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Maintaining soil health is critical for sustainable field crop production. This on-farm study used participatory
monitoring and employed a Bayesian linear regression model to investigate the impact of various drivers (i.e.,
climate, soil edaphic properties, management practices, cropping diversity, and tillage intensity) on soil health
indicators. Over two years, we sampled 242 focal points in soybean fields on thirty-five farms across three re-
gions in Michigan differing in climate, edaphic properties and management practices. Soils ranged from loam to
sandy loam. Soil health indicators assessed included soil organic carbon (SOC), total soil nitrogen (TSN), per-
manganate oxidizable carbon (POXC), C mineralization (Cmin), potentially mineralizable nitrogen (PMN),
phosphorus, calcium, soil surface and subsurface resistance, and wet aggregate stability (WAS). We observed
location effects, with each of the three regions differing in their climate, soil edaphic properties, and manage-
ment practices. We found that aridity and clay content are primary drivers of most soil health indicators. Spe-
cifically, crop diversity, irrespective of composition, was positively associated with Cmin and WAS. Tillage
intensity was positively associated with PMN but negatively influenced POXC. Overall, we conclude that
although climate and soil edaphic properties are the dominant drivers of soil health, management practices also

play a critical role, especially when considering soil biological indicators.

1. Introduction

Given the vital role that soil plays within ecosystems and human life,
it is important to assess soil health, especially on field crop farms that
dominate agricultural landscapes in the US. Comprehensive soil health
assessment relies on different measures, including multiple indicators
across chemical, physical, and biological categories (Andrews et al.,
2004; Biinemann et al., 2018; Doran and Parkin, 1996; Moebius-Clune
et al., 2016; Nunes et al., 2021; Stockdale et al., 2019; Zuber et al.,
2017). Soil organic carbon (SOC) is recognized as the most important
indicator of soil health, as it affects soil structure, soil nutrients, and
microbial activities (Wander, 2004). However, detecting changes in SOC
associated with short-term management practices in cultivated fields is
challenging (Mpeketula and Snapp, 2019). Permanganate oxidizable
carbon (POXC) and carbon mineralization (Cmin) are emerging

indicators used to assess soil health since they are 2-3 times more sen-
sitive than SOC (Awale et al., 2013; Fine et al., 2017). Potentially
mineralizable nitrogen (PMN) represents the largest N pool available for
plant growth and is another useful measure of soil health and response to
management. Available phosphorus (P) and calcium (Ca), wet aggregate
stability (WAS), surface resistance (PEN15), and subsurface resistance
(PEN45) are also common soil health indicators frequently discussed in
the literature (Andrews and Carroll, 2001; Doran and Parkin, 1996;
Zuber et al., 2017). Collectively, these simple and inexpensive indicators
provide information regarding soil fertility, infiltration capacity, and
aeration condition of crop fields (Bastida et al., 2008; Cardoso et al.,
2013).

Soil health can be evaluated through scoring functions based on
several emerging theoretical frameworks (Andrews et al., 2004; Moe-
bius-Clune et al., 2016; Nunes et al., 2021). In general, three scoring
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functions are used: “more is better” for SOC, TSN, POXC, Cmin, PMN,
and WAS; “less is better” for PEN15 and PEN45; and “mid-point
optimal” for soil pH, available P, and Ca (Andrews et al., 2004; Moe-
bius-Clune et al., 2016). Although unit-less scoring functions based on
local knowledge can make soil health indicators easier to interpret and
compare, they have generally included indicators based on their sensi-
tivity to environmental conditions and management practices (Zuber
et al., 2017). Emerging soil health frameworks have also highlighted the
importance of assessing the effects of management practices on indi-
vidual indicators under differing climate and soil edaphic conditions,
which we emphasize in this study (Stockdale et al., 2019).

Environmental conditions and soil edaphic properties are the
dominant determinants of SOC and other soil health indicators across
various landscapes (Burke et al., 1989; Chaplot et al., 2010; Hontoria
et al., 1999; Talmon et al., 2011). In terms of environmental conditions,
temperature and aridity, in particular, can influence soil properties
through weathering, decomposition, and biomass accumulation (Burke
et al., 1989; Talmon et al., 2011). Yet, few published studies consider
temperature and aridity when analyzing multiple soil health indicators.
In addition, most research on the effects of aridity on soil properties
focuses on semi-arid and arid systems (Delgado-Baquerizo et al., 2013;
Jiao et al., 2016). Normalized difference vegetation index (NDVI),
reflective of vegetative cover and biomass accumulation, is also a pre-
dictor used in models of spatial variation in SOC at multiple scales
(Kunkel et al., 2011; Zhang et al., 2019). Yet, limited work evaluates
NDVI as a driver of soil health in agroecosystems. Meanwhile, in terms of
soil edaphic properties, soil clay content and soil pH also critically affect
soil health indicators (Chaplot et al., 2010; Dlamini et al., 2016). Clay
content, a key soil edaphic property, provides surface area for
organo-mineral complexes and micro pits for ions (Six et al., 2002).
Thus, clay content determines several soil chemical properties.
Furthermore, soil clay content impacts soil structure, improving aera-
tion and water infiltration (Fernandez-Ugalde et al., 2013). Another key
edaphic property is soil pH; a soil’s acidity or alkalinity regulates the
environment for ions and microbial activities and, thus, affects soil
health indicators (Minasny et al., 2016; Turner and Blackwell, 2013).

While environmental and soil edaphic properties influence soil
health indicators, the soil health of agroecosystems also depends on land
management practices, including crop diversity and tillage intensity (
Stockdale et al., 2019). In row crop systems, farmers generally plant a
single species per season (Tiemann et al., 2015), meaning they increase
temporal diversity versus spatial scale through a sequential rotation.
McDaniel et al. (2014) found that crop diversity can improve soil quality
through the above and below ground accumulation of biomass and
through the functional diversity of microbial communities in a
meta-analysis study. Tiemann et al. (2015) affirmed this notion that crop
diversity sustains soil biological communities and improves soil organic
matter in a 6-year Midwest biological station study. However, others
have found otherwise. For example, Snapp et al. (2010) and Mpeketula
and Snapp (2019) did not find that crop diversity benefitted SOC. Given
these mixed findings, the impact of crop diversity on soil health in-
dicators in field crop systems remains unclear.

