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Abstract. This paper is concerned with the quadratic matrix equation Ag+A; X+ A, X?
=X where [ - Ag— A — Ay is aregular M-matrix, i.e., there exists an entrywise positive
vector u such that (I—Ag—A; —Ap)u>0 entrywise. It broadly includes those originally
arising from the quasi-birth-and-death (QBD) process as a special case where I —Ag—
Aq1—A; is an irreducible singular M-matrix and (A¢p+ A1+ Az)1 =1 with 1 being the
vector of all ones. A highly accurate implementation of Latouche-Ramaswami loga-
rithmic reduction algorithm [Journal of Applied Probability, 30(3):650-674, 1993] is pro-
posed to compute the unique minimal nonnegative solution of the matrix equation
with high entrywise relative accuracy as it deserves. Numerical examples are present-
ed to demonstrate the effectiveness of the proposed implementation.
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1 Introduction

In the quasi-birth-and-death (QBD) process, the following quadratic matrix equation [17,
25]
Ag+ A1 X+AX2=X, (1.1)
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plays a vital role in analyzing the process, where A; for i =0,1,2 are n X n nonnegative
matrices, sitting as blocks in an infinite block-tridiagonal transition matrix. In the QBD
process, [ — Ag— A1 — Ay is irreducible and singular, and, furthermore,

(Ap+A1+A2)1,=1,, (1.2)

where 1, (often simply 1 when its dimension is clear from the context) is the column
vector of all ones of dimension n. Under these conditions, Eq. (1.1) admits a unique
minimal nonnegative solution [23] (see also [6]), denoted by @ hereafter, in the sense that

® <X for any other nonnegative solution X of equation (1.1).

Existing numerical methods for computing the solution ® include fixed point itera-
tions (e.g., [8,10] and references therein), Newton’s method, the Latouche-Ramaswami
logarithmic reduction algorithm (called the LR algorithm hereafter), the method of cyclic
reduction, and doubling algorithms (see, e.g., [5, 6,11, 13, 15, 16, 20, 30] and references
therein). The fixed point iterations are usually linearly convergent and can suffer very
slow convergence when p(®) is almost 1, or no convergence when it is 1. Newton’s
method needs to solve a Sylvester equation in each of its iterative steps, which, unfortu-
nately, can be as expensive as solving equation (1.1) itself by other methods and thus is
not competitive. It has been observed that the method of cyclic reduction is equivalent
to the LR algorithm [11,16] which turns out to be a very efficient method nowadays. The
application of doubling algorithms [14] to solve equation (1.1) from the QBD process and
beyond is more recent [6] and their efficiency is about the same as the LR algorithm.

Because of (1.2) and that Ap+ A;+ A is nonnegative and irreducible, there exists a
positive vector z [22, p.673] such that z" (Ag+ A1+ Az) =2z'. The associated QBD process
is further classified into three categories [17]: positive recurrent if zT(AO —A)1>0, null
recurrent if zT (Ag— A2)1=0, and transient if zT (Ao — A2)1 < 0. Except for the fixed point
iterations, all other methods mentioned in the previous paragraph are quadratically con-
vergent unless the QBD process is null recurrent [11,30].

Before the work of Ye [30], it was noted that computed ® by the LR algorithm can
suffer heavy accuracy loss, especially when the QBD process is nearly null recurrent. It
turns out that inaccurate numerical matrix inversions during the LR iterative process are
to blame because the involved matrices are increasingly singular and thus increasing-
ly ill-conditioned for inversions as the iteration progresses. It turns out those matrices
are all nonsingular M-matrices, and Ye [30] came up with a new implementation by us-
ing the GTH-like algorithm for inverting all nonsingular M-matrices instead of the plain
Gaussian elimination. The GTH-like algorithm, due to Alfa, Xue, and Ye [2] (see also [14,
p-87]), is a variant of Gaussian elimination, and can guarantee to invert a nonsingular M-
matrix, albeit how nearly singular it may be, with high entrywise relative accuracy. Ye’s
implementation, as a result, was a resounding success — able to compute ® with high
entrywise relative accuracy. The same can be said about the doubling algorithms [6]. The
GTH-like algorithm has since been successfully employed in highly accurate solutions of
M-matrix Riccati equations [14, 18,19, 24,26-29], among others.
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Ye’s implementation is for a stochastic QBD process, i.e., (1.2) holds. The LR algo-
rithm, however, actually works broadly for equation (1.1) with (Ao+ A1+ A2)1, <1, [1].
Naturally, we may ask if there is an implementation, similar to Ye’s, that works in this
more general setting. The purpose of this paper is to present such an implementation
under a more general condition that I — Ag— A1 — A; is a regular M-matrix.

