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I. INTRODUCTION

Quantum stabilizer codes are designed to be robust against

qubit errors. However, syndrome measurement cannot be

done perfectly: necessarily, there are some measurement er-

rors whose probability grows with the weight of the checks

(stabilizer generators). Furthermore, both the syndrome mea-

surement protocol and the syndrome-based decoding have to

operate in a fault-tolerant (FT) regime, to be robust against

errors that happen during the measurement.

When all checks have relatively small weights, as in the

case of the surface codes, one simple approach is to repeat

syndrome measurement several times[1]. Then, FT syndrome-

based decoding can be done in the assumption that the data

errors accumulate while measurement errors be independently

distributed. While there is always a non-vanishing probability

to have some errors at the end of the cycle, what matters in

practice is the ability to backtrack all errors after completion

of several rounds of measurement.

Another approach it to measure an overcomplete set of

stabilizer generators, using redundancy to recover the correct

syndrome. Such an approach was used in the context of

higher-dimensional toric and/or color codes[2], [3], the data-

syndrome (DS) codes[4], [5], [6], and single-shot measurement

protocols[7], [8], [9]. Here decoding is done in the assumption

that data error remains the same during the measurement.

We note that with both approaches, the error models as-

sumed for decoding do not exactly match the actual error

probability distribution. In particular, any correlations between

errors in different locations and/or different syndrome bits are

typically ignored. Nevertheless, simulations with circuit-based

error models which reproduce at least some of the actual cor-

relations show that both the repeated syndrome measurement

protocol[10], [11] and the syndrome measurement protocols

relying on an overcomplete set of generators[3] can result in

competitive values of FT threshold.

The choice of the measurement protocol is typically dictated

by the structure of the code, specifically, availability of an
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overcomplete set of stabilizer generators of the minimum

weight. Such an approach is expected to be practical when

typical gate infidelities are comparable with the probability of

an incorrect qubit measurement. However, there is also a price

to pay: codes with redundant sets of small-weight checks can

be generally expected to have worse parameters.

On the other hand, if the physical one- and two-qubit

gates are relatively accurate, it may turn out more practical

to measure redundant sets of checks which include stabilizer

generators of higher weights. Then, a DS code can be designed

from any stabilizer code[4], [5], [6]. As a result, one faces

a problem of constructing an optimal measurement protocol

given the known gate fidelities and measurement errors.

In this work we compare several single-shot and repeated

measurement/decoding protocols for a simple quantum convo-

lutional code[12] with the parameters [[24, 6, 3]] and syndrome

generators of weight 6. We construct several computationally

efficient schemes using the classical Viterbi algorithm[13],

[14] to decode data and syndrome errors sequentially or

simultaneously, and compare their effectiveness both with phe-

nomenological and circuit-based depolarizing error models. In

particular, we show that a DS code which requires measuring

checks of weight up to wmax = 9 has performance (successful

decoding probability) exceeding that of the repeated measure-

ment scheme when single-qubit measurement error probability

q1 equals ten times the gate error probability p1 (taken to be

the same for Hadamard and CNOT gates).

II. BACKGROUND

Let Pn = {cM1 ⊗ · · · ⊗Mn : Mj ∈ {I,X, Y, Z}}, with

phase c ∈ {±1,±i} be the n-qubit Pauli group; elements with

c = ±1 have eigenvalues ±1. Any G = cM1⊗· · ·⊗Mn ∈ Pn

can be represented, up to a phase, by length-n vector g =
(g1, . . . , gn) ∈ F

n
4 , F4 = {0, 1, ω, ω̄}, where ω2 ≡ ω̄ = ω+1,

and gj = 0, 1, ω, ω̄, if Mj is I , X , Z, or Y , respectively.

The weight wt(g) of g is the number of its nonzero elements

gj 6= 0. A product of two Pauli operators X and Y is mapped

into a sum of the corresponding vectors, x+y. Further, a pair

of Pauli operators commute iff the trace inner product,

x ∗ yT ≡
∑n

i=1
Tr(xiȳi), (1)

of the corresponding vectors is zero, x ∗ yT = 0. Here

Tr(x) = x + x2 is the trace map from F4 into F2, and ȳ
is the conjugation of y ∈ F4 which interchanges ω and ω̄.