Besides crop diversity, tillage is another critical management prac-
tice. Tillage disrupts soil structure and breaks down soil aggregates,
which exposes soil’s organic matter. In this way, tillage practices can
influence soil’s temperature, aeration, and water holding capacity and,
in turn, further contribute to changes in microbial activity (Balota et al.,
2004). Compared to conventional tillage (CNT), reduced tillage (RT)
creates less disturbance and, thus, improves soil’s physical properties
and helps prevent soil loss through erosion (Huang et al., 2015; Kayan
et al., 2017). However, RT practices do not always improve soil health
(Bhowmik et al., 2016; Hurisso et al., 2014; Margenot et al., 2017;
Wander and Bollero, 1999). For example, Wander and Bollero (1999) in
an on-farm study found that PMN and SOC were lower in non-disturbed
soils, and not significantly different in soils under no-till (NT) vs CNT. In
addition, Hurisso et al. (2014) conducted a long-term field experiment
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that showed high PMN and other soil quality properties were associated
with CNT, not RT. Greater understanding of local environmental context
is needed to derive recommendations given the varied—and sometimes
conflicting-results in terms of “best” management practices for soil
health.

Considering the role of field crop systems in global food security, and
the variations in climates, soil types, and farming practices under which
they are produced, it is helpful to adopt a Farmer Participatory Research
(FPR) approach that reflects real-world scenarios and contextualizes the
observed effect of environmental factors and management practices on
soil health indicators within specific farms and fields (Snapp et al.,
2019). In this study, we employed the FPR approach and Bayesian sta-
tistics to test our hypotheses that 1) environmental and soil edaphic
properties are the main drivers of soil health indicators across a
geographical gradient; 2) crop diversity enhances soil biological in-
dicators more than physical and chemical indicators; and 3) reducing
tillage intensity can improve soil biological health indicators.

2. Materials and methods
2.1. Site description

This study was conducted on Michigan soybean (Glycine max (L.)
Merr.) farms in 2016 and 2017 to investigate the influence of real-world
environmental conditions and actual practices adopted by farmers on
soil health indicators. Thirty-five farmers were recruited through
Michigan State University Extension (MSUE), across Southwest, Central,
and Northeast Michigan (Snapp et al., 2019). These study sites were
located in 9 counties and represented a range of climate conditions
(Fig. 1, Table 1). Each farmer picked one or two soybean fields to include
in the study each year. For each field, Web Soil Survey (Web Soil Survey)
was used to identify up to three predominant soil types that cover at
least 2 acres, which were then labeled as focal plots. The study ulti-
mately included 117 focal plots in 2016 and 125 focal plots in 2017.
Dominant soil types in Southwest, Central, and Northeast Michigan focal
plots were Oshtemo sandy loam, Capac loam, and Emmet sandy loam
respectively. A full description of soil types across all the sampled plots
are listed in Supplemental Table Al.

2.2. Management practices

For each field, a six-year history of management practices before the
sampling year was established through a farmer survey supervised by
the Michigan State University IRB board. Crop rotation was recorded,
and a crop diversity index (CDI) was later calculated using the average
number of crop species per year and total species across the six-year
period (Eq. 1) following the approach in Tiemann et al. (2015).
Notably, pasture and forage systems were counted as two species, since
these systems are usually diverse with at least two species present within
the system.

CDI=SxA (€D)]

Where CDI is crop diversity index, S is the total species in 6 years prior to
the soil sampling, A is average species per year. Thus, the CDI was used
as a representation of temporal and spatial diversity. The species of crop
and land use were summarized in Table A.2.

Tillage practice were documented through survey questions of tillage
tool types and number of passes across the field. Then, tillage intensity
was quantified for each field using a simplified version of the Soil Tillage
Intensity Rating (STIR) formula from the NRCS RUSLE2 model (NRCS,
2008) and averaged over the years. The RUSLE2 formula assigns a
unique intensity coefficient to each tillage tool. STIR coefficients were
averaged across the range of possible values for each tool type because
detailed information, such as tool set-up and working depth, was not
available. Tillage intensity was thus calculated as Eq. 2.
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Fig. 1. Sampling Locations of 242 focal plots in three regions in Michigan.

Table 1

Mean of environmental properties, management index, and soil edaphic prop-
erties of focal plots (n = 242) per region. Letters compared across a row indicate
differences by region at p < 0.05.

Southwest Central Northeast

n=74) (n =90) (n=78)
Latitude/ 41.93 °N/-85.47 42.91 °N/-84.62 45.23 °N/-83.82

Longitude ‘W W W

MAT 10.46 a 9.79 b 7.58 ¢
MAP 984.76 a 889.63 b 813.84 ¢
ARID 0.73 ¢ 0.78 a 0.75b
NDVI 0.19b 0.22a 0.21a
Elevation 263.64 a 241.53 b 236.50 b
Slope 2.15 1.94 2.21
CDI 38la 2.98 b 3.75a
Tillage intensity 57.79a 40.67 b 28.03 ¢
Clay 8.10b 1413 a 14.07 a
pH 6.52 b 6.60 b 7.28a

MAT, mean annual temperature (C) from 2006 to 2015 or 2007-2016 based on
the sampling year from MODIS11A2 at a resolution of 1 km; MAP, mean annual
precipitation (mm) from 2006 to 2015 or 2007-2016 based on the sampling year
from TerraClimate at a resolution of 4 km; NDVI, normal difference vegetation
index, mean calculated from 2006 to 2015 or 2007-2016 based on the sampling
year from LANDSAT band 3 and band 4 at a resolution of 30 m; Elevation,
elevation (m) from STRM; Slope, slope (%) from STRM; CDI, crop diversity
index; Clay, clay percentage (%). Means with different letter in each row indi-
cate significant difference among the regions at p < 0.05.

AvgSTIR=CxP/Y 2

Where Avg.STIR is the average annual tillage intensity, C is the average
tillage tool coefficient, P is the number of passes reported in the man-
agement survey over the 6 years, and Y is the number of years. The
system was categorized as NT when Avg.STIR is zero and categorized as
CNT when Avg.STIR is above 80.

2.3. Soil sampling and analysis

2.3.1. Soil sampling

For each focal plot, 20 soil sub-samples were collected at the depth of
20 cm following a random zigzag pattern with a 5 cm diameter soil
probe shortly before planting. The soil samples were stored at —4 °C
before processing, sieved to 6 mm, and mixed until homogeneous. Soil
penetration resistance was measured at 0—15 cm depth and 15—45 cm
depth in situ using a hand-held penetrometer (Churchill Industries,
Minneapolis, MN).

