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Abstract—Code completion aims at speeding up code writing by predicting the next code token(s) the developer is likely to write. Works
in this field focused on improving the accuracy of the generated predictions, with substantial leaps forward made possible by deep
learning (DL) models. However, code completion techniques are mostly evaluated in the scenario of predicting the next token to type,
with few exceptions pushing the boundaries to the prediction of an entire code statement. Thus, little is known about the performance of
state-of-the-art code completion approaches in more challenging scenarios in which, for example, an entire code block must be generated.
We present a large-scale study exploring the capabilities of state-of-the-art Transformer-based models in supporting code completion at
different granularity levels, including single tokens, one or multiple entire statements, up to entire code blocks (e.g., the iterated block
of a for loop). We experimented with several variants of two recently proposed Transformer-based models, namely RoBERTa and the
Text-To-Text Transfer Transformer (T5), for the task of code completion. The achieved results show that Transformer-based models, and in
particular the T5, represent a viable solution for code completion, with perfect predictions ranging from ~29%, obtained when asking the
model to guess entire blocks, up to ~69%, reached in the simpler scenario of few tokens masked from the same code statement.

Index Terms—Code Completion, Deep Learning, Empirical Software Engineering

1 INTRODUCTION

Code completion is considered as one of the “killer” fea-
tures of modern Integrated Development Environments
(IDEs) [18], [49], [72]: It can provide developers with pre-
dictions about the next code token (e.g., a method call)
to write given the code already written in the IDE, thus
speeding up software development and preventing potential
mistakes [33], [35].

Several works in this field have been proposed. Most
of them aim at advancing the performance of code comple-
tion tools, especially in terms of prediction accuracy. Such
research has allowed moving from simple alphabetically
ranked lists of recommendations for completing what a
developer is typing (e.g., a list of possible method calls match-
ing what has been typed by the developer) to “intelligent”
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completions considering the context surrounding the code
[18], [72], the history of code changes [72], and/or coding
patterns mined from software repositories [10], [36], [39],
[62], [63], [65], [77]. Last, but not least, Deep Learning (DL)
models have been applied to code completion [8], [22], [47],
[49], [73], [84], setting new standards in terms of prediction
performance. Although the performance of code completion
techniques has substantially improved over time, the type
of support they provide to developers has not evolved
at the same pace. Indeed, besides a few works focusing
on predicting multiple code tokens (e.g., [8], [73]) or even
recommending entire statements (e.g., [11], [83]), most of
the approaches presented in the literature have only been
experimented in the specific scenario in which the next token
the developer is likely to type must be predicted. This leaves
the following question partially unanswered: how far can we
go with DL-based token prediction (even beyond the source code
line boundary)?

We present a large-scale empirical study exploring the
limits and capabilities of state-of-the-art DL models to sup-
port code completion. Besides generating the next token(s)
the developer is likely to write, we apply DL models to
generate entire statements and code blocks (e.g., the body
of an if statement). Among the many DL models proposed
in the literature, we focus on models using the Transformer
architecture [81]. In particular, in our recent work published
at MSR 2021 [22] we evaluated the performance of a RoBERTa
model [55] in the code completion tasks described above.
RoBERTa is a BERT (Bidirectional Encoder Representations
from Transformers) model [24] using a pre-training task in
which random words in the input sentences are masked out
using a special <MASK> token, with the model in charge of
predicting the masked words. While experimenting with
RoBERTa for the task of code completion, we faced an
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important limitation that did not make it suitable for the
study we wanted to perform (i.e., the prediction of multiple
masked tokens): In the RoBERTa pre-training task n <MASK>
tokens must be used to mask n code tokens, thus implicitly
suggesting to the model how many code tokens must
be generated to autocomplete the masked statement. This
would not be realistic in a real usage scenario, in which the
code completion engine must guess the tokens to generate,
without the developer suggesting how many tokens must be
generated. To overcome this limitation, we had to adapt the
RoBERTa pre-training objective to be able to guess, from a
single <MASK> token masking one or more code tokens in the
given statements, which and how many code tokens must be
generated [22]. The adaptation of the RoBERTa pre-training
objective was inspired by the recently proposed Text-To-Text
Transfer Transformer (T5) architecture [68], suggesting this
as a good fit for the task of code completion.

In this work, we extend our MSR 2021 paper [22] by
showing that the T5 substantially overcomes the performance
of the RoBERTa model, being able to correctly predict even
entire code blocks, something that we found to be not
achievable with RoBERTa. As in [22], we focus on three
code prediction scenarios: (i) token-level predictions, namely
classic code completion in which the model is used to guess
the last n tokens in a statement the developer started writing;
(ii) construct-level predictions, in which the model is used to
predict specific code constructs (e.g., the condition of an if
statement) that can be particularly useful to developers while
writing code; and (iii) block-level predictions, with the masked
code spanning one or more entire statements composing a
code block (e.g., the iterated block of a for loop).

We compare the performance of several models. First, we
use the RoBERTa model as presented in [22] as representative
of BERT-like models. Second, we use T5 model for the task
of code completion for the first time in this paper. The
T5 has been recently shown to outperform many state-of-
the-art techniques in code-related tasks [59]. In particular,
Mastropaolo et al. [59] showed the possibility to train a single
T5 model dealing with four code-related tasks, namely bug
fixing, injection of code mutant, assert statements generation,
and code summarization. Third, we experiment with an n-
gram model as a baseline for DL-based models, also showing
the impact on its performance of using a caching mechanism
as proposed by Hellendoorn and Devanbu [36].

Both RoBERTa and T5 models are trained in two phases:
pre-training which allows defining a shared knowledge-base
useful for a large class of sequence-to-sequence tasks (e.g.,
guessing masked words in English sentences to learn about
the language), and fine-tuning which specializes the model
on a specific downstream task (e.g., learning the translation
of sentences from English to German).

Several tasks can be used in the fine-tuning, to possibly
take advantage of transfer learning (i.e., the knowledge
acquired on one task can be reused by the model for another
task). For example, a single model trained on multiple
translation tasks (e.g., from English to German, English to
French, and French to German) could be more effective than
three different models each trained on a specific translation
task (e.g., English to German).

In our work, we want to investigate the performance of
the two transformer-based models by also looking at the role
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played on the models’ performance by the pre-training task
and the transfer learning across different tasks. However,
since this requires the training of many different variants of
the experimented models, we adopt the following strategy.
First, we compare RoBERTa and T5 by training three different
models for the three code completion scenarios (i.e., token-
level, construct-level, and block-level) we experiment with.
This implies creating three different RoBERTa and T5 models
(six models overall). Then, we take the best performing
one (T5) and we show that using pre-training increases its
performance, even though the impact is limited. Finally,
we show that fine-tuning a single T5 model to support all
three prediction tasks boosts performance confirming transfer
learning across the three very similar tasks (i.e., knowledge
acquired in one task can be used to perform another task).

The achieved results show that, for a typical code
completion task (i.e., token-level), TS correctly guesses all
masked tokens in 66% to 69% of cases (depending on the
used dataset), while RoBERTa achieving 39% to 52% and the
n-gram model 42% to 44%. In the most challenging prediction
scenario, in which we mask entire blocks, RoBERTa and the
n-gram model show their limitations, being able to only
correctly reconstruct the masked block in less than 12% of
the cases, while the T5 achieves 30% of correct predictions.

It is worth noting that the goal of our study is not to show
that the T5 model is the best option for neural-based code
completion. Our work focuses on empirically exploring the
capabilities of learning-based code completion techniques,
and T5, RoBERTa, and the n-gram model have been chosen
as representatives of the state-of-the-art.

In summary, as compared to our MSR 2021 paper [22],
the contributions of this work are as the following: (i) we
perform a comprehensive empirical study with an additional
state-of-the-art approach, namely the T5 model, showing its
very promising performance for the code completion task;
(ii) differently from [22] in which three different RoBERTa
models have been fine-tuned on the three code completion
scenarios (i.e., token-level, construct-level, and block-level)
without pre-training and without testing the impact of
transfer learning, we pre-train and fine-tune several versions
of the best performing model (i.e., the T5), to investigate
these aspects; (iii) for the best performing model, we also
explore the possibility of exploiting the confidence of the
predictions as a measure of the prediction quality, showing
the reliability of such an indicator.

The source code and data used in our work are publicly
available in a comprehensive replication package [21].

2 RESEARCH QUESTIONS AND CONTEXT

The study goal is to assess the effectiveness of Transformer-
based DL models in predicting masked code tokens at dif-
ferent granularity levels. We address the following research
questions (RQs):

RQq: To what extent are transformer models a viable approach
to learn how to autocomplete code? This RQ investigates the
extent to which T5 and RoBERTa can be used for predicting
missing code tokens. We assess the quality of the generated
predictions from both a quantitative (i.e., BLEU score [25],
Levenshtein distance [51]) and a qualitative (i.e., perfect
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predictions, potential usefulness of wrong predictions) point
of view. RQ); is further detailed in the following two sub-RQs:

RQ;.1: To what extent does the number of masked tokens
impact the prediction quality? We train and test the approaches
we experiment with on datasets in which masked code tokens
span from few contiguous tokens in a given statement to
multiple missing statements composing a code block. RQ ;
explores the limits of Transformer models when considering
simple and more challenging code completion scenarios.

RQ; o: To what extent are the performance of the models
influenced by the specificity of the dataset employed for training and
testing it? While it is reasonable to expect that larger training
datasets tend to help deep learning models, we are interested
in answering RQ; o from a different perspective. To address
this RQ, we compare the autocompletion performance on
two different datasets: a first, more general one, composed
of Java methods; and a second, more specific one, composed
of methods from Android apps. While the programming
language is the same, the granularity of the two datasets
is the same (i.e., method-level granularity), methods in the
second dataset make heavy use of Android APIs, and the
same APIs are likely to be used for similar purposes, e.g., app
features dealing with GPS positioning share common API
usages. We expect this to create “regularities” in the Android
dataset to help model learning.

RQy: What is the role of pre-training and transfer learning
in the performance of Transformer-based models? As explained
in Section 1, both RoBERTa and T5 can be pre-trained and
then fine-tuned on several tasks. RQ; investigates the boost
in performance (if any) brought by (i) pre-training of the
models, and (ii) fine-tuning a single model on several tasks
to take advantage of transfer learning. Such an additional
analysis has been performed only for the best-performing
model (i.e., the T5).

