Carbink: Fault-Tolerant Far Memory

Yang Zhou™* Hassan M.G. Wassel*
Chris Kennelly* Paul Turner*

THarvard University *Google

Abstract

Far memory systems allow an application to transparently
access local memory as well as memory belonging to re-
mote machines. Fault tolerance is a critical property of any
practical approach for far memory, since machine failures
(both planned and unplanned) are endemic in datacenters.
However, designing a fault tolerance scheme that is efficient
with respect to both computation and storage is difficult. In
this paper, we introduce Carbink, a far memory system that
uses erasure-coding, remote memory compaction, one-sided
RMAs, and offloadable parity calculations to achieve fast,
storage-efficient fault tolerance. Compared to Hydra, a state-
of-the-art fault-tolerant system for far memory, Carbink has
29% lower tail latency and 48% higher application perfor-
mance, with at most 35% higher memory usage.

1 Introduction

In a datacenter, matching a particular application to just
enough memory and CPUs is hard. A commodity server
tightly couples memory and compute, hosting a fixed number
of CPUs and RAM modules that are unlikely to exactly match
the computational requirements of any particular application.
Even if a datacenter contains a heterogeneous mix of server
configurations, the load on each server (and thus the amount
of available resources for a new application) changes dynam-
ically as old applications exit and new applications arrive.
Thus, even state-of-the-art cluster schedulers [51,52] struggle
to efficiently bin-pack a datacenter’s aggregate collection of
CPUs and RAM. For example, Google [52] and Alibaba [34]
report that the average server has only ~60% memory utiliza-
tion, with substantial variance across machines.

Memory is a particularly vexing resource for two reasons.
First, for several important types of applications [19,20, 33,
54], the data set is too big to fit into the RAM of a single
machine, even if the entire machine is assigned to a single
application instance. Second, for these kinds of applications,
alleviating memory pressure by swapping data between RAM
and storage [14] would lead to significant application slow-
downs, because even SSD accesses are orders of magnitude
slower than RAM accesses. For example, Google runs a graph

*Contributed to this work during internships at Google.

Sihang Liu®* Jiaqi Gao®
David E. Culler*

SUniversity of Virginia

James Mickens” Minlan Yu'*

Henry M. Levy“ir Amin Vahdat*

I University of Washington

analysis engine [28] whose data set is dozens of GBs in size.
This workload runs 46% faster when it shuffles data purely
through RAM instead of between RAM and SSDs.

Disaggregated datacenter memory [2,5, 15,16,22,44,46] is
a promising solution. In this approach, a CPU can be paired
with an arbitrary set of possibly-remote RAM modules, with
a fast network interconnect keeping access latencies to far
memory small. From a developer’s perspective, far memory
can be exposed to applications in several ways. For example,
an OS can treat far RAM as a swap device, transparently
exchanging pages between local RAM and far RAM [5,22,46].
Alternatively, an application-level runtime like AIFM [44]
can expose remotable pointer abstractions to developers, such
that pointer dereferences (or the runtime’s detection of high
memory pressure) trigger swaps into and out of far memory.

Much of the prior work on disaggregated memory [2,44,55]
has a common limitation: a lack of fault tolerance. Unfor-
tunately, in a datacenter containing hundreds of thousands
of machines, faults are pervasive. Many of these faults are
planned, like the distribution of kernel upgrades that require
server reboots, or the intentional termination of a low-priority
task when a higher-priority task arrives. However, many server
faults are unpredictable, like those caused by hardware fail-
ures or kernel panics. Thus, any practical system for far mem-
ory has to provide a scalable, fast mechanism to recover from
unexpected server failures. Otherwise, the failure rate of an
application using far memory will be much higher than the
failure rate of an application that only uses local memory;
the reason is that the use of far memory increases the set of
machines whose failure can impact an application [8].

Some prior far-memory systems do provide fault toler-
ance via replication [5,22,46]. However, replication-based
approaches suffer from high storage overheads. Hydra [29]
uses erasure coding, which has smaller storage penalties than
replication. However, Hydra’s coding scheme stripes a sin-
gle memory page across multiple remote nodes. This means
that a compute node requires multiple network fetches to re-
construct a page; furthermore, computation over that page
cannot be outsourced to remote memory nodes, since each
node contains only a subset of the page’s bytes.

In this paper, we present Carbink,' a new framework for
far memory that provides efficient, high-performance fault
recovery. Like (non-fault-tolerant) AIFM, Carbink exposes
far memory to developers via application-level remoteable
pointers. When Carbink’s runtime must evict data from lo-
cal RAM, Carbink writes erasure-coded versions of that data
to remote memory nodes. The advantage of erasure coding
is that it provides equivalent redundancy to pure replication,
while avoiding the double or triple storage overheads that
replication incurs. However, straightforward erasure coding
is a poor fit for the memory data created by applications writ-
ten in standard programming languages like C++ and Go;
those applications allocate variable-sized memory objects,
but erasure coding requires equal-sized blocks. To solve this
problem, Carbink eschews the object-granularity swapping
strategy of AIFM, and instead swaps at the granularity of
spans. A single span consists of multiple memory pages that
contain objects with similar sizes. Carbink’s runtime asyn-
chronously and transparently moves local objects within the
spans in local memory, grouping cold objects together and
hot objects together. When necessary, Carbink batch-evicts
cold spans, calculating parity bits for those spans at eviction
time, and writing the associated fragments to remote memory
nodes. Carbink utilizes one-sided remote memory accesses
(RMAs) to efficiently perform swapping activity, minimizing
network utilization. Unlike Hydra, Carbink’s erasure coding
scheme allows a compute node to fetch a far memory region
using a single network request.

In Carbink, each span lives in exactly one place: the local
RAM of a compute node, or the far RAM of a memory node.
Thus, swapping a span from far RAM to local RAM creates
dead space (and thus fragmentation) in far RAM. Carbink
runs pauseless defragmentation threads in the background,
asynchronously reclaiming space to use for later swap-outs.

We have implemented Carbink atop our datacenter infras-
tructure. Compared to Hydra, Carbink has up to 29% lower
tail latency and 48% higher application performance, with
at most 35% more remote memory usage. Unlike Hydra,
Carbink also allows computation to be offloaded to remote
memory nodes.

In summary, this paper has four contributions:

* a span-based approach for solving the size mismatch be-
tween the granularity of erasure coding and the size of the
objects allocated by compute nodes;

* new algorithms for defragmenting the RAM belonging to
remote memory nodes that store erasure-encoded spans;

* an application runtime that hides spans, object migration
within spans, and erasure coding from application-level
developers; and

* athorough evaluation of the performance trade-offs made
by different approaches for adding fault tolerance to far
memory systems.

ICarbink is a Pokémon that has a high defense score.

2 Background

Recent work on far memory has used one of two approaches.
The first approach modifies the OS that runs applications,
exploiting the fact that preexisting OS abstractions already
decouple application-visible in-memory data from the back-
ing storage hierarchy. For example, INFINISWAP [22],
Fastswap [5], and LegoOS [46] leverage virtual memory sup-
port to swap application memory to far RAM instead of a local
SSD or hard disk. Applications use standard language-level
pointers to interact with memory objects; behind the scenes,
the OS swaps pages between local RAM and far RAM, e.g., in
response to page faults for non-locally-resident pages. In con-
trast, the remote region approach [2] exposes far memory via
file system abstractions. Applications name remote memory
regions using standard filenames, and interact with regions
using standard file operations like open () and read ().

Exposing far memory via OS abstractions is attractive be-
cause it requires minimal changes to application-level code.
However, invasive kernel changes are needed; such changes
require substantial implementation effort, and are difficult to
maintain as other parts of the kernel evolve.

The second far-memory approach requires more help from
application-level code. For example, AIFM [44] uses a modi-
fied C++ runtime to hide the details of managing far memory.
The runtime provides special pointer types whose dereferenc-
ing may trigger the swapping of a remote C++-level object
into local RAM. AIFM’s runtime tracks object hotness using
GC-style read/write barriers, and uses background threads to
swap out cold local objects when local memory pressure is
high. To synchronize the local memory accesses generated
by application threads and runtime threads, AIFM embeds a
variety of metadata bits (e.g., present, isBeingEvicted)
in each smart pointer, leveraging an RCU-like scheme [36] to
protect concurrent accesses to a pointer’s referenced object.

Listing | provides an example of how applications use
AIFM’s smart pointers. Like AIFM, Carbink exposes far mem-
ory via smart pointers, but unlike AIFM, Carbink provides
fault tolerance.

3 Carbink Design

Figure | depicts the high-level architecture of Carbink. Com-
pute nodes execute single-process (but potentially multi-
threaded) applications that want to use far memory. Memory
nodes provide far memory that compute nodes use to store
application data that cannot fit in local RAM. A logically-
centralized memory manager tracks the liveness of compute
nodes and memory nodes. The manager also coordinates the
assignment of far memory regions to compute nodes. When a
memory node wants to make a local memory region available
to compute nodes, the memory node registers the region with
the memory manager. Later, when a compute node requires
far memory, the compute node sends an allocation request to
the memory manager, who then assigns a registered, unallo-

RemUniquePtr<Node> rem_ptr = AIFM::MakeUnique<Node>();
{
DerefScope scope;
Node* normal_ptr = rem_ptr.Deref (scope);
computeOverNodeObject (normal_ptr) ;
} // Scope is destroyed; Node object can be evicted.

Listing 1: Example of how AIFM applications interact with
far memory. In the code above, the application first allocates a
Node object that is managed by a particular RemUniquePtr.
Such a remote unique pointer represents a pointer to an object
that (1) can be swapped between local and far memory, and
(2) can only be pointed to by a single application-level pointer.
The code then creates a new scope via an open brace, declares
a DerefScope variable, and invokes the RemUniquePtr’s
Deref () method, passing the DerefScope variable as an
argument. Deref () essentially grabs an RCU lock on the
remotable memory object, and returns a normal C++ pointer
to the application. After the application has finished using the
normal pointer, the scope terminates and the destructor of the
DerefScope runs, releasing the RCU lock and allowing the
object to be evicted from local memory.

cated region. Upon receiving a deallocation message from a
compute node, the memory manager marks the associated re-
gion as available for use by other compute nodes. A memory
node can ask the memory manager to deregister a previously
registered (but currently unallocated) region, withdrawing the
region from the global pool of far memory.