2.3.2. Soil properties

Soil pH, available phosphorus, exchangeable potassium, magnesium,
calcium, and cation exchange capacity (CEC) were analyzed (A & L
Great Lakes Laboratories, Fort Wayne, IN). Soil pH was determined in a
1:1 soil to water slurry. Available phosphorus and exchangeable cations
were extracted according to Mehlich III (Mehlich, 1984), and analyzed
by inductively-coupled plasma spectrometry through the mass spec-
trometer detection of elements. The data for exchangeable cations were
correlated to and reported as a 1 N ammonium acetate extraction
(McIntosh, 1969). Percent base saturation and CEC were calculated from
exchangeable cations measurements. Soil texture and WAS were
measured following the protocol described in Moebius-Clune et al.
(2016) (Cornell Soil Health Lab, NY). Soil organic carbon (SOC) and
total soil nitrogen were measured by dry combustion on a Costech ECS
4010 CHNSO Analyzer (Costech Analytical Technologies, Valencia, CA).

Permanganate Oxidizable Carbon was determined following the
protocol by Culman et al. (2012) adjusted from Weil et al. (2003).
Two-and-a-half-gram soil samples were weighed and added to 50 mL
centrifuge tubes with 2 mL of 0.2 mol L™! KMnO, and 18 mL of deion-
ized (DI) water. A batch of eight samples was run at each time as rec-
ommended in Culman et al. (2012). The centrifuge tube was shaken for
exactly 2 min at 240 rpm and settled for exactly 10 min. Then, 0.5 mL of
the supernatant was mixed with 49.5 mL of DI water, transferred to a
96-well plate, and the absorbance was read with the BioTek Synergy
Microplate reader at the wavelength of 550 nm (BioTek Instruments Inc,
Winooski, VT).

Water Filled Pore Space (WFPS) was determined for each soil type,
classified based on the soil texture, with 5 replications through a
gravimetric method adjusted from Haney and Haney (2010). Forty
grams of soil were measured for volume, added to a 50 mL plastic beaker
with drainage holes in the bottom, wetted by adding 30 mL DI water,
mounted on a funnel in the 237 mL mason jar, and allowed to drain for
24 h. After 24 h, the wet soil sample was oven-dried at 105 °C for 24 h.
Then, the WFPS for each soil type was calculated based on the wet soil
weight, the oven-dried soil weight, and the volume. Carbon minerali-
zation (Cmin) was determined using the rewetted method adjusted from
Franzluebbers et al. (2000). Ten grams of air-dried soil samples were
rewetted to 50 % WFPS based on the soil type in a 100 mL beaker and
incubated for 72 h in a 237 mL mason jar at 24 °C in dark. The CO5
concentration was measured by injecting 0.5 mL into LI-COR LI-820
infrared gas analyzer (LI-COR Biosciences, Lincoln, NE) at the time of
sealing the jar and after 24 h. Carbon mineralization was then deter-
mined by difference of initial and 72 h CO, concentration.

Potentially mineralizable nitrogen (PMN) was determined on field
moist soil samples adapted from the anaerobic incubation method
(Drinkwater et al., 1996). Soil inorganic nitrogen at day 0 was
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determined by the nitrate and ammonium content extracted by 1 M
potassium chloride through colorimetric approach. Ten grams of soil
was added to 40 mL potassium chloride solution, shaken at 240 rpm for
1 h, settled for 1 h, and filtered through Whatman no. 42 filter paper.
Next, 10 mL deionized water was added to 10 g of soils, purged with Ny
gas, incubated at 37 °C for 7 days, and removed for ammonium deter-
mination with 30 mL of 1.33 M potassium chloride. The difference of
ammonium in day 0 and day 7 is the soil PMN.

2.4. Remote sensing data

National Aeronautics and Space Administration (NASA) Moderate
Resolution Imaging Spectroradiometer (MODIS) Land Surface Temper-
ature (LST— MOD11A2) database was used to calculate the 10-year
mean annual temperature at a resolution of 1 km from 2006 to 2015,
and from 2007 to 2016 for focal plots sampled in the two years,
respectively (Wan et al., 2015). Potential evapotranspiration and pre-
cipitation were extracted from TerraClimate (Abatzoglou et al., 2018) to
calculate the 10-year average aridity index (ARID) at a resolution of 4
km from 2006 to 2015, and from 2007 to 2016 for focal plots sampled in
the two years, respectively (Eq. 3). Ten-year growing season NDVI from
2006 to 2016 and from 2007 to 2017 were calculated based on the
Landsat 7 database band 3 and band 4 at a resolution of 30 m (Eq. 4)
(USGS, 2019). Elevation data was derived from NASA Shuttle Radar
Topography Mission (SRTM) Digital Elevation Model at 30 m resolution
(NASA JPL, 2013).

Aridity Index = Potential evapotranspiration / Precipitation 3

NDVI = (Band 4 — Band 3) / (Band 4 + Band 3) “4)

2.5. Statistical analysis and data visualization

The data was processed in RStudio version 1.1.456 (Rstudio Team,
2021). Fishers’ Least Significant Difference (LSD) tests were used to
assess the means of variables at the three regions at the 0.05 probability
level with Bonferroni adjustment using the agricolae package (de Men-
diburu and Yaseen, 2020). Normality of residuals was tested through the
Shapiro-Wilk test and homogeneity of variance was tested by Bartlett’s
test.

We performed Bayesian linear regression in Python 3.6.5 package
PyMC3 version 3.8 to assess the drivers of soil health indicators at the 90
% and 95 % credibility levels (Salvatier et al., 2016). This means that we
provide credibility intervals for parameters at these levels of signifi-
cance. Prior distributions were set within classes of conjugate priors:
standard normal distributions for the regression coefficients and the
inverse-gamma distribution for each model’s error term. The prior
variances for these distributions were taken to be fairly wide, to present
relatively non-informative priors, allowing the Python package ample
space for exploration. The generation of samples from the posterior
densities, as performed in this package, was based on two independent
Markov Chain Monte Carlo (MCMC) sequences of 10,000 iterations after
burn-in with 500 iterations; the package uses the standard Gibbs
sampler methodology.

Eq. (5) show the linear regression models used in the Bayesian
framework in this study:

Y=+ XuPy+e; 5)
k

where in Eq. (5): for each focal plot i, the response vector Yj; is formed of
the soil health indicators of interest (SOC, TSN, Available P, Available
Ca, PEN15, PEN45, WAS, POXC, Cmin, PMN), the vector component a;
is the model’s y-intercept for response j; Xy is a design matrix that
include all predictors (MAT, ARID, NDVI, CDI, TI, clay, and pH) in the
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vector X; of response variables X; for plot i; f is the vector of regression
coefficients, so that f; is the regression coefficient of the kth explanatory
variable in X as it relates to the jth response variable Yj; and ¢; is a matrix
of Gaussian noise terms with mean 0 and variance 1, assumed to be
independent across all responses and all focal plots.