An [[n, k]] quantum stabilizer code Q, a subspace of the

n-qubit Hilbert space, encodes k qubits into n, and its rate is



defined as R = k/n. Any code vector (quantum state) |ψ〉 ∈ Q
is stabilized by a stabilizer group S , an Abelian subgroup

of Pn such that −I⊗n 6∈ S . Such a subgroup is mapped to

an additive code C of size |C| = 2n−k over F4, specified

by the generator matrix G whose rows gj correspond to the

Pauli generators Gj ∈ S . The additivity means that for any

x,y ∈ C we have x + y ∈ C. A detectable error E ∈ Pn

has non-zero commutators with one or more generators of S;

the corresponding vector e ∈ F
n
4 has a non-zero syndrome

sT = G ∗ eT . Vectors corresponding to undetectable errors

form the dual (with respect to the trace inner product) code

C⊥ of size |C⊥| = 2n+k. Since S is Abelian, one necessarily

has C ⊆ C⊥, and for this reason C is called self-orthogonal.

Elements of S act trivially on the code Q; thus the distance

d of a quantum code is defined as the minimum weight of an

element of C⊥ \ C [15].
For numerics in this work we use the family of quantum

convolutional codes (QCCs) of length 3(k + 2), k = 1, 2, . . .,
based on linear (3, 1) self-orthogonal convolutional codes
whose generator matrces are constructed[12] by k + 1 shifts
of the row g1 = (111|1ωω̄). The actual generating matrix of
the QCC Qk with parameters [[3(k + 2), k, 3]] is obtained by
adding a copy of the same rows multiplied by ω, and four
additional rows for proper termination. In the case k = 1, the
stabilizer generating matrix has the form

G(Q1) =





















1 ω ω

ω ω 1
1 1 1 1 ω ω

ω ω ω ω ω 1
1 1 1 1 ω ω

ω ω ω ω ω 1
ω ω 1
1 1 1





















. (2)

III. ERROR MODELS AND DATA-SYNDROME CODES

Unlike with classical codes, extracting a syndrome for a

quantum code involves a complicated quantum measurement

which itself is prone to errors. To extract a syndrome bit cor-

responding to a row g of G, one must execute a unitary which

involves a non-trivial interaction [some single-qubit gate(s)

and an entangling gate, e.g., a quantum CNOT] with each of

the w ≡ wt(g) qubits in the support of g, then do a quantum

measurement of one or more auxiliary ancilla qubit(s). Data

errors and measurement (ancilla) errors can happen at every

step of the process; moreover, errors can propagate through

measurement circuit unless it is designed using FT gadgets

to prevent error multiplication[16]. Error propagation can be

simulated efficiently for any circuit constructed from Clifford

gates which map the Pauli group onto itself, which is sufficient

to simulate the performance of any stabilizer code[17]. In this

work we simulated such a circuit-based error model (C), using

depolarizing noise with probability p1 (randomly chosen X ,

Y , or Z on every qubit in the interval between subsequent

gates, including null gates for idle qubits), and additional

ancilla measurement error with probability q1 [10], [11].

While in principle it is possible to account for all correla-

tions between the errors that may result from error propagation

in a given circuit, and design a corresponding decoder, it

would be a daunting task. Instead, one usually uses a decoder

designed for some phenomenological error model, and uses

circuit model (C) only to check the performance of such a

decoder numerically. We consider two such error models.

Model (A) is a channel model where qubit errors (depolariz-

ing noise with probability p) happen before the measurement,

while each stabilizer generator (syndrome bit) is measured

with independent error probability q. This model[5], [6] is

an idealization of a situation where gate errors are small com-

pared to qubit preparation and measurement errors. Clearly,

model (A) can get unphysical, as here one can extract the

syndrome perfectly with sufficient measurement redundancy.

This drawback is compensated somewhat in the phenomeno-

logical error model (B) which includes several rounds of

syndrome measurement, and includes qubit errors that happen

before each round (depolarizing noise with probability p;

these errors accumulate between measurement rounds), and

independent syndrome measurement errors with probability q.

Both in the phenomenological model (B) and in the circuit

model (C) some errors may remain after the last round of

error correction; for simulations one includes an additional

round with perfect syndrome measurement[10].

Phenomenological error models (A) and (B) can be used

to construct DS codes dealing both with qubit (data) and

syndrome errors. We start with an r × n stabilizer generator

matrix G, which may include additional linearly-dependent

rows, thus r ≥ n − k. In model (A), we have a qubit error

vector e ∈ F
n
2 , and a syndrome measurement error ǫ ∈ F

r
2; the

extracted syndrome vector is given by sT = G ∗ eT + ǫ
T . To

characterize DS codes, it is convenient to consider mixed-field

vector spaces, with elements (e | ǫ), a pair of a quaternary and

a binary vectors. For such pairs we define the inner product

(e1, ǫ1) ⋆ (e2, ǫ2)
T ≡ e1 ∗ e

T
2 + ǫ1ǫ

T
2 . (3)