We call (1.1) the OBD equation. The rest of this paper is organized as follows. In Sec-
tion 2, we will set the stage by introducing the notation of regular M-matrix due to [12].
The Latouche-Ramaswami logarithmic reduction algorithm is stated in Section 3 and its
highly accurate implementation is explained in Section 4. A couple of numerical exam-
ples are presented to demonstrate the superiority of our implementation in Section 5.
Finally, we draw our conclusions in Section 6.

Notation. R™*" is the set of all m x n real matrices, R"=R"*!, and R=R"!. I,, (or simply
I if its dimension is clear from the context) is the n x n identity matrix. The superscript
“.17 takes transpose. For X e R"™*", X ;,j) refers to its (i,j)th entry. Inequality X <Y means
Xij <Y for all (i,j), and similarly for X <Y, X>Y, and X >Y. In particular, X >0
means that X is entrywise nonnegative. For a square matrix X, denote by p(X) its spectral
radius.

2 The setting

A matrix A € R"*" is called a Z-matrix if A(;;) <0 for all i #j. Any Z-matrix A can be
written as sI—B with B >0, and it is called an M-matrix if s > p(B). Specifically, it is
a singular M-matrix if s =p(B), and a nonsingular M-matrix if s > p(B). An important
characteristic of a nonsingular M-matrix A is that A~1>0.

It is well-known that a Z-matrix A is a nonsingular M-matrix if and only if Au >0 for
some positive vector u >0 [4, chapter 6]. On the other hand, for an irreducible singular
M-matrix A, there exists a positive vector # > 0 such that" Au=0 [4]. Both are special
cases of a more broad class of M-matrices, the so-called regular M-matrices introduced
by Guo [12].

Definition 2.1 ([12]). An M-matrix A is said regular if there is positive vector u such that
Au > 0. Such a matrix A is called a regular M-matrix.

Throughout the rest of this paper, we will consider more broadly Eq. (1.1) under the
following assumptions: A; >0 for 0 <i <2 and either

I—Ag— A1— Aj is a nonsingular M-matrix, (2.1a)

or

I—Ag—A1—A;is asingular regular M-matrix and

one of Ap and A, has no zero rows. (2.1b)

Ht is a well-known fact and can be easily proved as follows. Let A=sI— B with irreducible B>0and s=p(B).
Applying the classical Perron-Frobenius theorem [4, Theorem 1.4 on p.27] to B, we conclude that there exists
u >0 such that Bu=p(B)u. Hence Au=[s—p(B)]u=0.
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As a consequence of (2.1), there exists a positive vector # >0 in R” such that

0, inth f (2.1a),
o= (I—Ag—Ay— Ag)u{ v inthecaseof (2.1a) 2.2)
>0, in the case of (2.1b).
In particular, if I — Ag— A1 — Aj is irreducible, then we can take v =0 in the case of (2.1b).
In any case, we have
(I—Al)u:v+(Ao+A2)u >0

because either v > 0 for (2.1a) or (Ag+ Az)u >0 for (2.1b). Hence I — A; is a nonsingular
M-matrix.

Theorem 2.1. Assume that (2.1) holds. Then the QBD equation (1.1) has a unique minimal
nonnegative solution ®.

Only under the case of (2.1b) this theorem seems to be new. Even for that, the same
proof of [6, Theorem 3.2] works. In fact, Theorem 2.1 for the case when I —Ag— A1 —A»
is an irreducible singular M-matrix satisfying (1.2) is well-known in the QBD application.
Part of the theorem is also implied by [21, Theorem 2.3].