3. Results
3.1. Environmental factors

Across all 242 focal plots, there was a consistent and significant
location effect on the MAT and MAP (Table 1, Fig. 2). The long-term
mean MAT for the southwest region was the highest (10.46 °C), fol-
lowed by the central (9.79 °C), and then by the northeast region (7.58
°C). Our analysis of MAP data also showed the same pattern of the
gradient from southwest to northeast. Yet, ARID was highest in the
central (0.78) followed by north (0.75), and was lowest in the southwest
(0.73). Noticeably, ARID was not related to any of the other environ-
mental variables (Table A2). The southwest region also had the lowest
NDVI compared to the central and northeast regions. The mean eleva-
tion per region ranged from 237 to 264 m; the southwest region had the
highest average elevation compared to the other two regions. Slope was
gentle across all regions (1.94 %-2.21 %). There were observed corre-
lations among environmental variables as shown in Table A2. However,
the majority of the correlation coefficients were low, except for MAP and
MAT (R? = 0.87, p < 0.05). Thus, in our Bayesian linear regression
model, we included MAT, ARID, and NDVI.

3.2. Management practice

Crop diversity indexes were lower in the Central region (2.98)
compared to the Southwest and Northeast regions (3.75 and 3.81). The
majority of the focal plots in the Central region had a CDI value lower
than 4, as observed in the density plot in Fig. 3. In both the Southwest
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Fig. 2. Environmental factors (MAT, 10 year mean annual temperature; MAP,
10 year mean annual precipitation; Aridity, 10-year average aridity index;
NDVI, normalized difference vegetation index) across three regions (n = 242).
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Fig. 3. Density plot of crop diversity index and tillage intensity across three regions (n = 242).

and Northeast regions, the distribution of CDI ranged from 2 to 10.
Across all three regions, the most common crops were corn (Zea mays
L.), soybean, cover crop, and wheat (Triticum aestivum L.) (Table A3).
However, the frequency of corn, soybean, and wheat varied by region. In
the Central region, corn, soybean, and wheat made up 91 % of all crops
in 6 years, compared to 72 % in Northeast and 74 % in Southwest.
Forage, potato (Solanum tuberosum L.) and dry beans added diversity to
these other regions. There were no monocultures of continuous corn
included in this study.

Tillage intensity across focal plots ranged from O to 143, where zero
represents NT and a value of 80 or more represented CNT. Notably, focal
plots were least intensely tilled in the Northeast (28) compared to the
plots in the Central and Southwest regions (58 and 41, respectively). In
the Northeast region, where MAT and MAP were both low compared to
the other two regions, farmers used less intense tillage and more crop
diversity. In the Southwest, where MAT and MAP were highest among
the three regions, farmers used more conventional tillage compared to
the Central and Northeast region (Fig. 3b). The highest use of NT was
found in the Northeast region, followed by Central, while in the
Southwest NT was half that of the Central region.

3.3. Soil properties

Our two soil edaphic indicators, clay content and soil pH showed
location differences. Clay content average per region ranged from 8.10
% - 14.07 % (Table 1). The Southwest region (8.10 %) was less clayey
compared to the other two regions (14.07 % and 14.13 %). Soil pH was
generally neutral while ranging from 6.52 to 7.28 per region (Table 1).
In this case, plots in the Northeast region showed the highest soil pH
levels, indicating that this soil was neutral towards slightly alkaline. In
contrast, with pH values of 6.52 and 6.60, soils in the Southwest and
Central regions were slightly acidic.

In terms of the SOC and TSN pools, the Southwest region had the
lowest values (Table 2). Other location patterns of soil chemical prop-
erties were not as consistent as SOC and TSN. For example, soil P and K
were high in Southwest, whereas Mg and Ca were lowest (Table 2).
Calcium and CEC followed the same pattern: highest in Northeast, fol-
lowed by Central and Southwest region.

Surface penetration resistance per region ranged from
202.42-218.12 psi (Table 2). The variation by region was not significant
at p < 0.05 level. However, PEN45 was more variable compared to
PEN15, which was highest in the Southwest (489.16 psi), followed by
Northeast (378.28 psi) and Central (302.25 psi). There was an increase
of penetration resistance along the depth of sampling. The Central re-
gion had both the lowest PEN15 and WAS compared to the other two
regions. Wet aggregate stability ranged from 33.29 % to 38.64 %. The
Southwest region was lowest in all three biological indicators (PMN,
POXC, and Cmin) among the three regions (Table 2). Carbon minerali-
zation was less variable than PMN and POXC.

Soil clay content had a positive correlation with pH, SOC, TSN, Ca,

Table 2
Mean soil properties of sampled focal plots per region (n = 242). Letters
compared across a row indicate differences by region at p < 0.05.

Southwest Central Northeast

=74 (n =90) (n=78)
SOC 1.11b l.44a 1.64a
TSN 0.10b 0.13 a 0.12 ab
C/N ratio 10.48 b 10.74 b 13.17 a
P 48.09 a 3291 b 35.63 b
K 120.56 a 120.89 a 90.84 b
Mg 122.36 b 201.03 a 211.19a
Ca 810.34 ¢ 1091.85 b 1769.89 a
CEC 6.15c 8.27 b 11.05a
PEN15 215.74 218.12 202.42
PEN45 489.16 a 302.25 ¢ 378.28 b
WAS 38.37 a 33.29b 38.64 a
PMN 410c 5.76 b 7.12a
POXC 464.98 ¢ 569.90 b 638.27 a
Cmin 65.23 b 87.03 a 86.05 a

SOC, soil organic carbon (%); TSN, total soil nitrogen (%); P, available phos-
phorus (mg kg™); K, extractable potassium (mg kg™'); Mg, exchangeable
magnesium (mg kg ~1); Ca, exchangeable calcium (mg kg™!); CEC, cation ex-
change capacity; PEN15, penetration resistance at 0—15 cm depth (psi); PEN45,
penetration resistance at 15—45 cm depth (psi); WAS, wet aggregate stability (g
¢~1); PMN, potential mineralizable nitrogen (mg N kg™ soil); POXC, perman-
ganate oxidizable carbon (mg C kg’1 soil); Cmin, carbon mineralization (0-3 d;
mg C kg soil !). Means with different letter in each row indicate significant
difference among the regions at p < 0.05.

PMN, POXC, and Cmin, as well as a negative correlation with P, PEN15,
PEN45, indicating the influence of the soil edaphic properties on soil
health indicators in all categories (Table 3). Yet, the negative relation-
ship of soil clay content and PEN15 and PEN 45 showed that the high
clay content did not contribute to increased penetration resistance.
Similar to soil clay content, soil pH had the same pattern of correlation
to those variables, except the PEN 45 (R*= -0.1 1, NS). Though clay
content and soil pH was correlated, the correlation coefficient was small
(R? = 0.34). Therefore, we included both soil clay content and soil pH as
edaphic indicators in the Bayesian linear regression analysis.

