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Adoption of renewable energy in power grids introduces stability challenges in regulating the operation fre-
quency of the electricity grid. Thus, electrical grid operators call for provisioning of frequency regulation
services from end-user customers, such as data centers, to help balance the power grid’s stability by dynam-
ically adjusting their energy consumption based on the power grid’s need. As renewable energy adoption
grows, the average reward price of frequency regulation services has become much higher than that of the
electricity cost. Therefore, there is a great cost incentive for data centers to provide frequency regulation
service.

Many existing techniques modulating data center power result in significant performance slowdown or
provide a low amount of frequency regulation provision. We present POWERMORPH, a tight QoS-aware data
center power-reshaping framework, which enables commodity servers to provide practical frequency reg-
ulation service. The key behind PowERMoRPH is using “complementary workload” as an additional knob
to modulate server power, which provides high provision capacity while satisfying tight QoS constraints of
latency-critical workloads. We achieve up to 58% improvement to TCO under common conditions, and in
certain cases can even completely eliminate the data center electricity bill and provide a net profit.
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1 INTRODUCTION

Environmental regulations and falling costs are driving the rapid adoption of renewable energy
resources (e.g. wind and solar energy). During the past decade, electricity generation from wind
energy has nearly tripled from 95,000 GWh to 254,000 GWh, and solar energy has grown nearly
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40x from 2,200 GWh to 81,000 GWh [29, 41]. Overall, the percentage of total generation due to
renewable energy has increased from 12.3% to 19.7% [41]. However, the integration of renewable
energy and its intermittent behaviour present challenges in maintaining electrical grid stability.

Electrical grids typically have an operating frequency of 50Hz (e.g. China, European countries)
or 60Hz (e.g. United States, Canada). The operating frequency of the electrical grid can easily
lose balance if the supply of electricity generation does not match the demand of electricity con-
sumption. To combat this in modern smart grids, regional electric grid operators—also known
as Independent Service Operators (ISO)—call for conventional power plants and end-use cus-
tomers, such as data centers, to provision for frequency regulation services. The ISOs periodically
send a frequency regulation signal to these entities which will accordingly adjust their electricity
consumption/generation to help stabilize the grid frequency. In return, participants receive mon-
etary benefits. With the increasing integration of solar and wind, and increasing grid instability,
the price of frequency regulation has increased significantly [29], providing growing incentives
along with opportunities for data center participation.

Conventional frequency regulation services are provided by electricity generators. However,
generators tend to be slow in adjusting electricity generation and it is only feasible for larger,
longer fluctuations in electrical grid conditions. More recently, batteries distributed across the
electrical grid have been utilized for providing real-time frequency regulation services which re-
quire electricity adjustments every two seconds. However, using batteries suffer from poor battery
lifetime due to the need to charge/discharge every two seconds and also the amount of regulation
provisioned can fade if the battery is either fully charged or discharged [18, 35].

As an alternative, data centers have recently emerged as a compelling candidate for participa-
tion in frequency regulation services by providing significant regulation service provision and
providing the ability to vary electricity consumption dynamically. Data centers consume 2% of US
electricity usage, representing a large portion of overall electricity usage [22], providing a large
potential source of regulation service provision. In the past, data centers have been explored to
participate in various types of demand response including voluntary load reduction [24, 85], and
peak shaving/power capping [14, 20, 31, 31, 89] through techniques including DVFS [14, 89], thread
packing [12, 14], co-scheduling [31, 36, 70], and consolidating cores [6]. In addition, energy storage
devices (i.e. batteries) can be used to achieve peak shaving by discharging during peak electricity
usage periods and charging during low electricity usage periods [42, 48, 82]. However, relying
on UPS batteries for peak shaving can result in shorter battery lifetime and jeopardizing power
backup, and also requires significant capital expense investments.

Prior works [6, 8, 95] have attempted to adapt power capping techniques for participation in
frequency regulation services and for load following [48]. These works target batch (best-effort) or
HPC workloads, which typically run at maximum server power and are allowed to be slowed down
(up to 200%) to track the regulation signal. Furthermore, they rely on existing power management
knobs which limits the amount of regulation provision capacity that can be provided to the amount
of power consumed by the workload.

Still, there are several significant limitations toward enabling practical frequency regulation ser-
vices. First, data centers typically run a mix of latency-critical workloads and best-effort workloads.
These prior techniques assume relaxed QoS targets and tolerated slowdowns of up to 200% QoS
degradation [8, 95, 96], which would be intolerable for latency-critical applications. Second, it is un-
clear how incoming request traffic variability can be handled in concert with frequency regulation
signals. Finally, the majority of prior works have been conducted through analytical models (at
best, models derived from empirical measurements) which do not capture the real-world variabil-
ity of latency-critical workloads [11, 39]. In this work, we present POWERMORPH , the first work to
demonstrate support for data center frequency regulation in latency-critical environments. The main
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novelty of this work is that it is the first to achieve frequency regulation of servers running latency-
sensitive workloads through the introduction of a novel knob (complementary workloads). While
co-location of LC and BE workloads and throttling dummy load have been proposed in prior works,
our work is the first to show how to carefully coordinate co-location, throttling of complementary
workloads, and DVFS in order to maximize frequency regulation provisioning under ms-scale la-
tency constraints. This work opens up frequency regulation to a whole new class of widely-used
data center workloads/servers that previously was unattainable.
In this work, we make the following contributions:

o (Section 3). Identify the challenges of achieving frequency regulation service participation
in commodity data centers running latency-critical workloads.

e (Section 4). We propose POWERMORPH, a QoS-aware server power reshaping framework,
enabling data centers to provide frequency regulation services using only computational
resources under latency-critical data center conditions.

o (Section 5). We show that POWERMORPH can accurately track frequency regulation signals
in real-time and reshape server power profiles. In a small-scale data center evaluation, we
observed total electricity cost savings of up to 71% and TCO ($ per throughput) improvement
of up to 56% under common conditions. Under favorable conditions, which occur 10% of the
time, it is even possible to completely eliminate electricity cost and achieve net profit. We also
compare the total electricity cost of a data center providing frequency regulation using en-
ergy storage technique (Flywheel) and a cluster-level frequency regulation technique using
CPU resource limiting and idle server modulation (EnergyQARE [8]) with POWERMORPH.