RQ3: How do transformer models compare to a state-of-the-art
n-gram model? An alternative to DL models is represented by
statistical language models based on n-grams. In this research
question, we compare the DL models to (i) a classical n-gram
model and, (ii) in a smaller study, to the state-of-the-art
n-gram cached model [36].

2.1

Our study involves two datasets. The first one comes from
our MSR"21 paper [22] and is used to fine-tune the RoBERTa
and T5 models and to train the n-gram model. We refer
to this dataset as fine-tuning dataset and it includes both
a Java and an Android dataset to allow answering RQj .
The fine-tuning dataset has been built starting from the
CodeSearchNet dataset [41], which features Java methods
mined from open source projects. The second dataset has
been built specifically to answer RQj, i.e., to have a different
dataset that can be used to pre-train the best performing
model among RoBERTa and T5 (i.e., pre-training dataset). The
following section describes how the datasets have been built.

Context Selection: Datasets

2.1.1 Fine-tuning dataset

To create the Java dataset, we started from the CodeSearchNet
Java Dataset provided by Husain et al. [41]. We decided to
start from CodeSearchNet rather than from other datasets
proposed in the literature (see e.g., [58], [67]) since Code-
SearchNet has been already subject to cleaning steps making
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it suitable for applications of machine learning on code.
Also, CodeSearchNet is already organized at method-level
granularity (i.e., one instance is a method), while other
datasets, such as the 50k [58], collect whole repositories. In
particular, CodeSearchNet contains over 1.5M Java methods
collected from open-source, non-fork, GitHub repositories.
For details on how the dataset has been built, see the report
by Husain et al. [41]. For our work, the most important criteria
used in the dataset construction are: (i) excluding methods of
fewer than three lines; (ii) removing near-duplicate methods
using the deduplication algorithm from CodeSearchNet; this
is done to not inflate the performance of the models as a
result of overlapping instances between training and test sets
[7] and (iii) removing methods with the name containing
the “test” substring in an attempt to remove test methods;
methods named “toString” are removed as well. The latter
are often automatically generated by the IDEs with a very
similar structure (e.g., mostly concatenating class attributes).
Thus, they rarely represent a challenging code completion
scenario and can result in inflating the prediction accuracy.

To build the Android dataset we adopted a similar proce-
dure. We cloned the set of 8,431 open-source Android apps
from GitHub available in the AndroidTimeMachine dataset
[28]. Then, we extracted from each project’s latest snapshot
the list of methods. This resulted in a total of ~2.2M methods.
Then, we applied the same filtering heuristics defined for the
Java dataset, ending up with 654,224 methods. Since one of
the goals of our study is also to compare the performance
of the models when applied on a more generic (Java) and
a more specific (Android) dataset, we randomly selected
(using the random Python function) 654,224 methods from
the Java dataset, to match the size of the Android dataset.

In our MSR paper [22], we also experimented with code
abstraction as used in the previous studies [79], [80] to
avoid the open vocabulary problem. However, new DL-
based models do not suffer from this limitation anymore
thanks to the usage of tokenizers exploiting techniques such
as Byte Pair Encoding (BPE) [27]. For this reason, while in
[22] we built two versions of the fine-tuning dataset (with
and without abstraction), in this work we only focus on
the datasets using raw source code since this is the real
scenario in which code completion techniques are used. Such
clarification is needed since, when building the fine-tuning
dataset, methods for which parsing errors occurred during
the abstraction process were excluded [22], leaving the Java
dataset with 634,799 methods, and the Android one with
532,096.

Then, the three versions of each dataset (Java and
Android) summarized in Table 1 were created using the
following masking processes (note that Table 1 reports the
number of instances in each dataset after the filtering steps
described below):

Token masking. For each code line [ in each method
having more than one token we mask its last x tokens, where
x is a random number between 1 ... n — 1, where n is the
number of tokens composing [. Given a method m having k
lines with more than one token, we generate k versions of m,
each of them having one line with the last 2 tokens masked
and the remaining k — 1 reported without any change (i.e.,
no masked tokens, just the original raw source code). We
set the maximum number of masked tokens to 10 (i.e., if
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x > 10 then x = 10). This scenario simulates the classic code
completion task in which a developer is writing a statement
and the code completion tool is in charge of autocompleting
it.

Construct masking. We selected a number of code
constructs for which it could be particularly useful to
be supported with automated code completion. Given a
method m, we use the scrML [4] toolkit to identify all m’s
tokens used to: (i) define the complete condition of an if
statement or of a while/for loop (e.g., in a statement having
for(int i=0; i<data.size(); i++) we identify all
tokens between parenthesis as those used to define the for
loop); (ii) define the parameters in a method call (e.g., in
copyFile (source, target) the tokens “source”,”,”,
and “target” are identified); and (iii) define the exception
caught in a catch statement (e.g., in catch (IOException
io) weidentify IOException io as the involved tokens).
For m this results in a set S={T}, T», ..., T),}, where T;
represents a set of relevant tokens for one of the previously
mentioned constructs (e.g., T; is the set of tokens used to
define the for loop condition).

Given m, we generate |S| versions of it, each one having
one of the subject constructs masked. Also, in this case we set
the maximum number of masked tokens to 10. This means
that if a construct requires more than 10 tokens to be masked
(this happened for 9.38% of the constructs in our dataset), it
is not masked in our dataset.

The code completion tasks simulated by the construct
masking resemble cases in which the developer uses the
technique to get recommendations about non-trivial code
tokens, representing decision points in the program flow
(e.g., condition of if statement) or error-handling cases (e.g.,
exceptions to catch).

Block masking. We use srcML to identify in each method
m its code blocks. We define a code block as the code
enclosed between two curly brackets. For example, a block
may be, besides the method body itself, the code executed in
a for/while loop, when an if/else/else if condition
is satisfied, etc. Then, given k the number of blocks identified
in m, we create k versions of m each one having a specific
code block masked. We set the maximum size of the masked
block to two complete statements. This means that if a block
is composed of more than two statements (which happened
for 49.29% of the blocks in our dataset), it is not masked. This
is the most challenging code completion scenario in which
we test the experimented techniques. If successful in this
task, code completion techniques could substantially speed
up code implementation activities.

In summary, there are six fine-tuning datasets: For each of
the two domains (Java or Android), there are three different
masking levels (token, construct, block). These masking
levels have been pick to simulate code completion tasks
having different complexity (with foken masking expected to
be the simplest and block-masking the most complex).

Starting from the six datasets, we created the training,
evaluation, and test sets in Table 1. As a first step, we filtered
out specific instances from our datasets. First, when using
generative deep learning models, the variability in length
of the sentences (in our case, methods) provided as input
can affect the training and performance of the model, even
when techniques such as padding are employed. For this
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TABLE 1
Study datasets. One instance corresponds to a method with masked
token(s).
Domain Masking Dataset #Instances  #Tokens
Level
Training 750k 46.9M
Token Evaluation 215k 13.4M
Test 219k 13.6M
Training 750k 48.2M
Java Construct  Evaluation 104k 6.7M
Test 106k 6.7M
Training 298k 19.1M
Block Evaluation 39k 2.5M
Test 40k 2.5M
Training 750k 47 4M
Token Evaluation 198k 12.5M
Test 201k 12.6M
Training 750k 48.9M
Android  Construct  Evaluation 99k 6.4M
Test 101k 6.5M
Training 205k 13.4M
Block Evaluation 27k 1.7M
Test 27k 1.8M

reason, we analyzed the distribution of methods length in
our dataset, finding that two-thirds of them are composed
of at most 100 tokens. For this reason, as done by Tufano
et al. [80], we excluded from our datasets all the methods
having more than 100 tokens. Second, RoBERTa cannot
efficiently handle cases in which the masked tokens are more
than the non-masked tokens. This often happens, for example,
when masking the entire method body in the block-level
masking approach. Thus, those instances are excluded as
well.

After the filtering steps, we split each of the six datasets
into training (80%), evaluation (10%), and test (10%) sets.
While the methods in the dataset are randomly ordered, the
splitting we performed was not random to avoid biasing the
learning. To explain this point, let us consider the case of the
block masking dataset. Given a method m having & blocks in
it, we add in the dataset k versions of m, each having one
and only one block masked. Suppose that m contains two
blocks by and by, thus leading to two versions of m: One in
which b; is masked (mp, ) and by is not and vice versa (my,,).
With a random splitting, it could happen that m;, is assigned
to the training set and m;, to the test set. However, in my,
the by is not masked. Thus, when the model has to guess
the tokens masked in my,, it would have the solution in the
training set, resulting in boosted prediction performance. For
this reason, we randomly select 80% of the methods in each
dataset and assign all of their masked versions to the training
set. Then, we proceed in the same way with evaluation and
test sets.

Using this procedure, we obtained the datasets in Table 1.
Important to note is that, given the original size of the
datasets using token-level and construct-level masking, we
decided to cap the training set to 750k instances (no changes
were done in the evaluation and test sets). This was necessary
given the computationally expensive process of training
several DL models (as it will be clear later, our study required
the training of 19 different DL-based models). Also, the size
of the evaluation and test sets is slightly different since, as
explained before, we split the dataset based on the methods
(not on their masked versions) and each method can result
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in a different number of its generated masked versions.

2.1.2 Pre-training dataset

To build the pre-training dataset, we used the GitHub Search
platform [23] to identify all Java repositories having at least
100 commits, 10 contributors, and 10 stars. These filtering
criteria only aim at reducing the likelihood of selecting toy
and personal projects for the building of this dataset. We
sorted the projects by their number of stars, cloning the
top 6,000 and extracting from each of them the methods
in the latest snapshot tagged as a release, to only rely on
methods likely to be syntactically correct. Repositories for
which no snapshot was tagged as a release were excluded,
leaving 3,175 repositories. Finally, since we wanted to avoid
extremely large projects to influence the dataset too much
(i.e., to contribute too many methods to the dataset), we
cap the maximum number of methods to extract from each
repository to 1,500. This was also due to limit the number of
the pre-training instances to a manageable size according to
our available hardware resources. In addition to the filters
used while building the fine-tuning dataset (see Section 2.1.1),
we also removed test methods identified as all those using the
@test annotation or containing the word “test” in the method
name after camel case splitting (i.e., we do not exclude
updateStatus). Also, since the goal of the pre-training dataset
is to provide instances in which random tokens are masked
to make the model “familiar” with a specific context (i.e., the
Java language in our case), we excluded very short methods
(< 15 tokens) not having enough elements to mask and, for
the same reasons explained for the fine-tuning dataset, long
methods (in this case, > 200 tokens).