Carbink does not require participating machines to use cus-
tom hardware. For example, any machine in a datacenter can
be a memory node if that machine runs the Carbink memory
host daemon. Similarly, any machine can be a compute node
if that node’s applications use the Carbink runtime.

From the perspective of an application developer, the
Carbink runtime allows a program to dynamically allocate
and deallocate memory objects of arbitrary size. As described
in Section 3.2, programs access those objects through AIFM-
like remotable pointers [44]. When applications dereference
pointers that refer to non-local (i.e., swapped-out) objects,
Carbink pulls the desired objects from far memory. Under
the hood, Carbink’s runtime manages objects using spans
(§3.3) and spansets (§3.4). A span is a contiguous run of
memory pages; a single region allocated by a compute node
contains one or more spans. Similar to slab allocators like
Facebook’s jemalloc [17] and Google’s TCMalloc [21,24],
Carbink rounds up each object allocation to the bin size of the
relevant span, and aligns each span to the page size used by
compute nodes and memory nodes. Carbink swaps far mem-
ory into local memory at the granularity of a span; however,
when local memory pressure is high, Carbink swaps local
memory out to far memory at the granularity of a spanset
(i.e., a collection of spans of the same size). In preparation for

:] Span . Object

Morioine

Remotable pointers
Carbink
threads

[
L

Compute nodes

Memory manager

a\oC- Registration,
deregistration

Memory nodes

Figure 1: Carbink’s high-level architecture.

swap-outs, background threads on compute nodes group cold
objects into cold spans, and bundle a group of cold spans into a
spanset; at eviction time, the threads generate erasure-coding
parity data for the spanset, and then evict the spanset and the
parity data to remote nodes. As we discuss in Sections 3.4
and 3.5, this approach simplifies memory management and
fault tolerance.

Carbink disallows cross-application memory sharing. This
approach is a natural fit for our target applications, and has
the advantage of simplifying failure recovery and avoiding
the need for expensive coherence traffic [46].

3.1 Failure Model

Carbink implements the logically-centralized memory man-
ager as a replicated state machine [1,45]. Thus, Carbink as-
sumes that the memory manager will not fail. Carbink as-
sumes that memory nodes and compute nodes may experience
fail-stop faults. Carbink does not handle Byzantine failures
or partial network failures.

The memory manager tracks the liveness of compute nodes
and memory nodes via heartbeats. When a compute node fails,
the memory manager instructs the memory nodes to deallo-
cate the relevant spans; if applications desire, they can use an
application-level fault tolerance scheme like checkpointing
to ensure that application-level data is recoverable. When
a memory node fails, the memory manager deregisters the
node’s regions from the global pool of far memory. However,
erasure-coding recovery of the node’s regions is initiated by a
compute node when the compute node unsuccessfully tries to
read or write a span belonging to the failed memory node. If
an application thread on a compute node tries to read a span
that is currently being recovered, the read will use Carbink’s
degraded read protocol (§3.5), reconstructing the span using
data from other spans and parity blocks.

3.2 Remotable Pointers

Like AIFM, Carbink exposes far memory through C++-level
smart pointers. However, as shown in Figure 2, Carbink uses
a different pointer encoding to represent span information.

RASNENEREY Object local address (48b)
6362616059 ~ 55 - 4847 0
(a) Local object.

[PJL[s| objiD(13) | RegioniD (16b) | Span ID (32b) |
63626160 4847 3231 0
(b) Far object.

Field Meaning

Present Is the object in local RAM or far RAM?

Lock Is the object (spin)locked by a thread?

Shared Is the pointer a unique pointer or a shared pointer?

Moving Is the object being moved by a background thread?
Evicting | Is the object being evicted by a background thread?
Hotness | Is the object frequently accessed?

(¢) Field semantics.

Figure 2: Carbink’s RemUniquePtr representation. In con-
trast to AIFM [44], Carbink does not embed information about
a data structure ID or an object size. Instead, Carbink embeds
span metadata (namely, a Region ID and a Span ID) to asso-
ciate a pointed-to object with its backing span.

A Carbink RemUniquePtr has the same size as a traditional
std: :unique_ptr (i.e., 8 bytes). The Present bit indicates
whether the pointed-to object resides in local RAM. The
Shared bit indicates whether a pointer implements unique-
pointer semantics or shared-pointer semantics; the former
only allows a single reference to the pointed-to object. The
Lock, Moving, and Evicting bits are used to synchronize
object accesses between application threads and Carbink’s
background threads (§3.6). The Hotness byte is consulted by
the background threads when deciding whether an object is
cold (and thus a priority for eviction).

If an object is local, the local virtual address of the object is
directly embedded in the pointer. If an object has been evicted,
the pointer describes how to locate the object. In particular, the
Obj ID indicates the location of an object within a particular
span; the Span ID identifies that span; and the Region ID
denotes the far memory region that contains the span.

Carbink supports two smart pointer types: RemUniquePtr,
which only allows one reference to the underlying object,
and RemSharedPtr, which allows multiple references. When
moving or evicting an object, Carbink’s background threads
need a way to locate and update the smart pointer(s) which
reference the object. To do so, Carbink uses AIFM’s approach
of embedding a “reverse pointer” in each object; the reverse
pointer points to the object’s single RemUniquePtr, or to the
first RemSharedPtr that references the object. An individ-
ual RemSharedPtr is 16 bytes large, with the last 8 bytes
storing a pointer that references the next RemSharedPtr in
the list. Thus, Carbink’s runtime can find all of an object’s
RemSharedPtrs by discovering the first one via the object’s
reverse pointer, and then iterating across the linked list.

N
o

% of allocated
memory per sec
(9]

o

NP 9® a® w®n® ,ﬁu\%
Allocated object size

6\56\19,*615@\@6 31‘(\6 AP ,\e,‘(\e

Figure 3: Allocation sizes in our production workloads.

3.3 Span-Based Memory Management

Local memory management: A span is a contiguous set of
pages that contain objects of the same size class. Carbink sup-
ports 86 different size classes, and aligns each span on an §KB
boundary; Carbink borrows these configuration parameters
from TCMalloc [21,24], which observed these parameters to
reduce internal fragmentation. When an application allocates
a new object, Carbink tries to round the object size up to the
nearest size class and assign a free object slot from an appro-
priate span. If the object is bigger than the largest size class,
Carbink rounds the object size up to the nearest 8KB-aligned
size, and allocates a dedicated span to hold it.

To allocate spans locally, Carbink uses a local page heap.
The page heap is an array of free lists, with each list tracking
8KB-aligned free spans of a particular size (e.g., 2MB, 4MB,
etc.). If Carbink cannot find a free span big enough to satisfy
an allocation request, Carbink allocates a new span, using
mmap () to request 2MB huge pages from the OS.

Allocating and deallocating via the page heap is mutex-
protected because application threads may issue concurrent
allocations or deallocations. To reduce contention on the page
heap, each thread reserves a private (i.e., thread-local) cache of
free spans for each size class. Carbink also maintains a global
cache of free lists, with each list having its own spinlock.
When a thread wants to allocate a span whose size can be
handled by one of Carbink’s predefined size classes, the thread
first tries to allocate from the thread-local cache, then the
global cache, and finally the page heap. For larger allocation
requests, threads allocate spans directly from the page heap.

Carbink associates each span with several pieces of meta-
data, including an integer that describes the span’s size class,
and a bitvector that indicates which object slots are free. To
map a locally-resident object to its associated span metadata,
Carbink uses a two-level radix tree called the local page map.
The lookup procedure is similar to a page table walk: the first
20 bits of an object’s virtual address index into the first-level
radix tree table, and the next 15 bits index into a second-level
table. The same mapping approach allows Carbink to map the
virtual address of a locally-resident span to its metadata.
Far memory management: On a compute node, local spans
contain a subset of an application’s memory state. The rest of
that state is stored in far spans that live in far memory regions.
Recall from Figure 2b that a Carbink pointer to a non-local
object embeds the object’s Region ID and Span ID.

To allocate or deallocate a region, a compute node sends
a request to the memory manager. A single Carbink region
is 1GB or larger, since Carbink targets applications whose
total memory requirements are hundreds or thousands of GBs.
Upon successfully allocating a region, the compute node up-
dates a region table which maps the Region ID of the allocated
region to the associated far memory node.

A compute node manages far spans and far regions using
additional data structures that are analogous to the ones that
manage local spans. A far page heap handles the allocation
and deallocation of far spans belonging to allocated regions.
A far page map associates a far Span ID with metadata that (1)
names the enclosing region (as a Region ID) and (2) describes
the offset of the far span within that region.

Each application thread has a private far cache; Carbink
also maintains a global far cache that is visible to all appli-
cation threads. To swap out a local span of size s, a compute
node must first use the far page heap (or a far cache if pos-
sible) to allocate a free far span of size s. Similarly, after a
compute node swaps in a far span, the node deallocates the
far span, returning the far span to its source (either the far
page heap or a far cache).

Span filtering and swapping: The Carbink runtime executes

filtering threads that iterate through the objects in locally-

resident spans and move those objects to different local spans.

Carbink’s object shuffling has two goals.

* First, Carbink wants to create hot spans (containing only
hot objects) and cold spans (containing only cold ones);
when local memory pressure is high, Carbink’s eviction
threads prefer to swap out spansets containing cold spans.
Carbink tracks object hotness using GC-style read/write
barriers [4, 23]. Thus, by the time that a filtering thread
examines an object, the Hotness byte in the object’s pointer
(see Figure 2) has already been set. Upon examining the
Hotness byte, a filtering thread updates the byte using the
CLOCK algorithm [12].

* Second, object shuffling allows Carbink to garbage-collect
dead objects by moving live objects to new spans and
then deallocating the old spans. During eviction, Carbink
utilizes efficient one-sided RMA writes to swap spansets
out to far memory nodes; this approach allows Carbink to
avoid software-level overheads (e.g., associated with thread
scheduling) on the far node.

From the application’s perspective, object movement and

spanset eviction are transparent. This transparency is pos-

sible because each object embeds a reverse pointer (§3.2)
that allows filtering threads and evicting threads to determine
which smart pointers require updating.