2 BACKGROUND AND MOTIVATION

In this section, we will first provide an overview of frequency regulation service and the poten-
tial opportunities for electricity cost savings. Then we’ll provide an overview of other common
techniques used to optimize data center energy efficiency, such as power over-subscription and
workload co-location. Then in the next section, we’ll provide an overview of the limitations of ex-
isting work in providing practical data center frequency regulation service and motivate the need
for POWERMORPH.

2.1 Overview of Frequency Regulation Service

In order to maintain electrical grid stability, electrical grids must maintain operating frequency
between 58.98Hz—-60.02Hz in the United States. In traditional power grids, this is achieved by con-
stantly adjusting the generator output to match the electricity consumption of consumers. How-
ever, as renewable energy sources such as wind and solar are integrated into the power grid, the
intermittent nature of solar and wind causes significant variation in the electrical generator side.
These sources have limited ability to adjust electrical generation supply in order to match con-
sumer demand, and traditional power sources cannot vary power quickly enough to balance out
the nature of solar and wind variation. Therefore, power system operators have recently begun
allowing end-use customers to help maintain the electrical grid frequency.

Frequency Regulation Markets: In order to maintain the operating frequency of the electric grid

at rated values, power system operators call for the provision of frequency regulation services from
end-user customers and thermal power plants in day-ahead or real-time markets. The frequency
regulation service provision resources, such as a data center, submit their estimated energy con-
sumption baseline and frequency regulation service provision capability into the corresponding
market either a day in advance (for day-ahead market), or an hour in advance (for real-time mar-
ket). The energy consumption baseline is denoted as P4 (i.e. the average amount of power the
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data center is expected to consume in the next day/hour) and the amount of frequency regulation
service is denoted by R (i.e. the amount of power the data center can vary on-demand).

For real-time markets, estimates can be made at the start of the hour at 60-minute granularity
(e.g. energy consumed over the next hour) or at five-minute granularity (e.g. energy consumed
for every five-minute interval over the next hour), depending on the ISO support. We find that
making hour-ahead 60-minute granularity bids in the real-time market provides the ideal trade-
off in forecasting accuracy, as it is difficult for data centers to forecast its usage a day ahead, or to
estimate usage over the next hour in five-minute granularity. In this paper, we utilize PJM real-time
market which only allows bids at 60-minute granularity.

Regulation signal: The frequency regulation service provision resources (e.g. a data center) have
to modulate their power consumption to follow a frequency regulation signal, r(t), which falls into
the range of [—1, 1]. The frequency regulation service signal is broadcast every two seconds by the
ISO based on the current state of the power grid. ISOs ensure that that the difference between
two consecutive values of r(t) does not exceed 0.5% of R [67], which means that the frequency
regulation signal is relatively slow-moving compared to the variability experienced in servers.
Examples of regulation signals can be seen in Figure 7.

By setting the energy consumption baseline (P4,4) and the amount of frequency regulation (R),
the data center should keep its power consumption at time ¢ to be Pgoy + 7(t) - R. The energy
charge of the data center at time period ¢ equals to the product of P,.4 and locational marginal
price of energy at time ¢. The revenue (reward) that the data center receives at time period ¢ from
providing frequency regulation service equals the product of the amount of frequency regulation
service (R) and the price of frequency regulation service price at time period.

Quantifying Quality of Frequency Regulation Service Provision: The revenue received from fre-
quency regulation service is also dependent on, and proportional to, the quality of the provided
regulation service. In other words, the magnitude of the revenue depends on how well a frequency
regulation service provision resource (e.g. data center) can track the frequency regulation signal.
The quality of tracking is quantified by a performance score [67]. In quantifying the performance
score, the electricity market does not differentiate between the uncertainty of data center demand
vs the inability to follow regulation demand. Performance score is calculated with Equation (1):

1
Performance Score = 3 (Delay + Accuracy + Precision) (1)

Delay is the time delay between the frequency regulation signal and the point of its highest corre-
lation with the regulation service provision resource’s power consumption signal. Accuracy is the
correlation or degree of relationship between the frequency regulation signal and the regulation
resources’ power consumption time series. Precision is calculated based on the instantaneous error
between the regulation signal and the regulating resource’s response.

ISOs typically certify a resource for regulation service provision after the resource achieves a
performance score of 75% or better on three consecutive successful tests [67]. Once frequency
regulation resources are qualified for regulation service provision, they have to maintain a perfor-
mance score of 40% or higher, otherwise, they will be disqualified from future frequency regulation
service provision [67].

Reward pricing and Electricity cost: Figure 1 shows the electricity cost (in $/MWh) and the re-
ward pricing (in $/MWh) combination for a 1-year period in 2018 from PJM Interconnection [66].
The top and right histogram distribution shows the probability distribution function of electricity
cost and reward pricing, respectively, in order to show the density of the scatter plot. Based on
this, we can observe that electricity cost is typically in the $20-$40 per MWh range and the reward
pricing is typically in the $30-$100 per MWh range. The diagonal lines in the scatter plot represent
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Fig. 1. Electricity cost and corresponding Regulation reward pricing in 2018 [66].

the reward to cost ratio, with the lowest line representing price parity. 75% of the time we observe
reward pricing greater than or equal to electricity cost. Therefore, ample opportunities exist for
data centers to take advantage of favorable reward pricing. In fact, we observed that there are
certain reward to cost ratios that result in net profit, as highlighted by the yellow-colored dots.
That is, at reward to cost ratios above 4, we observe that 10% of the time! the reward revenue from
frequency regulation completely offsets the electricity cost resulting in overall profit. With the
increasing adoption of renewable energy, it is expected that the reward to cost ratio will only be-
come more favorable [29]. Clearly, there is a great financial incentive for data center participation
in frequency regulation markets.