SOC and TSN were strongly correlated (R = 0.96, p < 0.01). In
addition, as a critical component of soil health, both SOC and TSN were
correlated to all soil properties listed in the table (Table 3). Lower
PEN15 and PEN45 were related to increased SOC (R? = -0.29, p < 0.01;
R? =-0.23, p < 0.01) and TSN (R? = -0.29, p < 0.01; RZ = -0.26, p <
0.01). Calcium content has a positive and high correlation coefficient
with SOC (R% = 0.78, p < 0.01) and TSN (R? = 0.70, p < 0.01).

Soil physical properties, PEN15, PEN45, and WAS, were positively
related to each other (Table 3). Among the three variable, PEN15 and
PEN45 was most closely related (R? = 0.45, p < 0.01), followed by
PEN45 and WAS (R% = 0.26, p < 0.01), then PEN15 and WAS (R = 0.13,
p < 0.05). All three soil physical variables were not correlated with soil
biological indicators PMN and Cmin. In addition, WAS was correlated
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Table 3

Pearson’s correlation coefficients of soil edaphic properties and soil health indicators across all sampled focal plots (n = 242). Values wit]

relations are significant at the levels p < 0.01, and p < 0.05, respectively.
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** and * indicate cor-

pH SOC TSN P Ca PEN15 PEN45 WAS PMN POXC Cmin
Clay 0.34%* 0.31%* —0.33%* 0.55%* —0.21%* —0.41%* 0.03 0.12* 0.31%* 0.28%*
pH 0.32%* —0.23%** 0.64%* —0.15* -0.11 0.05 0.14* 0.19%*
S0C —0.18** 0.78%* —0.29%* —0.23** 0.19%* 0.21** 0.25%*
TSN —-0.16* 0.7%% —0.29%* —0.26** 0.16* 0.17** 0.27**
P —0.31%* 0.1 0.28%* 0.04NS -0.03 —0.14*
Ca —0.31%* —0.26** 0.15* 0.18** 0.21%*
PEN15 0.45%* 0.13* —0.04 -0.1
PEN45 0.26%* -0.11 ~0.09
WAS 0.08 0.04
PMN 0.24%*
POXC 0.1

SOC, soil organic carbon (%); TSN, total soil nitrogen (%); P, available phosphorus (mg kg ™1); K, extractable potassium (mg kg~!); Mg, exchangeable magnesium (mg
kg ~1); Ca, exchangeable calcium (mg kg’l); CEC, cation exchange capacity; PEN15, penetration resistance at 0—15 cm depth (psi); PEN45, penetration resistance at
15—45 cm depth (psi); WAS, wet aggregate stability (g g~); PMN, potential mineralizable nitrogen (mg N kg™ soil); POXC, permanganate oxidizable carbon (mg C

kg’1 soil); Cmin, carbon mineralization (0-3 d; mg C kg soil ™).

with the least amount of soil properties in the table compared to all other
variables (Table 3).

Among the three biological indicators, POXC had the highest corre-
lation coefficient with SOC (R2 = 0.47, p < 0.01) and TSN (R? = 0.47, p
< 0.01) compared to PMN (R? =0.21, p < 0.01; R>=0.17, p < 0.01) and
Cmin (R? = 0.25, p < 0.01; R% = 0.27, p < 0.01). The two biological
indicators based on nutrient mineralization, PMN and Cmin, were
positively related at a low R2 (R? = 0.24, p < 0.01). In addition, PMN
was also positively correlated with POXC (R? = 0.18, p < 0.01). How-
ever, the labile C indicators, POXC and Cmin, were not related (R =
0.1).

3.4. Drivers of soil properties

3.4.1. Soil chemical properties

Aridity and soil edaphic properties were the main determinants for
soil chemical properties, SOC, TSN, P, and Ca (Fig. 4). We observed
aridity as a negative driver for all of the four soil chemical properties.
Contrary to our hypothesis, the environmental factor MAT was not a
determinant for SOC or TSN (Fig. 4). MAT was a negative driver for P
and Ca (Fig. 4c, d). Although previous studies have used NDVI as a proxy
for biomass accumulation and a predictor of regional level SOC, NDVI
did not explain the three regions’ SOC values. NDVI had a null to min-
imal negative influence on P. Clay and pH content had positive effects on
SOC, TSN, and Ca; yet negative effects on soil P. The magnitude of clay
and pH effect on Ca was larger than the magnitude of those two variables
on SOC, TSN, and P. The management indicators, crop diversity and
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tillage intensity, did not have any effect on SOC, TSN, and Ca. Crop
diversity index had a negative effect on the soil calcium content
(Fig. 4d). The high CDI and high soil calcium content in the northeast
region likely drive this relationship in our dataset (Table 2).

3.4.2. Soil biological properties

Though SOC and TSN did not respond to temperature variations,
long term temperature showed a negative effect on POXC and PMN.
Counter to the negative influence of aridity on SOC and TSN, aridity
showed a positive effect on Cmin. In addition, NDVI was positively
associated with Cmin and PMN. Clay content was a positive determinant
for POXC and Cmin, which was consistent compared to the SOC and TSN
(Fig. 5). Yet, neither clay nor soil pH had any impact on PMN.

Comparing the nil effects of management on SOC and TSN, we found
effects of crop diversity and tillage on the labile C and N pools, which
was reflected by the soil biological indicators, POXC, Cmin, and PMN
(Fig. 5). Tillage intensity was a negative driver for POXC, indicating the
reduced tillage intensity contributed to higher POXC (Fig. 5a). Crop
diversity is a positive driver for both Cmin (at 95 % credible interval)
and PMN (at 90 % credible interval). Surprisingly, tillage intensity was
positively related to the PMN, RT can lead to lower PMN compared to
conventional tillage systems.