We then removed all the exact duplicates within the
pre-training dataset, keeping in the dataset only the first
occurrence of each duplicate. After having removed the
duplicates, the dataset contained 1,874,338 different methods.
Finally, we ensured that the pre-training dataset does not
contain any methods belonging to the fine-tuning dataset
(neither in the training, evaluation, or test sets). We found a
total of 23,977 duplicates between the pre-training and the
fine-tuning datasets, leading to a final number of 1,850,361
instances in the pre-training dataset.

2.2 Context Selection: Techniques

In this section we overview three experimented techniques,
i.e., RoBERTa [55], T5 [68], and n-gram [36]. We refer to the
original papers presenting them for additional details.

2.2.1 RoBERTa

The first Transformer-based model leverages the off-the-
shelf RoBERTa model, which is an Encoder-Transformer
architecture. Details about the RoOBERTa model are provided
in a report by Liu et al. [55], while here, we mainly focus
on explaining why it represents a suitable choice for code
completion. BERT-based models, such as RoBERTa, use
a special pre-training where random words in the input
sentence are masked out with a special <MASK> token. This
pre-training task is very well-suited to simulate a code
completion task, in which the input is an incomplete code
snippet the developer is writing and the masked tokens
represent the code needed to autocomplete the snippet.
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However, one limitation of such a pre-training is that when
attempting to predict multiple tokens, e.g., an entire masked
if condition, it requires the number of tokens to generate to
be known, due to the fixed sequence length of Transformers
[81]. To overcome this issue, we modify such an objective by
masking spans of tokens using a single <MASK> token.

As previously explained, BERT models (such as RoBERTa)
can be pre-trained and fine-tuned on several tasks [24]. The
result will be a single model able to support different tasks
and, possibly, taking advantage of what it learned for a
specific task to also improve its performance in a different
task. In our study, we start by comparing the RoBERTa
and the T5 models in a scenario in which no pre-training
is performed and a single model is built for each of the
three code completion tasks previously described (i.e., token,
construct, and block masking) by using the fine-tuning dataset.
Then, for the best performing model among the two (i.e.,
T5), we also experiment with pre-training and multi-task
fine-tuning. We trained six RoBERTa models, one for each
dataset in Table 1.

As for the implementation of the RoBERTa model, we
used the one provided in the Python transformers library [86].
We also train a tokenizer for each model to overcome the out-
of-vocabulary problem. The out-of-vocabulary problem happens
when a machine learning model deals with terms that were
not part of the training set but appear in the test set. We
trained a Byte Pair Encoding (BPE) [27] model using the
HuggingFace’s tokenizers Python library [2]. BPE uses bytes
as vocabulary, allowing it to tokenize every text without
requiring the unknown token often used in applications of
DL to NLP, thus overcoming the out-of-vocabulary problem.
When used on source code [46], BPE has been shown to
address the out-of-vocabulary problem.

222 T5

Raffel et al. [68] presented the T5 model that leverages
multi-task learning to implement transfer learning in the
NLP domain. The T5 has been presented in five pre-defined
variants [68]: small, base, large, 3 Billion, and 11 Billion that
differ in complexity, size, and, as a consequence, training
time. T54,411, the smaller variant, has 60 million parameters
while T51; B, the largest, has 11 billion parameters. Despite
Raffel et al. [68] report that highlights the largest model offers
the best accuracy, its training time is sometimes too high to
justify its use. Given our computational resources, we opted
for the T5,,4;1 model; therefore, we expect that our results
represent a lower bound for the performance of a T5-based
model.

T5 offers two advantages as compared to other DL
models: (i) it is usually more efficient than RNNs since it
allows to compute the output layers in parallel, and (ii) it can
detect hidden and long-ranged dependencies among tokens,
without assuming that nearest tokens are more related than
distant ones. The latter is particularly relevant in code-related
tasks. For example, a local variable could be declared at
the beginning of a method (first statement), used in the
body inside an if statement, and finally returned in the
last method’s statement. Capturing the dependency existing
between these three statements, that might even be quite
far from each other (e.g., variable declaration and return
statement), can help in better modeling the source code with
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a consequent boost of performance for supporting code-
related tasks.

For additional details about the T5 architecture, we refer
the reader to the original work presenting this model [68].

223 n-gram

As a baseline for comparison, we used the widely studied
statistical language models based on n-gram. An n-gram
model can predict a single token following the n — 1 tokens
preceding it. Even though the n-gram model is meant to
predict a single token given the n — 1 preceding tokens, we
designed a fair comparison for the scenario in which we mask
more than one token. In particular, we use the n-gram model
in the following way: Let us assume that we are predicting,
using a 3-gram model, how to complete a statement having
five tokens T, of which the last two are masked (M): <Tj, Ta,
T3, My, M5 >, with My and M5 masking T4 and Tj, respectively.
We provide as input to the model T3 and T3 to predict My,
obtaining the model prediction P4. Then, we use T3 and T4
to predict M5, thus obtaining the predicted sentence <Ty, To,
T3, P4, P5>. Basically, all predictions are joined to predict
multiple contiguous tokens.

The n-gram models are trained on the same training sets
used for the fine-tuning of the DL models without, however,
masked tokens. We experiment with both the standard n-
gram model (i.e., the one discussed above) as well as, in a
smaller study, with the n-gram cached model proposed by
Hellendoorn and Devanbu [36].

3 DATA COLLECTION AND ANALYSIS

In this section we detail the data collection and analysis pro-
cedure adopted to answer the research questions described
in Section 2.

3.1

We detail the process used for the training and hyperpa-
rameters tuning of the two deep learning models that we
experimented with.

Training of Models

TABLE 2
Hyperparameters Tuned for the RoBERTa Models.

Hyperparameter Experimented Values  Best
Learning rate [56_5, 3e70, 26_5] 5e~°
Batch size {16, 32, 64} 64

# Hidden Layers {6,12, 16} 12

# Attention Heads {6,12, 16} 16
Hidden Layer Size {256, 512, 768, 1024} 768
Intermediete Size {3072, 4096} 4,096

3.1.1 RoBERTa

We performed hyperparameter tuning using the Weights &
Biases’s [5] Python library on a Linux server with an Nvidia
RTX Titan GPU. Table 2 reports the hyperparameters we
tuned, the range of values we tested for them, and the value
in the best configuration we found. Besides those parameters,
we used an attention dropout probability of 0.1, and a
hidden layer dropout probability of 0.3. For the tokenizer, the
vocabulary size was set to 50k. The hyperparameter search
was performed using the training and the evaluation sets
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of the Android dataset with token masking. We picked as
the best configuration the one that, when applied to the
evaluation set, was able to obtain the highest number of
“perfect predictions”. We define as “perfect” a prediction that
exactly matches the code written by the developers. Thus,
the model correctly guesses all masked tokens. If one of the
masked tokens is different we do not consider the prediction
as “perfect”. While, in principle, a different hyperparameter
tuning would be necessary for each dataset, such a process
is extremely expensive, and preliminary investigations we
performed on a subset of the other datasets showed minor
differences in the achieved best configuration.

The training was performed across servers using their
GPUs. The first was equipped with an Nvidia Tesla V100S,
the second with an Nvidia RTX Titan, and the third with
3 Nvidia GTX 1080Ti. The training time strongly depends
on the size of the dataset and the used server but ranged
between 28 and 114 hours per model. Note that, once trained,
each model can be used to perform predictions in the split
of a second (on average, 0.12 seconds on a laptop CPU),
thus making them a viable solution for “real-time” code
completion.

We train each model for a maximum of 50 epochs.
However, we adopted the following stopping condition. At
the end of each training epoch, we executed the model on
the evaluation set and we compute the number of perfect
predictions. If we observe that, during the training, the
performance of the model is worsening in terms of perfect
predictions on the evaluation set (i.e., the model is likely
overfitting to the training set), we stop the training. In
particular, given a model trained for n** epoch, we stop the
training if the number of perfect predictions on the evaluation
set is lower than the number of perfect predictions achieved
after the n — 4 epoch. This ensures that the models can have
some fluctuations in performance for up to three epochs.
Then, if it is still not improving, we stop its training and
take the best model (in terms of perfect predictions on the
evaluation test) obtained up to that moment. None of the
models were trained for the whole 50 epochs.

TABLE 3
Hyperparameters Tuned for the T5 Models.

Learning Rate Type Parameters
Constant (C-LR) LR = 0.001
Slanted Triangular (ST-LR) LR tarting = 0.001
LRmaz = 0.01
Ratio = 32
Cut = 0.1

Inverse Square Root (ISQ-LR)  LRgtarting = 0.01
Warmup = 10,000
LRstm‘ting =0.01
LR¢pq = 1le—06
Power = 0.5

Polynomial Decay (PD-LR)

312 T5

We rely on the same configurations used by Mastropaolo
et al. [59]. In particular, concerning the pre-training, we do
not tune the hyperparameters of the T5 model because the
pre-training step is task-agnostic, and this would provide
limited benefits. Instead, we experiment with four different
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learning rate schedules for the fine-tuning phase, using the
configurations reported in Table 3, and identify the best-
performing configuration in terms of perfect predictions on
the evaluation sets. Each of the four experimented configu-
rations has been trained for 100k steps (~7 epochs) before
assessing its performance on the evaluation sets. Across
all six evaluation datasets (Table 1), the best performing
configuration was the one using the Slanted Triangular
learning rate, confirming the findings in [59]. Also, all T5
models we built use a SentencePiece [50] tokenizer trained
on the pre-training dataset and are composed of 32k word
pieces [59].

The best configuration we identified has been used to
train six different T5 models (i.e., one for each dataset in
Table 1) and assess their performance on the corresponding
test set. These results can be used to compare directly the
T5 and the RoBERTa model when fine-tuned without pre-
training and in a single-task setting (i.e., no transfer learning).
Since we found the T5 to perform better than RoBERTa, we
also use this model to answer RQ5. Thus, in addition to these
six models, we also built additional seven models: six of
them leverage pre-training plus single-task fine-tuning. In
other words, they are the equivalent of the first six models
we built, with the addition of a pre-training phase.