3 Latouche-Ramaswami algorithm

The Latouche-Ramaswami (LR) algorithm [16,30] is stated here as Algorithm 3.1. Matrix

inversions appear at Lines 1 and 5. Whether we can compute the inverses accurately or

not determines the accuracy of eventually computed approximation to ®. We observe the

strong similarity between Lines 1 and 5: they perform the same operations on (Ao, A1, A2)

and (Ax0,Ak1,Ak2), respectively. This was made apparent in the original statement of

the algorithm [16, Figure 2], where notationally, (Aj, A}, A;) was used instead of (A0, Ak1,Ak2)
here. We add in the subscript k for the convenience of our analysis later. Although the

LR algorithm was first proposed for the case (A¢p+ A1+ A2)1,=1,, it was found lat-

er to actually work more broadly for the case (Ag+A;+A42)1,<1, as well [1].

Algorithm 3.1. Latouche-Ramaswami (LR) Algorithm (LRQBD) [16]

Require: nonnegative Ag, A1, Ao € R"*" satisfying certain conditions;
Ensure: an approximation of ®, minimal nonnegative solution to (1.1).
1. Ly= (I—Al)_le, Hy= (I—Al)_lAz;

2: Xo = Lo, T() = H(),‘

3: for k=0,1,..., until convergence do

4 Ago=L;, Aga=LiHi+HiLy, Axp=HE;

5. Lipi=(I—Ak1) 'Ako, Hep1=(I1—Ag1) " Axos

6: X1 =Xk +TkLkt1; Tir1=TiHr11;

7: end for

8: return last X; as the computed minimal nonnegative solution.
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Ye [30] observed that the matrices I—A; at Line 1 and I—Aj; at Line 5 are all non-
singular M-matrices. The key ingredient in his implementation is the GTH-like algorith-
m
[2] for performing these inversions. It is made possible by alternatively representing
a nonsingular M-matrix in the form of the so-called triplet representation. A triplet rep-
resentation (offdiag(A),u,v) of M-matrix A€R"*" consists of

offdiag(A) =diag(A)—A>0, 0<ucR", and v=Au>0,

where diag(A) is the diagonal matrix obtained from extracting the diagonal part of A.
In other words, offdiag(A) is obtained from A by zeroing out its diagonal entries and
reversing the sign of its off-diagonal entries. In what follows, we will not distinguish

A from its triplet representation and write A=(offdiag(A),u,v). A nonsingular M-matrix
A can have infinitely many triplet representations, but for the purpose of inversion, any
one is just as good as any other.

The main theoretical contribution in [3] is that if all entries of offdiag(A), u and v
are known to high entrywise relative accuracy, then all entries of A~! are determined
to a comparable high entrywise relative accuracy, or equivalently the solution x to Ax=
b is determined to a comparable high entrywise relative accuracy for any given b>0.
Numerically, using the trick of [9], Alfa, Xue, and Ye [2] (see also [14, p.87]) present-
ed the GTH-like algorithm to compute the LU decomposition of A=(offdiag(A),u,v),
via the Gaussian elimination without pivoting, without any cancellation and consequent-
ly compute x to the claimed accuracy.

4 Highly accurate implementation

Throughout the rest of this paper, we assume that all entries of Ay, A1, Ay, # and v

of (2.2) are known with high entrywise relative accuracy, except for the diagonal en-
tries of A; which will not be accessed at all during entire computations. Indeed for the
stochastic QBD setting, #=1,, and =0 are known exactly.

In what follows, we will simply explain how to construct entrywise accurate triplet
representations of I—A; and I—Ay, for all k, but refer the reader to, e.g., [14, p.87],
for the detail of the GTH-like algorithm for accurately solving associated linear system-
s.

In Section 2, we have already argued that I—A; is a nonsingular M-matrix under
(2.1). With (2.2), a triplet representation for I—A; is readily available:

I—A; = (offdiag(A1),u,0) withd=v+(Ag+A2)u>0, (4.1)

where offdiag(A1) and u are assumed to have entrywise accuracy to begin with, and

® can be computed without any cancellation and thus has entrywise relative accura-

cy comparable to Ag, Az, u and v, too. Note that the diagonal entries of A; are not need-
ed at all in constructing the triplet representation (4.1).
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In the stochastic QBD setting where (1.2) holds, (4.1) becomes
I—A;=(offdiag(A1),1,0) with 9= (Ap+A2)1.