3.4.3. Soil physical properties

Counter effects of ARID were found on soil physical properties: a
positive effect of ARID was observed on PEN15, while negative effects of
ARID was observed on PEN45 and WAS (Fig. 6). Consistent with POXC
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Fig. 4. Posterior results of Bayesian regression model with 2 chains of 10, 000 iterations explicit the 90 % credible intervals associated with drivers of SOC, TSN, P,
and Ca across all plots (n = 242). Values with e, * indicates significance at 90 % credible interval and 95 % credible interval.
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Fig. 5. Posterior results of Bayesian regression model with 2 chains of 10, 000 iterations explicit the 90 % credible intervals associated with drivers of POXC, Cmin,
and PMN across all plots (n = 242). Values with e, * indicates significance at 90 % credible interval and 95 % credible interval.
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Fig. 6. Posterior results of Bayesian regression model with 2 chains of 10, 000 iterations explicit the 90 % credible intervals associated with drivers of PEN15, PEN45,

and WAS across all plots (n = 242). Values with e, * indicates significance at 90 % credible interval and 95 % credible interval.

and PMN, MAT had a negative impact on WAS. We also found an inverse
relationship between NDVI and PEN15, which suggested less compac-
tion leading to more accumulation of biomass. Penetration resistance at
both 0—15 c¢cm and 15—45 cm depth was negatively related to soil clay
content (Fig. 4a). Clay content was the only consistent driver for PEN15
and PEN45. Unlike PEN15 and PEN45, soil clay content did not show
any impact on WAS.

Management effects on soil physical properties were depth depen-
dent (Fig. 6). Tillage intensity was a negative determinant for PEN15
and positive determinant for PEN45. Reducing tillage intensity increases
surface penetration resistance and decreases sub-surface resistance by
limiting compaction. Crop diversity was also a positive determinant of
WAS, which supports the positive impact of crop diversity on soil
physical properties.

4. Discussion
4.1. Michigan sites

Across Michigan, location of focal plots was a key factor determining
climate and soil edaphic properties, whereas farm management prac-
tices overlapped across regions. The Southwest region has a generally
conducive plant growth environment for Michigan, with high MAT and
long growing days. The Central region has an intermediate growth

environment, whereas the Northeast region has generally cold condi-
tions, with moderate precipitation (Table 1). For example, it can be
challenging to predict which conditions are conducive to soybean pro-
duction as above 20 °C is associated with suppressed soybean yield in
Nebraska, but the opposite effect is seen in neighboring Minnesota
(Mourtzinis et al., 2015; Wilhelm and Wortmann, 2004). Soil properties
vary as well by location, with coarse textured sites common in the
Southwest and alkaline sites with high calcium common in the Northeast
(Table 2).

Conservation practices on field crop farms vary widely across the
USA, including adoption of NT, reduced tillage and cover crops (Wade
et al.,, 2015). Wade et al. (2015) grouped Michigan with other North
Central states in their study of conservation practices, a scale of analysis
which overlooks variations within a region, and in our case, within a
state or farm. We found that mean tillage intensity was lowest in
Northeast Michigan, with a clumped distribution, whereas tillage in-
tensity was low for about half of Central Michigan producers, with along
tail that included a substantial minority using intensive tillage (Fig. 3).

Crop diversity patterns were also highly variable, with relatively
simple rotational sequences dominated by corn and soybean in Central
Michigan, and a wide range of cropping system practices at the other
locations (Table A3). Northeast Michigan cropping systems stood out in
terms of the presence of pasture and hay crops. Similarly, a study by
Aguilar et al. (2015) found that Michigan’s Northeast region has a high
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crop diversity index. The Northeast had both high crop diversity and the
largest proportion of NT fields. The Southwest also had high crop di-
versity, due to high frequency of cover crop use, as well as the highest
rate of tillage intensity among all regions (Fig. 3). This variable use of
practices stands in contrast to studies that have shown a positive rela-
tionship between crop diversity and uptake of conservation tillage
(Aguilar et al., 2015; Prokopy et al., 2019). Other studies have found
that mean temperature is often positively associated with use of CT
(Wade et al., 2016; Wade and Claassen, 2017). Our study highlights the
variability in adoption of conservation practices that can occur within
one state, where a marked gradient in mean temperature is not associ-
ated clearly with adoption of reduced tillage.

4.2. Soil health properties

4.2.1. Environment and edaphic factors

We evaluated drivers of soil health indicators, including chemical,
biological and physical properties. Among environmental and soil
edaphic properties, MAT, NDVI, and soil pH had modest effects on soil
health indicators, whereas aridity and soil clay content were key de-
terminants. Limited studies evaluate management practices on soil
health across environmental gradients (Morrow et al., 2017; Rottler
et al.,, 2019). In particular, there appears to be no other published
research on the effect of environment, soil edaphic factors, and man-
agement practices on soil health, specifically within the Midwestern
United States. In a study conducted in the Pacific Northwest on a dryland
cropping system, Morrow et al. (2017) observed that MAT and MAP
influence soil’s organic matter more than tillage practices and crop di-
versity. In a study conducted across the Southern Great Plains region of
the United States, Rottler et al. (2019) reported similar findings,
uncovering that climate affects soil health more so than management
practices. Our results confirm that environmental and soil edaphic fac-
tors, especially aridity and soil clay content, are dominant drivers of soil
health in Michigan. However, we also found that management practices
influence certain indicators, namely Cmin was positively associated with
CDI. Although we used different soil health indicators than both Morrow
et al. and Rottler et al., our results still make clear that environment and
soil edaphic factors drive soil health far more than management
practices.

Temperature can influence soil health indicators given its effects on
the freeze and thaw cycle, decomposition rate, and biomass production
from crops (Johnson et al., 2011; Rottler et al., 2019). Generally, there is
a negative association between temperature and SOC and TSN due to
decreased decomposition rates at lower temperatures shielding stable
SOC and TSN pools from mineralization (Burke et al., 1989; Johnson
et al.,, 2011; Morrow et al., 2017). This finding has been shown for a
wide range of land uses at the regional level in the United States. from
rangelands and cultivated lands in the Central Plain Grassland as
observed by Burke et al. (1989) to the high altitude state of Alaska as
described by Johnson et al. (2011). Yet, we observed no discernable
effect of MAT on SOC or TSN across the fields included in this study. This
finding may be due to the scale of our study, which focused on a gradient
across the State of Michigan, rather than broad geographics areas as in
the cases of both Burket et al.’s (1989) and Johnson et al.’s (2011)
studies. In line with our findings, two studies conducted in the Loess
Plateau region of China found that MAT did not drive spatial variation in
cultivated fields’ SOC or TSN values (Liu et al., 2011, 2013). In contrast
to SOC and TSN, POXC and PMN were soil health indicators affected by
temperature variation on Michigan farms. More specifically, we found a
negative relationship between MAT and both POXC and PMN, which
suggests that farms in the warmest region of Michigan (the Southwest
region in this study) need to pay close attention to organic inputs in
order to build labile C and N pools.

