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A B S T R A C T   

Maintaining soil health is critical for sustainable field crop production. This on-farm study used participatory 
monitoring and employed a Bayesian linear regression model to investigate the impact of various drivers (i.e., 
climate, soil edaphic properties, management practices, cropping diversity, and tillage intensity) on soil health 
indicators. Over two years, we sampled 242 focal points in soybean fields on thirty-five farms across three re
gions in Michigan differing in climate, edaphic properties and management practices. Soils ranged from loam to 
sandy loam. Soil health indicators assessed included soil organic carbon (SOC), total soil nitrogen (TSN), per
manganate oxidizable carbon (POXC), C mineralization (Cmin), potentially mineralizable nitrogen (PMN), 
phosphorus, calcium, soil surface and subsurface resistance, and wet aggregate stability (WAS). We observed 
location effects, with each of the three regions differing in their climate, soil edaphic properties, and manage
ment practices. We found that aridity and clay content are primary drivers of most soil health indicators. Spe
cifically, crop diversity, irrespective of composition, was positively associated with Cmin and WAS. Tillage 
intensity was positively associated with PMN but negatively influenced POXC. Overall, we conclude that 
although climate and soil edaphic properties are the dominant drivers of soil health, management practices also 
play a critical role, especially when considering soil biological indicators.   

1. Introduction 

Given the vital role that soil plays within ecosystems and human life, 
it is important to assess soil health, especially on field crop farms that 
dominate agricultural landscapes in the US. Comprehensive soil health 
assessment relies on different measures, including multiple indicators 
across chemical, physical, and biological categories (Andrews et al., 
2004; Bünemann et al., 2018; Doran and Parkin, 1996; Moebius-Clune 
et al., 2016; Nunes et al., 2021; Stockdale et al., 2019; Zuber et al., 
2017). Soil organic carbon (SOC) is recognized as the most important 
indicator of soil health, as it affects soil structure, soil nutrients, and 
microbial activities (Wander, 2004). However, detecting changes in SOC 
associated with short-term management practices in cultivated fields is 
challenging (Mpeketula and Snapp, 2019). Permanganate oxidizable 
carbon (POXC) and carbon mineralization (Cmin) are emerging 

indicators used to assess soil health since they are 2–3 times more sen
sitive than SOC (Awale et al., 2013; Fine et al., 2017). Potentially 
mineralizable nitrogen (PMN) represents the largest N pool available for 
plant growth and is another useful measure of soil health and response to 
management. Available phosphorus (P) and calcium (Ca), wet aggregate 
stability (WAS), surface resistance (PEN15), and subsurface resistance 
(PEN45) are also common soil health indicators frequently discussed in 
the literature (Andrews and Carroll, 2001; Doran and Parkin, 1996; 
Zuber et al., 2017). Collectively, these simple and inexpensive indicators 
provide information regarding soil fertility, infiltration capacity, and 
aeration condition of crop fields (Bastida et al., 2008; Cardoso et al., 
2013). 

Soil health can be evaluated through scoring functions based on 
several emerging theoretical frameworks (Andrews et al., 2004; Moe
bius-Clune et al., 2016; Nunes et al., 2021). In general, three scoring 
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functions are used: “more is better” for SOC, TSN, POXC, Cmin, PMN, 
and WAS; “less is better” for PEN15 and PEN45; and “mid-point 
optimal” for soil pH, available P, and Ca (Andrews et al., 2004; Moe
bius-Clune et al., 2016). Although unit-less scoring functions based on 
local knowledge can make soil health indicators easier to interpret and 
compare, they have generally included indicators based on their sensi
tivity to environmental conditions and management practices (Zuber 
et al., 2017). Emerging soil health frameworks have also highlighted the 
importance of assessing the effects of management practices on indi
vidual indicators under differing climate and soil edaphic conditions, 
which we emphasize in this study (Stockdale et al., 2019). 

Environmental conditions and soil edaphic properties are the 
dominant determinants of SOC and other soil health indicators across 
various landscapes (Burke et al., 1989; Chaplot et al., 2010; Hontoria 
et al., 1999; Talmon et al., 2011). In terms of environmental conditions, 
temperature and aridity, in particular, can influence soil properties 
through weathering, decomposition, and biomass accumulation (Burke 
et al., 1989; Talmon et al., 2011). Yet, few published studies consider 
temperature and aridity when analyzing multiple soil health indicators. 
In addition, most research on the effects of aridity on soil properties 
focuses on semi-arid and arid systems (Delgado-Baquerizo et al., 2013; 
Jiao et al., 2016). Normalized difference vegetation index (NDVI), 
reflective of vegetative cover and biomass accumulation, is also a pre
dictor used in models of spatial variation in SOC at multiple scales 
(Kunkel et al., 2011; Zhang et al., 2019). Yet, limited work evaluates 
NDVI as a driver of soil health in agroecosystems. Meanwhile, in terms of 
soil edaphic properties, soil clay content and soil pH also critically affect 
soil health indicators (Chaplot et al., 2010; Dlamini et al., 2016). Clay 
content, a key soil edaphic property, provides surface area for 
organo-mineral complexes and micro pits for ions (Six et al., 2002). 
Thus, clay content determines several soil chemical properties. 
Furthermore, soil clay content impacts soil structure, improving aera
tion and water infiltration (Fernández-Ugalde et al., 2013). Another key 
edaphic property is soil pH; a soil’s acidity or alkalinity regulates the 
environment for ions and microbial activities and, thus, affects soil 
health indicators (Minasny et al., 2016; Turner and Blackwell, 2013). 

While environmental and soil edaphic properties influence soil 
health indicators, the soil health of agroecosystems also depends on land 
management practices, including crop diversity and tillage intensity ( 
Stockdale et al., 2019). In row crop systems, farmers generally plant a 
single species per season (Tiemann et al., 2015), meaning they increase 
temporal diversity versus spatial scale through a sequential rotation. 
McDaniel et al. (2014) found that crop diversity can improve soil quality 
through the above and below ground accumulation of biomass and 
through the functional diversity of microbial communities in a 
meta-analysis study. Tiemann et al. (2015) affirmed this notion that crop 
diversity sustains soil biological communities and improves soil organic 
matter in a 6-year Midwest biological station study. However, others 
have found otherwise. For example, Snapp et al. (2010) and Mpeketula 
and Snapp (2019) did not find that crop diversity benefitted SOC. Given 
these mixed findings, the impact of crop diversity on soil health in
dicators in field crop systems remains unclear. 