Regulation Service vs Reducing Power Consumption: Data center operators try to optimize dif-
ferent aspects of the data centers to reduce costs and maximize monetary benefits as long as the
optimization does not violate the Service Level Agreement (SLA). Lowering data center energy
consumption is of great importance because electricity costs are a major operation expense in
data centers. To reduce the data center energy costs, numerous approaches have been proposed to
minimize the energy consumption of servers [11, 39, 54, 56, 80, 87], or decrease the server’s peak
power without violating the SLA [3, 31, 71, 89].

Counter-intuitively, we show that regulation service mechanisms can enable data centers to
reap monetary benefits without the goal of minimizing server power consumption. As shown in
Figure 1, the reward to cost ratio is commonly 2x-10x. Due to these reward to cost ratios, there
may be greater monetary benefits to participating in frequency regulation service than to minimize
server power consumption—in many cases it may be beneficial to have the server consume more
power.

2.2 Overview of Server Co-location

The traditional data center technique to improve the energy efficiency of data centers revolved
around increasing the utilization of existing power infrastructure and servers. Typically, many
servers run at lower utilization, and therefore consume less power than its nameplate power [20].

! Assumes a data center at moderate 40% load and 80% performance score.
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This is especially true of servers running latency-critical workloads which typically exhibit request-
response patterns where its utilization depends on the amount of incoming requests. A common
technique to improve the energy efficiency of data center servers is to increase the utilization of the
servers. Since servers commonly are lowly utilized [20], co-locating many jobs can significantly
improve server utilization. For example, server virtualization is a commonly used technique to
allow co-location on a single hardware server.

More recently, there has been significant work done in exploring the safe co-location of common
data center workloads, such as best-effort batch-type workloads and latency-critical workloads.
Many works exist in supporting safe co-location of latency-critical and batch workloads to increase
server utilization and scheduling of safe co-location pairs [9, 15, 16, 55, 57, 61, 62, 65, 72, 90, 91, 94].
For example, Heracles [57] dynamically manages multiple hardware and software isolation mech-
anisms to ensure that latency-critical workloads meet their strict QoS targets while maximizing
the resource given to best-effort tasks. More recently, safe co-location works have explored how
to enable co-location of multiple latency-critical workloads [61, 65] by quickly adjusting resource
isolation in a fine-grain manner.

In our work, the goal is to provide practical data center frequency regulation for latency-critical
data center workloads. Due to their low utilization, the amount of frequency regulation provision
available is severely limited. In order to increase the amount of frequency regulation provision
available, we aim to co-locate latency-critical workloads with a complementary best-effort work-
loads with standard commercially available isolation mechanisms. Incorporating more advanced
co-location policies would enable even better isolation of latency-critical and best-effort workloads,
resulting in better tail latency results.

2.3 Overview of Data Center Power Capping

A common technique to improve the utilization of power infrastructure is to over-subscribe the
number of servers in the data center and then limit the power consumption to safe levels un-
der power emergencies. Power emergencies can occur when the amount of power consumed by
servers exceed the amount of power that can be provided by the data center. Typical techniques to
handle these power emergencies are known as peak shaving or power capping. A lot of research
has been conducted on power-capping across single server, clusters/data center, or combination
of them.

Server-level power capping: Peak shaving (power capping) limits the peak power consump-
tion either the data center- or server-level resulting in lower peak demand charge. Power capping
can be achieved with a wide range of techniques, which leverage computational resources. These
techniques include DVFS [14, 89], thread packing [14], CPU]Jailing [37], co-scheduling of power-
complementary workloads [31], consolidating cores [6], and using batteries [1, 27, 42, 82].

Data center-level power management: Most power management techniques at data center rely
on meticulous coordination of server-level power capping techniques [20, 31, 37, 50, 84, 88] in
conjunction with leveraging power distribution units (PDUs) [51, 73, 92].

Supporting power capping has some similarities to supporting frequency regulation. For exam-
ple, both require the data center (or server) power consumption to meet a certain power level. In
the case of power capping, this power level is a static power level, while in frequency regulation
this power level is time-varying based on the regulation signal. However, there exists a critical dis-
tinction that presents unique challenges for frequency regulation. In power capping, the nominal
utilization and power consumption level is at a maximal level and power capping techniques aim
to decrease the power consumption through various means (i.e. DVFS, resource limiting, etc.). In
the case of frequency regulation, the data center power level must be able to decrease or increase,
depending on the regulation signal. In addition, the capacity for power increase/decrease must
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be significant enough to provide a sufficient level of frequency regulation provisioning in order
to obtain sufficient reward. In comparison to power capping techniques, POWERMORPH not only
requires servers to reduce power, but also follow and increase power.

3 CHALLENGES TOWARD PRACTICAL DATA CENTER FREQUENCY REGULATION
UNDER LATENCY-CRITICAL CONSTRAINTS

Due to the large electrical load that data centers consume, data centers make a good candidate
for participation in regulation services. Prior works have investigated the challenges and benefits
of incorporating data centers into power grids as regulation resources [54] for demand response
and frequency regulation service. However, most work focuses on the electricity market mecha-
nisms on how to incentivize data centers to participate [54] or explores potential benefits through
extensive modeling [30, 49]. However, these prior works do not adequately demonstrate practical
implementations, and their challenges, for realizing data center participation in frequency regu-
lation services. In our work, we specifically address how data center frequency regulation can be
supported under more realistic environments which run latency-critical workloads. In this section,
we will highlight the challenges towards achieving practical data center frequency regulation with
commodity servers and our approach to overcome it.