Aridity is a critical determinant of all soil health indicators investi-
gated in this study, except for POXC and PMN. Specifically, aridity was
negatively associated with SOC, TSN, Ca, P, PEN45, and WAS, and

Soil & Tillage Research 213 (2021) 105146

positively associated with Cmin and PEN15. Such findings on the sig-
nificant effect of aridity on soil health are expected; research has long
documented aridity’s impact on soil’s physical conditions and biological
activities, given its relationship to water availability and geochemical
processes (Delgado-Baquerizo et al., 2013). However, most research, to
date, on the influence of aridity on soil health indicators has focused on
arid or semi-arid lands (Delgado-Baquerizo et al., 2013; Jiao et al., 2016;
Wang et al., 2014). Our results confirm that increased aridity poses
challenges to soil health in the U.S. Midwest cultivated lands - a
comparatively more humid environment than those previously studied.
Additionally, the negative influence of aridity on SOC and TSN aligns
with previous studies showing how low water availability can limit plant
growth and biomass accumulation (Delgado-Baquerizo et al., 2013; Jiao
et al., 2016). However, our finding of the negative relationship between
aridity and available P countered previous research, specifically Del-
gado-Baquerizo et al.’s (2013) global dryland study and Jiao et al.’s
(2016) regional grassland study in Inner Mongolia, China. Jiao et al.
(2016) found that aridity did not affect available P. In contrast, Delga-
do-Baquerizo et al. (2013) observed a positive relationship between
available P and aridity. Aridity may play a stronger role in physical
weathering than in biological solubilization processes that influence
available P. Thus, in drylands, physical weathering may increase
available P. In addition, we found that aridity contributes mostly to
soil’s physical processes, only observing its effect on one biological
characteristic—Cmin. Specifically, aridity had a positive relationship
with Cmin (Fig. 5). This result counters the findings of a large-scale
study conducted in Mediterranean and desert systems, which found
that aridity was negatively associated with soil CO, respiration (Talmon
et al., 2011).

Vegetative cover, as indicated by NDVI, had clear positive effects on
two biological indicators — Cmin and PMN. NDVI from satellite remote
sensing reflects plant growth and biomass accumulation and, thus, is
used to predict SOC and TSN at multiple scales (Kunkel et al., 2011;
Zhang et al., 2019). Furthermore, in managed field crop systems, NDVI
determined by canopy measurements is a promising proxy for in-season
N management (Fabbri et al., 2020; Po et al., 2010; Solari et al., 2008).
Our study is the first to investigate remote-sensing NDVI as a driver for
soil labile C and N fractions in cultivated lands. The positive relationship
between NDVI and both soil labile C and N pools is due to the high return
of biomass from these fields.

In addition to aridity, soil clay content was another dominant driver
influencing soil health on Michigan fields. Soil clay content positively
influences most soil health indicators, including SOC, TSN, Ca, POXC
and Cmin, and negatively impacts available P, PEN15, and PEN45. The
large surface area and high organo-mineral complexes of clay support
SOC stabilization (Chaplot et al., 2010; Fernandez-Ugalde et al., 2013;
Swanepoel et al., 2018). Thus, clay content acts as a cementing medium
that binds soil nutrients and contributes to the development of aggre-
gates, which further stabilize soil C (Fernandez-Ugalde et al., 2013;
Mpeketula and Snapp, 2019). Unexpectedly, clay content was not a
driver of WAS; this may be related to the role of crop residue quality on
WAS in field crop farms. Although soil compaction can be an issue on
fine-textured soils (Nunes et al., 2015), we observed low penetration
resistance under high soil clay content. Accordingly then, there might be
an interaction effect between clay content and tillage practices on soil
compaction, meaning that soil texture is not the only limiting factor for
WAS in managed fields.

Soil pH regulates many soil properties and is a critical driver of soil
nutrients in agroecosystems (Robson, 1989; Penn and Camberato,
2019). Affirming this understanding, our results showed that soil pH
influences the four soil chemical indicators (Fig. 4). The soil pH of our
sites ranged from 5.3-8.0, meaning the soil we studied was slightly acid.
Under these slightly acidic conditions, the SOC and TSN pool were more
degraded-a finding Dlamini et al. (2016) previously noted in their
meta-analysis of SOC in semi-arid soils. Our results also support that soil
pH increases SOC and TSN. As Ca is a base-forming cation, the positive



X. Tuetal

association between SOC and pH was expected. P availability is expected
to be low in either highly acid or highly alkaline fields (Penn and
Camberato, 2019). Though our sites are mostly within the range of
neutral to slightly acid, we found that P decreased with soil pH.

4.2.2. Crop diversity

In terms of crop diversity (CDI), our study included 242 focal plots
with 91 crop combinations over six years. Crop species directly influence
the quality and quantity of residues and, thus, belowground biota, soil
pores, and carbon accrual processes (Kravchenko et al., 2019; McDaniel
etal., 2014). The literature shows mixed findings in terms of the effect of
crop rotational diversity on SOC and TSN. In a meta-analysis, McDaniel
et al. (2014) pointed out that rotated fields had significantly higher SOC
values than monoculture fields. In contrast, SOC and TSN levels in
monoculture corn fields were not significantly different from rotational
diversified corn fields (Zuber et al., 2015). Furthermore, it is difficult to
detect the effects of crop diversity on SOC and TSN in the context of an
on-farm study due to underlying edaphic factors, namely texture. We
observed no influence of crop diversity on SOC or TSN in this study,
likely because clay content and pH varied markedly across the three
studied regions in Michigan.

Crop diversity was a positive driver for three of the soil health in-
dicators in our study—Cmin, PMN, and WAS (Figs. 4 & 5). In our study,
inclusions of cover crop, pasture, and forage led to higher CDI in field
crop farms regardless of species composition and perenniality. Our re-
sults confirm previous research on Cmin’s responsiveness to manage-
ment practices (Balota et al., 2004; Culman et al., 2013). Observations
from a number of field crop experiments in the Upper Midwest are
consistent, finding that plant residue diversity positively affects soil
microbial communities and soil respiration (Jilling et al., 2020; Tiemann
et al., 2015). Carbon mineralization and PMN were correlated in pre-
vious studies, as both are biologically mediated processes (Fran-
zluebbers et al., 2000). Culman et al. (2013) observed higher Cmin and
PMN under corn-soybean-wheat rotation than continuous corn. Simi-
larly, Balota et al. (2004) pointed out that Cmin and PMN are higher
under rotations with soybean due to the lower C: N ratio of soybean
residue compared to corn. Diederich et al. (2019) in a long-term study
found that perennial cropping systems had significantly higher POXC.
Noticeably, crop diversity did not contribute to higher POXC in our
study, which aligns with the results of Culman et al. (2013) showing that
crop rotational diversity is more influential on Cmin than POXC, with
the latter being more responsive to stabilized C inputs (Fig. 5). Also, our
study focused on annual field crops systems, and did not include many
cases of perennial crops maintained for multiple years.