By analogy with stabilizer codes, we define an additive code

CDS ⊆ F
n
4 ⊕ F

r
2 with the generator matrix

GDS =
(
G I

)
, (4)

and its dual with respect to the product (3), C⊥
DS. The two

orthogonal DS codes satisfy |CDS| |C
⊥
DS| = 22n+r. Because

the original code C is self orthogonal, G ∗GT = 0, the code

C⊥
DS includes vectors in the form (e |0), where e = αG is an

additive combination of the rows of G, α ∈ F
r
2. The distance

dDS of thus defined DS code is the minimum weight of a

vector in C⊥
DS \ (C ⊕ 0), it is upper bounded by the distance

of the original quantum code Q, dDS ≤ d.

In phenomenological error model (B), with ℓ-times repeated

syndrome measurement (including the final perfect measure-

ment), we denote qubit errors that occur before the measure-

ment t as et ∈ F
n
4 , and the corresponding measurement errors

as ǫt ∈ F
r
2. The qubit errors accumulate, thus we can write for

the syndrome st obtained in the t th round of measurement:

G ∗ (e1 + e2 + . . .+ et) + ǫt = st.

In this work we do not attempt simultaneous decoding of

data and syndrome errors over several rounds of measurement.



Instead we decode them sequentially, using the accumulated

errors ê1 + ê2 + . . . + êt−1 extracted at previous decoding

rounds to offset the error at time t.

IV. CONVOLUTIONAL DS CODES

Now, given an [[n, k]] quantum code Q with the (full-row-

rank) generating matrix G(Q) of size (n−k)×n, we introduce

redundant measurements by adding some linearly dependent

rows. Without limiting generality, a set of r′ additional rows

F = AG(Q) can be obtained by multiplying the original

generating matrix by an r′× (n− k) binary matrix A, so that

the generating matrix 5 of the resulting DS code has the form

GDS =

(
G(Q) In−k

AG(Q) Ir′

)
. (5)

This matrix has additive rank r ≡ (n − k) + r′ equal to the

number of rows. It is convenient to rewrite this matrix in the

following row-equivalent form,

G′
DS =

(
G(Q) In−k

A Ir′

)
. (6)

Denote [G(Q)]⊥ the additive dual of G(Q) with additive rank

n+k, and M a matrix such that G(Q)MT = In−k. It is then

easy to see that the matrix

HDS =

(
[G(Q)]⊥

M In−k AT

)
. (7)

has additive rank (n+k)+(n−k) = 2n, while G′
DS⋆H

T
DS = 0.

Thus, HDS generates the code C⊥
DS .

We can now discuss the choice of the matrix A. First,

we obtain redundant syndrome bits by measuring operators

Fj corresponding to the rows fj of the matrix F. Since the

corresponding error grows with the operator weight, we want

to choose matrix A to ensure that row weights of F be small.

Second, we want to choose A so that the binary linear code

generated by (In−k,A
T ) has a large minimum distance. Third

important issue is the decoding complexity. Given the structure

of the matrix HDS, see Eq. (7), it is natural to choose AT

to form a generator matrix of a classical convolutional code.

Quantum DS codes (5) obtained from a quantum convolutional

code Q with such an A we call convolutional DS codes.

V. DECODING OF CONVOLUTIONAL DS CODES

Big advantage of classical convolutional codes is that one

can use the maximum-likelihood Viterbi decoding using a

code trellis [14]. The “stripe” form of a generator matrix of

a convolutional code (with small band width) ensures that its

code trellis has relatively small number of states, which means

that the Viterbi decoding has relatively small complexity.

In our case, it is not immediately obvious how to construct a

code trellis with a manageable number of states, since neither

GDS nor HDS has the “stripe” form. However, we show that

GDS can be transformed into the stripe form.
Instead of presenting a general algorithm for this, we will

consider a small example. Let G(Q) and A be generated by
vectors (v1|v2|v3) and (u1|u2|u3), respectively, and assume

that vi and ui have lengths n and n′. Then, in a particular
case, the DS code generator (6) has the form

G
′

DS =






















v1 v2 v3 1
v1 v2 v3 1

v1 v2 v3 1
u
T

1 I

u
T

2 u
T

1 I

u
T

3 u
T

2 u
T

1 I

u
T

3 u
T

2 I

u
T

3 I























,

where I is the n′ × n′ identity matrix. With an appropriate
permutation of columns and rows, we can transform the above
matrix into the form

G
′′

DS =






















v1 v2 v3 1
I u

T

1

v1 v2 v3 1
I u

T

2 u
T

1

v1 v2 v3 1
u
T

3 I u
T

2 u
T

1

u
T

3 I u
T

2

u
T

3 I























,

where we marked the small matrix block that defines the

repeating section of the syndrome trellis. Now, the method

in Ref. [18] gives the syndrome trellis, a particular form of

the code trellis.