For Algorithm 3.1, it is known (Hx+Li)1=1 [11, Lemma 3.1], [16]. Thus (Hy+Li)*1=
1 for all k and hence
(Ak;0+Ak;1+Ak;2)l =1.

Consequently,
I— Ak;l = (Offdiag(Ak;l),l,ﬁk) With ’(’) = (Ak;0+Ak;2)l

gives a triplet representation needed at Line 5 for an accurate inversion by the GTH-
like algorithm.

In Section 2, we argued that I—A; is a nonsingular M-matrix. But it is not clear
if I—Ay, is a nonsingular M-matrix. Evidently, this issue of whether I—Aj.; can be rig-
orously justified nonsingular for k>0 didn’t appear to attract any attention. Later, we
will show that their nonsingularity is guaranteed under (2.1).

For convenience, we let

A_l;]':A]' for OS]SZ, (42)
and define v, for k> —1
U= (I - Ak;O - Ak;l - Ak;Z)u- (43)

Evidently, v; for k>0 is well-defined only if Al for 0<j <2 in Algorithm 3.1 exist
up to iteration k—1. At this point, we only know v, for k=—1,0 are well-defined un-
der (2.1), thanks to our discussion so far, and v_1=v>0 due to (2.2). In what follows,
we will show that all v, are well-defined under (2.1), and, moreover, v, >0 for all k
in the case of (2.1a) or v, >0 for all k in the case of (2.1b).

Lemma 4.1. Assume (2.2) holds. In Algorithm 3.1, if the loop is successfully executed up to
iteration ¢, then we have for {>k>—1

Vi1 =(I— Ak1) "0+ (Hie1 + Lik1) (I — Ag1) ™0 (4.4)
In particular, if v=0, then vy=0 for all {+1>k>—1.
Proof. Pre-multiply (4.3) by (I— A1) to get

(I—Ag1) ‘o =—(Hip1 +Ligs1)u+u,
(Hisr+ Lip)u=u—(I—Ag1) oy,
(Hir14Lie1) s = (Hgga + g1 )4 — (Hir + Les) (T— Ag) 1o
=u—(I— A1) " 'oxk— (Hisa+Lii1) (I— Ag1) "o (4.5)
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Noting (Hiy1+ Liy1)? = Axs1.0+ Ak 1.1+ Aky12, by definition (4.3) we infer from (4.5)
that

V1 =U— (App10+ Ak10 + Apy1p)u
=(I—Ag1) "ok+ (Hep1+ Lie1) (I— Aga) oy,

yielding (4.4). If v_1=v=0, then v,=0 for all /+1>k>—1 by the recursive formula
(4.4). O

Theorem 4.1. Assume (2.1a), i.e., I—Ao—A1—A is a nonsingular M-matrix and thus v>
0 in (2.2). Then Algorithm 3.1 runs without any breakdown, i.e., all inverses exist, and for
k>—1,

v >0, Ak,'O >0, Ak,'l >0, Ak,'2 >0,

and 1— Ay, is a nonsingular M-matrix.

Proof. A straightforward induction based on the recursive formula (4.4) will do, start-
ing with k=—1 for which the conclusions hold because of the assumption (2.1a). [

In the case of (2.1b), during executing Line 4 of Algorithm 3.1 for k=0, it is not
clear if [—Ag; is nonsingular, even though we have Ag; >0 for j€ {0,1,2} and (I—
Ao/-o—A();l—Ao;z)u =09 >0 by Lemma 4.1.

Theorem 4.2. Assume (2.1b), i.e., I—Ao—A1—A> is a singular reqular M-matrix and one
of Ao and Ay has no zero rows. Then Algorithm 3.1 runs without any breakdown, i.e., al-
I inverses exist, and, for k> —1,

0x>0, Aro>0, Ar120, Ap2>0, (4.6a)
either Agou >0 or Agou>0. (4.6b)

As a result, I— Ay, is a nonsingular M-matrix.

Proof. That I—Ay.; for a fixed k is nonsingular is a corollary of (4.4) and (4.6). To see
this, we note that (4.3) yields

(1= Ag1)u =0+ (Ago+ Ax2)u>0.