How to maximize regulation provision? A key challenge that latency-critical workloads present
is that servers tend to be lowly utilized due to the request-response nature of the workload [2]. This
presents a challenge since the lower utilization of latency-critical workloads limits the amount of
frequency regulation provision that can be provided. This contrasts to best-effort batch workloads
which tend to run at near maximum utilization and provide a readily available large dynamic
power range to modulate power.

Another key challenge to maximizing the amount of regulation service provision is the need to
provide symmetric frequency regulation. While many power modulation techniques, such as DVFS
and core shutdown, can already provide symmetric frequency regulation, their provision amount
can be limited. For example, if a server commits a total of 20W for regulation service, then it must
be able to either increase (up to Pyyg + 20) or decrease (down to P,y — 20) power consumption as
requested. However, certain scenarios can lead to violations. For example, if core sleep states are
used to reshape power and the server utilization is low, then there may not be enough cores to put
to sleep to regulate the power down to satisfy the regulation signal which negatively affects the
performance score. To maintain quality regulation performance, only a limited amount of power
can be provisioned for frequency regulation.

To address these limitations and to maximize regulation provision, we pair the latency-critical
workload with a co-located complementary workload to provide offset power which symmetrically
increases the amount of room to modulate power up and down.

How to practically support complementary workloads? A key contribution of POWERMORPH is
the use of complementary workloads to regulate server power. Essentially, we co-locate a best-
effort workload that we can modulate. Utilizing complementary workloads presents several
challenges. Specifically, the complementary workload needs to be able to handle the high variabil-
ity of the latency-critical workload and needs to avoid performance-degrading contention with
the latency-critical workload. Due to the request-response nature of the latency-critical workload,
server utilization tends to exhibit high short-term variability and is prone to bursty behavior [11].
This presents a unique challenge for the complementary workload as it needs to modulate its uti-
lization to complement the latency-critical workload and at the same time aim to accurately track
the moving regulation signal.

If not carefully co-located, the complementary workload may also contend with the latency-
critical workload causing QoS degradation. As shown previously, there exists a large body of work
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Table 1. Overview of Limitations of Existing Works Enabling Data Centers to Provide Regulation Service

Power Modulation Techniques Server/  Workload QoS Criteria Workload Service RS
Cluster ~ Support! Time Constraint ~ Provision

DVES [49] Server Sim. No QoS Support ms Low
Forced idle injection [59] Server BE No QoS Support s Medium
CPU resource limit [6] Server BE BE sojourn time? s Medium
Power Capping, Job sched. [96] Cluster Sim. BE sojourn time min/hour Medium
CPU res. lim., Idle server [8] Cluster BE BE sojourn time s Medium
RE, EES, VM Allocation® [63] Cluster Sim. BE sojourn time min High
RAPL, Job sched./Queue [95] Cluster BE BE sojourn time s High
Dummy load, DVFS [83] Cluster Sim No QoS Support ms High
Complementary Workload, DVFS*  Cluster =~ LC&BE LC tail latency ms High

1BE: Best-effort/Batch, LC: Latency-critical, Sim: Simulation || 2sojourn time = queue time + execution time.

SRE: Renewble Energy, EES: Electrical Energy Storage || *This work: POWERMORPH.

PowERMORPH (the last row) enables data centers with co-located batch and latency-critical applications (very tight QoS
constraint) to participate in regulation service to reduce the data center electricity costs.

that propose co-location frameworks to allow latency-critical and best-effort workloads to safely
co-locate. Although co-location frameworks that support multiple latency-critical workloads exist,
we do not consider co-locating multiple latency-critical workloads as a complementary workload
since the strict QoS requirement of the latency-critical workloads would eliminate any possible
power modulation opportunity. In order to maintain the tight QoS of the main workload, the goal
of this work is to answer “What level of isolation is required to safely co-locate complementary work-
loads with latency-critical workloads for regulation service?” and also to see “How does co-located
workloads variance impact regulation service quality?”

How to reshape power? A major challenge of data center frequency regulation is the selection
of techniques to modulate power to track the regulation signal. The challenge here is the time
granularity of the regulation signal requires the data center to vary its power every two seconds
and the need to provide sufficient and symmetric regulation provision. We mainly focus on servers
since they consume the largest portion of the total data center power [38, 86]. Furthermore, servers
provide a large dynamic power range for providing regulation service. Therefore, these computa-
tional resources are a large source of untapped regulation service provision that does not require
the capital expense overheads of utilizing energy storage devices (i.e. flywheels, batteries)? and
are readily available in commodity data centers. Within servers, by far the largest consumer of
power is the processor, followed by main memory [38, 86]. Memory tends to not be significantly
energy proportional as main memory has significant static power due to the need for DRAM re-
fresh [58, 74]. Processors, on the other hand, are extremely energy proportional due to aggressive
low power states such as idle power states (power gating) and dynamic voltage frequency scaling,
which makes them an ideal candidate.

Table 1 shows a list of common techniques that can modulate data center power and their limi-
tations. At the cluster-level, power can be potentially reshaped by migrating load in order to con-
solidate workloads to a subset of active servers and turn off idle servers. In addition, idle servers
can be turned on/off such that the idle power can act as a form of power modulation. However,
load migration takes in the order of seconds or minutes, and turning idle servers on/off can take
in the order of seconds, both of which are not responsive enough to track regulation signals. Load
can also be modulated by queuing up jobs that are going into the cluster. While potentially more
responsive, this approach can result in significant delays in job processing time. In many cases,
these techniques can tolerate and enforce QoS targets with up to 200% performance degradation.

2See Section 5 for frequency regulation comparison against Flywheel.
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Due to this high tolerance, standby jobs are able to be used while delaying requests is not tolerable
for latency-critical workloads.