Let (v, s) ∈ C⊥
DS and define the received vectors x = v +

e ∈ F
n
4 , y = s + ǫ ∈ F

n−k+r′

2 , where e and ǫ are qubit

and syndrome errors, respectively. The syndrome allows us

to efficiently conduct the Viterbi minimum distance decoding

(MDD) using (x,y) as an input:

MDD(x,y) = arg min
(a,b)∈C⊥

DS

wt(a− x) + wt(y − b).

However, unlike in the classical case where we receive (x,y)
from a channel, in the quantum case we have only y = s +
e, and we do not have x. It is easy to check that in this

case the correct minimum distance decoding corresponds to

MDD(0,y). For simulations in this work we implemented

a version of Viterbi decoding for non-binary classical codes

with known symbol error probabilities. For DS decoding with

phenomenological noise parameters p and q, we used

Pr(X) = Pr(Y ) = Pr(Z) = p/3 and Pr(ǫj = 1) = q.

In addition, one can use several suboptimal decoders with

significantly smaller complexity. In particular, one may use

the following 2 step algorithm

1) Construct the syndrome trellis, say T , for the DS code

with GDS = (G|Ir). It will have much smaller number

of states compared with the trellis for Eq. (7).

2) Decode y by the Viterbi decoding of the code with

generator (In−k,A
T ), to get a tentative syndrome ŝ =

(ŝ1, . . . , ŝn−k). Typically ŝ would have significantly

smaller number of errors than the measured syndrome.

3) Decode (0, ŝ) by the Viterbi decoding using trellis T .



Several variations of this algorithm are possible. For example

we may decode y using a list decoding of size L, get several

tentative syndromes ŝi, i = 1, . . . , L, and use them in turn in

step 3 of the above algorithm, and choose the best result.

Another possibility is to use BCJR decoding for computing

the tentative syndrome ŝ = (ŝ1, . . . , ŝn−k).

VI. NUMERICAL RESULTS

We constructed the trellises and numerically analyzed the

performance of several quantum convolutional DS codes dif-

fering by the structure of the binary generating matrix A. In

all cases, we used as the starting code the code Q6 with

parameters [[24, 6, 3]] constructed from a linear F4 convolu-

tional code with generator g = (111|1ωω̄), one of the many

QCCs constructed in Ref. [12]. As discussed in Sec. II, the

stabilizer generators for codes in this family have weights

wt(gj) ∈ {3, 6}, see Eq. (2).
Specifically, we used the following choices. (i) Code “GA”,

a quantum DS CC (5) with the 16× 18 matrix AT chosen as
the generating matrix of the binary convolutional code (CC)
with the generator row g = (11|01|11). Explicitly,

A
T

GA =





1 1 0 1 1 1
1 1 0 1 1 1

. . . . . . . . .



 . (8)

Matrix F = AGAG(Qk) has row weights wt(fj) ∈ {6, 9}.
(ii) Code “GR” (here R stands for “repetition”) is constructed
similarly, except the matrix AT is formed by a trivial CC code
with g = (11). Explicitly, it has the form

A
T

GR =





1 1
1 1

. . .



 . (9)

It is easy to see that such a matrix results from three-times

repeated measurement of the original set of generators in the

18 rows of G(Q6). Respectively, only the original stabilizer

generators of weights 3 and 6 need to be measured here.

(iii) Code “GI” is a trivial DS code with AGI = 0. The name

is due to the structure of the matrix (5): in this case it has

the form GDS = (G(Q6) | I18). With phenomenological error

model (A) [Sec. III] and three-times repeated measurement, we

use this code as a simpler alternative to code “GR”. Namely,

we first perform majority vote on every bit of the syndrome,

then use the DS code GI for actual decoding.

(iv) Finally, the code “G” stands for yet another simple

DS decoding protocol for three-time repeated measurements.

Again, the syndrome bits are obtained using majority vote,

but the resulting syndrome is considered as error-free, and the

decoding is done directly using the QCC Q6. Main difference

with the previous case is that here a single-bit syndrome error

after majority vote necessarily results in a decoding fault.

Results of simulations with phenomenological error model

(A) are shown in Fig. 1, along with a break-even line

PBLER = 6p (k = 6 unprotected qubits). We did not attempt

to account for larger weight of measured operators in the case

of code GA. Single-shot block error probabilities PBLER for

four decoders as indicated in the caption are shown. For each

point, simulations were done until N = 100 decoder failures.