Thus [— Ak, is a nonsingular M-matrix because it is evidently a Z-matrix.
It remains to show (4.6). To that end, we will do induction on k. By the assump-
tion,

v_1=0v>0,
A 10=A0>0, A 11=A120, A_1p=A2>0,
either A_L.ou:Aou>0 or A—1;2 u=Au>0,
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i.e., (4.6) holds for k=—1. Suppose that (4.6) holds for k. Then I—Aj.; is a nonsingu-
lar M-matrix, and thus (I—Aj;) >0 and the diagonal entries of (I—Ay;)~! is pos-
itive. Therefore, Hy,1 >0, Ly > 0, implying Ay, 1; >0 for j € {0,1,2}. It remains to
show that either Aj,10u>0 or Agriou>0. In fact, in the case of Ayou >0, ie., Axp
has no zero row, we know (I—Ay;) 1Agou>0 and thus

Apyrou=Hg qju=(I—Ag1) " Ao [(I— Ag1) " Agon] >0.
Similarly, in the case of Ay,u>0, we will have Ay, 1,u>0, as expected. It follows from

(4.4) that v,1>0, as well. In summary, (4.6) holds with k replaced by k+1. This com-
pletes the inductive proof. O

Algorithm 4.1. Highly Accurate LatoucheRamaswami (LR) Algorithm
(accLRQBD)

Require: Ag, A1, A2€R"™", u and v as in (2.2);

Ensure: an approximation of ®, minimal nonnegative solution to (1.1).

1: compute the triplet representation (4.1) of I—Ay;

2: use the GTH-like algorithm to compute Ly =  (I—A;)"'Ap, Hh =

(I-Ap) 1A,
and wy=(I— A1) lv;

3: 00:WQ+(H0+L0)WQ;

4. X():Lo, T():Ho,'

5: for k=0,1,..., until convergence do

6: Ak;O :L%, Ak;l :HkLk+Lka, Ak;ZZH]%;

7:  compute the triplet representation (4.7) of I—Ay.1;

8: use the GTH-like algorithm to compute Ly 1= (I—Ay1) 'Aro, Hir1=

(I_Ak;l)_lAk;Z/ and Wi+1= (I_Ak;l)_lvk;

90 Upp1 =W+ (Higp1+ L) Wii1s

10:  Xigy1=Xe+TikLks1; Teyr = TeHyr1s

11: end for

12: return last Xj as the computed minimal nonnegative solution.

Eq. (4.3) immediately yields a triplet representation for I— Ay as
[—Ap1= (offdiag(Ak;l),u,ﬁk) withd, =v;+ (Ak;0+Ak;2)u. 4.7)
With it, we present a highly accurate implementation of the LR algorithm in Algorith-

m 4.1 under the more general setting of (2.1), extending Ye’s implementation [30]. As
to when to stop the iteration at Line 5, we follow the discussion in [6, section 8]. Specif-
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ically, there are three viable options for use as stopping criteria:

| X1 — X <& Xiy1, (4.8a)

ERRes(Xj,1) <¢, (4.8b)
(Xk+1 - Xk)%i’j)

(Xk—Xk-1) (i) — (Xies1— X))

<e(Xk+1)(j foralliand j, (4.8¢)

where ¢ is a pre-selected tolerance. The first one (4.8a) is the simplest and also cheap-
est one to use, the second one (4.8b) is based on the entrywise relative residual [6, (7.3)]:

|(Ao+ A1 Xp 1+ A2XE ) —Xisa i)
(Xk1) (i)

ERRes (X, 1):=max , (4.9)
L

and the third one (4.8c) is Kahan's stopping criterion, previously used in [26,28,29].
Both the simple (4.8a) and Kahan’s stopping criterion (4.8c) can be too conservative in
the case of a monotonically quadratically convergent sequence in the sense that they
stop iterations unnecessarily late, wasting the last one or two iterations. Another short-
coming for both is a possible pitfall: false-convergence in the sense that the iteration
may be stopped due to a period of very slowly moving Xj. The second stopping cri-
terion (4.8b) is most expensive to use among the three, especially ERRes(Xj,1) is not
needed in the iteration kernel. But it does not have the pitfall mentioned above.