Besides crop diversity, tillage is another critical management prac
tice. Tillage disrupts soil structure and breaks down soil aggregates, 
which exposes soil’s organic matter. In this way, tillage practices can 
influence soil’s temperature, aeration, and water holding capacity and, 
in turn, further contribute to changes in microbial activity (Balota et al., 
2004). Compared to conventional tillage (CNT), reduced tillage (RT) 
creates less disturbance and, thus, improves soil’s physical properties 
and helps prevent soil loss through erosion (Huang et al., 2015; Kayan 
et al., 2017). However, RT practices do not always improve soil health 
(Bhowmik et al., 2016; Hurisso et al., 2014; Margenot et al., 2017; 
Wander and Bollero, 1999). For example, Wander and Bollero (1999) in 
an on-farm study found that PMN and SOC were lower in non-disturbed 
soils, and not significantly different in soils under no-till (NT) vs CNT. In 
addition, Hurisso et al. (2014) conducted a long-term field experiment 

that showed high PMN and other soil quality properties were associated 
with CNT, not RT. Greater understanding of local environmental context 
is needed to derive recommendations given the varied–and sometimes 
conflicting–results in terms of “best” management practices for soil 
health. 

Considering the role of field crop systems in global food security, and 
the variations in climates, soil types, and farming practices under which 
they are produced, it is helpful to adopt a Farmer Participatory Research 
(FPR) approach that reflects real-world scenarios and contextualizes the 
observed effect of environmental factors and management practices on 
soil health indicators within specific farms and fields (Snapp et al., 
2019). In this study, we employed the FPR approach and Bayesian sta
tistics to test our hypotheses that 1) environmental and soil edaphic 
properties are the main drivers of soil health indicators across a 
geographical gradient; 2) crop diversity enhances soil biological in
dicators more than physical and chemical indicators; and 3) reducing 
tillage intensity can improve soil biological health indicators. 

2. Materials and methods 

2.1. Site description 

This study was conducted on Michigan soybean (Glycine max (L.) 
Merr.) farms in 2016 and 2017 to investigate the influence of real-world 
environmental conditions and actual practices adopted by farmers on 
soil health indicators. Thirty-five farmers were recruited through 
Michigan State University Extension (MSUE), across Southwest, Central, 
and Northeast Michigan (Snapp et al., 2019). These study sites were 
located in 9 counties and represented a range of climate conditions 
(Fig. 1, Table 1). Each farmer picked one or two soybean fields to include 
in the study each year. For each field, Web Soil Survey (Web Soil Survey) 
was used to identify up to three predominant soil types that cover at 
least 2 acres, which were then labeled as focal plots. The study ulti
mately included 117 focal plots in 2016 and 125 focal plots in 2017. 
Dominant soil types in Southwest, Central, and Northeast Michigan focal 
plots were Oshtemo sandy loam, Capac loam, and Emmet sandy loam 
respectively. A full description of soil types across all the sampled plots 
are listed in Supplemental Table A1. 

2.2. Management practices 

For each field, a six-year history of management practices before the 
sampling year was established through a farmer survey supervised by 
the Michigan State University IRB board. Crop rotation was recorded, 
and a crop diversity index (CDI) was later calculated using the average 
number of crop species per year and total species across the six-year 
period (Eq. 1) following the approach in Tiemann et al. (2015). 
Notably, pasture and forage systems were counted as two species, since 
these systems are usually diverse with at least two species present within 
the system.  

CDI = S x A                                                                                  (1) 

Where CDI is crop diversity index, S is the total species in 6 years prior to 
the soil sampling, A is average species per year. Thus, the CDI was used 
as a representation of temporal and spatial diversity. The species of crop 
and land use were summarized in Table A.2. 

Tillage practice were documented through survey questions of tillage 
tool types and number of passes across the field. Then, tillage intensity 
was quantified for each field using a simplified version of the Soil Tillage 
Intensity Rating (STIR) formula from the NRCS RUSLE2 model (NRCS, 
2008) and averaged over the years. The RUSLE2 formula assigns a 
unique intensity coefficient to each tillage tool. STIR coefficients were 
averaged across the range of possible values for each tool type because 
detailed information, such as tool set-up and working depth, was not 
available. Tillage intensity was thus calculated as Eq. 2. 
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Avg.STIR = C x P / Y                                                                     (2) 

Where Avg.STIR is the average annual tillage intensity, C is the average 
tillage tool coefficient, P is the number of passes reported in the man
agement survey over the 6 years, and Y is the number of years. The 
system was categorized as NT when Avg.STIR is zero and categorized as 
CNT when Avg.STIR is above 80. 

2.3. Soil sampling and analysis 

2.3.1. Soil sampling 
For each focal plot, 20 soil sub-samples were collected at the depth of 

20 cm following a random zigzag pattern with a 5 cm diameter soil 
probe shortly before planting. The soil samples were stored at −4 ◦C 
before processing, sieved to 6 mm, and mixed until homogeneous. Soil 
penetration resistance was measured at 0−15 cm depth and 15−45 cm 
depth in situ using a hand-held penetrometer (Churchill Industries, 
Minneapolis, MN). 

2.3.2. Soil properties 
Soil pH, available phosphorus, exchangeable potassium, magnesium, 

calcium, and cation exchange capacity (CEC) were analyzed (A & L 
Great Lakes Laboratories, Fort Wayne, IN). Soil pH was determined in a 
1:1 soil to water slurry. Available phosphorus and exchangeable cations 
were extracted according to Mehlich III (Mehlich, 1984), and analyzed 
by inductively-coupled plasma spectrometry through the mass spec
trometer detection of elements. The data for exchangeable cations were 
correlated to and reported as a 1 N ammonium acetate extraction 
(McIntosh, 1969). Percent base saturation and CEC were calculated from 
exchangeable cations measurements. Soil texture and WAS were 
measured following the protocol described in Moebius-Clune et al. 
(2016) (Cornell Soil Health Lab, NY). Soil organic carbon (SOC) and 
total soil nitrogen were measured by dry combustion on a Costech ECS 
4010 CHNSO Analyzer (Costech Analytical Technologies, Valencia, CA). 

Permanganate Oxidizable Carbon was determined following the 
protocol by Culman et al. (2012) adjusted from Weil et al. (2003). 
Two-and-a-half-gram soil samples were weighed and added to 50 mL 
centrifuge tubes with 2 mL of 0.2 mol L−1 KMnO4 and 18 mL of deion
ized (DI) water. A batch of eight samples was run at each time as rec
ommended in Culman et al. (2012). The centrifuge tube was shaken for 
exactly 2 min at 240 rpm and settled for exactly 10 min. Then, 0.5 mL of 
the supernatant was mixed with 49.5 mL of DI water, transferred to a 
96-well plate, and the absorbance was read with the BioTek Synergy 
Microplate reader at the wavelength of 550 nm (BioTek Instruments Inc, 
Winooski, VT). 