Therefore, in order to modulate cluster-level power, we would require coordination with server-
level techniques which are more responsive. Potential knobs here involve DVFS [49] and core
sleep states [59] which can be modulated in the order of milliseconds. However, DVFS can only
reshape dynamic power, which limits the amount of regulation provision that it can provide. Core
sleep states can provide more benefits by also taking advantage of static power. Techniques such
as CPU resource limits [6] can be combined with DVFS and core sleep. Hardware power limiting
mechanisms, such as RAPL [40], provide power capping through hardware-controlled DVFS. Many
of these server-level techniques are coordinated with cluster-level techniques [8, 95] to provide
higher levels of frequency regulation provisions. However, a major limitation of these techniques
is that they can significantly slow down the running workload, which is detrimental in latency-
critical environments.

To solve these aforementioned limitations, we introduce using complementary workload where
we utilize a co-located application as a knob for power reshaping. By modulating a complementary
workload, we can provide millisecond power reshaping (to mask the high variability of the latency-
critical workload and meet the granularity of the regulation signal), provide a high provision for
frequency regulation (to both increase and decrease power consumption), and can meet tight QoS
targets.

How to coordinate cluster-level power reshaping? Another challenge of data center frequency
regulation is in coordinating regulation service across all servers in the data center in order to
maximize cost benefits. Cluster-level coordination occurs at two time-scales. Every hour the data
center has to make a bid for the amount of frequency regulation (R). Every two seconds the data
center as a whole has to follow a regulation signal. This two-second regulation signal does not
provide ample opportunity for complex cluster-level optimizations. On top of that, the data center
can have various cluster scheduling policies (such as load-balanced or consolidated) which can
interfere with cluster-level coordination of frequency regulation.

Therefore, we propose a hierarchical approach where servers are allocated individual frequency
regulation provisions and enforced locally to meet the timing requirements of the regulation signal,
and regulation provisions are reallocated every hour globally which enables more time-intensive
optimization policies to maximize cost benefits. We found this hierarchical approach provides good
provisions and adapts to various cluster scheduling policies.

4 POWERMORPH

The goal of POWERMORPH is to provide practical data center-wide frequency regulation using
commodity servers. The POWERMoRPH framework coordinates server power reshaping using
DVES and complementary workload provides performance isolation to maintain tight QoS, and
maximizes rewards by providing symmetrical regulation service provision. Intuitively, POWER-
MorprH utilizes complementary workload to add offset power to maximize the amount of reg-
ulation service provision. POWERMoRPH dynamically adapts to the power behavior of different
types of applications running on the server resulting in more flexibility and robustness. Figure 2
demonstrates the server- and date center-level components of PowERMoRPH. In this section, we
describe how server-level components of PowERMoRPH work, then expand the proposed server-
level regulation service approach to enable data center participation in regulation service.

4.1 PowerMorph Profiler

Targeting data centers with commodity servers in this paper, each server has a specific power
consumption pattern based on its hardware resources and the workload running on it. In order to
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Fig. 2. PowerMorph overview. (a) Hierarchical coordination of servers for data center-level regulation service.
(b) Server-level components of PoweErRMorprH. Grey dashed boxes are PowerMorph inputs. Profiler runs on
each server only one time to obtain the power model of the server. Optimizer runs every hour to determine if
the server participates in RS. Rand P, ¢ are computed by Optimizer. Since the profiled power model can vary
for different applications, we adapt the computed power to the application’s power behavior. Application
adapted power (AAP) is the target power of the server to be set in the next two-second time step which is
the adaption of the power model interpolation error (e in black circle) for currently running applications on
the server. The controller runs every two seconds to control the co-location policy module.

control a server’s power, i.e. providing regulation service, POWERMORPH requires the power con-
sumption pattern of the server which we call Power model. Profiler is run once on each server to
sample and capture the Power model of the server with a workload running on it. Depending on
the granularity of frequency scaling that the server’s hardware supports, the profiling operation
takes about one-to-three minutes.

We use deep learning training workload on the server since they are both computation- and
memory-intensive. The captured power model is built by interpolating the samples of (utilization,
frequency) pairs each of which corresponds to a Pcpy and Ppraas- Due to interpolation and using
one workload type to profile the power consumption pattern of a server introduces an error to
the power model, @ in Figure 2(b). We use a 1D Kalman filter to make POWERMoRPH capable of
adapting to different workloads which will be explained in Section 4.3.3.

4.2 PowerMorph Optimizer

The profit of providing regulation service depends on the average power usage of the server which
is determined by the workload (P,,4) and the regulation provision (R) that the server is able to
provide. Optimizer is responsible for picking a (P,,4) and (R) that maximize the data center profit.

4.2.1  Maximizing Regulation Provision with Offset Power. Using power range lines, Figure 3 gives
an illustrative overview of how PoweERMoORPH adjusts the server’s CPU cores to reshape its power,
while avoiding impacting the latency-critical workload adversely. The circle markers on the power
range lines are points of interest for the server’s power when running its target workload. Py,;,
and Py, represent the server’s minimum (active idle) and maximum power consumption. Pgy is
the average power consumption of the latency-critical workload running on the server (with no
participation in regulation service). Due to natural variations in workload load, there is a natural
variance in the power consumption of the server at a given utilization. This variance range is
represented by the smaller solid circles. In this illustrative example, we assume we have 16 cores
on the server, where the workload on the server can be serviced by packing all of its work in the
first five cores. Therefore, on average, the amount of power consumed is due to the first five cores.
This represents a case where the workloads’ utilization is typically ~30%, but can vary from ~20%-
40% due to real-world short-term variation. We note that all cores typically do not consume the
same amount of power as the utilization-power curve is non-linear.

In order to maximize the amount of regulation service provision, we need to provide a large
symmetrical range. Our approach is to introduce offset power (through the use of complementary
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Fig. 3. PowerMorph processor core organization and operation.

workload) so that we have a larger dynamic power range to utilize. In the figure, Porrs.; is the offset
power added to Py 4. Therefore, the effective average power of the serveris P’ = Pyyg+Posfser- 2R
is the regulation server provision that is available. Therefore, the server’s power can range from
P’ — R to P’ + R, represented by the smaller square markers. These regulation service parameters
are readjusted by Optimizer every 60 minutes depending on the regulation service market, data
center workload, and workload variance.