Carbink swaps far memory into local memory at the granu-
larity of a span. As with swap-outs, Carbink uses one-sided
RMAs for swap-ins. Swapping at the granularity of a span
simplifies far memory management, since compute nodes
only have to remember how spans map to memory nodes (as
opposed to how the much larger number of objects map to

memory nodes). However, swapping in at span granularity
instead of object granularity has a potential disadvantage: if
a compute node swaps in a span containing multiple objects,
but only uses a small number of those objects, then the com-
pute node will have wasted network bandwidth (to fetch the
unneeded objects) and CPU time (to update the remotable
pointers for those unneeded objects). We collectively refer to
these penalties as swap-in amplification.

To reduce the likelihood of swap-in amplification,
Carbink’s filtering and eviction threads prioritize the scanning
and eviction of spansets containing large objects. The asso-
ciated spans contain fewer objects per span; thus, swapping
in these spans will reduce the expected number of unneeded
objects. Figure 3 shows that, for our production workloads,
large objects occupy the majority of memory. Moreover, most
hot objects are small; for example, in our company’s geo-
distributed database [13], roughly 95% of accesses involve
objects smaller than 1.8KB. As a result, an eviction scheme
which prioritizes large-object spansets is well-suited for our
target applications.

In Carbink, a local span has a three-state lifecycle. A span
is first created due to a swap-in or local allocation. The span
transitions to the filtering state upon being examined by filter-
ing threads. Once filtering completes, those spans transition
to the evicting state when evicting threads begin to swap out
spansets. The transition from created to filtering to evicting
is fixed, and determines which Carbink runtime threads race
with application threads at any given moment (§3.6).

3.4 Fault Tolerance via Erasure Coding

Erasure coding provides data redundancy with lower storage
overhead than traditional replication. However, the design
space for erasure coding schemes is more complex. Carbink
seeks to minimize both average and long-tail access penal-
ties for far objects; per our fault model (§3.1), Carbink also
wants to efficiently recover from the failure of memory nodes.
Achieving these goals forced us to make careful decisions
involving coding granularity, parity recalculation, and cross-
node transport protocols.

Coding granularity: To motivate Carbink’s decision to
erasure-code at the spanset granularity, first consider an ap-
proach that erasure-codes individual spans. In this approach,
to swap out a span, a compute node breaks the span into
data fragments, generates the associated parity fragments, and
then writes the entire set of fragments (data+parity) to remote
nodes. During the swap-in of a span, a compute node must
fetch multiple fragments to reconstruct the target span.

This scheme, which we call EC-Split, is used by Hydra [29].
With EC-Split, handling the failure of memory nodes during
swap-out or swap-in is straightforward: the compute node
who is orchestrating the swap-out or swap-in will detect the
memory node failure, select a replacement memory node,
trigger span reconstruction, and then restart the swap-in or

Schemes EC data fragment size Network transport Parity computation Defragmentation
EC-Split (Hydra [29]) Span chunk RMA in & out Local N/A
EC-2PC Full span RMA in, RPC out (+updating parity via 2PC) Remote N/A
EC-Batch Local (Carbink) Full span RMA in & out Local Remote compaction
EC-Batch Remote (Carbink) Full span RMA in & out (+parallel 2PC for compaction) Local (swap-out)+ Remote compaction

Remote (compaction)

Table 1: The erasure-coding approaches that we study.

swap-out. The disadvantage of EC-Split is that, to reconstruct
a single span, a compute node must contact multiple memory
nodes to pull in all of the needed fragments. This requirement
to contact multiple memory nodes makes the swap-in opera-
tion vulnerable to stragglers (and thus high tail latency”). This
requirement also frequently prevents a compute node from
offloading computation to memory nodes; unless a particu-
lar object is small, the object will span multiple fragments,
meaning that no single memory node will have a complete
local copy of the object.

An alternate approach is to erasure-code across a group
of equal-sized spans. We call such a group a spanset. In this
approach, each span in the spanset is treated as a fragment,
with parity data computed across all of the spans in the set.
To reconstruct a span, a compute node merely has to contact
the single memory node which stores the span. Carbink uses
this approach to minimize tail latencies.

Parity updating: Erasure-coding at the spanset granularity
but swapping in at the span granularity does introduce compli-
cations involving parity updates. The reason is that swapping
in a span s leaves an invalid, span-sized hole in the backing
spanset; the hole must be marked as invalid because, when s
is later swapped out, s will be swapped out as part of a new
spanset. The hole created by swapping in s causes fragmen-
tation in the backing spanset. Determining how to garbage-
collect the hole and update the relevant parity information
is non-trivial. Ideally, a scheme for garbage collection and
parity updating would not incur overhead on the critical path
of swap-ins or swap-outs. An ideal scheme would also allow
parity recalculations to occur at either compute nodes or mem-
ory nodes, to enable opportunistic exploitation of free CPU
resources on both types of nodes.

Cross-node transport protocols: In systems like RAM-
Cloud [39], machines use RPCs to communicate. RPCs in-
volve software-level overheads on both sides of a communi-
cation. Carbink avoids these overheads by using one-sided
RMA, avoiding unnecessary thread wakeups on the receiver.
However, in and of itself, RMA does not automatically solve
the consistency issues that arise when offloading parity calcu-
lations to remote nodes (§3.4.2).

Throughout the paper, we compare Carbink’s erasure-coding
approach to various alternatives.

2Hydra [29] and EC-Cache [42] try to minimize straggler-induced laten-
cies by contacting k + A memory nodes instead of the minimum k, using the
first k responses to reconstruct an object. This approach increases network
traffic and compute-node CPU overheads.

* EC-Split is Hydra’s approach, which erasure-codes at
the span granularity, swaps data using RMA, and syn-
chronously recalculates parity at compute nodes when swap-
outs occur. Fragmentation within an erasure-coding group
never occurs, as a span is swapped in and out as a full unit.

* EC-2PC erasure-codes using spansets, and uses RMA to
swap in at the span granularity. During a swap-out (which
happens at the granularity of a span), EC-2PC writes the
updated span to the backing memory node; the memory
node then calculates the updates to the parity fragments,
and sends the updates to the relevant memory nodes which
store the parity fragments. To provide crash consistency for
the update to the span and the parity fragments, EC-2PC im-
plements a two-phase commit protocol using RPCs. There
is no fragmentation within an erasure-coding group because
swap-ins and swap-outs both occur at the span granularity.

* EC-Batch Local and EC-Batch Remote are the ap-
proaches used by Carbink. Both schemes erasure-code at
spanset granularity, using RMA for swap-in as well as swap-
out. Swap-ins occur at the granularity of a span, but swap-
outs occur at the granularity of spansets (§3.4.1); thus, both
EC-Batch approaches deallocate a span’s backing area in
far memory upon swapping that span into a compute node’s
local RAM. The result is that swap-ins create dead space on
a remote memory node. Both EC-Batch schemes reclaim
dead space and recalculate parity data using asynchronous
garbage collection. EC-Batch Local always recalculates
parity on compute nodes, whereas EC-Batch Remote can re-
calculate parity on compute nodes or memory nodes. When
EC-Batch Remote offloads parity computations to remote
nodes, it employs a parallel commit scheme that avoids the
latencies of traditional two-phase commit (§3.4.2).

Table 1 summarizes the various schemes. We now discuss

EC-Batch Local and Remote in more detail.

3.4.1 EC-Batch: Swapping

Swapping out: In both varieties of EC-Batch, a spanset con-
tains multiple spans of the same size. At swap-out time, a
compute node writes a batch (i.e., a spanset and its parity
fragments) to a memory node. Figure 4a shows an exam-
ple. In that example, the compute node has two spansets:
spanset] (consisting of data spans < D1,D2,D3,D4 > and
parity fragments < P1, P2 >), and spanset2 (containing data
spans < D5,D6,D7,D8 > and parity fragments < P3, P4 >).
Carbink uses Reed-Solomon codes [43] to create parity data,
and prioritizes the eviction of spansets that contain cold spans

Memory nodes

Compute node Compute node

Memory nodes

Compute node Memory nodes

M M2 M3 M4 M5 M6 Mi M2 M3 M4 M5 M6 M M2 M3 M4 M5 M6
oraaeemiz| [Dt[D2] B3] 0| |Pi|Pa| |5 hec | LB B2 D3| D4| |Pi|P2| (BTN [+ |2 D3| De| |Pr|P2
D5678: a4 |D5|D6|D7|D8| | P3| P4 Db aepaa| |D5|D8[D7[D8| P3| Pa| | TEYE0S. | D5 (D6 |7 e8| |R3|Rs

parar
D3456+P12

(a) Swapping out spans and parity in a batch.

(b) Swapping in individual spans.

(¢) Compacting spansets to reclaim space.

Figure 4: EC-Batch swapping-out, swapping-in, and far compaction.

(§3.3). Neither variant of EC-Batch updates spansets in place,
S0 eviction may require a compute node to request additional
far memory regions from the memory manager.

Swapping in: When an application tries to access an object
that is currently far, the Carbink runtime inspects the appli-
cation pointer and extracts the Span ID (see Figure 2b). The
runtime consults the far page map (§3.3) to discover which
remote node holds the span. Finally, the runtime initiates the
appropriate RMA operation to swap in the span.

However, swapping in at the span granularity creates re-
mote fragmentation. In Figure 4b, the compute node in the
running example has pulled four spans (D1, D2, D7, and D8)
into local memory. Any particular span lives exclusively in
local memory or far memory; thus, the swap-ins of the four
spans creates dead space on the associated remote memory
nodes. If Carbink wants to fill (say) D1’s dead space with a
new span D9, Carbink must update parity fragments P1 and
P2. For a Reed-Solomon code, those parity fragments will
depend on both D1 and D9.

There are two strawman approaches to update P1 and P2:
* The compute node can read D1 into local memory, generate

the parity information, and then issue writes to P1 and P2.
* Alternatively, the compute node can send D9 to memory

node M1, and request that M1 compute the new parity data
and update P1 and P2.
The second approach requires a protocol like 2PC to guaran-
tee the consistency of data fragments and parity fragments;
without such a protocol, if M1 fails after updating P1, but be-
fore updating P2, the parity information will be out-of-sync
with the data fragments.