For pre-training the T5 model, we randomly mask 15%
of the tokens in each instance (method) of the pre-training
dataset. The pre-training has been performed for 200k steps
(~28 epochs), since we did not observe any improvement
going further. We used a 2x2 TPU topology (8 cores) from
Google Colab to train the model with a batch size of 256,
with a sequence length (for both inputs and targets) of 256
tokens. As a learning rate, we use the Inverse Square Root
with the canonical configuration [68]. The training requires
around 26 seconds for 100 steps.

Finally, we created a T5 model exploiting both pre-
training and multi-task fine-tuning (i.e., a single model was
first pre-trained, and then fine-tuned on all six datasets in
Table 1). This was done to check the impact of transfer
learning on the model performance. Overall, we trained
13 T5 models: six with no pre-training and single-task fine-
tuning, six with pre-training and single-task fine-tuning, and
one with pre-training and multi-task fine-tuning.

3.2 Analysis of Results

To answer RQ; we compute the metrics summarized in
Table 4 by running each trained model on the test sets in
Table 1.

The first metric, Bilingual Evaluation Understudy (BLEU)-n
score, assesses the quality of automatically translated text
[25]. The BLEU score computes the weighted percentage (i.e.,
considering the number of occurrences) of words appearing
in translated text and the reference text. We use four variants
of BLEU, namely BLEU-1, BLEU-2, BLEU-3, and BLEU-4. A
BLEU-n variant computes the BLEU score by considering
the n-grams in the generated text. Most of the previous
work in the SE literature adopts the BLEU-4 score [31], [43],
[82]. However, such a variant cannot be computed when
the target prediction (in our case, the number of masked
tokens) is lower than four. For this reason, we compute
four different versions from BLEU-1 to BLEU-4. BLEU-1 can
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be computed for all predictions, while BLEU-n with n>1
only for predictions having a length (i.e., number of tokens)
higher or equal than n. The BLEU score ranges between 0%
and 100%, with 100% indicating, in our case, that the code
generated for the masked tokens is identical to the reference
one.

The Levenshtein distance [51]. To provide a proxy measure
of the effort needed by developers to convert a prediction
generated by the model into the reference (correct) code,
we compute the Levenshtein distance at token-level: This
can be defined as the minimum number of token edits
(insertions, deletions or substitutions) needed to transform
the predicted code into the reference one. Since such a
measure is not normalized, it is difficult to interpret it in
our context. Indeed, saying that five tokens must be changed
to obtain the reference code tells little without knowing the
number of tokens in the reference code. For this reason, we
normalize such a value by dividing it by the number of
tokens in the longest sequence among the predicted and the
reference code.

The percentage of perfect predictions tells us about the cases
in which the experimented model can recommend the very
same sequence of tokens which were masked in the target
code.

We statistically compare the results achieved by RoBERTa
and T5 using different statistical analyses. We assume a
significance level of 95%. As explained below, we use both
tests on proportions and non-parametric tests for numerical
variables; parametric tests cannot be used because all our
results in terms of BLEU score or Levenshtein distance
deviate from normality, according to the Anderson-Darling
test [6] (p-values<0.001). Whenever an analysis requires
running multiple test instances, we adjust p-values using
the Benjamini-Hochberg procedure [87].

To (pairwise) compare the perfect predictions of RoBERTa
and T5, we use the McNemar’s test [61], which is a
proportion test suitable to pairwise compare dichotomous
results of two different treatments. To compute the test
results, we create a confusion matrix counting the number
of cases in which (i) both T5 and RoBERTa provide a perfect
prediction, (ii) only T5 provides a perfect prediction, (iii)
only RoBERTa provides a perfect prediction, and (iv) neither
T5 nor RoBERTa provides a perfect prediction. Finally, we
complement the McNemar’s test with the Odds Ratio (OR)
effect size.

The comparison between different datasets, aimed at
addressing RQ); o, is performed, again, through a proportion
test, but this time, being the analysis unpaired (i.e., we
are comparing results over two different datasets), we use
Fischer’s exact test (and related OR) on a matrix containing,
for different approaches and for different masking levels, the
number of correct and incorrect predictions achieved on Java
and Android.

To compare results of T5 and RoBERTa in terms of BLEU-
n score and Levenshtein distance, we use the Wilcoxon
signed-rank test [85] and the paired Cliff’s delta [30] effect
size. Similarly, the comparison between datasets in terms of
BLUE-n score and Levenshtein distance, being unpaired, is
performed using the Wilcoxon rank-sum test [85] and the
unpaired Cliff’s delta effect size.

For the T5, we also statistically compare the performance
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TABLE 4
Summary of the evaluation metrics used in our study

Metric Purpose

BLEU score
Levenshtein distance
% of perfect predictions

Overall prediction quality for different prediction lengths
Proxy of the effort needed to adapt the prediction
To what extent is the approach able to generate predictions that need human intervention

achieved (i) with/without pre-training, and (ii) with/without
transfer learning. Also in this case, McNemar's test is used
to compare perfect predictions.

Finally, we take the best performing model (i.e., T5
with pre-training and multi-task fine-tuning) and we check
whether the confidence of the predictions can be used as a
reliable proxy for the “quality” of the predictions. If this
is the case, this means that in a recommender system built
around the trained model, the developer could decide to
receive recommendations only when their confidence is
higher than a specific threshold. T5 returns a score for each
prediction, ranging from minus infinity to 0. This score is the
log-likelihood (In) of the prediction. Thus, if it is 0, it means
that the likelihood of the prediction is 1 (i.e., the maximum
confidence, since In(1) = 0), while when it goes towards
minus infinity, the confidence tends to 0.

We split the predictions performed by the model into ten
intervals, based on their confidence ¢ going from 0.0 to 1.0 at
steps of 0.1 (i.e., first interval includes all predictions having
a confidence ¢ with 0 < ¢ < 0.1, last interval has 0.9 < ¢).
Then, we report for each interval the percentage of perfect
predictions.

To corroborate our results with a statistical analysis, we
report the OR obtained by building a logistic regression
model relating the confidence (independent variable) with
the extent to which the prediction achieved a perfect predic-
tion (dependent variable). Given the independent variable
estimate f3; in the logistic regression model, the OR is given
by €%, and it indicates the odds increase corresponding to a
unit increase of the independent variable. We also determine
the extent to which the confidence reported by the model
correlates with the number of masked tokens. To this extent,
we use the Kendall’s correlation [48], which does not suffer
from the presence of ties (occurring in our dataset) as other
non-parametric correlations.

To address RQs, for all the datasets, we compare the
performance of the DL-based models with that of an n-
gram model. In particular, we perform a first large-scale
comparison using a standard n-gram language model and,
on a smaller dataset, we also compare the experimented
techniques with the state-of-the-art cached n-gram model [36]
using the implementation made available by the authors
[3]. We detail later why the cached n-gram model was too
expensive to run on the entire dataset.

We tried to design a fair comparison, although the n-
gram model is designed to predict a single token given
the n tokens preceding it. Thus, in a scenario in which we
mask more than one token, we use the n-gram model in
the following way: We run it to predict each masked token
in isolation. Then, we join all predictions to generate the
final string (i.e., the set of previously masked tokens). The
n-gram models are trained on the same training sets used for
the fine-tuning of the DL-based models without, however,

masked tokens. We compare the three approaches in terms
of perfect predictions generated on the test sets. A statistical
comparison is performed using the McNemar’s test [61] and
ORs.

4 RESULTS DISCUSSION

We start by contrasting the performances of T5 and RoBERTa
(Section 4.1). Then, we show how the n-gram model com-
pares with the DL-based ones (Section 4.2). Finally, Section 4.3
presents qualitative examples of correct predictions made
by the models and discusses the semantic equivalence of
non-perfect predictions.

Note that, upon interpreting the achieved results, and
especially those concerning the perfect (correct) predictions,
a direct comparison with the results achieved in previous
works on code completion is not possible. This is because
most of the studies in the literature experiment with code
completion models when predicting a single next token the
developer is likely to write. As we will show, in such a
specific scenario the models we experiment with can achieve
extremely high accuracy (> 95% of correct predictions).
However, their performance strongly decreases when pre-
dicting longer sequences composed of multiple tokens or
even multiple statements.

4.1

Fig. 1 depicts the results achieved by DL-based models in
terms of perfect predictions for different masking approaches,
namely (from left to right) token-masking, construct-masking,
and block-masking. The plots show the percentage of perfect
predictions (y axis) by the number of masked tokens (z axis).
For example, in the token masking scenario we randomly mask,
for each source code line [ having more than one token, its
last x tokens, where z is a random number between 1 ...
n — 1, with n being the number of tokens of [, and z is
capped to a maximum of 10. The results achieved by the
T5 are reported in orange while those for RoBERTa in red;
continuous lines represent the results achieved on the Java
dataset, while the dashed lines are used for the Android
dataset.

The left-side graph in Fig. 1 shows the percentage of
perfect predictions when we only mask the last token (i.e.,
one masked token), the last two tokens, etc.. The scale on
the z axis is different when dealing with the block masking
scenario since here we mask entire blocks thus having, in
some cases, dozens of masked tokens. Each point indicates
that between x — 5 and z tokens were masked, e.g., for the
first data point at most 5 tokens were masked, for the second
between 5 and 10, etc..

Table 5 reports the average BLEU score in the four
considered variants and the average normalized Levenshtein

DL-based models performance comparison (RQ;)
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g. 1. Percentage of perfect predictions achieved by T5 and RoBERTa

TABLE 5
BLEU score and Levenshtein distance for T5 and RoBERTa.