Water Filled Pore Space (WFPS) was determined for each soil type, 
classified based on the soil texture, with 5 replications through a 
gravimetric method adjusted from Haney and Haney (2010). Forty 
grams of soil were measured for volume, added to a 50 mL plastic beaker 
with drainage holes in the bottom, wetted by adding 30 mL DI water, 
mounted on a funnel in the 237 mL mason jar, and allowed to drain for 
24 h. After 24 h, the wet soil sample was oven-dried at 105 ◦C for 24 h. 
Then, the WFPS for each soil type was calculated based on the wet soil 
weight, the oven-dried soil weight, and the volume. Carbon minerali
zation (Cmin) was determined using the rewetted method adjusted from 
Franzluebbers et al. (2000). Ten grams of air-dried soil samples were 
rewetted to 50 % WFPS based on the soil type in a 100 mL beaker and 
incubated for 72 h in a 237 mL mason jar at 24 ◦C in dark. The CO2 
concentration was measured by injecting 0.5 mL into LI−COR LI-820 
infrared gas analyzer (LI−COR Biosciences, Lincoln, NE) at the time of 
sealing the jar and after 24 h. Carbon mineralization was then deter
mined by difference of initial and 72 h CO2 concentration. 

Potentially mineralizable nitrogen (PMN) was determined on field 
moist soil samples adapted from the anaerobic incubation method 
(Drinkwater et al., 1996). Soil inorganic nitrogen at day 0 was 

Fig. 1. Sampling Locations of 242 focal plots in three regions in Michigan.  

Table 1 
Mean of environmental properties, management index, and soil edaphic prop
erties of focal plots (n = 242) per region. Letters compared across a row indicate 
differences by region at p ≤ 0.05.   

Southwest Central Northeast  
(n = 74) (n = 90) (n = 78) 

Latitude/ 
Longitude 

41.93 ◦N/-85.47 
◦W 

42.91 ◦N/-84.62 
◦W 

45.23 ◦N/-83.82 
◦W 

MAT 10.46 a 9.79 b 7.58 c 
MAP 984.76 a 889.63 b 813.84 c 
ARID 0.73 c 0.78 a 0.75 b 
NDVI 0.19 b 0.22 a 0.21 a 
Elevation 263.64 a 241.53 b 236.50 b 
Slope 2.15 1.94 2.21 
CDI 3.81 a 2.98 b 3.75 a 
Tillage intensity 57.79 a 40.67 b 28.03 c 
Clay 8.10 b 14.13 a 14.07 a 
pH 6.52 b 6.60 b 7.28 a 

MAT, mean annual temperature (C) from 2006 to 2015 or 2007–2016 based on 
the sampling year from MODIS11A2 at a resolution of 1 km; MAP, mean annual 
precipitation (mm) from 2006 to 2015 or 2007–2016 based on the sampling year 
from TerraClimate at a resolution of 4 km; NDVI, normal difference vegetation 
index, mean calculated from 2006 to 2015 or 2007–2016 based on the sampling 
year from LANDSAT band 3 and band 4 at a resolution of 30 m; Elevation, 
elevation (m) from STRM; Slope, slope (%) from STRM; CDI, crop diversity 
index; Clay, clay percentage (%). Means with different letter in each row indi
cate significant difference among the regions at p ≤ 0.05. 
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determined by the nitrate and ammonium content extracted by 1 M 
potassium chloride through colorimetric approach. Ten grams of soil 
was added to 40 mL potassium chloride solution, shaken at 240 rpm for 
1 h, settled for 1 h, and filtered through Whatman no. 42 filter paper. 
Next, 10 mL deionized water was added to 10 g of soils, purged with N2 
gas, incubated at 37 ◦C for 7 days, and removed for ammonium deter
mination with 30 mL of 1.33 M potassium chloride. The difference of 
ammonium in day 0 and day 7 is the soil PMN. 

2.4. Remote sensing data 

National Aeronautics and Space Administration (NASA) Moderate 
Resolution Imaging Spectroradiometer (MODIS) Land Surface Temper
ature (LST— MOD11A2) database was used to calculate the 10-year 
mean annual temperature at a resolution of 1 km from 2006 to 2015, 
and from 2007 to 2016 for focal plots sampled in the two years, 
respectively (Wan et al., 2015). Potential evapotranspiration and pre
cipitation were extracted from TerraClimate (Abatzoglou et al., 2018) to 
calculate the 10-year average aridity index (ARID) at a resolution of 4 
km from 2006 to 2015, and from 2007 to 2016 for focal plots sampled in 
the two years, respectively (Eq. 3). Ten-year growing season NDVI from 
2006 to 2016 and from 2007 to 2017 were calculated based on the 
Landsat 7 database band 3 and band 4 at a resolution of 30 m (Eq. 4) 
(USGS, 2019). Elevation data was derived from NASA Shuttle Radar 
Topography Mission (SRTM) Digital Elevation Model at 30 m resolution 
(NASA JPL, 2013).  

Aridity Index = Potential evapotranspiration / Precipitation                    (3)  

NDVI = (Band 4 − Band 3) / (Band 4 + Band 3)                                (4)  

2.5. Statistical analysis and data visualization 

The data was processed in RStudio version 1.1.456 (Rstudio Team, 
2021). Fishers’ Least Significant Difference (LSD) tests were used to 
assess the means of variables at the three regions at the 0.05 probability 
level with Bonferroni adjustment using the agricolae package (de Men
diburu and Yaseen, 2020). Normality of residuals was tested through the 
Shapiro-Wilk test and homogeneity of variance was tested by Bartlett’s 
test. 

We performed Bayesian linear regression in Python 3.6.5 package 
PyMC3 version 3.8 to assess the drivers of soil health indicators at the 90 
% and 95 % credibility levels (Salvatier et al., 2016). This means that we 
provide credibility intervals for parameters at these levels of signifi
cance. Prior distributions were set within classes of conjugate priors: 
standard normal distributions for the regression coefficients and the 
inverse-gamma distribution for each model’s error term. The prior 
variances for these distributions were taken to be fairly wide, to present 
relatively non-informative priors, allowing the Python package ample 
space for exploration. The generation of samples from the posterior 
densities, as performed in this package, was based on two independent 
Markov Chain Monte Carlo (MCMC) sequences of 10,000 iterations after 
burn-in with 500 iterations; the package uses the standard Gibbs 
sampler methodology. 

Eq. (5) show the linear regression models used in the Bayesian 
framework in this study: 

Yij = αj +
∑

k
Xikβkj + εij (5)  

where in Eq. (5): for each focal plot i, the response vector Yij is formed of 
the soil health indicators of interest (SOC, TSN, Available P, Available 
Ca, PEN15, PEN45, WAS, POXC, Cmin, PMN), the vector component αj 

is the model’s y-intercept for response j; Xik is a design matrix that 
include all predictors (MAT, ARID, NDVI, CDI, TI, clay, and pH) in the 

vector Xi of response variables Xi for plot i; β is the vector of regression 
coefficients, so that βkj is the regression coefficient of the kth explanatory 
variable in X as it relates to the jth response variable Yj; and εij is a matrix 
of Gaussian noise terms with mean 0 and variance 1, assumed to be 
independent across all responses and all focal plots. 