4.2.2  Determining Regulation Provision and Offset Power. POWERMORPH tries to minimize the
total electricity cost by picking a proper offsetted power P’ (reported to ISO as the average power)
and |R|, for any given workload (i.e. P4y and Pyq,), reward (rew), and electricity cost (cost). Equa-
tion (2) shows the optimization formula solved by POWERMORPH.

minimize : Total elec. cost = P! ., — Reward
st: Pl,., = P’ X cost
Reward = |R| X rew
Puvg + ——= < P’ < Ppgx

Total elec. cost < threshold X Pgoq X cost

Recall that [-R, +R] has to be symmetrical around P’. Therefore, for any given P’, |R| is calculated
as follows:

P,
IR| = min (Pmax - PP — (Pavg + vzar) +safe range) (3)

As P’ increases, |R| increases up to a point, then begins to decrease (because +R eventually
becomes restricted by Pp,qx). Similarly, as P’ gets close to Pgeg + P’“Z“’, it becomes restricted by
the safe range (shown as an arrow with a hollow circle in Figure 3) which represents the limit of
lowering frequency while safely meeting QoS.

To find the optimal P’, we solve the optimization formulated in Equation (2) with exhaustive
search (as illustrated in Figure 4) by gradually increasing Py fses from Pgyg + PUZ‘" to Pp,ax, which
we call sweeping. For every P’, we estimate the total monetary benefit of participating in regulation
service and select the combination that maximizes the benefit. This optimization runs every hour
when the data center bids how much regulation service provision it can provide. Based on our
experiments, this step takes under a second. Therefore, this algorithm has negligible overheads.

In order to pick R and P’, we need to know the server’s P4 and its variance power (Py4,). Much
research has been done on predicting these parameters for data centers based on their historical
load traces [4, 5, 17, 21, 53, 81, 93]. In this work, our aim is not in proposing new load prediction
algorithms for data centers. Instead, we can rely on these prior works to be able to predict the
average load of the data center, which we can then use to estimate the server’s Pyog and Pyq,. We
evaluate the impact of power prediction inaccuracy in Section 5.
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Fig. 5. Design space exploration of benefits (Normalized total electricity cost).

When to participate: Figure 4 shows illustrative examples of our algorithm in picking P’.
Figure 4(a) shows a case with high reward/cost ratio. The dotted line shows the P, cost of the
server without participating in RS. By increasing P,ffes, reward (|R|) first increases, and then de-
creases (dashed line). Meanwhile, by increasing P,rrse.:, the electricity cost increases (dash-dotted
line). Since reward/cost is high, monetary reward outweighs the electricity cost introduced by
Pyffser» resulting in savings (green shaded region). However, at some point (after the “Highest
Reward” point), due to shrinking |R|, the total electricity cost begins to increase to the point that it
exceeds the Py, cost (dotted line), i.e. red area. In other words, after some point, it is not beneficial
to increase P,ffs.; anymore. POWERMORPH picks P’ that minimizes total electricity cost (solid line).

Figure 4(b) shows an example in which reward/cost is low. Since reward is low and electricity
price is high, electricity cost savings is only observed with small Pysrs.; before electricity cost
overheads dominate. As P” increase, total cost quickly exceeds the P4 cost (dotted line), i.e. red
area. In such scenarios, in which the green area is very small, an even small misprediction of either
Payg or Py, leads to losing money. To avoid such scenarios, POWERMORPH uses a threshold to be
conservative in participating in regulation service. If the minimum total electricity cost (for the
best P’) is higher than threshold * (Pyy4cost), POWERMoORPH decides not to participate in RS. We
use threshold = 0.95 in our experiments.

The impact of reward and electricity cost: We also performed a space exploration to inves-
tigate how the total electricity cost is affected by reward to cost ratio and P,4. Figure 5 shows
total electricity cost normalized based on the average server power (Pqq4) for all possible reward
prices and electricity cost values. We ran the experiment for the scenarios in which the server is
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running with 10, 50, and 70% utilization each of which corresponds to a Py4. In this experiment
we assume there is no workload variation, and POWERMORPH is able to follow the regulation signal
with a performance score of 80%.

In Figure 5, normalized total electricity cost equal to 1 means the total electricity cost of the
server participating in regulation service is equal to the electricity cost of the same server with-
out participating in regulation service. There is a point at which the reward (R) outweighs the
electricity cost introduced by P,rfes, the area at which normalized total electricity cost is greater
than 1.

PowERMoORPH withdraws from regulation service for all points that have normalized total elec-
tricity cost of greater than 1, which is the dark blue-colored area in Figure 5. The lower the normal-
ized total electricity cost, the more monetary benefit we get. Negative normalized total electricity
cost (less than zero) means not only we do not pay for the electricity we use, but we also earn
money at that point, which is shown by grayish color in Figure 5. In Figure 5, the area at which
we earn money (negative normalized total electricity cost) shrinks as the server utilization (Pso4)
increases. The reason is that at higher utilization regions, the amount of R that we can provide
starts to decrease, and as a result we do not get a large benefit.

4.3 PowerMorph Controller

To provide regulation service, the server power needs to be adjusted every two seconds. Power-
Morph Controller calculated the target power of the server (P;1) based on the regulation signal
(r(1)), regulation provision (R) and P’ calculated by PowerMorph Optimizer, as well as issuing the
proper commands to the co-location policy module.

4.3.1 Core Organization. To provide isolation between the complementary workload and the
latency-critical workload to maintain tight QoS, we pin tasks to specific groups of cores. Based
on real-time utilization of the latency-critical workload, the Working core set is pinned with the
latency-critical workload, and other resources, such as cache, are allocated to them to meet their
target QoS. The power consumption of the working cores is P,y with some power variance, due
to workload variance.