Token masking

Java Android
T5 RoBERTa T5 RoBERTa
BLEU-1 0.83 0.60 0.85 0.73
BLEU-2 0.73 0.43 0.76 0.61
BLEU-3 0.60 0.23 0.64 0.44
BLEU-4 0.47 0.10 0.51 0.28
Levenshtein ~ 0.16 0.35 0.14 0.24

Construct masking

Java Android
T5 RoBERTa T5 RoBERTa
BLEU-1 0.68 0.51 0.68 0.57
BLEU-2 0.55 0.34 0.57 043
BLEU-3 0.48 0.24 0.49 0.33
BLEU-4 0.37 0.14 0.43 0.26
Levenshtein ~ 0.32 0.48 0.32 0.41

Block masking

Java Android
T5 RoBERTa T5 RoBERTa
BLEU-1 0.65 0.44 0.62 0.44
BLEU-2 0.57 0.32 0.54 0.31
BLEU-3 0.49 0.21 0.46 0.21
BLEU-4 0.41 0.13 0.38 0.13
Levenshtein ~ 0.35 0.54 0.37 0.55

distance achieved by T5 and RoBERTa. Also in this case the
results are grouped based on the masking level and dataset.

The results in Fig. 1 and Table 5 are achieved by the
DL-based models in the simplest scenario, i.e., single-task
without pretraining. To answer RQ; 3 we run additional
experiments for the best model (i.e., T5). The results of such
experiments are provided in Table 6 as the percentage of
perfect predictions for different variants of the T5 model, i.e.,
with/without pretraining and using single- and multi-task
fine-tuning. Table 6 also reports the results achieved with
the RoBERTa model in the simplest scenario to simplify the
discussion of the results.

4.1.1 Impact of number of masked tokens (RQ,) and
specificity of the dataset (RQ 2)

Three findings immediately emerge from the analysis of
Fig. 1: (i) as expected, the higher the number of masked
tokens, the lower the performance of the models; (ii) the
results achieved on the more specific dataset (i.e., Android,
dashed lines in Fig. 1) are substantially better as compared to
the ones achieved for Java only in the token-masking scenario

with the RoBERTa model (see statistics in Table 9); (iii) the
T5 model (orange lines in Fig. 1) substantially outperforms
RoBERTa (see statistics in Table 7 and Table 8). Also, the
performance of RoBERTa drops more steadily as compared
to that of T5 when the number of masked tokens increases.

Table 7 reports results of the McNemar’s test and ORs for
the comparison between T5 and RoBERTa in terms of their
ability to perform perfect predictions. As it can be seen, the
(adjusted) p-values always indicate a statistically significant
difference, and the ORs indicate that T5 has between 2.94
and 8.87 higher odds to provide a perfect prediction than
RoBERTa.

Concerning the comparison of BLEU scores or Leven-
shtein distances (whose average values are reported in Ta-
ble 5) between T5 and RoBERTa, statistical results (Wilcoxon
signed-rank test adjusted p-values and Cliff’s d) are in
Table 8. Also in this case, differences are always statistically
significant, with varying effect sizes (generally larger for
greater levels of BLEU score, and for Java than Android) in
favor of T5 (for the Levenshtein distance a negative d is in
favor of T5, as it is a distance).

Token masking. The left part of Fig. 1 shows that, as
expected, the lower the number of masked tokens the higher
the perfect predictions. Not surprisingly, the models are very
effective when we only mask the last token in a statement.
Indeed, in most cases, this will be a semicolon, a parenthesis,
or a curly bracket. Thus, it is easy for the model to guess the
last token. When moving to more challenging scenarios like
the last five tokens masked in a statement, the percentage of
perfect predictions for RoBERTa on the Java dataset drops to
less than 10%, a major gap with the T5 model that keeps a
percentage of perfect predictions higher than 40%. As for the
dataset, both models achieve significantly better performance
on the Android dataset (Fisher’s test p-value<0.001 and
OR< 1), which is more specific and, thus, more subject to
regularities in the source code. However, the gap in terms of
perfect predictions between the Java and the Android dataset
is much more marked for the RoBERTa model (e.g., ~20% at
x = 5 against a ~6% for the T5).

Looking at Table 5, the BLEU scores and the Levenshtein
distance confirm what was observed for perfect predictions:
performances for the Android dataset are better than for
the Java one. According to Wilcoxon rank-sum test, all
differences, except for RoBERTa at Block level, are statistically
significant, yet with a negligible/small Cliff’s d (detailed
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TABLE 6
Perfect predictions of T5 models with different fine-tuning strategies, and RoBERTa model

T5 RoBERTa

Dataset and Masking Level With Pretraining

No Pretraining No Pretraining

Single-task  Multi-task Single-task Single-task
Token 62.9% 66.3% 61.0% 38.9%
Java Construct 51.2% 53.0% 48.4% 33.4%
Block 27.2% 28.8% 22.9% 8.7%
Token 64.8% 69.3% 63.8% 51.8%
Android  Construct 49.3% 50.8% 46.8% 37.4%
Block 27.5% 29.7% 22.8% 9.4%
Overall 56.2% 59.3% 54.1% 38.7%
TABLE 7 protected void fireScriptEnded(String plugin, Hook hook, Script script)
[Ty ) : { Object[] listeners = _listeners.getListenerList();
Perfect prediction: Mcnamar’s test comparison between T5 and for lint i = listeners.Tengtho2; ised; i-=2) <HASK> }
RoBERTa . ) ) .
{ if (listeners[i]==ScriptListener.class)
{ ((ScriptListener)listeners[i+1]).scriptEnded(plugin, hook, script); } }
Dataset Masking  p-value OR
Token <0.001 8.87
Java Construct  <0.001  4.69 Fig. 2. Perfect prediction of 36 tokens generated by T5 in the Android
Block <0.001 8.14 dataset
Token <0.001 447
Android  Construct <0.001 294
Block <0.001 7.61

statistical results are in the online appendix).

Construct masking. In this scenario (see central sub-
graph in Fig. 1), T5 and RoBERTa achieve respectively above
65% and 55% of perfect predictions when a single token is
masked for both datasets. Note that, in this scenario, also a
single-token prediction is not trivial since we are in a context
in which such a single token represents (i) the complete
condition of an if statement or a while/for loop, or (ii)
the parameters in a method call, or (iii) the exception caught
in a catch statement. When the prediction is represented by
a single token, it is usually related to a Boolean used in an
if condition (e.g.,if (true), if (valid), etc.) or the single
parameter needed for a method invocation.

Also in this case, a higher number of masked tokens
implies lower performance, and again the T5 outperforms
RoBERTa significantly for both datasets although the gap is
smaller. Finally, as shown in Table 9, while with RoBERTa
results for Android are better, for T5 we achieve an OR~ 1.

In terms of BLEU score and Levenshtein distance, the
achieved values are worse as compared to the token-level
masking, confirming the more challenging prediction sce-
nario represented by the construct-level masking. On average,
the developer may need to modify ~40% and ~30% of
the predicted tokens to obtain the reference code (small
variations are observed between Java and Android) when
using RoBERTa and T5, respectively.

Block masking. This represents the most challenging
prediction scenario: The masked part can involve an entire
statement or even span over two statements (maximum
boundary we set). The performance of T5 and RoBERTa
in terms of perfect predictions are respectively above 50%
and 35% when dealing with small masked blocks, up to five
tokens. These blocks are mostly related to return statements
representing a code block (e.g., the value to return when an
if condition is satisfied), such as { return false; },
{ return null; 1}, etc

For longer blocks, the performance substantially drops.

When considering blocks having between six and ten masked
tokens, RoBERTa is able to generate a correct prediction in
~5% of cases, as compared to the ~25% achieved by the T5.
The largest masked block reporting a perfect prediction for
the T5 model is composed of 36 and 39 tokens for Android
(see Fig. 2) and Java datasets respectively, compared to the
13 and 15 tokens achieved with the RoBERTa model.

At this level (see Table 9), the difference in terms of
performance between Java and Android is not so evident,
and even insignificant for T5.

As expected, the BLEU scores are the lowest in this
scenario (Table 5), and the developer may need to revise,
on average, ~ 50% and ~ 35% of the predicted tokens,
independently from the dataset of interest, when using
RoBERTa and T5, respectively.

Answer to RQ 1: As the number of masked tokens increases,
the DL-based models have a harder time generating correct
predictions. Still, the performance achieved by the T5 model looks
promising and, as we will discuss later, can be further pushed
through proper pretraining and multi-task fine-tuning.

Answer to RQj o: When looking at the best model (i.e., the
T5), its performance on the two datasets is quite similar, with no
major differences observed. A strong difference in performance is
only observed in the token-masking scenario with the RoBERIna
model.

4.1.2

As explained in Section 3.1.2, we trained seven additional
T5 models to assess the impact of pretraining and transfer
learning on its performance. First, we added to the six models
for which we previously discussed the T5 performance (i.e.,
no pretraining, single-task) the pretraining phase (obtaining a
pre-trained model in the single-task scenario, i.e., no transfer
learning). Then, we take the pre-trained model, and fine-
tuned it in a multi-task setting, investigating the impact of
transfer learning.

Table 6 shows the achieved results also reporting the
performance of the previously discussed T5 and RoBERTa
models (i.e., no pretraining, single-task in Table 6). Results

Impact of pre-training and transfer learning (RQ:)
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TABLE 8
BLEU score and Levensthein distance comparison between T5 and RoBERTa: Wilcoxon signed-rank and Cliff’s delta (N: negligible, S: small, M:
medium, L: large)

Dataset Masking BLEU 1 BLEU 2 BLEU 3 BLEU 4 Levenshtein
p-value d p-value d p-value d p-value d pvalue d
Token <0001 033(5) <0001 O04I(M) <0001 05L(L) <000l 062(L) <000l -032(5)
Java Construct  <0.001  022(S) <0001 030(S) <0.001 032(S) <0001 035(M) <0001 -0.21(S)
Block <0.001 0.39(M) <0001 043(M) <0001 047 (M) <0001 049(L) <0.001 -0.38 (M)
Token <0.001 0.17 (S) <0.001 0.21 (S) <0.001 0.27 (S) <0.001 034 M) <0.001 -0.17 (S)
Android  Construct <0.001 0.14 (N) <0.001 0.20 (S) <0.001 0.22 (S) <0.001 027 (S) <0.001 -0.14 (N)
Block <0.001 033 (M) <0001 039(M) <0001 042(M) <0001 044 (M) <0.001 -0.34 (M)
TABLE 9 AT .
Comparison between different datasets for perfect predictions - results of % perfect prEdfdfons in the confidence interval
Fisher's exact test (OR<1 indicate better performances for Android) T %perfect predictions out of the total
100%—
Masking  Method  p-value OR w 0%
Token T5 <0.001 0.89 § ig;:
RoBERTa <0.001 0.59 2 60;_
Construct 5 <0001 1.07 g 50%?—
RoBERTa  <0.001 0.84 S o
Block 15 067 1.01 Ao
RoBERTa 0.01 093 g o
10%—]
TABLE 10 01 02 03 04 05 06 07 08 09 1
Effect of different pretraining levels for T5: McNemar's test results. None Confidence

indicates the T5 model with no pre-training and single-task finetuning.
Single and Multi indicates the pre-trained model with single- and
multi-task fine-tuning, respectively.