The slope is consistent with the distance d = 3 of the quantum

code. Results indicate that (with the exception of the simplest

decoder G) all decoders are able to correct most syndrome

measurement errors with q = p, and also for q = 10p in the

interval p . 10−3. With larger error rates, code GA works

best, consistent with its larger distance for syndrome errors.
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Fig. 1. Phenomenological noise model (A) with depolarizing errors (prob-
ability p) and syndrome bit measurement error probability q = p (left) and
q = 10p (right). Symbols show the block error probability PBLER for four
decoders as indicated, see text for details. Dotted lines give the nominal single-
qubit break-even threshold, PBLER = p.

In simulations with phenomenological error model (B) we

measured the average fail time of the code[10]. Namely, in

each simulation round j repeated decoding cycles are done

until decoding failure after round tj ; the corresponding average

after N ≥ 100 simulation rounds was recorded. Effective

block error rate PBLER = 1/(t̄ − 1) was then extracted

from the average fail time t̄ assuming Poisson distribution

of life times t′j = tj − 1 with parameter λ = PBLER. We

decoded every cycle t separately, using the accumulated data

error ê1 + ê2 + . . . + êt−1 found in the previous cycles as

an offset. Consistent with the standard protocol for quantum

LDPC codes[10], a failure would be recorded if at time step

t decoding with zero syndrome error ǫt = 0 gives a logical

error. Otherwise, a new estimated error êt would be computed

with the syndrome error ǫt present, and calculation repeated

at t = t+ 1. The results are shown in Fig. 2; they are largely

consistent with those for phenomenological error model (A).
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-3
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Fig. 2. Effective block error rate PBLER with phenomenological error model
B. Only results for GA and single-interval GI decoders as indicated are shown.

In simulations with circuit error model (C) we constructed

the actual circuits for measuring quantum operators corre-

sponding to rows of G, including the redundant rows for code



GA, with the attempt to maximally parallelize the measure-

ments. We then used a separate program to generate random

Pauli errors with probability p1 per interval between the gates,

propagated the errors through the circuit, and recorded the

actual accumulated error et and the measured syndrome st at

the end of each measurement cycle t = 1, 2, . . .. Additional

syndrome measurement error q1 was added at the time of

subsequent processing. These data then have been used with

the decoders identical to those for model B.

The obtained effective block error rates are plotted in Fig. 3.

One striking difference with phenomenological error models

A and B is that the calculated curves no longer have quadratic

dependence on BER, as would be expected for a code with

distance d = 3. The reason is that we have used non-FT

circuits in simulations. As a result, e.g., a single ancilla error

can propagate and multiply through the circuit, resulting in a

higher-weight error which cannot be corrected by the code.

-6 -4 -2 0

-4

-3

-2

-1

0

Fig. 3. Effective block error rate (per gate) for phenomenological error model
C as a function of gate error probability p1 scaled by cycle duration.

VII. DISCUSSION AND FUTURE WORK

In conclusion, in this work we introduced quantum con-

volutional data-syndrome codes, constructed an efficient de-

coder for this class of codes, and analyzed numerically the

performance of a family of DS codes based on a single QCC

with parameters [[24, 6, 3]] using three distinct error models. In

particular, this was the first time a DS code has been simulated

with the circuit error model.

Here we exclusively relied on the QCCs designed in

Ref. [12]. These codes have relatively high weights of sta-

bilizer generators. It is an open question whether degenerate

QCCs exist, with small-weight generators, large distances, and

trellises with reasonably small memory sizes. For the purpose

of constructing convolutional DS codes, one would further like

to have a QCC with a redundant set of minimum-weight stabi-

lizer generators. For such codes, degenerate Viterbi decoding

algorithm[19] would be particularly useful.

Our limited simulation results indicate that a DS code with

large-distance classical syndrome code may show competitive

performance in the regime where measurement errors are sig-

nificant, even though the corresponding generators may have

larger weights. This regime is experimentally relevant, e.g.,

for superconducting transmon qubits with dispersive readout,

where measurement time can be as large as 500ns, compared

to under 50ns two-qubit gates, with the error probabilities

scaling accordingly. It is an open question whether similarly

constructed non-convolutional DS codes could be useful in this

regime, e.g., for optimizing the performance of surface codes

in the current or near-future generation of quantum computers.

One obvious way to improve the practical performance of

DS codes is by using FT gadgets for generator measurements,

to control error propagation. In particular, we intend to try

flag measurement circuits[20], as this technique has relatively

small overhead in the number of qubits.
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