The first approach, in which the compute node orchestrates
the parity update, avoids the inconsistency challenges of the
second approach. If a memory node dies in the midst of a
parity update, the compute node will detect the failure, pick a
new memory node to back the parity fragment, and retry the
parity update. If the compute node dies in the midst of the par-
ity update, then the memory manager will simply deallocate
all regions belonging to the compute node (§3.1).

Unfortunately, both approaches require a lot of network
bandwidth to fill holes in far memory. To reclaim one vacant
span, the first approach requires three span-sized transfers—
the compute node must read D1 and then write P1 and P2.
The second approach requires two span-sized transfers to up-
date P1 and P2. To reduce these network overheads, Carbink
performs remote compaction, as described in the next section.

3.4.2 EC-Batch: Remote Compaction

Carbink employs remote compaction to defragment far mem-
ory using fewer network resources than the two strawmen
above. On a compute node, Carbink executes several com-
paction threads. These threads look for “matched” spanset
pairs; in each pair, the span positions containing dead space
in one set are occupied in the other set, and vice versa. For ex-
ample, the two spansets in Figure 4b are a matched pair. Once
the compaction threads find a matched pair, they create a new
spanset whose data consists of the live spans in the matched
pair (e.g., < D3,D4,D5, D6 > in Figure 4b). The compaction
threads recompute and update the parity fragments P1’ and

P2’ using techniques that we discuss in the next paragraph.

Finally, the compaction threads deallocate the dead spaces

in the matched pair (e.g., < D1,D2,D7,D9,P3,P4 > in Fig-

ure 4b), resulting in a situation like the one shown in Figure 4c.

Carbink’s compaction can occur in the background, unlike the

synchronous parity updates of EC-2PC which place consensus

activity on the critical path of swap-outs.

So, how should compaction threads update parity infor-
mation? Carbink uses Reed-Solomon codes over the Galois
field GF(2%). The new parity data to compute in Figure 4c is
therefore represented by the following equations on GF (23):

Pl'—P1=A,1(D5—D1)+A;1(D6—D2)
P2 — P2 =A,(D5—D1)+A;,(D6—D2)

where A; ; (i € {0,1,2,3},j € {0,1}) are fixed coefficient

vectors in the Reed-Solomon code. Carbink provides two

approaches for updating the parity information.

* In EC-Batch Local, the compute node that triggered the
swap-out orchestrates the updating of parity data. In the
running example, the compute node asks M1 to calculate
the span delta D5 — D1, and asks M2 to calculate the span
delta D6 — D2. After retrieving those updates, the compute
node determines the parity deltas (i.e., P1’ — P1 and P2/ —
P2) and pushes those deltas to the parity nodes M5 and M6.

e In EC-Batch Remote, the compute node offloads parity
recalculation and updating to memory nodes. In the running
example, the compute node asks M1 to calculate the span
delta DS — D1, and M2 to calculate the span delta D6 — D2.
The compute node also asks M1 and M2 to calculate partial
parity updates (e.g., A; 1 (D5 —D1) and A »(D5 —D1) on
MT1). M1 and M2 are then responsible for sending the partial
parity updates to the parity nodes. For example, M1 sends
A1,1(D5—D1)to M5, and A} 2(D5 — D1) to M6.

In EC-Batch Local, recovery from memory node failure is
orchestrated by the compute node in a straightforward way,
as in EC-Split (§3.4). In EC-Batch Remote, a compute node
performs remote compaction by offloading parity updates to
memory nodes. The compute node ensures fault tolerance
for an individual compaction via 2PC. However, the com-
pute node aggressively issues compaction requests in parallel.
Two compactions (i.e., two instance of the 2PC protocol) are
safe to concurrently execute if the compactions involve dif-
ferent spansets; the prepare and commit phases of the two
compactions can partially or fully overlap.

On a compute node, Carbink’s runtime can monitor the
CPU load and network utilization of remote memory nodes.
The runtime can default to remote compaction via EC-Batch
Local, but opportunistically switch to EC-Batch Remote if
spare resources emerge on memory nodes. During a switch
to a different compaction mode, Carbink allows all in-flight
compactions to complete before issuing new compactions that
use the new compaction mode.

The strawmen defragmentation schemes in Section 3.4.1 re-
quire two or three span-sized network transfers to recover one
dead span. In the context of Figure 4, EC-Batch Local recov-
ers four dead spans using four span-sized network transfers.
EC-Batch Remote requires four span-sized network trans-
fers (plus some small messages generated by the consistency
protocol) to recover four dead spans.

3.5 Failure Recovery

Carbink handles two kinds of memory node failures: planned
and unplanned. Planned failures are scheduled by the cluster
manager [51,52] to allow for software updates, disk refor-
matting, and so on. Unplanned failures happen unexpectedly,
and are caused by phenomena like kernel panics, defective
hardware, and power disruptions.

Planned failures: When the cluster manager decides to
schedule a planned failure, the manager sends a warning no-
tification to the affected memory nodes. When a memory
node receives such a warning, the memory node informs the
memory manager. In turn, the memory manager notifies any
compute nodes that have allocated regions belonging to the
soon-to-be-offline memory node. Those compute nodes stop
swapping-out to the memory node, but may continue to swap-
in from the node as long as the node is still alive. Meanwhile,
the memory manager orchestrates the migration of regions
from the soon-to-be-offline memory node to other memory
nodes. When a particular region’s migration has completed,
the memory manager informs the relevant compute node, who
then updates the local mapping from Region ID to backing
memory node. At some point during this process, the mem-
ory manager may also request non-failing memory nodes to
contribute additional regions to the global pool of far memory.
Unplanned Failures: On a compute node, the Carbink run-
time is responsible for detecting the unplanned failure of a

memory node. The runtime does so via connection timeouts
or more sophisticated leasing protocols [15, 16]. Upon de-
tecting an unplanned failure, the runtime spawns background
threads to reconstruct the affected spans using erasure cod-
ing. The runtime is also responsible for allowing application
threads to read spans whose recovery is in-flight.

Span reconstruction: To reconstruct the spans belonging to
a failed memory node My,;, a compute node first requests
a new region from the memory manager. Suppose that the
new region is provided by memory node M,,,,. The compute
node iterates through each lost spanset associated with M ,;;;
for each spanset, the compute node tells M,,.,, which external
spans and parity fragments to read in order to erasure-code-
restore My,;’s data. As the relevant spans are restored, a
compute node can still swap in and remotely compact those
spans. However, the swap-in and remote compaction activity
will have to synchronize with recovery activity (§3.6).

In EC-Batch Local, when a compute node detects a mem-
ory node failure, the compute node cancels all in-flight com-
pactions involving that node. A compute node using EC-
Batch Remote does the same; however, for each canceled
compaction, the compute node must also instruct the surviv-
ing memory nodes in the 2PC group to cancel the transaction.

The data and parity for a swapped-out spanset reside on
multiple memory nodes. As a compute node recovers from
the failure of one of the nodes in that group, another node in
the group may fail. As long as the number of failed nodes
does not exceed the number of parity nodes, Carbink can
recover the spanset. The reason is that all of the information
needed to recover is stored on a compute node, e.g., in the far
page heap (§3.3). Due to space limitations, we omit a detailed
explanation of how Carbink deals with concurrent failures.
Degraded reads: During the reconstruction of an affected
span, application threads may try to swap in the span. The
runtime handles such a fetch using a degraded read proto-
col. For example, consider Figure 4a. Suppose that M1 fails
unexpectedly, and while the Carbink runtime is recovering
M71’s spans (D1 and DS5), an application thread tries to read
an object residing in D1. The runtime will swap in data spans
D2, D3, and D4, as well as parity fragment P1, and then re-
construct D1 via erasure coding. Degraded reads ensure that
the failure of a memory node merely slows down an appli-
cation instead of blocking it. In Section 5.3, we show that
application performance only drops for 0.6 seconds, and only
suffers a throughput degradation of 36% during that time.
Network bandwidth consumption: During failure recovery,
Carbink consumes the same amount of network bandwidth
as Hydra. For example, suppose that both Hydra and Carbink
use RS4.2 encoding and have 4 spans, with a span stored on
each of 4 memory nodes. In Hydra, a single node failure will
lose four 1/4th spans. Reconstructing each 1/4th span will
require the reading of four 1/4th span/parity regions from the
surviving nodes, resulting in an aggregate network bandwidth
requirement of 1 full span. So, reconstructing four 1/4th spans

will require an aggregate network bandwidth of 4 full spans.
In Carbink, the failure of a single memory node results in the
loss of 1 full span. To recover that span, Carbink (like Hydra)
must read 4 span/parity regions.

3.6 Thread Synchronization

On a compute node, the main kinds of Carbink threads are
applications threads (which read objects, write objects, and
swap in spans), filtering threads (which move objects within
local spans), and eviction threads (which reclaim space by
swapping local spansets to far memory). At any given time, a
span may be in one of two concurrency regimes (§3.3): the
span is either accessible to application threads and filtering
threads, or to application threads and eviction threads. In both
regimes, Carbink has to synchronize how the relevant threads
update Carbink’s smart pointers (§3.2).

At a high level, Carbink uses an RCU locking scheme that
is somewhat reminiscent of AIFM’s approach [44]. Due to
space restrictions, we merely sketch the design. Carbink op-
timizes for the common case in which a span is only being
accessed by an application thread. In this common case, an
application thread grabs an RCU read lock on the pointer via
the pointer’s Deref () method, as shown in Listing 1. The
thread sees that either (1) the Present bit is not set, in which
case the Carbink runtime issues an RMA read to swap in
the appropriate span; (2) alternatively, the thread sees that
the Present bit is set, but the M and E bits are unset. In the
second case, Deref () can just return a normal pointer back
to the application. The application can be confident that con-
current filtering or evicting threads will not move or evict the
object, because those threads cannot touch the object until
application-level threads have released their RCU read locks
via the DerefScope destructor (Listing 1).

The more complicated scenarios arise when the Present
bit is set and either the M or E bit are set as well. In this
case, the (say) M bit has been set because the filtering thread
set the bit and then called SyncRCU() (i.e., the RCU write
waiting lock). The concurrent application thread and filtering
thread essentially race to acquire the pointer’s spinlock; if the
application thread (i.e., Deref ()) wins, it makes a copy of the
object, clears M, releases the spinlock, and returns the address
of the object copy to the application. Otherwise, if the filtering
thread wins, it moves the object, clears M, and releases the
spinlock. The losing thread has to retry the desired action. An
analogous situation occurs if the E bit is set.