Dataset Masking  Comparison p-value OR
single vs. none <0.001 1.44

Token multi vs. single  <0.001 1.81

multi vs none <0.001  2.33

single vs. none <0.001 T.61

Java Construct  multi vs. single  <0.001 1.34
multi vs none <0.001 192

single vs. none <0.001 219

Block multi vs. single  <0.001  1.32

multi vs none <0.001 232

single vs. none <0.001 1.23

Token multi vs. single  <0.001  2.27

multi vs none <0.001 2.61

single vs. none <0.001 158

Android  Construct multi vs. single  <0.001  1.28
multi vs none <0.001 1.81

single vs. none <0.001 214

Block multi vs. single  <0.001  1.39

multi vs none <0.001  2.39

of a statistical comparison made using McNemar’s test are
reported in Table 10. As it is shown, the pretraining has a
positive (OR> 1) and statistically significant effect in all cases,
and the fine-tuning in a multi-task setting outperforms the
single-task pretraining. Looking at Table 6, the pretraining
had a positive impact on the accuracy of T5, boosting the
percentage of perfect predictions from 1% to 4.7%, depending
on the test dataset. The benefit of pretraining is more evident
in the most challenging block-level scenario (~5%). Overall,
when considering all test datasets as a whole, the percentage
of perfect predictions increases from 54.1% to 56.2% (+2.1%).

By training a single model on the six training datasets, the
percentage of perfect predictions further increases, going up
to an overall 59.3%. Note that improvements can be observed
on all test datasets and, for the token-masking scenario, they
can reach ~5%.

The performance improvement is also confirmed by the

Fig. 3. Perfect predictions by the confidence of the model

results achieved in terms of BLEU score and the Levenshtein
distance that, for the sake of brevity, we report in our
replication package [21].

Answer to RQq: We found both pretraining and multi-task
fine-tuning to have a positive impact on the T5 performance.
Owerall, such an improvement accounts for +5.2% in terms of
perfect predictions (36,009 additional instances correctly predicted).

4.1.3 T5 Confidence Level

The T5 returns a score for each prediction, ranging from
minus infinity to 0. This score is the log-likelihood of the
prediction itself. If the score is -2 then it means that the log-
likelihood of the prediction is -2. Hence, the likelihood is 0.14
(In(x) = =2 = x = 0.14) and this implies that the model
has a confidence of 14% for the prediction to be correct. If
the score is 0, repeating the same computation as above, the
model has the confidence of 100% about the prediction itself.

Fig. 3 reports the relationship between the percentage of
perfect predictions and the confidence of the model. The
orange line shows the percentage of perfect predictions
within each confidence interval (e.g., 90% of predictions
having a confidence higher than 0.9 are correct), while the
red line reports the percentage of perfect predictions that are
due to predictions in that confidence interval out of the total
(e.g., 78% of all perfect predictions have a confidence higher
than 0.9).

Fig. 3 shows a strong relationship between the confidence
of the model and the correctness of the prediction. While this
result might look minor, it has an important implication: It
would be possible to build a reliable code completion tool
around the T5 model. Indeed, the tool could be configured
to only trigger recommendations when the confidence of the
prediction is higher than a given threshold (e.g., 0.9). This
would result in an extremely high precision.
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Fig. 4. Average length (in tokens) of the predictions by confidence

From a statistical perspective, a logistic regression model
correlating the confidence level and the perfect prediction
outcome indicates a statistically significant (p-value <0.001)
correlation, and an estimate of 6.58, which means 720 higher
odds of a perfect prediction for each unit increase of the
confidence, i.e., 72 higher odds of a perfect prediction for
a 0.1 increase of the confidence, i.e., a tick on the x-axis of
Fig. 3.

Fig. 4 analyzes the average length, in tokens, of the perfect
predictions (yellow line), wrong predictions (orange line),
and for all the predictions (red line) among all confidence
intervals. It is clear that the length of the prediction is related
to the confidence, since the model has higher confidence for
shorter predictions. Indeed, the average number of tokens
in perfect predictions for the highest confidence interval (i.e.,
3 tokens) is much lower than the average number of tokens
in perfect predictions for the lowest confidence interval (i.e.,
6 tokens). This confirms previous findings showing that the
model is more likely to correctly predict shorter statements.

From a statistical perspective, this is confirmed by a sig-
nificant (p-value <0.001), negative, and moderate Kendall’s
correlation (7=-0.36).

TABLE 11
Perfect predictions of the three models

Dataset and Masking Level T5 RoBERTa  n-gram
Token 61.0% 38.9% 30.4%

Java Construct 48.8% 33.9% 12.5%
Block 22.9% 8.7% 4.6%

Token 63.8% 51.9% 35.4%

Android ~ Construct 47.1% 37.8% 17.6%
Block 22.8% 9.4% 6.6%

Overall 54.3% 38.8 24.9%

4.2 Comparison with an n-gram Model

We answer RQ3 by comparing the DL-based models without
pretraining and in the single-task setting to the n-gram model.
We opted for this comparison for the sake of fairness, since
in this way the n-gram model has been trained on exactly
the same dataset as the two DL-based models.

Table 11 reports the comparison in terms of perfect
predictions between T5, RoBERTa and the n-gram model in
different evaluation scenarios, as well as the overall results.
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TABLE 12
Comparison with the n-grams model: results of McNemar’s test

Dataset Masking  Comparison p-value OR
T5 vs. RoBERTa <0.001 8.93

Token RoBERTa vs. n-grams ~ <0.001 2.21

T5 vs. n-grams <0.001 1031

T5 vs. RoBERTa <0.001 4.65

Java Construct  RoBERTa vs. n-grams ~ <0.001 5.29
T5 vs. n-grams <0.001 11.62

T5 vs. RoBERTa <0.001 8.15

Block RoBERTa vs. n-grams ~ <0.001 2.85

T5 vs. n-grams <0.001  14.38

T5 vs. RoBERTa <0.001 4.47

Token RoBERTa vs. n-grams <0.001 4.26

T5 vs. n-grams <0.001 10.14

T5 vs. RoBERTa <0.001 291

Android  Construct RoBERTa vs. n-grams  <0.001 5.30
T5 vs. n-grams <0.001 9.04

T5 vs. RoBERTa <0.001 7.62

Block RoBERTa vs. n-grams <0.001 1.90

T5 vs. n-grams <0.001  10.00

For example, T5 produced 61% perfect predictions on the
Java dataset when using token masking. Results of statistical
tests (McNemar’s test) are in Table 12.

One important clarification is needed to properly inter-
pret the results of Table 11. Since the n-gram model uses
a different script to tokenize the code, we excluded from
the test sets cases in which the tokens to predict (i.e., the
masked ones) are tokenized differently between the DL-
based approaches and n-gram one (e.g., one identifies 4
tokens and the other one 5). This resulted in the exclusions of
a few hundred instances from each test set and explains the
slightly different performances reported for T5 and RoBERTa
between Table 11 and Fig. 1.

Table 12 reports results of the statistical comparison
among the three models, using McNemar’s test. DL-based
models achieve better performance in all experimented
datasets, and McNemar’s tests always indicate statistically
significant differences, with ORs ranging between 1.90
(RoBERTa vs n-grams, block masking for Android) and 14.38
(block masking, T5 vs n-grams for Java).

In the token masking scenario, the performance of the
n-gram model is very competitive when compared with
RoBERTa, while the T5 performs substantially better. When
masking specific constructs, the gap in performance becomes
stronger (see Table 11) with a substantial gap, especially
between T5 and n-gram. Finally, in the block masking
experiment, RoBERTa and n-gram techniques struggle to
obtain a high percentage of perfect predictions, with the
T5 performing better achieving more than twice the num-
ber of perfect predictions as compared to the competitive
techniques.

While the DL-based models showed superior perfor-
mance, there are two important aspects to consider. First, the
n-gram model allows for faster training. We estimate four to
five times less training time needed for the n-gram model as
compared to the DL-based models. We do not report precise
data since such a study would require executing the training
many times on the same machine, and such an analysis
is out of the scope of this work. Once trained all models
can generate predictions in fractions of a second. Second,
the comparison presented as of now concerns the standard
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n-gram model. However, we also experimented with the
cached n-gram model [36], which can leverage information
about other code components coming from the same project
(e.g., same file or package [36]) of the method in which the
prediction is performed. This is one of the advantages of
the cache model [36] and, in a real scenario, it should be
possible to use this information assuming that the method
on which the prediction is performed is not the first one
written in the whole system. However, such experimentation
is quite expensive to perform since it requires the cloning
of the whole repositories hosting every test method. This is
why it has only been performed on a small sample of our
dataset.

TABLE 13
Perfect predictions of n-gram model when providing the cloned
repository (WC) vs. when not providing (NC). In comparison to DL-based
models (200 methods)

. n-gram
Dataset and Masking Level T5 RoBERTa NC WC
Token 65.5% 422%  325%  43.9%

Java Construct 56.0% 38.0%  14.5%  20.5%
Block 25.8% 8.5% 5.2% 8.5%

Token 69.9% 50.9% 35%  42.2%

Android  Construct 52.8% 37.8%  13.9%  22.0%
Block 33.6% 13.0% 9%  11.9%

Overall 57.7% 38.2%  239%  31.5%

For a given method m; in the test set, we clone its
repository and check if the source code of m; in the latest
system snapshot is exactly the same as in the test set. If this
is the case, we run the prediction on m; providing the cloned
repository as a test folder, in such a way that it is leveraged
by the cache model (this is done through the implementation
of Hellendoorn et al. [36]). If the method changed, we discard
it and move to the next one. Since such a process is very
expensive, we collected 200 methods from each test set, and
we compare the performance of the n-gram model when
such additional information is provided (and not) on these
instances.

Table 13 reports the achieved results. As expected, the
performance of the n-gram model increase thanks to the
use of the information in the test project. On these same
instances, the performance of T5 and RoBERTa models are
always superior but in the case of Java token and block
masking for RoBERTa.

