-
ever, as Insurer 1 becomes highly competitive with «; = 1.0, he increases his self-retention level to
73.33% and receives a contract with a lower price of 8 = 0.2931. The progression between these
two extremes is nearly linear. Neither of these two effects on a] and 67 is highly pronounced. Still,
they are non-negligible and much more pronounced than the very slight differences we observe in
Figure 6 for Insurer 2’s risk retention and his reinsurance price. As x increases, the reinsurer only
slightly decreases the reinsurance safety loading for Insurer 2, leading to a decrease of Insurer 2’s risk
exposure from 71.71% to 70.43% over the entire range of Insurer 1’s competitive behavior.

Panel (c) in Figure 6 shows that ¢* is slightly increasing and smaller than 1. This phenomenon is
non-trivial and is challenging to explain. A possible explanation is that when the reinsurer is allowed
to adjust the reinsurance prices based on an attempt at optimizing her utility while worrying about
model misspecification, her strategy makes the insurers bear too much risk, leaving insufficient risk
for herself, leading to a small ¢*. This could be a sign that the robust optimization strategy as a rein-
surance pricing mechanism could be further improved to avoid leaving business on the table. As for
the result that ¢* increases slightly with «;, the following interpretation is possible. There are two
competing effects. As «; increases, Insurer 1 increases his self-retention level, and Insurer 2 keeps
his self-retention level almost unchanged, as we observed, thus the reinsurer’s risk level decreases.
However, as k) increases, the reinsurance price 8} also decreases, leading to a higher risk level since
the reinsurance premium shrinks. We observe here that the latter effect appears to be the dominant
one, causing ¢* to increase. However, the rate of increase is quite moderate, and in practice, one may
think of the two effects as being equally strong.

Figure 4 shows the impact of model ambiguity, specifically the reinsurer’s overall concern about
the uncertainty over A, on the two insurers’ risk-retention, the two reinsurance prices, and her estima-
tion over systematic risk: aj, 6} and ¢*. For the latter, the effect is more pronounced than in Figure 6.
In other words, the reinsurer’s prudent reaction on risk estimation is mostly influenced by her mod-
eling ambiguity level, and comparatively, is hardly sensitive at all to her clients’ competitive attitudes.
Interestingly, the very stable values for 6 in Panel (a) show that the reinsurer’s pricing scheme does
not vary much at all with her modeling ambiguity. She doesn’t reduce her prices at all as her ambiguity
aversion rises significantly. The two insurers’ self retentions are similarly insensitive (see Panel (b)),
if slightly more responsive: Insurer 1, who has a lower competition level, reduces his risk exposure
by about 0.04% in response to the very small reduction in reinsurance price; Insurer 2, who is much
more competitive, chooses to remain largely at a constant risk-retention level.
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Figure 4. The impact of model ambiguity. The model parameters are: t =0,,T =10,r=003, .1 =1, A =2,A =1, =
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Figure 5 shows the impact of attitudes towards risk, or the reinsurer and insurer’s aversion to
financial risk, considered separately (parameters y and y;) on aj, 6} and ¢*. The effect of the rein-
surer’s risk aversion on the insurers’ risk retention is significant and increasing (Panel (a)), which
is corroborated by the strongly increasing dependence of reinsurance prices on the reinsurer’s risk
aversion (Panel (b)). As the reinsurer worries about financial risk, she responds by increasing prices
and then sees her clients pull back correspondingly. The story is much murkier when looking at an
insurer’s increase in risk aversion. There, Insurer 1’s response is convex and non-monotone, with a
minimal risk retention level when the risk aversion coefficient y; is around 0.45 (Panel (d)). The range
of this effect is smaller than when the reinsurer’s risk aversion changes, but an intuitive explanation
for this non-monotone response is harder to provide. Intuitively, for low and increasing risk aversion,
risk retention would decrease, and we think the change in monotonicity is due to the following: the
insurer’s demand for reinsurance eventually runs against the reinsurer’s willingness to sell additional
risk protection at a price that allows a profit. Panel (e) shows that the sensitivities of prices to risk aver-
sion are all increasing, and very significantly so in response to the client’s risk aversion: the insurers
will be willing to pay much higher prices when increasing their own risk aversion. Note that they do
not care about their competitor’s risk aversion, however. Finally, the reinsurer’s prudent reaction to
model ambiguity on her risk estimation, in this worst-case scenario framework, is influenced by both
her risk aversion and her client’s (see Panels (c) and (f)). This effect is not strong but is still apprecia-
ble. We note a 0.0164 increase under the reinsurer’s own increasing risk aversion, which causes her
to be more prudent in modeling. We see a 0.0451 decrease under her client’s increasing risk aversion;
we think this is strongly related to the client’s willingness to pay a much higher price for reinsurance,
making it possible for the reinsurer to be less concerned about modeling uncertainty.