As in [6], we will use Kahan's stopping criterion (4.8c) (e=10~'> in our test) with
a safeguard, in the sense that when Kahan’s stopping criterion is satisfied we check if
(4.8b) is also satisfied to avoid possible false-convergence.

Algorithm 4.1 for v=0 and u =1, is the same as in Ye [30, Algorithm 3].

5 Numerical examples

In this section, we will present two numerical examples to illustrate the performance
of Algorithm 4.1 in delivering entrywise accuracy in computed approximations to the
minimal nonnegative solution ®.

For illustration, we will report, besides ERRes in (4.9), also three other different er-
ror measures. The commonly used legacy error measure is the following normalized
residual (NRes):

| Ao+ A1 X1+ A2 XE | — Xiqa I
1 X1 lr( Azl Xiga ln+ 1 Axll1+1) + [ Ao le”

NRes(Xyi1)= (5.1)

where ||-|[r and ||-||; are the matrix Frobenius norm and the ¢; operator norm, respec-
tively. The use of the ¢;-operator norm, instead of the spectral norm ||-||2, is inconse-
quential but for computational convenience. For testing purpose, we will also show the
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LRQBD accLRQBD
. . . : : .
—O— ERRes
Q - 6 = NRes
100 100 | +++ SR —-+-—ERErr |
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Figure 1: Example 5.1: convergence history. Left: by LRQBD; Right: by accLRQBD. Both ERRes and
NRes move down to about O(10*15) or tinier, but LRQBD can only achieve entrywise relative accuracy

ERErr =5.9x1077, losing 10 significant decimal digits in some of the entries, while accLRQBD delivers a
computed solution with each entry having at least 15 significant decimal digits.

normalized error (NErr) in Xj,q:

Xjy1—P
NErr(Xk+1) = w, (52)

and the entrywise relative error (ERErr),

Xps1—®@) i
ERErr(Xj,1)=max |Ki1 = )i . (5.3)
b (i)

Tiny ERErr guarantees that all entries of ®, large or small in magnitude, are well ap-
proximated, but NErr is good only in telling relative errors in the large entries of X1,
i.e., those of O(]|Xk41]/1) in magnitude.

Both NErr and ERErr are not available in actual computations because ® is unknown
in the first place. In our tests, we compute an “exact” ® using MATLAB'’s variable-precision

floating-point arithmetic vpa with digits(100) so that we can report both ERErr and
NErr for testing purpose.

For convenience, we will denote Algorithm 3.1 by LRQBD whose line 5 is simply
carried out by MATLAB’s linear system solver A\B, and Algorithm 4.1 by accLRQBD.

Example 5.1 ([13]). For this example, n=24. It starts by lettiing Af,, A] and A} be giv-
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en by for 1<i,j<n

192{1—(i—1)/24|, for i=j, 1920, for i=j,
(AD)ij)= 1=(=1)724] -~/ (A2)ij)= b =
0, for i#j, 0, for i#j,
ar(p—i+1)/p, fori—j=-1,
i—1)r, fori—j=1,
(Ag)(u)_ ( ) . ]._
¢i, for i—j=0,
0, elsewhere,

where a,7,B and p; are parameters, and §; for 1<i<n are determined by (Aj+A]+
A§)124:0. Finally,

Ag=—(A)TTAL, A1=0, Ay=—(A))1A).

For the parameters, we take r=1/300,4=18.244, =65536 and p;=0.280. The “exact
solution” shows that

5.2533-107 <®y; y <9.9956-10".

Figure 1 plots the convergence history for the four error measures. It can be observed
that both LRQBD and accLRQBD can reduce ERRes and NRes to about O(1071°) or tinier,
which is near the best possible one could hope for in general. However, the comput-
ed solution by LRQBD has an entrywise relative accuracy ERErr=>5.9x 1077, meaning
some entries have only about 7 correct significant decimal digits. On the other hand,
the computed solution by accLRQBD has an entrywise relative accuracy ERErr=4.9x
10715, meaning all entries are guaranteed to have about 15 correct significant decimal
digits, 8 more than by LRQBD. Besides what we have observed from Figure 1, there are
a couple of more interesting convergence behaviors observable from Figure 1 that war-
rant comments:

1)

@)

In theory, tiny ERRes implies tiny ERErr for QBD equation (1.1) that is either pos-
itive recurrent or transient [6, Theorem 7.2]. But we observed from the left plot
in Figure 1 that this is not case. In fact, we see that ERRes is about 10~ in the
end while ERErr about 107°. The reason behind this is that this example is a n-
early null recurrent case: zT(Ao—Az)l is about 3.5x107°, and as a result, [6, The-
orem 7.2] is no longer applicable within the double precision. This also explain-
s that NErr can only get down to 1077, about the square root of the double pre-
cision roundoff unit 272 ~10"17.