Answer to RQs3: The n-gram model is a competitive alterna-
tive to RoBERTa, while the T5 confirms its superior performance.
It is worth highlighting the much cheaper cost of training (and
possibly re-training several times) an n-gram model as compared
to a DL-based approach.

4.3 AQualitative Results

To give a better idea to the reader about the capabilities of
the experimented models in supporting code completion,
we report in Fig. 5 examples of correct predictions for
the T5 model in different scenarios/datasets. Examples of
predictions for the RoBERTa and n-gram model are available
in the replication package [21].

Given the achieved results showing the superiority of
the T5 model, we had a better look at a sample of the
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Android Token

public SongViewHolder(View itemView) { super(itemView); albumSongNameTextView =
(TextView) itemView <MASK> }

.findViewById(R.id.albumSongNameTextView);
Java Token
public Sheet getSheet() { if (sheet != null) { return sheet; } UIComponent

parent = getParent(); while (parent != <MASK> parent = parent.getParent(); }
return (Sheet) parent;

null & !(parent instanceof Sheet)) {

Android Construct

public static int i(String tag, String msg) { _log( <MASK>); return
Log.i(tag, msg); }

_prioToLevel(Log.INFO), tag, msg

Java Construct

public DoubleToLongFunction mask(ThrowingDoubleToLongFunction<? extends X>
function) { Objects.requireNonNull(function); return d —>

maskException( <MASK>); }

() —> function.applyAsLong(d)

Android Block

public void setAnchor(float anchorU, float anchorV) { if (marker != null) <MASK> else
{ markerOptions.anchor(anchorU, anchorV); }

{ marker.setAnchor(anchorU, anchorV); }

Java Block

private void calculateMean() { double sum = @; Integer count = @; for(int i=0;
i<data.length; i++) { if (calibrationFlag[i]) <MASK> } mean = sum /
count.doublevalue(); }

{ sum += data[il; count++; }

Fig. 5. Examples of perfect predictions generated by T5

wrong predictions it generates, to see whether some of them
are semantically correct (e.g., return 0x0; is equivalent to
return 0;) despite being different from the reference code
written by the developers. The first author looked at 200
wrong predictions generated within the highest confidence
interval, finding that only in three cases the prediction was
semantically equivalent, with the reference code including
extra (unnecessary) brackets not generated by the T5 model
(e.g., T5 predicts entry; instead of (entry);). Overall, it appeared
that several of the generated predictions, while wrong, might
still speed up the implementation process, for example when
n—1 out of the n parameters needed for a method invocation
are correctly predicted. Clearly, only a user study with
developers can help in assessing the actual usefulness of
these predictions during real coding activities.

Since we found cases in which the perfect predictions of
the T5 spanned across dozens of tokens, being almost unreal-
istic, we checked whether the 21 perfect predictions having
more than 30 tokens were already present in the training
set. Indeed, while we ensure that there are no duplicated
methods between training and test, it is possible that two
different methods m; and my have the same masked part
(i.e., the two methods are different in the non-masked part but
they have the same set of masked tokens). Only one out of
the 21 inspected cases was already present in the training set
and related to the transpose of a matrix. The model was able
to correctly predict very complex masked parts such as "{ if
(defaultProviders = null && index < defaultProviders.length) {
return defaultProviders[index].get Rebuild(default Providers, index
+1); )7

Finally, it is worth commenting on the possible reasons
behind the superior performance we observed for the T5
as compared to RoBERTa and for the DL-based models as
compared to the n-gram model. RoBERTa predicts all of
the masked tokens at the same time, whereas T5 predicts
them one by one. This means that RoBERTa cannot use the
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previously generated tokens to predict the next one, while
the T5 exploits this additional information. Concerning the
superior performance of the DL-based model as compared
to the n-grams, this most likely comes down to the context
window it is able to see. Indeed, the n-gram model can only
see (and leverage) a few tokens when predicting the next
one, while both T5 and RoBERTa have a better view of the
coding context, seeing all the tokens surrounding the masked
ones (which could be hundreds). A solution could be to scale
up the n-gram model which, however, would become too
demanding in terms of computational cost.

5 THREATS TO VALIDITY

Threats to construct validity concern the relationship between
theory and observation. One threat, also discussed by Hellen-
doorn et al. [37], is related to how we simulate the extent to
which code completion intervenes during development, i.e.,
by masking source code elements. As explained in Section 2.1,
we consider different masking levels, not only to evaluate
the amount of code completion that can be predicted but also
to simulate different ways a developer writes source code,
especially because we cannot assume this is done sequentially.
However, we are aware that the considered masking levels
cover a limited number of cases that may not completely
reflect how developers write code.

Another threat is related to how we assess the code
completion performances. On the one hand, 100% BLEU
score clearly reflects a perfect prediction. However, the BLEU
score may be sufficient to assess the performance of code-
related tasks [71] and, in general, it is difficult to evaluate the
usefulness of semantic equivalent predictions or imperfect
yet useful. To mitigate this threat, we report some qualitative
examples, indicating how partially-complete recommenda-
tions could still be useful.

Threats to internal validity concern factors, internal to
our study, that could influence its results. To this extent,
an important factor that influences DL performance is the
calibration of hyperparameters, which has been performed
as detailed in Section 3.2. We are aware that due to feasibility
reasons we only performed a limited calibration of the
hyperparameters. Hence, it is possible that a more detailed
calibration would produce better performances. Also, note
that we did not experiment with a pre-trained version of
RoBERTa. Indeed, to simplify our experimental design and
reduce the training cost we decided to only pre-train the
best-performing model (i.e., T5).

When building the pre-training dataset we capped to
1,500 the maximum number of instances that a single project
can contribute to our dataset. This has been done to avoid a
handful of projects strongly influencing the training of the
model. We acknowledge that different (and maybe better)
results could be obtained by considering the whole code base
of each project for pre-training.

Threats to conclusion validity concern the relationship
between evaluation and outcome. As explained in Section 3.2
we used appropriate statistical procedures, also adopting
p-value adjustment when multiple tests were used within
the same analysis.

Threats to external validity are related to the generaliz-
ability of our findings. On the one hand, we have evaluated
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the performances of the models on two large datasets. At
the same time, we do not know whether the obtained
results generalize to different domains than Android, and
other programming languages than Java. A further threat is
that our study is limited to the RoBERTa and T5 models
for DL and, as a baseline for n-gram models, the one
by Hellendoorn and Devanbu [36]. While we claim such
models are well-representative of the current state-of-the-
art, it would be desirable to investigate how alternative
approaches would work for the different evaluation scenarios.
Also, when building our fine-tuning dataset, we started
from the CodeSearchNet Java Dataset provided by Husain
et al. [41]. In this dataset, short methods (those having less
than three lines), as well as methods containing test in their
name have been excluded. This means that the results of our
study do not generalize, for example, to very short methods
implementing critical tasks in less than three lines of code.

6 RELATED WORK

We start by detailing the literature related to code com-
pletion techniques and, more specifically, we highlight the
approaches aimed at (partially) automating code writing.
Then, we present studies investigating the effectiveness of
code completion techniques. For the sake of brevity, we do
not discuss recently proposed techniques for automating
bug-fixing [14], [20], [80], modeling activities [56], learning
code changes [17], [79], as well as source code search engines
that can be used to identify pieces of code for reuse [15], [29],
[60], [70], [75], [76].

6.1

The Prospector tool by Mandelin et al. [57] is one of the first
techniques aimed at supporting code completion by suggest-
ing within the IDE variables or method calls from the user’s
code base. Prospector was then followed by improvements
such as the InSynth tool by Gvero et al. [32] which, given a
type expected at a given point in the source code, searches
for type-compatible expressions. Other approaches focus on
specific elements of API usage completion. The work from
Zhang et al. [88] aims at recommending parameter usages,
achieving 64% of useful recommendations and 53% of perfect
ones.

Hill and Rideout [38] proposed a technique to automat-
ically complete the body of a method. Their approach can
support such a completion for what the authors define as
“atomic clones” (i.e., small units of implementation that are
unavoidable in Java to implement specific requirements). The
presented tool uses the K-Nearest Neighbour to identify a
clone of a method under development. Such a clone is then
used to recommend the completion of the method body.

Bruch et al. [18] introduced the intelligent code completion
system, able to filter out from the list of candidate method
calls recommended by the IDE those that are more relevant to
the current working context. Their results show the capability
to correctly predict up to 82% of method calls actually needed
by developers, and up to 72% of those that are relevant to the
current development context. The approach by Bruch et al.
has been improved by Proksch et al. [66], by adding further
contextual information and by proposing a Pattern-based

Code Completion Approaches
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Bayesian Networks approach. As a result, Proksch et al. were
able to substantially reduce the model size while keeping
about the same level of prediction accuracy. Differently from
the aforementioned approaches, we do not restrict code
completion to method calls.

Han et al. [34] proposed a technique exploiting a Hidden
Markov Model (HMM) to autocomplete multiple keywords
starting from abbreviated inputs. This means that the user
(i.e., the developer) only writes a few characters of the
keyword of interest that is then expanded by the HMM.
The authors show that their model can save up to 41% of
keystrokes.

Robbes and Lanza [72] used information extracted from
the change history of software systems to support the code
completion of method calls and class names. Their approach
has been implemented in a tool named OCompletion, and
the performed empirical evaluation demonstrated its ability
to propose a correct match in the top-3 results in 75% of
cases.

Asaduzzaman et al. [10] proposed a technique named
CSCC (Context Sensitive Code Completion). They collect
code examples from software repositories and, for each
method call, represent its context as a set of methods,
keywords, class, and interface names appearing within four
lines of code. This contextual information is then used to
filter out method call recommendations. The assumption
is that similar contexts imply similar method calls. CSCC
outperforms previous approaches, achieving 86% precision
and 99% recall.

Hindle et al. [39] pioneered the work on statistical
language models applied to software. They conceived the
idea of “naturalness of source code” and used n-gram models
to create a language-agnostic algorithm that is able to predict
the next token in a given statement. The trained model’s
average entropy is between three and four bits, indicating a
high degree of naturalness.

Raychev et al. [69] approach the code completion problem
through statistical language models. They extract sequences
of method calls from a large code base, and use this dataset to
train a language model able to predict API calls. Their model
achieves a 90% accuracy in the top-3 recommendations.