Example 3.2 (Excess-of-loss reinsurance): In this case, after simple calculation, we have

oo
EQ(Z,] = E[Z, — Zy A a}] = f (2 — ah) e 5 dz
a

o0 —{-’ka*
— e—tf;'ka; f z&k e—n‘;"kzdz _ e k ,
0 &k
- az . oo .
EQ[e?Zk] = f e’@=3 dF(z) + f e’=%) dF(2)
0 az

o0
= Fi(@}) — Fi(0) + & D) | — f PFi(2) "~ dz
o

* ~ * €k Epat
= f (1 — Fr(z))y e"F %) dz 4+ 1 = —= 5%,
a; gk -V



768 (&) A.GUETAL

a C
@ . ® 1o ©
0.75| [—a / 036| [—0; s —7
- = 0.34 == ” < 0.975
0.7 ,’ 0’32 ,/
/ ' 0.97
065} # 0.3
/ 0.28 0.965
0.1 02 03 04 05 06 0.1 02 03 04 05 06 0.1 02 03 04 05 0.6
y ¥ ¥
(d) (e) (f)
0.98
075\ —= =7 -
- = q O ==
0.7 04 0.96
0.65 —— 02 0.94
01 02 03 04 05 06 0.1 02 03 04 05 06 01 02 03 04 05 0.6
N M N

Figure 5. The impact of risk preferences. The model parameters are: t=0,T =10,r=003, 1 =1, =2,A=1K1 =
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and
Ok + 1)1 + ) = e [xk +2 ( f ' F@in e dz — 1)]
0

= &M% [lk - & + KiVk E_(%Hkh)aj)] ‘

o (
& + KkVk
Again, substituting these expressions into (27) we can solve the optimization problem numerically.

The results are similar to the proportional reinsurance case (see Figure 6), so we omit the discussions
here.

4. Conclusion

In this paper, we investigate the optimal reinsurance problems for two competitive insurers subject to
common impacted claims (or systematic risk) and for a reinsurer who handles both contracts, where
all three actors are averse to ambiguity in the model specifications. First, given reinsurance prices or
safety loadings, we formulate the insurers’ problem as a stochastic differential game and derive the
Nash equilibrium reinsurance strategy for them. Second, based on the insurers’ optimal reinsurance
strategies, from the viewpoint of the reinsurer, we derive the optimal safety loadings for the rein-
surance contracts by maximizing the expected utility of her terminal wealth when she is ambiguity
averse regarding the intensity of the systematic risk. We obtain several interesting results: (i) With
competition and systematic risk, the insurers always make a trade-off between their heterogeneous
risk and the systematic risk to determine the optimal reinsurance strategy; the more intense the com-
petition is, the more aggressive the insurers are. Moreover, ambiguity aversion has an essential impact
on their estimation over the systematic risk while it has little effect on the reinsurance strategies. (ii)
The optimal reinsurance premium is sensitive to the risk attitudes of reinsurer and insurers, but it is
insensitive to the competition between the insurers.
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Possible extensions of this work could include considering the problem for multiple insurers, lead-
ing to more complex competition and collision scenarios. We may consider other utility or objective
functions, such as ruin probabilities, for the insurers and the reinsurer.
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Appendix. Proof
A.1 Proofof Theorem 2.1

Proof: We conjecture J(t, W) = —%e—ﬁ%ﬂ&“). Then
JEt W) = (e + g (0) TR W), T, (63n) = =7 ¥ (),
E% [/t i — Zo) — 1) | = J* (e ) (B2 (554 — 1),
E% [J4(t i + aZy) — Tt ) | = T4t i) (E% e %] — 1),
and
E® [t ok — Zi + 42Z)) — (t )|
— J¥(t, ) (]EQ* [ @—xiZp)] _ 1) . (A1)

Applying the first-order condition on HJB equation (7), we find the minimizer ¢ for the inner minimization problem
by solving

T, (Ci— G + B [J¥(t i — Zi+ 1aZ) — | — g} =0, (A2)
k a
a5
where C; = CE — (L + 6tk + (1 + G)E[Zi]. Then, fork = 1,2,j # k, ¢ = en and Equation (7) becomes
g(t) + min l—f'k[lka — kA Gl + Ak []EQ* [e7¥Zk] — 1] + 2 []EQ’r [ePRekEs] — 1]
ak
A
+Yka—k(¢f - 1)] =0, g(T)=0. (A3)