3. Results 

3.1. Environmental factors 

Across all 242 focal plots, there was a consistent and significant 
location effect on the MAT and MAP (Table 1, Fig. 2). The long-term 
mean MAT for the southwest region was the highest (10.46 ◦C), fol
lowed by the central (9.79 ◦C), and then by the northeast region (7.58 
◦C). Our analysis of MAP data also showed the same pattern of the 
gradient from southwest to northeast. Yet, ARID was highest in the 
central (0.78) followed by north (0.75), and was lowest in the southwest 
(0.73). Noticeably, ARID was not related to any of the other environ
mental variables (Table A2). The southwest region also had the lowest 
NDVI compared to the central and northeast regions. The mean eleva
tion per region ranged from 237 to 264 m; the southwest region had the 
highest average elevation compared to the other two regions. Slope was 
gentle across all regions (1.94 %–2.21 %). There were observed corre
lations among environmental variables as shown in Table A2. However, 
the majority of the correlation coefficients were low, except for MAP and 
MAT (R2 = 0.87, p < 0.05). Thus, in our Bayesian linear regression 
model, we included MAT, ARID, and NDVI. 

3.2. Management practice 

Crop diversity indexes were lower in the Central region (2.98) 
compared to the Southwest and Northeast regions (3.75 and 3.81). The 
majority of the focal plots in the Central region had a CDI value lower 
than 4, as observed in the density plot in Fig. 3. In both the Southwest 

Fig. 2. Environmental factors (MAT, 10 year mean annual temperature; MAP, 
10 year mean annual precipitation; Aridity, 10-year average aridity index; 
NDVI, normalized difference vegetation index) across three regions (n = 242). 
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and Northeast regions, the distribution of CDI ranged from 2 to 10. 
Across all three regions, the most common crops were corn (Zea mays 
L.), soybean, cover crop, and wheat (Triticum aestivum L.) (Table A3). 
However, the frequency of corn, soybean, and wheat varied by region. In 
the Central region, corn, soybean, and wheat made up 91 % of all crops 
in 6 years, compared to 72 % in Northeast and 74 % in Southwest. 
Forage, potato (Solanum tuberosum L.) and dry beans added diversity to 
these other regions. There were no monocultures of continuous corn 
included in this study. 

Tillage intensity across focal plots ranged from 0 to 143, where zero 
represents NT and a value of 80 or more represented CNT. Notably, focal 
plots were least intensely tilled in the Northeast (28) compared to the 
plots in the Central and Southwest regions (58 and 41, respectively). In 
the Northeast region, where MAT and MAP were both low compared to 
the other two regions, farmers used less intense tillage and more crop 
diversity. In the Southwest, where MAT and MAP were highest among 
the three regions, farmers used more conventional tillage compared to 
the Central and Northeast region (Fig. 3b). The highest use of NT was 
found in the Northeast region, followed by Central, while in the 
Southwest NT was half that of the Central region. 

3.3. Soil properties 

Our two soil edaphic indicators, clay content and soil pH showed 
location differences. Clay content average per region ranged from 8.10 
% - 14.07 % (Table 1). The Southwest region (8.10 %) was less clayey 
compared to the other two regions (14.07 % and 14.13 %). Soil pH was 
generally neutral while ranging from 6.52 to 7.28 per region (Table 1). 
In this case, plots in the Northeast region showed the highest soil pH 
levels, indicating that this soil was neutral towards slightly alkaline. In 
contrast, with pH values of 6.52 and 6.60, soils in the Southwest and 
Central regions were slightly acidic. 

In terms of the SOC and TSN pools, the Southwest region had the 
lowest values (Table 2). Other location patterns of soil chemical prop
erties were not as consistent as SOC and TSN. For example, soil P and K 
were high in Southwest, whereas Mg and Ca were lowest (Table 2). 
Calcium and CEC followed the same pattern: highest in Northeast, fol
lowed by Central and Southwest region. 

Surface penetration resistance per region ranged from 
202.42–218.12 psi (Table 2). The variation by region was not significant 
at p < 0.05 level. However, PEN45 was more variable compared to 
PEN15, which was highest in the Southwest (489.16 psi), followed by 
Northeast (378.28 psi) and Central (302.25 psi). There was an increase 
of penetration resistance along the depth of sampling. The Central re
gion had both the lowest PEN15 and WAS compared to the other two 
regions. Wet aggregate stability ranged from 33.29 % to 38.64 %. The 
Southwest region was lowest in all three biological indicators (PMN, 
POXC, and Cmin) among the three regions (Table 2). Carbon minerali
zation was less variable than PMN and POXC. 

Soil clay content had a positive correlation with pH, SOC, TSN, Ca, 

PMN, POXC, and Cmin, as well as a negative correlation with P, PEN15, 
PEN45, indicating the influence of the soil edaphic properties on soil 
health indicators in all categories (Table 3). Yet, the negative relation
ship of soil clay content and PEN15 and PEN 45 showed that the high 
clay content did not contribute to increased penetration resistance. 
Similar to soil clay content, soil pH had the same pattern of correlation 
to those variables, except the PEN 45 (R2= -0.11, NS). Though clay 
content and soil pH was correlated, the correlation coefficient was small 
(R2 = 0.34). Therefore, we included both soil clay content and soil pH as 
edaphic indicators in the Bayesian linear regression analysis. 

SOC and TSN were strongly correlated (R2 = 0.96, p < 0.01). In 
addition, as a critical component of soil health, both SOC and TSN were 
correlated to all soil properties listed in the table (Table 3). Lower 
PEN15 and PEN45 were related to increased SOC (R2 = -0.29, p < 0.01; 
R2 = -0.23, p < 0.01) and TSN (R2 = -0.29, p < 0.01; R2 = -0.26, p <
0.01). Calcium content has a positive and high correlation coefficient 
with SOC (R2 = 0.78, p < 0.01) and TSN (R2 = 0.70, p < 0.01). 

Soil physical properties, PEN15, PEN45, and WAS, were positively 
related to each other (Table 3). Among the three variable, PEN15 and 
PEN45 was most closely related (R2 = 0.45, p < 0.01), followed by 
PEN45 and WAS (R2 = 0.26, p < 0.01), then PEN15 and WAS (R2 = 0.13, 
p < 0.05). All three soil physical variables were not correlated with soil 
biological indicators PMN and Cmin. In addition, WAS was correlated 

Fig. 3. Density plot of crop diversity index and tillage intensity across three regions (n = 242).  

Table 2 
Mean soil properties of sampled focal plots per region (n = 242). Letters 
compared across a row indicate differences by region at p ≤ 0.05.   