Nguyen et al. [63] proposed GraPacc, a context-sensitive
code completion model trained on a database of API usage
patterns. These patterns are then matched to a given code
under development to support code completion. GraPacc
achieves up to 95% precision and 92% recall. A similar
approach was later on proposed by Niu et al. [65] for API
completion in Android: Given an API method as a query,
their approach recommends a set of relevant API usage pat-
terns. They report an 18% improvement of F-Measure when
comparing to pattern extraction using frequent-sequence
mining.

Tu et al. [77] introduced a cache component to exploit
the “localness of code” in the n-gram model. Results show
that since the code is locally repetitive, localized information
can be used to improve performance. The enhanced model
outperforms standard n-gram models by up to 45% in
accuracy. In a related work, Frankset al. [26] implemented
CACHECA, an Eclipse auto-completion plugin exploiting the
aforementioned cache language model [77]. In comparison to
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Eclipse built-in suggestions, their tool improves the accuracy
of top 1 and top 10 suggestions by 26% and 34%, respectively.

Nguyen et al. [64] presented Gralan, a graph-based
statistical language model that the authors instantiated to
recommend the next API element needed in a given code,
where an API element is a method call together with the
control units (e.g., 1f statements) needed for its usage.
The reported empirical evaluation showed that GralLan can
correctly recommend the correct API element in 75% of cases
within the first five candidates.

Hou and Pletcher [40] evaluated three mechanisms to en-
hance code completion techniques, namely sorting, filtering,
and grouping. Also this works focuses on code completion
related to API methods and the outcome of their study
is an assessment of the effectiveness of fourteen different
configurations of the three mechanisms.

Asaduzzaman et al. [11] proposed a technique to recom-
mend developers with examples of framework extensions.
Given a class under development, the approach recommends
code examples showing how to integrate frameworks in spe-
cific extension points. While the approach by Asaduzzaman
et al. recommends relatively large code completion fragments,
it is limited to a specific scenario, i.e., framework extension
points, whereas the approaches we experiment with are more
general in that respect.

Hellendoorn and Devanbu [36] proposed further im-
provements to the cached models aimed at considering
specific characteristics of code (e.g., unlimited, nested, and
scoped vocabulary). Then, they compare their model with
DL-based models, showing its superiority. Also, they show
that the two families of techniques can be combined together,
leading to an unprecedented 1.25 bits of entropy per token.
Karampatsis et al. [47], a few years later, suggested instead
that neural networks are the best language-agnostic algo-
rithm for code completion. They proposed to overcome the
out-of-vocabulary problem by using Byte Pair Encoding [27]. In
addition, the proposed neural network is able to dynamically
adapt to different projects. Their best model outperforms
n-gram models, achieving an entropy of 1.03 bits.

Kim et al. [49] leveraged the Transformers neural network
architecture for code completion. They provide the syntactic
structure of code to the network by using information
from the Abstract Syntax Tree to fortify the self-attention
mechanism. Among the several models they experiment
with, the best one reached a MRR up to 74.1% in predicting
the next token.

Alon et al. [8] addressed the problem of code completion
with a language agnostic approach named Structural Lan-
guage Model. It leverages the syntax to model the code snip-
pet as a tree. The model, based on LSTMs and Transformers,
receives an AST representing a partial expression (statement),
with some missing consecutive tokens to complete. Their best
model reached state-of-the-art performance with an exact
match accuracy for the top prediction of 18.04%.

Svyatkovskiy et al. [73] introduced IntelliCode Compose,
a general-purpose multilingual code completion tool capable
of predicting code sequences of arbitrary token types. They
do not leverage high-level structural representation, such as
AST, and use subtokens to overcome the out-of-vocabulary
problem. Their model can recommend an entire statement, and
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achieves a perplexity of 1.82 for the Python programming
language.

Liu et al. [53] presented a Transformer-based neural
architecture pre-trained with the goal of incorporating both
code understanding and generation tasks. Afterwards, the
model was then fine-tuned on the classic code completion
task (i.e., predicting the next token to write).

A problem related to code completion has also been
tackled by Watson et al. [82]: The authors exploit a sequence-
to-sequence model to recommend assert statements for a
given Java test case. This technique is able to generate a
specific type of code statement, with a top-1 accuracy of
31%. Also, Kanade et al. [45] show how code embeddings
can support code-related tasks, including variable misuse and
repair, related to code completion when focusing on a single
token.

Svyatkovskiy et al. [74] proposed a different perspective
on neural code completion, shifting from a generative task
to a learning-to-rank task. Their model is used to rerank the
recommendations provided via static analysis, being cheaper
in terms of memory footprint than generative models. To this
aim, Avishkar et al. [16] proposed a neural language model
for code suggestion in Python, aiming to capture long-range
relationships among identifiers exploiting a sparse pointer
network.

To address the out-of-vocabulary problem in standard
neural language models, Jian et al. [52] proposed a pointer
mixture deep learning model for Python benefiting from
the pointer copy mechanism. Such architecture helps the
model to generate an out-of-vocabulary word from local
context through a pointer component when generating a
within-vocabulary token is not possible.

A considerable step forward, has been taken recently by
Aye and Kaiser [12] proposing a novel language model to
predict the next top-k tokens while taking into consideration
some real-world constraints such as (i) prediction latency, (ii)
size of the model and its memory footprint, and (iii) validity
of suggestions. Chen et al. [19] proposed a deep learning
model for API recommendation combining structural and
textual code information based on an API context graph
and code token network. The evaluation model significantly
outperforms the existing graph-based statistical approach
and the tree-based deep learning approach for API recom-
mendation.

To the best of our knowledge, our work is the first
to present a comprehensive study on the effectiveness of
Transformer models for code completion tasks, pushing this
problem forward by attempting the automatic generation of an
entire code block (e.g., the body of a for statement).

6.2 Studies About the Effectiveness of Code Comple-
tion Approaches

Although code completion techniques are likely to be benefi-
cial for developers, their limitations (e.g., prediction latency,
accuracy) can bound their practical usefulness. For this
reason, several studies investigated the effectiveness of code
completion techniques.

Jin and Servant [44] investigated the effect of different
recommendation list lengths on the developers” productivity.
They found that lengthy suggestion lists are not uncommon
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and reduce the developer’s likelihood of selecting one of the
recommendations.

Lin ef al. [42] focus on the performance of a code2vec
[9] model, in the context of method name recommendation.
The authors retrain the model on a different dataset and
assess it in a more realistic setting where the training dataset
does not contain any record from evaluation projects. The
results suggest that while the dataset change had little
impact on the model’s accuracy, the new project-based setting
negatively impacted the model. Lin et al. [42] also evaluated
the usefulness of code2vec suggestions by asking developers
to assess the quality of suggestions for non-trivial method
names. The evaluation results show the model rarely works
when it is needed in practice. Further investigation also
revealed that around half of successful recommendations
(48%) occur for simpler scenarios, such as setter/getter
methods or when the recommended name is copied from the
method body source code.

Hellendoorn et al. [37] studied 15,000 real code com-
pletions from 66 developers founding that typically-used
code completion benchmarks — e.g., produced by artificially
masking tokens — may misrepresent actual code completion
tasks. The study by Hellendoorn et al. suggests that further
research is needed to assess the actual applicability of DL-
based code completion to the real-world. This is however
out of scope for our work, because our aim is to assess the
capability of DL models to predict non-trivial portions of
code going beyond a single method call or parameter.

Liu et al. [54] investigate the performance of deep learning-
based approaches for generating code from requirement
texts. For that, they assessed five state-of-the-art approaches
on a larger and more diverse dataset of pairs of software
requirement texts and their validated implementation as
compared to those used in the literature. The evaluation
results suggest that the performance of such approaches, in
terms of common metrics (e.g., BLEU score), is significantly
worse than what was reported in the literature. The authors
attribute this observation to the relatively small datasets on
which such models are evaluated.

Similarly, Aye et al. [13] investigate the impact of using
real-world code completion examples (i.e., code completion
acceptance events in the past) for training models instead of
artificial examples sampled from code repositories. The usage
of such realistic data on n-gram and transformer models
suggests a significant accuracy decrease. Later, an A/B test
conducted with Facebook developers confirmed that the
autocompletion usage increases by around 6% for models
trained on real-world code completion examples.

Our work, differently from previous studies, aims at
assessing the capability of state-of-the-art Transformer-based
models in predicting non-trivial snippets of code. In contrast,
it is out of this study scope to assess the developer’s
perception of the prediction models that would require an
extensive study with developers.

7 CONCLUSION

We investigated the ability of Transformer-based DL-models
in dealing with code completion tasks having a different
level of difficulty, going from the prediction of a few tokens
within the same code statement, up to the entire code blocks



JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX

we masked. Among the three models we experimented with,
namely T5 [68], RoBERTa [24], and the cached n-gram model
[36], the T5 resulted to be the most effective in supporting
code completion.

Our study provided a series of highlights that will guide
our future research. First, when the code to complete spans
over multiple statements (two in the case of our experiments),
these models, with the training we performed, are still far
from being a valuable solution for software developers.
Indeed, even the best-performing model (T5) struggles in
guessing entire code blocks. However, the performance we
reported should not be seen as an “upper bound” for these
techniques, since larger models may be trained on more data
can be adopted (e.g., the recently proposed GitHub Copilot
[1]) and different training strategies could help in achieving
better results (e.g., Tufano et al. [78] showed that pre-training
on English text helps transformer models in improving
performance even in code-related tasks). Besides working
on these research directions we also plan to investigate
alternative solutions mixing, for example, retrieval-based
and DL-based solutions.

Second, the confidence of the predictions generated by the
T5 turned out to be a very reliable proxy for the quality of its
predictions. This is something fundamental for building tools
around this model, as it can be used by developers to just
ignore low-confidence recommendations. Future studies will
investigate how the developers perceive the usefulness of
recommendations having different characteristics, including
length, confidence, and covered code constructs.

Finally, a user study is also needed to understand what is
the level of accuracy (in terms of perfect predictions) needed
to consider tools built around these models as effective for
developers. In other words, it is important to understand the
“percentage of wrong predictions” a developer can accept
before considering the tool counterproductive. Such a study
is also part of our research agenda.
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