Carbink’s eviction and remote compaction threads directly
poll the network stack to learn about RMA completions and
RPC completions. An application thread which has issued
an RMA swap-in operation will yield, but a dedicated RMA
poller thread detects when application RMAs have completed
and awakens the relevant application threads. Polling avoids
the overheads of context switching to new threads and notify-
ing old threads that network events have occurred.

During recovery (§3.5), Carbink spawns additional threads
to orchestrate the reconstruction of spans. Those threads ac-
quire per-spanset mutexes which are also acquired by threads
performing swap-ins, swap-outs, and remote compactions.

4 Implementation

Our Carbink prototype contains 14.3K lines of C++. It runs
atop unmodified OSes, using standard POSIX abstractions
for kernel-visible threads and synchronization. The runtime
leverages the PonyExpress user-space network stack [35]. On
a compute node, all threads in a particular application (both
application-defined threads and Carbink-defined threads) ex-
ecute in the same process. On a memory node, a Carbink
daemon exposes far memory via RMAs or RPCs. We use
Intel ISA-L v2.30.0 [25] for Reed-Solomon erasure coding.

Our current prototype has a simplified memory manager
that is unreplicated, does not handle planned failures, and
statically assigns memory nodes to compute nodes. Imple-
menting the full version of the memory manager will be con-
ceptually straightforward, since we can use off-the-shelf li-
braries for replicated state machines [1,45] and cluster man-
agement [51,52]. We also note that the experiments in §5
are insensitive to the performance of the memory manager,
regardless of whether the manager is replicated or not. The
reason is that memory allocations and deallocations (which
must be routed through the memory manager) are rare and
are not on the critical path of steady-state compute node oper-
ations like swap-in and swap-out.

To better understand the performance overheads of
Carbink’s erasure-coding approach, we built an AIFM-
like [44] far memory system. That system uses remotable
pointers like Carbink, but swaps in and out at the granular-
ity of objects, and provides no fault tolerance. Like Carbink,
it leverages the PonyExpress [35] user-space network stack.
Our AIFM clone is 5.8K lines of C++.

5 Evaluation

In this section, we answer the following questions:

1. What is the latency, throughput, and remote memory us-
age of EC-Batch compared with the other fault tolerance
schemes (§5.1 and §5.2)?

2. How does an unplanned memory node failure impact the
performance of Carbink applications (§5.3)?

3. How does the performance of Carbink’s span-based mem-
ory organization compare to the performance of an AIFM-
like object-level approach (§5.4)?

Testbed setup: We deployed eight machines in the same rack,

including one compute node and seven memory nodes; one of

the memory nodes was used for failover. Each machine was
equipped with dual-socket 2.2 GHz Intel Broadwell proces-
sors and a 50 Gbps NIC.

Fault tolerance schemes: Using the Carbink runtime, we

compared our proposed EC-Batch schemes to four ap-

- Non-FT Replication
<+ EC-Batch Local

< EC-Split < EC-2PC
-+ EC-Batch Remote

—~ 300

200+

100+

99p latency (us

0 T T T T T T
0 1 2 3 4 5 6 7
Offered load (Mops)

Figure 5: Microbenchmark load-latency curves.

— Non-FT Replication
-- EC-Batch Local

— EC-Split — EC-2PC
— EC-Batch Remote

100

75+

504

CDF (%)

254

0 T T T T T T

0 50 100 150 200 250 300
Latency of remote object access (us)

Figure 6: Latency distribution of remote object accesses in

the microbenchmark under an offered load of 2 Mops.

proaches: Non-FT (a non-fault-tolerant scheme that used
RMA to swap spans), Replication (which replicated spans on
multiple nodes), EC-Split (the approach used by Hydra [29]),
and EC-2PC (Table 1). We configured all fault tolerance
schemes to tolerate up to two memory node failures. So,
the Replication scheme replicated each swapped-out span on
three memory nodes, whereas the EC schemes used six mem-
ory nodes—four held data, and two held RS4.2 parity bits [43].
EC-Batch spawned two compaction threads by default.

As mentioned in Section 4, we also built an AIFM-like far
memory system. This system did not provide fault tolerance,
but it provided a useful comparison with our Non-FT Carbink
version.

Carbink borrows the span sizes that are used by TCMalloc
(§3.3). These parameters have been empirically observed to
reduce internal fragmentation. In our evaluation, EC-Batch
(both Local and Remote) grouped four equal-size spans into a
spanset, swapping out at the granularity of a spanset. Increas-
ing spanset sizes would allow Carbink to issue larger batched
RMAs, improving network efficiency. However, spansets
whose evictions are in progress must be locked in local mem-
ory while RMAs complete; thus, larger spanset sizes would
delay the reclamation of larger portions of local memory.

5.1 Microbenchmarks

To get a preliminary idea of Carbink’s performance, we cre-
ated a synthetic benchmark that wrote 15 million 1 KB objects
(totalling 15 GB) to a remotable array. The compute node’s
local memory had space to store 7.5 GB of objects (i.e., half
of the total set). By default, the compute node spawned 128

- Non-FT Replication < EC-Split > EC-2PC

-+ EC-Batch Remote

<+ EC-Batch Local

Throughput (Mops)

k T T T T
0.0 0.2 04 0.6 0.8 1.0 1.2 14
Skew of object accessing pattern

Figure 7: Impact of skew on throughput.

threads on 32 logical cores to access objects; the access pat-
tern had a Zipfian-distributed [41] skew of 0.99. Such skews
are common in real workloads for key/value stores [7].
Object access throughput and tail latency: Figure 5 shows
the 99th-percentile latency with various object access loads.
All of the fault-tolerant schemes eventually hit a “hockey stick”
in tail latency growth when the schemes could no longer catch
up with the offered load. EC-Batch Remote had the highest
sustained throughput (6.0 Mops), which was 40% higher than
the throughput of the state-of-the-art EC-Split (4.3 Mops).
EC-Batch Local achieved 5.6 Mops, which was 30% higher
than EC-Split. EC-Split had worse performance because it
had to issue four RMA requests to swap in one span; thus, EC-
Split quickly became bottlenecked by network IO. In contrast,
EC-Batch only issued one RMA request per swap-in.
EC-Batch Remote had 18%-29% lower tail latency than
EC-Split under the same load (before reaching the “hockey-
stick”). The reason was that EC-Split’s larger number of
RMAs per swap-in left EC-Split more vulnerable to strag-
glers [29]. Also recall that EC-Batch can support computation
offloading [3,27,44,57], which is hard with EC-Split (§3.4).
EC-2PC had the worst throughput because it relied on
costly RPCs and 2PC protocols to swap out spans. Thus, EC-
2PC could not reclaim local memory as fast as other schemes.
The Replication scheme was bottlenecked by network band-
width, since every swap-out incurred a 3x network write
penalty; in contrast, EC-based schemes used RS4.2 erasure
coding to reduce the write penalty to 1.5x.
Latency distribution of remote object accesses: Figure 6
shows the latency of accessing remote objects under 2 Mops
of offered load. With this low offered load, Replication and
EC-Batch Remote achieved similar access latencies as Non-
FT because none of the schemes were bottlenecked by net-
work bandwidth. EC-Batch Local had slightly higher remote
access latencies. However, EC-Split had significantly higher
access latencies (e.g., at the median and tail) than EC-Batch
Local and Remote; the reason was that EC-Split issued four
times as many network IOs and thus was more sensitive to
stragglers. EC-2PC’s tail latency was slightly higher than that
of EC-Batch Local and Remote due to the overhead of costly
RPCs and 2PC traffic.
Impact of skewness: Figure 7 shows how the skewness of
object accesses impacted throughput. EC-Batch Remote and

Compac- Norm. remote Avg. # remote Avg. BW
tion threads mem usage logical cores (Gbps)

1 254 023 127
ECL'B“ECh 2 235 0.53 1.64
oca 3 228 0.56 1.76
i 1.89 1.97 2.98
Elf'r}i‘“fh 2 1.83 2.10 3.15
emote 3 1.74 227 3.40

W/o compaction 0 3.03 - -

Table 2: Remote resource usage in the microbenchmark. The
remote memory usage is normalized with respect to the us-
age of Non-FT. The number of remote logical cores and the
network bandwidth are averaged across all six memory nodes.

Local performed best due to their more efficient swapping
approaches. However, the throughput of all schemes increased
with higher skewness. The reason is that high skewness led
to a smaller working set and thus a higher likelihood that
hot objects were locally resident. In these scenarios, schemes
with faster swapping were not rewarded as much.

Remote resource usage with compaction: Table 2 shows
the impact of compaction on the average memory, CPU, and
bandwidth usage per memory node. Without compaction, EC-
Batch used 3.03 x remote memory (normalized with respect to
Non-FT memory consumption). With two local compaction
threads, EC-Batch Remote’s memory overhead reduced to
1.83 . The memory reduction was at the expense of 2.1 cores
and 3.15 Gbps bandwidth on each memory node. With more
compaction threads, Carbink could further reduce memory
usage at the cost of higher CPU and bandwidth utilization.
That being said, we note that the synthetic microbenchmark
application represented an extreme case of remote CPU and
network usage, since the workload accessed objects without
actually computing on them.

EC-Batch Remote vs. Local: EC-Batch Remote had higher
throughput and lower tail latency than EC-Batch Local (Fig-
ure 5). This was because EC-Batch Local’s compaction re-
quired (1) local CPUs for parity computation and (2) network
bandwidth for transferring span deltas and parity updates, leav-
ing fewer local resources for application threads and RMA
reads. Because of EC-Batch Remote’s faster compaction, EC-
Batch Remote also used 28%-34% less remote memory than
EC-Batch Local (Table 2). However, EC-Batch Remote con-
sumed more remote CPUs (2.10 vs. 0.53 cores) and more
network bandwidth (3.15 vs. 1.64 Gbps) than Local. In prac-
tice, the Carbink runtime could transparently switch between
EC-Batch Remote and Local based on an application devel-
oper’s policy about resource/performance trade-offs.