Southwest Central Northeast  
(n = 74) (n = 90) (n = 78) 

SOC 1.11 b 1.44 a 1.64 a 
TSN 0.10 b 0.13 a 0.12 ab 
C/N ratio 10.48 b 10.74 b 13.17 a 
P 48.09 a 32.91 b 35.63 b 
K 120.56 a 120.89 a 90.84 b 
Mg 122.36 b 201.03 a 211.19 a 
Ca 810.34 c 1091.85 b 1769.89 a 
CEC 6.15 c 8.27 b 11.05 a 
PEN15 215.74 218.12 202.42 
PEN45 489.16 a 302.25 c 378.28 b 
WAS 38.37 a 33.29 b 38.64 a 
PMN 4.10 c 5.76 b 7.12 a 
POXC 464.98 c 569.90 b 638.27 a 
Cmin 65.23 b 87.03 a 86.05 a 

SOC, soil organic carbon (%); TSN, total soil nitrogen (%); P, available phos
phorus (mg kg−1); K, extractable potassium (mg kg−1); Mg, exchangeable 
magnesium (mg kg −1); Ca, exchangeable calcium (mg kg−1); CEC, cation ex
change capacity; PEN15, penetration resistance at 0−15 cm depth (psi); PEN45, 
penetration resistance at 15−45 cm depth (psi); WAS, wet aggregate stability (g 
g−1); PMN, potential mineralizable nitrogen (mg N kg-1 soil); POXC, perman
ganate oxidizable carbon (mg C kg−1 soil); Cmin, carbon mineralization (0–3 d; 
mg C kg soil−1). Means with different letter in each row indicate significant 
difference among the regions at p ≤ 0.05. 
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with the least amount of soil properties in the table compared to all other 
variables (Table 3). 

Among the three biological indicators, POXC had the highest corre
lation coefficient with SOC (R2 = 0.47, p < 0.01) and TSN (R2 = 0.47, p 
< 0.01) compared to PMN (R2 = 0.21, p < 0.01; R2 = 0.17, p < 0.01) and 
Cmin (R2 = 0.25, p < 0.01; R2 = 0.27, p < 0.01). The two biological 
indicators based on nutrient mineralization, PMN and Cmin, were 
positively related at a low R2 (R2 = 0.24, p < 0.01). In addition, PMN 
was also positively correlated with POXC (R2 = 0.18, p < 0.01). How
ever, the labile C indicators, POXC and Cmin, were not related (R2 =

0.1). 

3.4. Drivers of soil properties 

3.4.1. Soil chemical properties 
Aridity and soil edaphic properties were the main determinants for 

soil chemical properties, SOC, TSN, P, and Ca (Fig. 4). We observed 
aridity as a negative driver for all of the four soil chemical properties. 
Contrary to our hypothesis, the environmental factor MAT was not a 
determinant for SOC or TSN (Fig. 4). MAT was a negative driver for P 
and Ca (Fig. 4c, d). Although previous studies have used NDVI as a proxy 
for biomass accumulation and a predictor of regional level SOC, NDVI 
did not explain the three regions’ SOC values. NDVI had a null to min
imal negative influence on P. Clay and pH content had positive effects on 
SOC, TSN, and Ca; yet negative effects on soil P. The magnitude of clay 
and pH effect on Ca was larger than the magnitude of those two variables 
on SOC, TSN, and P. The management indicators, crop diversity and 

tillage intensity, did not have any effect on SOC, TSN, and Ca. Crop 
diversity index had a negative effect on the soil calcium content 
(Fig. 4d). The high CDI and high soil calcium content in the northeast 
region likely drive this relationship in our dataset (Table 2). 

3.4.2. Soil biological properties 
Though SOC and TSN did not respond to temperature variations, 

long term temperature showed a negative effect on POXC and PMN. 
Counter to the negative influence of aridity on SOC and TSN, aridity 
showed a positive effect on Cmin. In addition, NDVI was positively 
associated with Cmin and PMN. Clay content was a positive determinant 
for POXC and Cmin, which was consistent compared to the SOC and TSN 
(Fig. 5). Yet, neither clay nor soil pH had any impact on PMN. 

Comparing the nil effects of management on SOC and TSN, we found 
effects of crop diversity and tillage on the labile C and N pools, which 
was reflected by the soil biological indicators, POXC, Cmin, and PMN 
(Fig. 5). Tillage intensity was a negative driver for POXC, indicating the 
reduced tillage intensity contributed to higher POXC (Fig. 5a). Crop 
diversity is a positive driver for both Cmin (at 95 % credible interval) 
and PMN (at 90 % credible interval). Surprisingly, tillage intensity was 
positively related to the PMN, RT can lead to lower PMN compared to 
conventional tillage systems. 

3.4.3. Soil physical properties 
Counter effects of ARID were found on soil physical properties: a 

positive effect of ARID was observed on PEN15, while negative effects of 
ARID was observed on PEN45 and WAS (Fig. 6). Consistent with POXC 

Table 3 
Pearson’s correlation coefficients of soil edaphic properties and soil health indicators across all sampled focal plots (n = 242). Values with **, and * indicate cor
relations are significant at the levels p ≤ 0.01, and p ≤ 0.05, respectively.   

pH SOC TSN P Ca PEN15 PEN45 WAS PMN POXC Cmin 

Clay 0.34** 0.31** 0.31** −0.33** 0.55** −0.21** −0.41** 0.03 0.12* 0.31** 0.28** 
pH  0.32** 0.2** −0.23** 0.64** −0.15* −0.11 0.05 0.14* 0.27** 0.19** 
SOC   0.96** −0.18** 0.78** −0.29** −0.23** 0.19** 0.21** 0.47** 0.25** 
TSN    −0.16* 0.7** −0.29** −0.26** 0.16* 0.17** 0.44** 0.27** 
P     −0.31** 0.1 0.28** 0.04NS −0.03 −0.14* −0.14* 
Ca      −0.31** −0.26** 0.15* 0.18** 0.48** 0.21** 
PEN15       0.45** 0.13* −0.04 −0.16* −0.1 
PEN45        0.26** −0.11 −0.32** −0.09 
WAS         0.08 0.17** 0.04 
PMN          0.18** 0.24** 
POXC           0.1 

SOC, soil organic carbon (%); TSN, total soil nitrogen (%); P, available phosphorus (mg kg−1); K, extractable potassium (mg kg−1); Mg, exchangeable magnesium (mg 
kg −1); Ca, exchangeable calcium (mg kg−1); CEC, cation exchange capacity; PEN15, penetration resistance at 0−15 cm depth (psi); PEN45, penetration resistance at 
15−45 cm depth (psi); WAS, wet aggregate stability (g g−1); PMN, potential mineralizable nitrogen (mg N kg-1 soil); POXC, permanganate oxidizable carbon (mg C 
kg−1 soil); Cmin, carbon mineralization (0–3 d; mg C kg soil−1). 