Aggregate stability status was significantly higher on fields with a
diverse crop history, which supports Mann et al. (2019) findings of high
WAS in grass and mixed perennial-annual systems. Long-term field
experimentation has provided evidence that soil aggregate stability
benefits from cover crops and rotational diversity, as the biochemical
diversity of residues and diverse root system architectures enhance/-
support soil biological processes (Kravchenko et al., 2019; Mpeketula
and Snapp, 2019; Tiemann et al., 2015). Unsurprisingly, we found that
fields with high crop diversity, generally including cover crops, had high
aggregate stability. However, not all studies have found a positive as-
sociation between soil stabilization and cover crop diversity. Specif-
ically, Snapp and Surapur (2018) have found that winter rye cover does
not have a detectable effect on aggregate stability. Nevertheless, Tie-
mann et al. (2015) stated that diversity in field crop systems, regardless
of the composition of specific cover crops, is beneficial to soil aggregate
stability. A contribution of our study is sampling realistic rotational
sequences in the Upper Midwest to show that crop diversity (regardless
of species composition and perenniality) benefits soil structural stability,
and microbially mediated soil C and N (indicated by Cmin and PMN).

4.2.3. Tillage intensity
Tillage intensity was associated with reduced POXC, enhanced PMN,
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and a depth dependent effect on penetration resistance, but had no effect
on SOC and TSN in this study. SOC status has been observed to be
enhanced under RT in a long-term corn-soybean wheat experiment in
southwest Michigan (Grandy and Robertson, 2007), and in a decadal
wheat study in China (Chen et al., 2019). Yet, the interaction of SOC and
tillage intensity can be highly variable (Margenot et al., 2017; Wander
and Bollero, 1999; Wulanningtyas et al., 2021). Soil depth also matters
in studies of SOC response to management, as shown in a soybean
experiment where NT was associated with SOC accrual only in the top
0-2.5 cm, whereas deeper in the soil SOC was not altered (Wulanning-
tyas et al., 2021). We considered only the surface soil at 0-20 cm, within
which management effects can be more challenging to detect. This un-
detectable effect of tillage on SOC is in agreement with a pioneering
on-farm soil health study conducted in a neighboring Midwest state
(Wander and Bollero, 1999), which did show higher SOC in
non-disturbed soil outside of fields, but no difference in agricultural
fields with a history of NT vs CT.

Whereas stable carbon pools are generally slow to respond to man-
agement and challenging to detect changes in, we expected tillage in-
tensity to influence soil biological indicators, such as POXC and Cmin. In
a Midwest silty clay soil, Awale et al. (2013) found that POXC is less
sensitive to tillage effects than Cmin. However, we found that tillage
intensity was a driver for variation in POXC, but not Cmin (Fig. 5).
Greater POXC under RT confirms previous studies that evaluated the
tillage influence on POXC under various environments, cropping sys-
tems, and soil textures (Awale et al., 2013; Chen et al., 2019; Lewis et al.,
2011). High tillage intensity leads to the breakdown of soil macroag-
gregates and elevated oxidization (Chen et al., 2009). POXC was higher
in shallow tillage and NT systems than CT in an 11 year long-term winter
wheat monoculture system on a loam in Loess Plateau of China (Chen
et al., 2009). Similarly, under two silt loam soils, POXC was greater
under RT compared to NT in a 3-year field experiment in Florida in a
cover crop - soybean - corn system that is transitioning to organic sys-
tems (Lewis et al., 2011). In a diverse 6-year cropping system in North
Dakota with soybean-corn-sugar beet, POXC values were larger under
strip-till and NT than CT (Awale et al., 2013).

Tillage intensity was associated with moderate enhancement of PMN
across the Michigan field sites (Fig. 5). As the most critical fraction of N
for crop growth, PMN is regulated by factors, such as the water content
and temperature, which can be altered by tillage through physical
disturbance. Consistent with our finding, a winter wheat study that
evaluated the effect of 60-year tillage practice showed that PMN was
higher under conventional tillage than NT (Hurisso et al., 2014). This
may be related to enhanced mineralization activity associated with a
high level of disturbance, due to increased temperature (Drury et al.,
1999). We presented the real-world 6-year tillage choices by farmers,
which showed the disturbance in the field can contribute to releasing of
the N pool for crop growth. Yet, this positive influence of tillage intensity
is counter to previous long-term studies that showed greater PMN under
RT than CT (Martinez et al., 2017; Sharifi et al., 2008). The effect of
tillage intensity on PMN may be important for performance of legume
crops like soybean that are generally not fertilized with supplemental
nitrogen and left to rely on fixation and mineralization.

We observed higher compaction under lower tillage intensity at the
surface (PEN15). Similar results were observed in other Midwest states,
such as an on-farm study by Wander and Bollero (1999) in Illinois and a
field experiment by Burgos Herndndez et al. (2019) in Ohio. Since the
plow layer is at 20-25 cm depth, the penetration resistance for 0-15 cm
under RT is high due to lack of disturbance (Nunes et al., 2020). We
confirm that high tillage intensity was associated with high compaction
deeper in the soil (PEN45), which supports Burgos Hernandez et al.
(2019) and Nunes et al. (2020) that tillage practice hardened soils below
the plow layer.

The variability in tillage operations might be another concern or
limitation of this study. Differences in tillage depth or other details
might restrain detection of soil health effects from specific tillage
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operations. Still, we hope to emphasize the value of our on-farm
research approach that captures real-world variability, allowing us to
consider the context within which farmers make decisions regarding
tillage intensity and conservation practices more broadly.

5. Conclusion

Our on-farm study reflected real-world scenarios associated with
Michigan field crop production and evaluated soil health as influenced
by various environmental conditions, crop rotation sequences, and
tillage intensity. The experiment confirmed that aridity and clay content
are the dominant drivers for a wide range soil health metrics. Six-year
management histories represented a variety of crop rotation sequences
and showed the benefits of high crop diversity, including enhanced soil
biological and physical properties (Cmin, PMN, and WAS). Increasing
crop diversity irrespective of composition, is a promising approach to
improve soil health for a wide range of environmental conditions and
field crop systems. We note that crop diversity was the only factor that
enhanced water aggregate stability. However, tillage effects on soil
health were less clear, as intense tillage was associated with low POXC
and high PMN. Although reduced tillage was associated with gains in
POXC pools in the topsoil and alleviated soil compaction at lower
depths; it did not contribute to available soil N. Thus, the adoption of
tillage type depends on field management goals. Clearly, further inves-
tigation of tillage practices is needed to determine long-term sustain-
ability and potential trade-offs between active C, available N, and
ultimately, crop yield.
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