5.2 Macrobenchmarks

We evaluated Carbink using two memory-intensive applica-
tions that would benefit from remote memory: an in-memory
transactional key-value store, and a graph processing algo-
rithm. The two applications exhibited different patterns of

- Non-FT Replication
<+ EC-Batch Local

< EC-Split < EC-2PC
-+ EC-Batch Remote

)
[=2]
o
1
w
1

N
1

Throughput(TPSx1k
Normalized remote
memory usage

o

T T T T
0 25 50 75 100 0 2|5 5|0 75 1 (I)O
Local memory (% of 50GB) Local memory (% of 50GB)

(a) Transaction throughput. (b) Remote memory usage.

Figure 8: Transactional KV-store evaluation.

object accesses, and had different working set behaviors.
Transactional KV-store: This application implemented a
transactional in-memory B-tree, exposing it via a key/value
interface similar to that of MongoDB [37]. Each remotable
object was a 4 KB value stored in a B-tree leaf. The applica-
tion spawned 128 threads, and each thread processed 20 K
transactions. The compute node provisioned 32 logical cores,
with the application overlapping execution of the threads for
higher throughput [26, 38,44, 56]. Each transaction contained
three reads and three writes, similar to the TPC-A bench-
mark [53]. Each update created a new version of a particular
key’s value; asynchronously, the application trimmed old ver-
sions. The maximum working set size during the experiment
was roughly 50 GB.

Throughput: Figure 8a shows the KV-store throughput when
varying the size of local memory (normalized as a fraction
of the maximum working set size). In scenarios with less
than 50% local memory, EC-Batch Remote achieved higher
transactions per second (TPS) than all other fault tolerance
schemes. For example, TPS for EC-Batch Remote was 1.5%-
48% higher than that of EC-Split; this was because EC-Batch
only needed one RMA request to swap in a span. EC-Batch
Remote was at most 29% slower than Non-FT, mainly due to
the additional parity update required for fault tolerance. EC-
Batch Local was at most 13% slower than EC-Batch Remote.
EC-2PC performed the worst among EC schemes.

All schemes achieved similar throughput when the local
memory size was above 50%. The reason was that the average
working set size of the workload was only half the size of the
maximum memory usage. The maximum memory usage only
occurred when the B-Tree had fallen very behind in culling
old versions of objects.

Remote memory usage: Figure 8b plots remote memory us-
age as a function of local memory sizes; remote memory
usage is normalized with respect to that of Non-FT. Com-
pared to EC-Split, EC-Batch Remote and Local used up to
35% and 93% more remote memory, respectively. EC-Batch
schemes defragmented remote memory using compaction,
but when local memory space was less than 50%, remote
compaction could not immediately defragment the spanset
holes created by frequent span swap-ins. As local memory
grew larger, span fetching became less frequent, making it

- Non-FT Replication
<+ EC-Batch Local

B =

< EC-Split < EC-2PC
-+ EC-Batch Remote

T

T T T T
20 40 60 80

Local memory (% of 40GB)

o
1
w
1

N
1

N A O ®
o
1

Processing time (sec)
Normalized remote
memory usage

o

T T T T
0 25 50 75 100
Local memory (% of 40GB)

o

(a) Processing time. (b) Remote memory usage.

Figure 9: Graph processing evaluation.

easier for remote compaction to reclaim space. In this less
hectic environment, EC-Batch’s remote memory usage was
similar to that of the other erasure-coding schemes.”

Graph processing: We implemented a connected-
components algorithm [50] that found all sets of linked
vertices in a graph. This kind of algorithm is critical to
various Google services. We evaluated the algorithm using
the Friendster graph [30] which contained 65 million vertexes
and 1.8 billion edges. In the graph analysis code, each
vertex’s adjacency list was referenced via remotable pointers.
The total size of the objects stored in Carbink was roughly 40
GB. The application used 80 application threads that ran atop
80 logical cores. In our experimental results, the reported
processing times exclude graph loading, since graph loading
is dominated by disk latencies.

Figure 9a shows that all schemes had similar processing
times as Non-FT, regardless of the local memory size. The
reason was that the graph application had a high compute-
to-network ratio—the application fetched all neighbors asso-
ciated with each vertex and then spent non-trivial time enu-
merating each neighbor and computing on them. As a result
of this good spatial locality and high “think time,” the graph
application did not incur frequent data swapping, and thus
avoided fault tolerance overhead that the K'V-store could not.

Figure 9b shows that EC-Batch Local and Remote had
similar remote memory usage as EC-Split: 15%-39% lower
than EC-2PC and roughly 50% lower than Replication. All
EC-based schemes had lower remote memory overheads than
Replication because the erasure coding only incurred a 1.5x
space overhead for the extra parity data.

EC-2PC used more memory than EC-Batch because the
graph workload randomly fetched diverse-sized spans. The
random fetch sizes reflected the fact that different vertices
had different sizes for their adjacency lists. This lack of span
size locality hindered dead space reclamation, since EC-2PC
had to wait longer for all of the spans in an erasure-coding
group to be swapped in. EC-Batch avoided this problem by
bundling equal-sized spans into the same spanset and using
remote compaction.

3The remote memory usage of triple-replication was slightly less than 3 x
the usage of Non-FT because Non-FT could swap out memory faster during
periods of high local memory pressure.

Memory node lost

= Replication | 5 154 — .
< 60 ¢ . -~ EC-Batch § 15 Replication .
I N E N A I £ | = ECBatch -
i ! b -

S0 “Hy}f‘g,‘Hl;‘:‘?\ “‘""'R"H"”H‘VMH { E 10+ s
> y\jh“v‘\‘/wn‘lu‘\ 1 “\ r} nh ,v‘ ‘!, noi H‘u\\‘v = o
[<% b A S e b ,W”‘,{,,\,l“m,‘/m,” >
5 T I S TR Y -
3207 122 : 3 57 s
= . Fully recovered 3 7
& TPS e &

0 T T T T 0 T . T :

80 85 90 95 0 10 20 30 40
Time (sec) Remote data size (GB)

(a) KV-store TPS over time. (b) Microbenchmark recovery.

Figure 10: Failure recovery evaluation.

5.3 Failure Recovery

We measured the recovery time for an unplanned memory
node failure in the KV-store, the graph processor, and the
microbenchmark application. For the graph application, all
schemes achieved similar processing time during unplanned
failures; thus, in the text below, we focus on the K'V-store and
the microbenchmark.

Transactional KV-store: Figure 10a shows the KV-store
throughput of Replication and EC-Batch Local, with a data
point collected every 100 ms before and after an unplanned
memory node failure. Upon detecting the failure, EC-Batch
Local immediately reconstructed the lost data on a pre-
configured failover memory node. We gave the KV-store 15
GB of local memory, equivalent to 30% of the 50 GB maxi-
mum working set size.

The throughput of both schemes fluctuated sinusoidally be-
cause the K'V-store frequently tried to swap in remote objects,
but the swap-ins sometimes had to synchronously block until
eviction threads could reclaim enough local memory. After a
memory node failed, EC-Batch needed 0.6 seconds to restore
normal throughput, while replication needed 0.3 seconds. This
is because, during failure recovery, an EC-Batch read that tar-
geted an affected span used the degraded read protocol which
uses more bandwidth than a normal read (§3.5); in contrast,
a Replication read that targeted an affected span consumed
the same amount of bandwidth as a read during non-failure-
recovery. During recovery, the throughput of Replication and
EC-Batch dropped an average of 35% and 36% respectively.

EC-Batch required 9.7 seconds to fully regenerate the lost
data on the failover node, taking 1.7 x longer than Replication.
This difference arose because, in EC-Batch, the new memory
node read 4 x span/parity information involving the lost data
and computed erasure codes to reconstruct the lost data. In
contrast, Replication lost more data per memory node, but
only read one copy of the lost data. Note that with EC-Batch,
degraded reads mostly happened during the first second of fail-
ure recovery; the skewed workload meant that a small number
of objects were the targets of most reads, and once a hot object
was pulled into local memory (perhaps by a degraded read),
the object would not generate additional degraded reads.
Microbenchmark: Figure 10b shows recovery times as a
function of the remote data size. The recovery time of EC-
Batch increased almost linearly with the remote data size,

Obj-based (RPC) -+ Obj-based (RMA) -e- Carbink Non-FT -# Carbink EC-Batch Remote

<300
260 3
E40— g 2004
2 2
520 3 100+
= @
g g
< 2
o
- 0 T T T T 0 T T T T
25 50 75 100 0 25 50 75 100

o

Local memory (% of 50GB) Local memory (% of 40GB)

(a) KV-store application. (b) Graph application.

Figure 11: Application performance: AIFM-like object-
based systems and Carbink.

with 0.6 GB/s recovery speed. This speed was 12%-44%
slower than Replication due to the larger amount of recovery
information that EC-Batch had to transfer around the network,
and the computational overhead of generating erasure codes.

Prior work [10, 29, 58] also found that, during recovery,
erasure-coding schemes had longer recovery times and worse
performance degradation than replication schemes. However,
this drawback only happens for unplanned failures which, in
our production environment, are rare compared to planned
failures; in an erasure-coding scheme, handling a planned
failure just requires simple copying of the information on a
departing memory node, and does not incur additional work
to find parity information or recompute erasure coding. Thus,
in our deployment setting where unplanned failures are rare,
erasure-coding schemes (which have lower memory utiliza-
tion than replication schemes) are very attractive.

5.4 Comparison with AIFM-like Systems

We compared span-based swapping in Carbink with the object-
based approach used in AIFM [44]. We implemented two
AIFM-like systems using our threading and network stack
(§4). The first system used RPCs to swap individual objects,
with the remote memory nodes tracking the object-to-remote-
location mapping (as done in AIFM). Our second object-
granularity swapping system used more-efficient RMAs to
swap objects, and had compute nodes track the mapping be-
tween objects and their remote locations; recall that RMA is
one-sided, so compute nodes could not rely on memory nodes
to synchronously update mappings during swaps. Like the
original AIFM, neither system provided fault tolerance.

Transactional KV-store: Figure 11a shows that, if local
memory was too small to hold the average working set, Non-
FT Carbink had 45%-167% higher throughput than the AIFM-
like system with RPC. The reason is that, when local memory
pressure was high, more swapping occurred, and the better
efficiency of RMAs over RPCs became important. However,
Non-FT Carbink achieved 5.6%-15% lower throughput than
the object-based system with RMA. This was due to swap-in
amplification. For example, Non-FT Carbink might swap in
an 8KB span but only use one 4KB object in the span; this
never happens in a system that swaps at an object granularity.