Fig. 4. Posterior results of Bayesian regression model with 2 chains of 10, 000 iterations explicit the 90 % credible intervals associated with drivers of SOC, TSN, P, 
and Ca across all plots (n = 242). Values with •, * indicates significance at 90 % credible interval and 95 % credible interval. 
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and PMN, MAT had a negative impact on WAS. We also found an inverse 
relationship between NDVI and PEN15, which suggested less compac
tion leading to more accumulation of biomass. Penetration resistance at 
both 0−15 cm and 15−45 cm depth was negatively related to soil clay 
content (Fig. 4a). Clay content was the only consistent driver for PEN15 
and PEN45. Unlike PEN15 and PEN45, soil clay content did not show 
any impact on WAS. 

Management effects on soil physical properties were depth depen
dent (Fig. 6). Tillage intensity was a negative determinant for PEN15 
and positive determinant for PEN45. Reducing tillage intensity increases 
surface penetration resistance and decreases sub-surface resistance by 
limiting compaction. Crop diversity was also a positive determinant of 
WAS, which supports the positive impact of crop diversity on soil 
physical properties. 

4. Discussion 

4.1. Michigan sites 

Across Michigan, location of focal plots was a key factor determining 
climate and soil edaphic properties, whereas farm management prac
tices overlapped across regions. The Southwest region has a generally 
conducive plant growth environment for Michigan, with high MAT and 
long growing days. The Central region has an intermediate growth 

environment, whereas the Northeast region has generally cold condi
tions, with moderate precipitation (Table 1). For example, it can be 
challenging to predict which conditions are conducive to soybean pro
duction as above 20 ◦C is associated with suppressed soybean yield in 
Nebraska, but the opposite effect is seen in neighboring Minnesota 
(Mourtzinis et al., 2015; Wilhelm and Wortmann, 2004). Soil properties 
vary as well by location, with coarse textured sites common in the 
Southwest and alkaline sites with high calcium common in the Northeast 
(Table 2). 

Conservation practices on field crop farms vary widely across the 
USA, including adoption of NT, reduced tillage and cover crops (Wade 
et al., 2015). Wade et al. (2015) grouped Michigan with other North 
Central states in their study of conservation practices, a scale of analysis 
which overlooks variations within a region, and in our case, within a 
state or farm. We found that mean tillage intensity was lowest in 
Northeast Michigan, with a clumped distribution, whereas tillage in
tensity was low for about half of Central Michigan producers, with a long 
tail that included a substantial minority using intensive tillage (Fig. 3). 

Crop diversity patterns were also highly variable, with relatively 
simple rotational sequences dominated by corn and soybean in Central 
Michigan, and a wide range of cropping system practices at the other 
locations (Table A3). Northeast Michigan cropping systems stood out in 
terms of the presence of pasture and hay crops. Similarly, a study by 
Aguilar et al. (2015) found that Michigan’s Northeast region has a high 

Fig. 5. Posterior results of Bayesian regression model with 2 chains of 10, 000 iterations explicit the 90 % credible intervals associated with drivers of POXC, Cmin, 
and PMN across all plots (n = 242). Values with •, * indicates significance at 90 % credible interval and 95 % credible interval. 

Fig. 6. Posterior results of Bayesian regression model with 2 chains of 10, 000 iterations explicit the 90 % credible intervals associated with drivers of PEN15, PEN45, 
and WAS across all plots (n = 242). Values with •, * indicates significance at 90 % credible interval and 95 % credible interval. 
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crop diversity index. The Northeast had both high crop diversity and the 
largest proportion of NT fields. The Southwest also had high crop di
versity, due to high frequency of cover crop use, as well as the highest 
rate of tillage intensity among all regions (Fig. 3). This variable use of 
practices stands in contrast to studies that have shown a positive rela
tionship between crop diversity and uptake of conservation tillage 
(Aguilar et al., 2015; Prokopy et al., 2019). Other studies have found 
that mean temperature is often positively associated with use of CT 
(Wade et al., 2016; Wade and Claassen, 2017). Our study highlights the 
variability in adoption of conservation practices that can occur within 
one state, where a marked gradient in mean temperature is not associ
ated clearly with adoption of reduced tillage. 

4.2. Soil health properties 

4.2.1. Environment and edaphic factors 
We evaluated drivers of soil health indicators, including chemical, 

biological and physical properties. Among environmental and soil 
edaphic properties, MAT, NDVI, and soil pH had modest effects on soil 
health indicators, whereas aridity and soil clay content were key de
terminants. Limited studies evaluate management practices on soil 
health across environmental gradients (Morrow et al., 2017; Rottler 
et al., 2019). In particular, there appears to be no other published 
research on the effect of environment, soil edaphic factors, and man
agement practices on soil health, specifically within the Midwestern 
United States. In a study conducted in the Pacific Northwest on a dryland 
cropping system, Morrow et al. (2017) observed that MAT and MAP 
influence soil’s organic matter more than tillage practices and crop di
versity. In a study conducted across the Southern Great Plains region of 
the United States, Rottler et al. (2019) reported similar findings, 
uncovering that climate affects soil health more so than management 
practices. Our results confirm that environmental and soil edaphic fac
tors, especially aridity and soil clay content, are dominant drivers of soil 
health in Michigan. However, we also found that management practices 
influence certain indicators, namely Cmin was positively associated with 
CDI. Although we used different soil health indicators than both Morrow 
et al. and Rottler et al., our results still make clear that environment and 
soil edaphic factors drive soil health far more than management 
practices. 

Temperature can influence soil health indicators given its effects on 
the freeze and thaw cycle, decomposition rate, and biomass production 
from crops (Johnson et al., 2011; Rottler et al., 2019). Generally, there is 
a negative association between temperature and SOC and TSN due to 
decreased decomposition rates at lower temperatures shielding stable 
SOC and TSN pools from mineralization (Burke et al., 1989; Johnson 
et al., 2011; Morrow et al., 2017). This finding has been shown for a 
wide range of land uses at the regional level in the United States. from 
rangelands and cultivated lands in the Central Plain Grassland as 
observed by Burke et al. (1989) to the high altitude state of Alaska as 
described by Johnson et al. (2011). Yet, we observed no discernable 
effect of MAT on SOC or TSN across the fields included in this study. This 
finding may be due to the scale of our study, which focused on a gradient 
across the State of Michigan, rather than broad geographics areas as in 
the cases of both Burket et al.’s (1989) and Johnson et al.’s (2011) 
studies. In line with our findings, two studies conducted in the Loess 
Plateau region of China found that MAT did not drive spatial variation in 
cultivated fields’ SOC or TSN values (Liu et al., 2011, 2013). In contrast 
to SOC and TSN, POXC and PMN were soil health indicators affected by 
temperature variation on Michigan farms. More specifically, we found a 
negative relationship between MAT and both POXC and PMN, which 
suggests that farms in the warmest region of Michigan (the Southwest 
region in this study) need to pay close attention to organic inputs in 
order to build labile C and N pools. 