Hence,

- A
aj = argmin {lk]EQ* (e”‘z"‘ —(1+ Gk)f’kzk) + Yka—!ﬁ:l .
ag k
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Finally, the worst case measure ¢ is obtained by substituting a; = aj into Equation (A2). J* is obtained by solving

Equation (A3). A standard verification procedure shows that J* is indeed the value function. The proof is completed.
|

A.2 Proofof Proposition 2.3
Proof: In this case,

fi = B[Rzt 5 (G —aG) 1, (A4)
where Cy = jig[ng — 0% + (1 + 8 )ag]. Using first-order condition on the RHS of Equation (8) yields the following
equation for aj:

« Ok

=0
"aa;(

AT [E% (2 P %] — (14 60 | + 16
= Ak []EQ“ [Z) eFeuZe] — (1 + Gk)ﬁk]

+ ‘)"éi.: []EQ}( [Z eﬁ(ﬂkl}(—naij)] —(1+ Gk)ﬁk] =0, k=12, j# k.

That is,

ME([Z; ] 4 AGFEY [Z; N @ANGE)] = (o + 2])(1 + O iak- (A5)
Since the RHS of (8) is convex in aj, the candidate equilibrium reinsurance strategies ay. is determined by (A5). The
existence of (@, @) are equivalent to the existence of solutions to the system of nonlinear equation in Equation (12),
which will be proved in Proposition 2.5. Thus, the equilibrium reinsurance strategy aj = a; A 1 is determined and the
worst-case measure ¢ follows. | |

A.3 Proof of Proposition 2.5

Proof: (i) Denote

o
3&1 ’

3f

3&2 ’

- A
Hi(ai,a2) := M []EQ' [Zien®A] — (1+ 91);11] + Eé’f

- _ A
Hy(a1,00) = 32 [ER[2 7%] — 1+ )/ | + =63

=3
where ¢f =e % and

3 _
ai — E% 1.2, M@ Z—aZ)] _ (1 4+ 0)fin.
aj

Thus, we just need to show that the system of non-linear equations H (ay, a2) = Ha(ay, a3) = 0 admit a solution.

Step 1, we fix ay > 0 and determine a solution to the equation Hj (a1, a2) = 0. Firstly, using Equation (15), it is clear
that

Hy(d}, a;) = A} [EQ' (2, eh@h—amZ)] _ +91).t11]
<261 [E2 (20 "G — (1 + 01y = 0.
Secondly, for each a; > gzp, it is easy to see that the non-linear equation
E® [z, en@A—®Z)] — (14 0)fi;, a; € (0,+00), (A6)
admits a unique solution E’; .Itis clear that E{ > g{ and
Hy(@,87) = 1 [E® (2 A35] — (1 + 801 | > 0.

Thus, Hy(ay,a;) = 0 admits a solution a; = a;(ay) € (gf,&f). Finally,

oH _ _
o ll]EQI [J;IZ% E,r’1ﬂ121] + J..(;b]*]EQ' [Z3 erl(mzl—xmzzz)]

day

* a 2

+l?’_1a_] (i) =0, (A7)
Y1 71 \9a
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i.e. Hj is strictly increasing with a1, indicating that a; (az) € (g{J N Eg) is uniquely determined. It is obvious that H; is the
decreasing function of a;. Thus, a; strictly increases with a;.
Step 2, we determine a; by solving Ha(a;(az),a2) = 0,a3 € [gg, &g ], where &g is determined by % = 0 such that

E’; > gg In fact, it is clear that

. o h X
Hz(al@g),é) B l}a day az=;"; = V2 3&2 ay=ah =0

Since E®2[Z, ef’l‘_’gzl] > (1 4+ &,)jiz, we also have
Hy(@1@),8) = 32 [E% (2, 732] — (1 + 6z | > 0.

Thus, there exists a; € (é, Eg) such that Hs(a; (@), @) = 0. The pair (a,, a;) is the solution to Equation (12).
ah _ af

(ii) Since Far < Tar |a|

_p=0fora < &f; , Hy(ay, ay) is strictly decreasing with A. Thus, using the fact that H; is
1

the increasing function of a;, we can see that a; strictly increases with A. Similarly, we are able to show that a; strictly
increases with A.