Despite that this example is a nearly null recurrent case, it is still not null recur-
rent, nonetheless. For that reason, we should expect eventually quadratically con-
vergent behavior. This is clearly visible from the left plot in Figure 1, where we
notice a precipitated drops in ERErr and NErr starting after iteration k=30, in-
dicating quadratic convergence. However, we do not see such sudden drops to
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LRQBD accLRQBD

5L 4 5L 4
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0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
k k

Figure 2: Example 5.2: convergence history. Left: by LRQBD; Right: by accLRQBD. Both ERRes and
NRes move down to about O(10_15) or tinier, but LRQBD can only achieve entrywise relative accuracy

ERErr = 1.7x10712, losing 5 significant decimal digits in some of the entries, while accLRQBD delivers a
computed solution with each entry having at least 15 significant decimal digits.

ERRes and NRes. That is because both have already reached to the point at iter-
ation 31 to the point where further improvement is not possible within the dou-
ble precision.

Example 5.2 ([13]). This is a random prblem, generated by the following piece of MAT-
LAB code:

n=100;

AO=triu(tril(rand(n),1),-1); % a nonnegative tridiagonal matrix
Al=triu(tril(rand(n),1),-1);

A2=triu(tril(rand(n),1),-1);

u=ones(n,1); b=(A0+A1+A2)*u;

eta=1.0-1.e-8; t=eta*ones(n,1)./b;

AO=(t*ones(1,n)) .*A0; Al=(t*ones(1,n)).*A1; A2=(t*ones(1,n)).*A2;
v=u-t.*b;

For a typical problem so generated, we find max;;®; ;=0(1) while min;;®; y=0(10"7),
which suggests that in the worst case LRQBD could lose up to 7 significant decimal dig-
its, although actual results are better because straightforwardly inverting nonsingular

M matrices is still often much more accurate than the generic existing error analysis

[7] for the Gaussian elimination indicates. Figure 2 plots the convergence history for

the four measures. It can be observed that both LRQOBD and accLRQBD can reduce ERRes
and NRes to about O(10~1°) or tinier, which is again near the best possible one could



192 Gu G, Wang L and Li R C / J. Math. Study, 55 (2022), pp. 180-194

hope for in general. However, the computed solution by LRQBD has an entrywise rel-
ative accuracy ERErr=1.7x10"12, meaning some entries have only about 12 correct sig-
nificant decimal digits. On the other hand, the computed solution by accLRQBD has an
entrywise relative accuracy ERErr=2.4x10"!°, meaning all entries are guaranteed to
have about 15 correct significant decimal digits, 3 more than by LRQBD.

6 Conclusions

The quadratic matrix equation of the form Ag+A;X+A;X?>=X has to be solved re-
peatedly in the quasi-birth-and-death (QBD) process. It is a nonlinear equation and thus
Newton’s method is a natural choice. But because of its special form, it is known to-
day that most effective methods are the Latouche-Ramaswami logarithmic reduction (L-
R) algorithm [17], the cyclic reduction (equivalent to the LR algorithm as shown in [11]),
and the doubling algorithms [6]. It was well-known earlier the LR algorithm suffers
from accuracy loss in the computed solution. It was Ye [30] who solved this issue of
accuracy loss. Later in [6], the authors proposed a highly accurate doubling algorith-

m that is also free of this inaccuracy drawback.

The original QBD quadratic equation has an additional property (1.2): (Ao+A1+
Az)1,=1,, among others. The contribution of this paper is to extend Ye’s work in [30]
to broadly include the quadratic equation for the case when I—Ay—A;—A; is either
a nonsingular M-matrix or a singular regular M-matrix. Numerical examples are pre-
sented to illustrate the effectiveness of the proposed extension.
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