Aridity is a critical determinant of all soil health indicators investi
gated in this study, except for POXC and PMN. Specifically, aridity was 
negatively associated with SOC, TSN, Ca, P, PEN45, and WAS, and 

positively associated with Cmin and PEN15. Such findings on the sig
nificant effect of aridity on soil health are expected; research has long 
documented aridity’s impact on soil’s physical conditions and biological 
activities, given its relationship to water availability and geochemical 
processes (Delgado-Baquerizo et al., 2013). However, most research, to 
date, on the influence of aridity on soil health indicators has focused on 
arid or semi-arid lands (Delgado-Baquerizo et al., 2013; Jiao et al., 2016; 
Wang et al., 2014). Our results confirm that increased aridity poses 
challenges to soil health in the U.S. Midwest cultivated lands – a 
comparatively more humid environment than those previously studied. 
Additionally, the negative influence of aridity on SOC and TSN aligns 
with previous studies showing how low water availability can limit plant 
growth and biomass accumulation (Delgado-Baquerizo et al., 2013; Jiao 
et al., 2016). However, our finding of the negative relationship between 
aridity and available P countered previous research, specifically Del
gado-Baquerizo et al.’s (2013) global dryland study and Jiao et al.’s 
(2016) regional grassland study in Inner Mongolia, China. Jiao et al. 
(2016) found that aridity did not affect available P. In contrast, Delga
do-Baquerizo et al. (2013) observed a positive relationship between 
available P and aridity. Aridity may play a stronger role in physical 
weathering than in biological solubilization processes that influence 
available P. Thus, in drylands, physical weathering may increase 
available P. In addition, we found that aridity contributes mostly to 
soil’s physical processes, only observing its effect on one biological 
characteristic—Cmin. Specifically, aridity had a positive relationship 
with Cmin (Fig. 5). This result counters the findings of a large-scale 
study conducted in Mediterranean and desert systems, which found 
that aridity was negatively associated with soil CO2 respiration (Talmon 
et al., 2011). 

Vegetative cover, as indicated by NDVI, had clear positive effects on 
two biological indicators — Cmin and PMN. NDVI from satellite remote 
sensing reflects plant growth and biomass accumulation and, thus, is 
used to predict SOC and TSN at multiple scales (Kunkel et al., 2011; 
Zhang et al., 2019). Furthermore, in managed field crop systems, NDVI 
determined by canopy measurements is a promising proxy for in-season 
N management (Fabbri et al., 2020; Po et al., 2010; Solari et al., 2008). 
Our study is the first to investigate remote-sensing NDVI as a driver for 
soil labile C and N fractions in cultivated lands. The positive relationship 
between NDVI and both soil labile C and N pools is due to the high return 
of biomass from these fields. 

In addition to aridity, soil clay content was another dominant driver 
influencing soil health on Michigan fields. Soil clay content positively 
influences most soil health indicators, including SOC, TSN, Ca, POXC 
and Cmin, and negatively impacts available P, PEN15, and PEN45. The 
large surface area and high organo-mineral complexes of clay support 
SOC stabilization (Chaplot et al., 2010; Fernández-Ugalde et al., 2013; 
Swanepoel et al., 2018). Thus, clay content acts as a cementing medium 
that binds soil nutrients and contributes to the development of aggre
gates, which further stabilize soil C (Fernández-Ugalde et al., 2013; 
Mpeketula and Snapp, 2019). Unexpectedly, clay content was not a 
driver of WAS; this may be related to the role of crop residue quality on 
WAS in field crop farms. Although soil compaction can be an issue on 
fine-textured soils (Nunes et al., 2015), we observed low penetration 
resistance under high soil clay content. Accordingly then, there might be 
an interaction effect between clay content and tillage practices on soil 
compaction, meaning that soil texture is not the only limiting factor for 
WAS in managed fields. 

Soil pH regulates many soil properties and is a critical driver of soil 
nutrients in agroecosystems (Robson, 1989; Penn and Camberato, 
2019). Affirming this understanding, our results showed that soil pH 
influences the four soil chemical indicators (Fig. 4). The soil pH of our 
sites ranged from 5.3–8.0, meaning the soil we studied was slightly acid. 
Under these slightly acidic conditions, the SOC and TSN pool were more 
degraded–a finding Dlamini et al. (2016) previously noted in their 
meta-analysis of SOC in semi-arid soils. Our results also support that soil 
pH increases SOC and TSN. As Ca is a base-forming cation, the positive 
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association between SOC and pH was expected. P availability is expected 
to be low in either highly acid or highly alkaline fields (Penn and 
Camberato, 2019). Though our sites are mostly within the range of 
neutral to slightly acid, we found that P decreased with soil pH. 

4.2.2. Crop diversity 
In terms of crop diversity (CDI), our study included 242 focal plots 

with 91 crop combinations over six years. Crop species directly influence 
the quality and quantity of residues and, thus, belowground biota, soil 
pores, and carbon accrual processes (Kravchenko et al., 2019; McDaniel 
et al., 2014). The literature shows mixed findings in terms of the effect of 
crop rotational diversity on SOC and TSN. In a meta-analysis, McDaniel 
et al. (2014) pointed out that rotated fields had significantly higher SOC 
values than monoculture fields. In contrast, SOC and TSN levels in 
monoculture corn fields were not significantly different from rotational 
diversified corn fields (Zuber et al., 2015). Furthermore, it is difficult to 
detect the effects of crop diversity on SOC and TSN in the context of an 
on-farm study due to underlying edaphic factors, namely texture. We 
observed no influence of crop diversity on SOC or TSN in this study, 
likely because clay content and pH varied markedly across the three 
studied regions in Michigan. 

Crop diversity was a positive driver for three of the soil health in
dicators in our study—Cmin, PMN, and WAS (Figs. 4 & 5). In our study, 
inclusions of cover crop, pasture, and forage led to higher CDI in field 
crop farms regardless of species composition and perenniality. Our re
sults confirm previous research on Cmin’s responsiveness to manage
ment practices (Balota et al., 2004; Culman et al., 2013). Observations 
from a number of field crop experiments in the Upper Midwest are 
consistent, finding that plant residue diversity positively affects soil 
microbial communities and soil respiration (Jilling et al., 2020; Tiemann 
et al., 2015). Carbon mineralization and PMN were correlated in pre
vious studies, as both are biologically mediated processes (Fran
zluebbers et al., 2000). Culman et al. (2013) observed higher Cmin and 
PMN under corn-soybean-wheat rotation than continuous corn. Simi
larly, Balota et al. (2004) pointed out that Cmin and PMN are higher 
under rotations with soybean due to the lower C: N ratio of soybean 
residue compared to corn. Diederich et al. (2019) in a long-term study 
found that perennial cropping systems had significantly higher POXC. 
Noticeably, crop diversity did not contribute to higher POXC in our 
study, which aligns with the results of Culman et al. (2013) showing that 
crop rotational diversity is more influential on Cmin than POXC, with 
the latter being more responsive to stabilized C inputs (Fig. 5). Also, our 
study focused on annual field crops systems, and did not include many 
cases of perennial crops maintained for multiple years. 