Graph processing: Figure | 1b shows the graph application’s
processing time. When the local memory size was below
87.5%, Carbink performed 18%-58% faster than the object-
based system with RMA. This is because, in the graph work-
load, 4% of large objects occupied 50% of the overall data set.
Carbink prioritized swapping out large cold objects (§3.3),
keeping most small objects in local memory and reducing the
miss rate for those objects. In contrast, the object-based sys-
tems did not consider object sizes when swapping, leading to
an increased miss rate for small objects. Note that, with larger
local memories, all schemes had similar performance; indeed,
when all objects fit into local memory, the object-based sys-
tem with RPC slightly outperformed the rest because it did
not require a dedicated core to poll for RMA completions.

6 Discussion

EC-Batch for paging-based systems: Carbink uses EC-
Batch to transparently expose far memory via remotable point-
ers. However, EC-Batch can also be used to expose far mem-
ory via OS paging mechanisms [5,22,46]. In a traditional
paging-based approach for far memory, a compute node swaps
in and out at the granularity of a page. However, a compute
node can use EC-Batch to treat each page as a span, such that
pages are swapped out at the “pageset” granularity, and pages
are swapped in at the page granularity.
Custom one-sided operations: EC-Batch requires memory
nodes to calculate span deltas and parity updates (§3.4.2). In
our Carbink prototype, memory nodes use separate threads
to execute these calculations. However, memory nodes could
instead implement them as custom one-sided operations in the
network stack, such that the network stack itself performs the
calculations, avoiding the need to context-switch to external
threads. This approach has been used in prior work [6,9, 35,
47,48] to avoid thread scheduling overheads.
Designing the memory manager: We used a centralized
manager because such a manager (1) simplified our overall
design, and (2) made it easier to drive memory utilization high
(because a centralized manager will have a global, accurate
view of memory allocation metadata). A similarly-centralized
memory manager is used by the distributed transaction system
FaRM [16]. If the centralized manager became unavailable,
Carbink could fall back to a decentralized memory allocation
scheme like the one used by Hydra [29] or INFINISWAP [22].
The state maintained by the memory manager is not large.
With 1 GB regions, we expect up to 500 regions in a typical
memory node (similar to FaRM [16]). With thousands of
memory nodes, the memory manager just needs to store a few
MBs of state for region assignments.
Fault tolerance for compute nodes: In Carbink, a compute
node does not share memory with other compute nodes. Thus,
a Carbink application can checkpoint its own state without
fear of racing with other compute nodes that modify the state
being checkpointed. Checkpoint data could be placed in a

Fast Low Fast Coding

- Interface -
s/o mem s/i granularity
On-diskrpl. X v/ Various -
In-memoryrpl. v X V/ Various -
Hydra[29] v V X Paging Split 4KB pages
Cocytus [10] v vV X KV-store Across 4KB pages
BCStore [31] v V X KV-store Across objs
Hybrid [32] X X / KV-store Split 4KB pages
Carbink vV / Remotable pointers Across spans

Table 3: Comparison of existing fault-tolerant approaches
for far memory. “Fast s/0” indicates whether a system can
swap out at network/memory speeds. “Low mem” means that
a system has relatively low memory pressure. “Fast s/i” refers
to whether a system can swap in at network/memory speeds.

non-Carbink store, obviating the need to track how check-
pointed spans move across Carbink memory nodes during
compaction and invalidation. Alternatively, Carbink itself
could store checkpoints, e.g., in the fault-tolerant address
space of a well-known Carbink application whose sole pur-
pose is to store checkpoints.

7 Related Work

Fault tolerance for far memory: Many far memory systems
do not provide fault tolerance [2, 44, 55]. Of the systems
that do, most replicate swapped-out data to local disks or
remote ones [5,22,46]. Unfortunately, this approach forces
application performance to bottleneck on disk bandwidth or
disk IOPs during bursty workloads or failure recovery [29].
This behavior is unattractive, since a primary goal of a far
memory system is to have applications run at memory speeds
as much as possible.

Like Carbink, Hydra [29] is a far memory system that

provides fault tolerance by writing erasure-coded local mem-
ory data to far RAM. Hydra uses the EC-Split coding ap-
proach that we describe in Section 3.4. As we demonstrate in
Section 5, Carbink’s erasure-coding scheme provides better
application performance in exchange for somewhat higher
memory consumption. Carbink’s coding scheme also enables
the offloading of computations to far memory nodes. Such of-
floading can significantly improve the performance of various
applications [3,27,44,57].
Fault tolerance for in-memory transactions and KV-
stores: In-memory transaction systems typically provide fault
tolerance by replicating data across the memory of multiple
nodes [15,16,26]. These approaches suffer from the classic
disadvantages of replication: double or triple storage over-
head, and the associated increase in network traffic.

Recent in-memory KV-stores use erasure coding to provide
fault tolerance. For example, Cocytus [10] and BCStore [31]
only rely on in-memory replication to store small instances
of metadata; object data is erasure-coded using a default page
size of 4KB. Cocytus erasure-codes using a scheme that re-
sembles EC-2PC (§3.4). To reduce the network utilization of

a Cocytus-style approach, a BCStore compute node buffers
outgoing writes; this approach allows the node to batch the
computation of parity fragments (and thus issue fewer updates
to remote data and parity regions). Batching reduces network
overhead at the cost of increasing write latency.

Both Cocytus and BCStore rely on two-sided RPCs to ma-
nipulate far memory. RPCs incur software-level overheads
involving thread scheduling and context switching on remote
nodes. To avoid these costs, Carbink eschews RPCs for one-
side RMA operations. Carbink also issues fewer parity up-
dates than Cocytus; whereas Cocytus uses expensive 2PC
to update parity information during every write, Carbink de-
fers parity updates until compaction occurs on remote nodes
(§3.4.2). Carbink’s compaction approach is also more effi-
cient than that of BCStore. BCStore’s compaction algorithm
performs actual copying of data objects on memory nodes,
whereas Carbink compaction just manipulates span pointers
inside of spanset metadata.

A far memory system could use both replication and erasure
coding [32]. For example, during a Hydra-style swap-out, a
span would be erasure-coded and the fragments written to
memory nodes; however, a full replica of the span would
also be written out. Relative to Carbink, this hybrid approach
would have lower reconstruction costs (assuming that the full
replica did not live on the failed node). However, Carbink
would have lower memory overheads because no full replica
of a span would be stored. Carbink would also have faster
swap-outs, because swap-outs in the hybrid scheme would
require an EC-2PC-like mechanism to ensure consistency.

Table 3 summarizes the strengths and weaknesses of the

various systems discussed above.
Memory compaction: In Carbink, the far memory regions
used by a program become fragmented as spans are swapped
in. Memory compaction is a well-studied topic in the literature
about “moving” garbage collectors for managed languages
(e.g., [11,18,49]). Moving garbage collection is also possible
for C/C++ programs; Mesh [40] represents the state-of-the-art.
With respect to this prior work, Carbink’s unique challenge
is that the compaction algorithm (§3.4.2) must compose well
with an erasure coding scheme that governs how objects move
between local memory and far memory.

8 Conclusion

Carbink is a far memory system that provides low-latency,
low-overhead fault tolerance. Carbink erasure-codes data us-
ing a span-centric approach that does not expose swap-in
operations to stragglers. Whenever possible, Carbink uses
efficient one-sided RMAs to exchange data between com-
pute nodes and memory nodes. Carbink also uses novel com-
paction techniques to asynchronously defragment far memory.
Compared to Hydra, a state-of-the-art fault-tolerant system
for far memory, Carbink has 29% lower tail latency and 48%
higher application performance, with at most 35% higher
memory usage.

Acknowledgments

We thank our shepherd Luis Rodrigues and the anonymous
reviewers for their insightful comments. We also thank Kim
Keeton and Jeff Mogul for their comments on early drafts of
the paper, and Maria Mickens for her comments on a later
draft. Yang Zhou and Minlan Yu were supported in part by
NSF CNS-1955422 and CNS-1955487.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren,
and Maofan Yin. Sync HotStuff: Simple and Practical
Synchronous State Machine Replication. In Proceed-
ings of IEEE Symposium on Security and Privacy, pages
106-118, 2020.

Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, and et al. Remote Regions: A Simple Abstrac-
tion for Remote Memory. In Proceedings of USENIX
ATC, pages 775-787, 2018.

Marcos K Aguilera, Kimberly Keeton, Stanko No-
vakovic, and Sharad Singhal. Designing Far Memory
Data Structures: Think Outside the Box. In Proceedings
of ACM HorOS, pages 120-126, 2019.

Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley,
and Lieven Eeckhout. Write-Rationing Garbage Col-
lection for Hybrid Memories. ACM SIGPLAN Notices,
53(4):62-77, 2018.

Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K. Aguilera, Au-
rojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can
Far Memory Improve Job Throughput? In Proceedings
of ACM EuroSys, pages 1-16, 2020.

Emmanuel Amaro, Zhihong Luo, Amy Ousterhout,
Arvind Krishnamurthy, Aurojit Panda, Sylvia Rat-
nasamy, and Scott Shenker. Remote Memory Calls.
In Proceedings of ACM HotNets, pages 38—44, 2020.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-Scale Key-Value Store. ACM SIGMETRICS Per-
formance Evaluation Review, 40(1):53-64, 2012.

Cristina Basescu and Bryan Ford. Immunizing Systems
from Distant Failures by Limiting Lamport Exposure.
In Proceedings of ACM HotNets, pages 199-205, 2021.

Matthew Burke, Shannon Joyner, Adriana Szekeres, Ja-

cob Nelson, Irene Zhang, and Dan R.K. Ports. PRISM:
Rethinking the RDMA Interface for Distributed Sys-

tems. In Proceedings of USENIX SOSP, pages 228-242,
2021.

[10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

Haibo Chen, Heng Zhang, Mingkai Dong, Zhaoguo
Wang, Yubin Xia, Haibing Guan, and Binyu Zang. Effi-
cient and Available In-Memory KV-Store with Hybrid
Erasure Coding and Replication. ACM Transactions on
Storage (TOS), 13(3):1-30, 2017.