The Offset cores are dynamically assigned between either the latency-critical workload or the
complementary workload as the server’s utilization varies. These cores increase the server’s power
consumption in order to provide symmetry to increase or decrease server power, as well as to
increase the amount of regulation service provisioning that we can provide. The Free core set is used
to increase target power by adjusting the complementary workload when needed. By organizing
PowEerMoORPH into three core types, we can provide different functionalities for regulation service,
along with the server’s original latency-critical workload, in a way that decouples the performance
impact with reshaping server power.

The number of cores assigned to the latency-critical workload is readjusted in real-time to dy-
namically provide performance isolation. If latency-critical workload needs more computation
resources, an offset core (or free core if no offset cores exist) is reallocated and converted into a
working core instantly. Then, other cores are reevaluated in a way that the server’s power follows
the regulation signal.

Due to variation in server load, the offset cores also act as cores that absorb this noise and
minimize core reallocation events. In order to remove the switching overhead, we added hysteresis
to the switching. Switching an offset core to a working core occurs instantly when the workload
requires more core. On the other hand, if a working core has not been used for a while, we convert
it into either an offset core or free core, whichever can preserve P’. Adding this hysteresis makes
the isolation more robust, reliable, and has almost no overhead.
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4.3.2  Complementary Workload. By artificially inflating the utilization of the server by Py ¢ser,
we can essentially follow regulation signals solely by scaling the utilization of the complementary
workload and varying power around P’. Fundamentally, there is a trade-off between how much
power we offset by (extra electricity cost) and how much reward we get by increasing our reg-
ulation service provision (more regulation reward). Supporting utilization scaling requires us to
explore 1) what type of complementary workloads to use, and 2) how to control the complementary
workload.

Best-effort complementary workload selection: A common approach to improve the energy ef-
ficiency of data centers is to co-locate best-effort workloads with latency-critical workloads in
order to increase the utilization of the servers. To select a best-effort complementary workload,
we assume the server can rely on a multitude of prior works that select safe co-location workload
pairs [9, 55, 57, 61, 62, 65, 91].

Complementary workload isolation: One of our goals is to identify the level of isolation required
to safely co-locate complementary workload with latency-critical workloads. Towards this end, we
evaluate using isolation mechanisms that are readily available in commercial off-the-shelf servers.
While more sophisticated workload co-location mechanisms exist [61, 62, 91], our evaluation is
conservative and would obtain even better results with more advanced techniques.

To provide isolation and preserve QoS in co-location scenarios with best-effort workloads, we
follow a similar scheme to Heracles [57]. Since latency-critical workload has priority over the best-
effort workload, we continuously monitor the resource requirement latency-critical workload and
adjust hardware resources allocated to that. Using taskset command, we pin the latency-critical
and best-effort workloads to separate cores so that there is no interference between them. In or-
der to help latency-critical workload run faster, we increase the priority of its processes using
nice command. To isolate shared resources such as LLC, we utilize Intel’s Cache Allocation Tech-
nology [34] which allows partitioning of cache between tasks. Currently, no memory bandwidth
isolation techniques exist. In [57], memory bandwidth availability was maintained by scaling down
the number of BE cores. In our experiments, we observed that the main sources of contention come
from core and cache contention, and memory contention has a minuscule effect.

Controlling utilization of best-effort workloads: One challenge of using best-effort complemen-
tary workloads is that we cannot direct the best-effort workloads to limit utilization directly. There-
fore, to limit the utilization (and the power consumed by the server), we need to throttle these
workloads’ utilization using existing Linux system tools. We observed taskset achieves a better
performance score as this method is more robust to noise introduced by variation.

4.3.3  Morphing Server Power. Power morphing is guided by a sampled profiled power model
that interpolates the power curves shown in Figure 6. For each (utilization, frequency) pair, we
have Pcpy and Ppran, separately. Every cycle (two seconds) we need to determine the target
power (P11 = ry41 * R+ P’ ) based on the new regulation signal r;,1, the chosen R, and determine
if we should increase/decrease power.

Mapping target power to target utilization/frequency: Utilization (on offset/free cores) and fre-
quency scaling (on working cores) are the knobs we use to morph server power. To achieve a
target power, we need to select a utilization/frequency point given our current operating point (as
illustrated in Figure 6).

To decrease power, POWERMORPH first removes free/offset cores allocated to best-effort com-
plementary workload (@—@®). If still necessary, PowerRMoRrpH further decreases the frequency
of the working cores while remaining within the safe range (@—@). To increase power, POWER-
MorpH first increases the frequency of cores allocated to the working cores (@—®). Next, POWER-
MorprH increases the server power by allocating offset/free cores to the best-effort complementary
workload until the target power is reached (@—@).
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Fig. 6. Utilization - Power profile of our experimental server. Dashed line conditions where QoS fails. Solid
lines represent where QoS is satisfied. The overall “safe range” where QoS passes are highlighted in grey.

Adapting to noise and application types: Due to noise/error introduced by inaccuracies to the
profiled power model, non-deterministic nature of real systems, and application type-dependent
power consumption pattern, setting the server utilization/frequency may not lead to the tar-
get power. To address this problem, a 1D Kalman filter is integrated into PowerRMorprH . The
noise/error of the previous cycles (e;) is fed into the filter to get an estimate of the error (e;+1) we
predict for the power model to have for the next two-second interval. Adding e;;; to the target
power (P;.1) we will have the Application adapted power (AAP;) for the next interval. Then, us-
ing the power model obtained by the Profiler, PowERMoRPH maps AAP; ., to utilization/frequency
which is going to be set.

The adaptive capability of PowERMoRPH provides high-quality regulation service with different
application types, i.e. memory- or compute-intensive. For example, for memory-intensive applica-
tions, the extra memory power (compared to the memory power in the profiled power model) is
inputted as noise/error to the filter. Therefore, the application adjusted power (AAP;;) would be
less than the target power (P;1) to alleviate the adverse effect of extra memory power usage. We
also noted that depending on the workload, the maximum server power varies while the shape
of the power curve remains similar. To account for this difference, we derive a scaling factor that
scales the profiled power curve to the running workload’s power at a given utilization when mak-
ing power predictions.