Finally, since Hi(a1,az) is strictly decreasing with 6, the argument that aj, strictly increases with 8y for k = 1, 2
can be similarly proved. |

A.4 Proof of Proposition 2.6
Proof: In this case, direct calculation shows E®[Z;] f Fi(z) dzand

- ap k -
B [oh] - f o dFi(2) + f et dFy(2)

0 ag
- ak - -

= ™ Fi(2)|g* — fu Fi(2)x e"* dz + e (Fx(Dg) — Fi(ak))
- ag -

— et [C R d

0

3 - o
a—ﬂkEQ* [ey}Zk] = Vi Y% (ag).

By first-order condition, for k = 1, 2, the minimizer a; of the RHS of (8) satisfies

d ; d
A [—EQ* [e7%] - 1+ ekm—EQ*[zk]]
day day

. )
+Adf [ —E% [ ”Z*]]EQ" [e_xmzj] - +9k)}’ka_qEQk[Zk]i| =0

= [P — (14 6)] + Ao} [HHEY [e—ﬂﬁlf] — (14 6] =0.

The existence of solutions (ay, @;) will be proved in Proposition 2.8. According to this result, the desired equilibrium
reinsurance strategies (a}, a3) are characterized. | |

A.5 Proof of Proposition 2.8
Proof: (i) Let us define

{ Gi(a1,a) = 1[N — (1+6))] +Agf [N EX [N END] — (1 4.6))),
Ga(a1,a) := Az (€7 — (1 +6y)] + g3 [P PER [ 2R AND] — (1 +-6y)].

First, for given ay > 0, we determine a; = a; (a3) by solving Gy (ay,a2) = 0,a; > 0. It is clear that
Gi(df, @) = Af [N EY [N EAD] — (1 46)] <0, (48)
where af is defined in Corollary 2.7. Note that af satisfies
NAEU [emaN(Zra)] _ (1 46;) = 0. (A9)

Then,
Gi(@,a2) = A[e"% — (1+6))] > 0.
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Also note that Gi = A1 [e}:"'zl —(1+8)]+ l%‘t% with
a N _
% =7 e}"lﬂl]EQl [e—rllﬂﬁzzf\ﬂz)] — (1 +6y),

then

3G - * o
= e +l$—1 (
day Y1 Y1

Thus, @; = a;(az) € (af,a]) is uniquely determined.
Second, we determine @ by solving the non-linear equation Gy(a;(a3),a2) = 0. Similar to (A8), it is clear that
Ga(ay(a3),a35) < 0. Note that a5 > a5 and that aj satisfies

a 2 * nl2
i) +l$a—ﬁ = 0.
dai 71 daj

PRZEEY it [e—lzﬁ(zlf\ﬁl)] —(1+6)=0.

Then,

Ga(@1 (@), a5) = 22[e”® — (1 +62)] > 0

and there exists @, € (a3, a3) such that G2(a,(@y), a;) = 0. That is, (a1, ay) are the solutions to (19).

(ii) Since

eNaEQ [ean@ra)] _ (1 +9)) <0, a < @,

G strictly decreases with A; thus a; is strictly increasing with A. It is clear that G is also a decreasing function of A,
thus a; is strictly increasing with A either.

Finally, since Gy is strictly decreasing with 8y, the argument that aj strictly increase with 8 for k = 1, 2 can be
similarly proved. |

A.6 Proofof Theorem 3.1
Proof: Inspired by the results in the previous section, we postulate that V(t,x) = —%e_f”+"‘('). Then, direct calcula-
tion shows
EQ[V(t,x — Zy) — V(£,x)] = V(t, OE2 [ef’i* - 1]
and
EQ[V(t,x— Z1 — Z3) — V(t,9)] = V(£,)EQ [effiﬁiﬂ - 1] .
By first-order condition, we have

Vet,x) Y (1 +60EUZi] + EQ [V(tx — Zy — ) — V(9] - V(692 Ing* =0, (A10)
o
k=12

That is, ¢* — e’ with

f= EQ ef’(f-1+f-z) _ 2(1 +007Z | — 1.
k=12
Thus, the HJB equation (25) can be rewritten as

hy + min Ak |1+ 0)ER[—7 7k
¢+ min k;:z k[( E=[—¥ ]]

. by
+ Y uEe [7Z _q]4yl@r -l —o. (A11)
z [ —1]+7

The optimal reinsurance safety loadings are given by

0.6) = argmin { 3 LEQ[FZ — 5Z5(1 + 6] + 22 ¢*
k=12 «
Once the optimal reinsurance safety loadings (67, 65) are determined, we may obtain ¢* and V. By a standard verifi-

cation theorem, we are able to show that V is indeed the value function and (8],63) and ¢* are the optimal pricing
strategies and the worst-case factor.
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