Aggregate stability status was significantly higher on fields with a 
diverse crop history, which supports Mann et al. (2019) findings of high 
WAS in grass and mixed perennial-annual systems. Long-term field 
experimentation has provided evidence that soil aggregate stability 
benefits from cover crops and rotational diversity, as the biochemical 
diversity of residues and diverse root system architectures enhance/
support soil biological processes (Kravchenko et al., 2019; Mpeketula 
and Snapp, 2019; Tiemann et al., 2015). Unsurprisingly, we found that 
fields with high crop diversity, generally including cover crops, had high 
aggregate stability. However, not all studies have found a positive as
sociation between soil stabilization and cover crop diversity. Specif
ically, Snapp and Surapur (2018) have found that winter rye cover does 
not have a detectable effect on aggregate stability. Nevertheless, Tie
mann et al. (2015) stated that diversity in field crop systems, regardless 
of the composition of specific cover crops, is beneficial to soil aggregate 
stability. A contribution of our study is sampling realistic rotational 
sequences in the Upper Midwest to show that crop diversity (regardless 
of species composition and perenniality) benefits soil structural stability, 
and microbially mediated soil C and N (indicated by Cmin and PMN). 

4.2.3. Tillage intensity 
Tillage intensity was associated with reduced POXC, enhanced PMN, 

and a depth dependent effect on penetration resistance, but had no effect 
on SOC and TSN in this study. SOC status has been observed to be 
enhanced under RT in a long-term corn-soybean wheat experiment in 
southwest Michigan (Grandy and Robertson, 2007), and in a decadal 
wheat study in China (Chen et al., 2019). Yet, the interaction of SOC and 
tillage intensity can be highly variable (Margenot et al., 2017; Wander 
and Bollero, 1999; Wulanningtyas et al., 2021). Soil depth also matters 
in studies of SOC response to management, as shown in a soybean 
experiment where NT was associated with SOC accrual only in the top 
0–2.5 cm, whereas deeper in the soil SOC was not altered (Wulanning
tyas et al., 2021). We considered only the surface soil at 0–20 cm, within 
which management effects can be more challenging to detect. This un
detectable effect of tillage on SOC is in agreement with a pioneering 
on-farm soil health study conducted in a neighboring Midwest state 
(Wander and Bollero, 1999), which did show higher SOC in 
non-disturbed soil outside of fields, but no difference in agricultural 
fields with a history of NT vs CT. 

Whereas stable carbon pools are generally slow to respond to man
agement and challenging to detect changes in, we expected tillage in
tensity to influence soil biological indicators, such as POXC and Cmin. In 
a Midwest silty clay soil, Awale et al. (2013) found that POXC is less 
sensitive to tillage effects than Cmin. However, we found that tillage 
intensity was a driver for variation in POXC, but not Cmin (Fig. 5). 
Greater POXC under RT confirms previous studies that evaluated the 
tillage influence on POXC under various environments, cropping sys
tems, and soil textures (Awale et al., 2013; Chen et al., 2019; Lewis et al., 
2011). High tillage intensity leads to the breakdown of soil macroag
gregates and elevated oxidization (Chen et al., 2009). POXC was higher 
in shallow tillage and NT systems than CT in an 11 year long-term winter 
wheat monoculture system on a loam in Loess Plateau of China (Chen 
et al., 2009). Similarly, under two silt loam soils, POXC was greater 
under RT compared to NT in a 3-year field experiment in Florida in a 
cover crop - soybean - corn system that is transitioning to organic sys
tems (Lewis et al., 2011). In a diverse 6-year cropping system in North 
Dakota with soybean-corn-sugar beet, POXC values were larger under 
strip-till and NT than CT (Awale et al., 2013). 

Tillage intensity was associated with moderate enhancement of PMN 
across the Michigan field sites (Fig. 5). As the most critical fraction of N 
for crop growth, PMN is regulated by factors, such as the water content 
and temperature, which can be altered by tillage through physical 
disturbance. Consistent with our finding, a winter wheat study that 
evaluated the effect of 60-year tillage practice showed that PMN was 
higher under conventional tillage than NT (Hurisso et al., 2014). This 
may be related to enhanced mineralization activity associated with a 
high level of disturbance, due to increased temperature (Drury et al., 
1999). We presented the real-world 6-year tillage choices by farmers, 
which showed the disturbance in the field can contribute to releasing of 
the N pool for crop growth. Yet, this positive influence of tillage intensity 
is counter to previous long-term studies that showed greater PMN under 
RT than CT (Martínez et al., 2017; Sharifi et al., 2008). The effect of 
tillage intensity on PMN may be important for performance of legume 
crops like soybean that are generally not fertilized with supplemental 
nitrogen and left to rely on fixation and mineralization. 

We observed higher compaction under lower tillage intensity at the 
surface (PEN15). Similar results were observed in other Midwest states, 
such as an on-farm study by Wander and Bollero (1999) in Illinois and a 
field experiment by Burgos Hernández et al. (2019) in Ohio. Since the 
plow layer is at 20–25 cm depth, the penetration resistance for 0–15 cm 
under RT is high due to lack of disturbance (Nunes et al., 2020). We 
confirm that high tillage intensity was associated with high compaction 
deeper in the soil (PEN45), which supports Burgos Hernández et al. 
(2019) and Nunes et al. (2020) that tillage practice hardened soils below 
the plow layer. 

The variability in tillage operations might be another concern or 
limitation of this study. Differences in tillage depth or other details 
might restrain detection of soil health effects from specific tillage 
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operations. Still, we hope to emphasize the value of our on-farm 
research approach that captures real-world variability, allowing us to 
consider the context within which farmers make decisions regarding 
tillage intensity and conservation practices more broadly. 

5. Conclusion 

Our on-farm study reflected real-world scenarios associated with 
Michigan field crop production and evaluated soil health as influenced 
by various environmental conditions, crop rotation sequences, and 
tillage intensity. The experiment confirmed that aridity and clay content 
are the dominant drivers for a wide range soil health metrics. Six-year 
management histories represented a variety of crop rotation sequences 
and showed the benefits of high crop diversity, including enhanced soil 
biological and physical properties (Cmin, PMN, and WAS). Increasing 
crop diversity irrespective of composition, is a promising approach to 
improve soil health for a wide range of environmental conditions and 
field crop systems. We note that crop diversity was the only factor that 
enhanced water aggregate stability. However, tillage effects on soil 
health were less clear, as intense tillage was associated with low POXC 
and high PMN. Although reduced tillage was associated with gains in 
POXC pools in the topsoil and alleviated soil compaction at lower 
depths; it did not contribute to available soil N. Thus, the adoption of 
tillage type depends on field management goals. Clearly, further inves
tigation of tillage practices is needed to determine long-term sustain
ability and potential trade-offs between active C, available N, and 
ultimately, crop yield. 
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