Jon Coppeard. Compacting Garbage Collection in Spi-
derMonkey. https://hacks.mozilla.org/2015/0
7/compacting-garbage-collection-in-spide
rmonkey/, 2015.

Fernando J. Corbato. A Paging Experiment with the
Multics System. Technical report, MASSACHUSETTS
INST OF TECH CAMBRIDGE PROJECT MAC, 1968.

James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, Jeffrey John Furman, San-
jay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, and et al. Spanner: Google’s Globally
Distributed Database. ACM Transactions on Computer
Systems (TOCS), 31(3):1-22, 2013.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. Communica-
tions of the ACM, 51(1):107-113, 2008.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In Proceedings of USENIX NSDI, pages 401-414,
2014.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No Com-
promises: Distributed Transactions with Consistency,
Auvailability, and Performance. In Proceedings of ACM
SOSP, pages 54-70, 2015.

Jason Evans. A Scalable Concurrent malloc (3) Imple-
mentation for FreeBSD. In Proceedings of BSDCan
Conference, 2006.

Robert R. Fenichel and Jerome C. Yochelson. A LISP
Garbage-Collector for Virtual-Memory Computer Sys-
tems. Communications of the ACM, 12(11):611-612,
1969.

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. Powergraph: Distributed
Graph-Paralle] Computation on Natural Graphs. In Pro-
ceedings of USENIX OSDI, pages 17-30, 2012.

Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave,
Daniel Crankshaw, Michael J. Franklin, and Ion Stoica.
Graphx: Graph Processing in a Distributed Dataflow
Framework. In Proceedings of USENIX OSDI, pages
599-613, 2014.

https://hacks.mozilla.org/2015/07/compacting-garbage-collection-in-spidermonkey/
https://hacks.mozilla.org/2015/07/compacting-garbage-collection-in-spidermonkey/
https://hacks.mozilla.org/2015/07/compacting-garbage-collection-in-spidermonkey/

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Google. TCMalloc Open Source. https://github.c
om/google/tcmalloc.

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient Memory Dis-
aggregation with INFINISWAP. In Proceedings of
USENIX NSDI, pages 649-667, 2017.

Xianglong Huang, Stephen M Blackburn, Kathryn S.
McKinley, J. Eliot B. Moss, Zhenlin Wang, and Perry
Cheng. The Garbage Collection Advantage: Improving
Program Locality. ACM SIGPLAN Notices, 39(10):69—
80, 2004.

Andrew Hamilton Hunter, Chris Kennelly, Paul Turner,
Darryl Gove, Tipp Moseley, and Parthasarathy Ran-
ganathan. Beyond Malloc Efficiency to Fleet Efficiency:
A Hugepage-Aware Memory Allocator. In Proceedings
of USENIX OSDI, pages 257-273, 2021.

Intel. Intel Intelligent Storage Acceleration Library.
https://github.com/intel/isa-1.

Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Trans-
actions with Two-Sided RDMA Datagram RPCs. In
Proceedings of USENIX OSDI, pages 185-201, 2016.

Dario Korolija, Dimitrios Koutsoukos, Kimberly Kee-
Alonso. Farview: Disaggregated Memory with Operator
Off-loading for Database Engines. In Proceedings of
Conference on Innovative Data Systems Research, 2022.

Jakub Lacki, Vahab Mirrokni, and Michat Wiodarczyk.
Connected Components at Scale via Local Contractions.
arXiv preprint arXiv:1807.10727, 2018.

Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowd-
hury, Asaf Cidon, and Kang G. Shin. Mitigating
the Performance-Efficiency Tradeoff in Resilient Mem-
ory Disaggregation. arXiv preprint arXiv:1910.09727,
2019.

Jure Leskovec. Friendster Social Network Dataset. ht
tps://snap.stanford.edu/data/com-Friends
ter.html.

Shenglong Li, Quanlu Zhang, Zhi Yang, and Yafei Dai.
BCStore: Bandwidth-Efficient In-Memory KV-store
with Batch Coding. Proceedings of IEEE International
Conference on Massive Storage Systems and Technol-
ogy, 2017.

Yuzhe Li, Jiang Zhou, Weiping Wang, and Yong Chen.
RE-Store: Reliable and Efficient KV-Store with Erasure
Coding and Replication. In Proceedings of IEEE Inter-
national Conference on Cluster Computing, pages 1-12,

2019.

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

[43]

Yucheng Low, Joseph E. Gonzalez, Aapo Kyrola, Danny
Bickson, Carlos E. Guestrin, and Joseph Hellerstein.
Graphlab: A New Framework for Parallel Machine
Learning. arXiv preprint arXiv:1408.2041, 2014.

Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong
Xu, and Tongxin Bai. Imbalance in the Cloud: An Analy-
sis on Alibaba Cluster Trace. In Proceedings of IEEE In-
ternational Conference on Big Data, pages 2884-2892,
2017.

Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, and et al. Snap: A Microkernel Approach to Host
Networking. In Proceedings of ACM SOSP, pages 399—
413, 2019.

Paul E. McKenney and John D. Slingwine. Read-Copy
Update: Using Execution History to Solve Concurrency
Problems. In Proceedings of Parallel and Distributed
Computing and Systems, pages 509-518, 1998.

MongoDB Inc. MongoDB Open Source. https://gi
thub. com/mongodb/mongo.

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
High CPU Efficiency for Latency-Sensitive Datacenter
Workloads. In Proceedings of USENIX NSDI, pages
361-378, 2019.

John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego Ongaro,
Seo Jin Park, Henry Qin, Mendel Rosenblum, and et al.
The RAMCloud Storage System. ACM Transactions on
Computer Systems (TOCS), 33(3):1-55, 2015.

Bobby Powers, David Tench, Emery D. Berger, and An-
drew McGregor. Mesh: Compacting Memory Manage-
ment for C/C++ Applications. In Proceedings of ACM
PLDI, pages 333-346, 2019.

David M.W. Powers. Applications and Explanations of
Zipf’s Law. In Proceedings of New Methods in Lan-
guage Processing and Computational Natural Language
Learning, 1998.

KV Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion
Stoica, and Kannan Ramchandran. EC-Cache: Load-
Balanced, Low-Latency Cluster Caching with Online
Erasure Coding. In Proceedings of USENIX OSDI,
pages 401417, 2016.

Irving S. Reed and Gustave Solomon. Polynomial Codes
over Certain Finite Fields. Journal of the Society for In-
dustrial and Applied Mathematics, 8(2):300-304, 1960.

https://github.com/google/tcmalloc
https://github.com/google/tcmalloc
https://github.com/intel/isa-l
https://snap.stanford.edu/data/com-Friendster.html
https://snap.stanford.edu/data/com-Friendster.html
https://snap.stanford.edu/data/com-Friendster.html
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-
era, and Adam Belay. AIFM: High-Performance,
Application-Integrated Far Memory. In Proceedings
of USENIX OSDI, pages 315-332, 2020.

Fred B. Schneider. Implementing Fault-Tolerant Ser-
vices Using the State Machine Approach: A Tutorial.
ACM Computing Surveys (CSUR), 22(4):299-319, 1990.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A Disseminated, Distributed OS for
Hardware Resource Disaggregation. In Proceedings of
USENIX OSDI, pages 69-87, 2018.

David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. StRoM: Smart Remote Mem-
ory. In Proceedings of ACM EuroSys, pages 1-16, 2020.

Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob
Cauble, Harshad Deshmukh, Dan Gibson, Milo M.K.
Martin, Amanda Strominger, Thomas F. Wenisch, and
Amin Vahdat. CliqueMap: Productionizing an RMA-
Based Distributed Caching System. In Proceedings of
ACM SIGCOMM, pages 93—-105, 2021.

SUN Microystems. Memory Management in the Java
HotSpot Virtual Machine, 2006.

Michael Sutton, Tal Ben-Nun, and Amnon Barak. Op-
timizing Parallel Graph Connectivity Computation via
Subgraph Sampling. In Proceedings of IEEE Interna-
tional Parallel and Distributed Processing Symposium,
pages 12-21, 2018.

Chungiang Tang, Kenny Yu, Kaushik Veeraraghavan,
Jonathan Kaldor, Scott Michelson, Thawan Kooburat,

[52]

(53]

[54]

[55]

[56]

[57]

(58]

Aravind Anbudurai, and et al. Twine: A Unified Clus-
ter Management System for Shared Infrastructure. In
Proceedings of USENIX OSDI, pages 787-803, 2020.

Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: the Next Generation. In
Proceedings of ACM EuroSys, pages 1-14, 2020.

Transaction Processing Performance Council (TPC).
TPC-A. http://tpc.org/tpca/defaults.asp.

Volt Active Data. VoltDB. https://www.voltdb.c
om/.

Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan
Ruan, Khanh Nguyen, Michael D. Bond, Ravi Netravali,
Miryung Kim, and Guoqing Harry Xu. Semeru: A
Memory-Disaggregated Managed Runtime. In Proceed-
ings of USENIX OSDI, pages 261-280, 2020.

Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-Enabled Distributed
Transactions: Hybrid Is Better! In Proceedings of
USENIX OSDI, pages 233-251, 2018.

Jie You, Jingfeng Wu, Xin Jin, and Mosharaf Chowd-
hury. Ship Compute or Ship Data? Why Not Both? In
Proceedings of USENIX NSDI, pages 633-651, 2021.

Zhe Zhang, Amey Deshpande, Xiaosong Ma, Eno
Thereska, and Dushyanth Narayanan. Does Erasure
Coding Have a Role to Play in My Data Center? Mi-
crosoft Research Technical Report, 2010.

http://tpc.org/tpca/default5.asp
https://www.voltdb.com/
https://www.voltdb.com/

	Introduction
	Background
	Carbink Design
	Failure Model
	Remotable Pointers
	Span-Based Memory Management
	Fault Tolerance via Erasure Coding
	EC-Batch: Swapping
	EC-Batch: Remote Compaction

	Failure Recovery
	Thread Synchronization

	Implementation
	Evaluation
	Microbenchmarks
	Macrobenchmarks
	Failure Recovery
	Comparison with AIFM-like Systems

	Discussion
	Related Work
	Conclusion