Maintaining QoS: In order to maintain QoS under varying loads and regulation signals, we mon-
itor the amount of latency slack (the difference between observed latency and target tail latency)
at run-time. If the observed latency approaches the target tail latency, then we would need to in-
crease the amount of latency slack available to avoid any QoS violations. The way to do this is by
lowering the amount of best-effort workload that is co-locating. By opting to maintain the latency
slack, we essentially trade-off the performance score (and amount of reward we can obtain) to
ensure QoS levels are met.

4.4 Data Center-level Regulation Service

As illustrated in Figure 2(a), to provide frequency regulation across the data center, we utilize a
hierarchical approach where each server is allocated its own responsibility of frequency regulation
provision. For example, Server A (due to its workload or hardware resources) can provide 10W for
frequency regulation service and Server B can provide 20W for frequency regulation service. The
regulation signal is then broadcast to every server, where every server is responsible for tracking
a regulation signal with respect to their own regulation provision.
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Table 2. Workload Utilization Trace Properties

l Trace name [ Avg. load (%) | Variance [ Min (%) | Max (%)
email 10.38 10.5 3 34
msg-store 32.1 10.77 21 59
high-util 50.5 15.32 25 75

email and msg-storel are from [87].

To support this, we reallocate regulation provision (R) responsibility every hour. Every hour,
we broadcast the reward and electricity pricing to each server and each individual server will de-
termine its average power (P') during the one-hour interval as well as the amount of frequency
regulation provision (R) it can provide. The server’s regulation provision will then be aggregated
at the data center-level and sent to the ISO. To determine the data center’s estimated power con-
sumption, we aggregate the estimated power of all running servers. Since this reallocation occurs
once every hour, this process can utilize more complex optimization.

5 EVALUATION

Platform setup, tools, and benchmarks: We run all experiments on a small-scale data center of six
servers with an Intel Xeon E5-2620 v4 processor, which has 16 physical cores, 128GB of DDR4
DRAM. Power of the server is sampled through Intel PCM [33]. The Web Search benchmark from
CloudSuite [64] is used as a representative latency-critical workload. The target tail latency was
selected as the 95th percentile tail latency of Web Search running in isolation. To obtain the target
tail latency, we adopt the same methodology established in prior works [11, 91]. We obtain the
target tail latency at the “knee” of the utilization®-tail latency curve, where queues and tail latency
begins to grow—which we observe to occur at ~90% of the maximum supported RPS.

Workload utilization traces: We evaluate Web Search under realistic varying workload utiliza-
tion traces from Table 2. We use two workload traces of differing variance (email, and msg-storel)
from [87]. These traces were collected from institutional data centers representing a wide range
of workloads including web serving, email services, and data stores.

According to [2], the utilization of servers running latency-critical workloads is typically around
20-40% of max RPS. However, to evaluate POWERMORPH at higher utilization ranges, we used a
synthetic high utilization load (high-util). We also evaluate a scenario where the cluster has mixed
workload utilization where each trace is run by two servers.

Best-effort complementary workloads: When selecting a complementary workload, it is impera-
tive that this workloaddoes not degrade the QoS of the latency-critical workload. Complementary
workloads can simply be safe co-located best-effort workloads in co-located data centers. While
outside the scope of this work, we assume that safe co-location workload pairs can be assigned
dynamically to the servers from a multitude of prior works on identifying safe co-location pairs
at run-time [9, 55, 57, 61, 62, 65, 91]. To select a candidate complementary workload in our exper-
iments, we evaluated a range of applications from SPEC2017, PARSEC3.0, and machine learning
training (AlexNet, VGG, LeNet) built on Keras. We observed that all of these best-effort workloads
can safely co-locate with our target latency-critical workload using existing isolation mechanisms
available in commodity servers. For our complimentary workload, we selected AlexNet training.
ML workloads give us a throughput metric (training epochs per second) [32] which we can use to
quantify throughput and TCO impacts.

30ur metric for utilization is with respect to the maximum achievable request-per-second of the LC workload and not the
OS reported CPU utilization (i.e. as reported in top).
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Fig. 7. Regulation signals used to evaluate POWERMORPH.

Regulation signal selection: We select three regulation signals from PJM regulation signal
archive [68] selected from 2018. Figure 7 shows the regulation signals we chose for evaluating
PowERMORPH . Since we are participating in hour-ahead regulation market, we picked one hour
slices. We chose Extreme (E) with regulation signal that stays in the highest and the lowest power
points for extended periods of time. We chose High Transition (HT) which have frequent min-
to-max power change requests. We select Noisy (N) to evaluate how accurate POWERMORPH can
track small changes in the regulation signal.

Regulation reward and Electricity cost selection: The regulation reward and electricity cost is
broadcast every hour (for hour-ahead regulation market). We selected three pairs of (regulation
rewards, electricity cost) shown with hollow black circles in Figure 1. (70, 20) is selected from the
area with the highest density (the most common scenario). (101, 12) represents a high reward/cost
ratio pair. (102, 100) represent a reward/cost ratio that is approximately 1 where electricity cost is
high. Note that with high electricity pricing, reward price is typically high and of similar magnitude.
For ratios where price is greater than reward, POWERMORPH typically decides not to participate in
regulation service.

Evaluation scenarios: In our evaluation, we consider the following scenarios. LC + BE represents
a baseline scenario where best-effort (BE) workloads are co-located to increase the utilization and
efficiency of the servers. LC + BE + RS represents the co-location case that is participating in
regulation service where the best-effort complementary workload is being regulated by POWER-
MogRpH.

5.1 Comparative Results

Figure 8 shows a comparative design-space exploration of various frequency regulation techniques
across a range of reward-to-cost ratios. This figure runs every technique with our three workload
utilization traces. We define total electricity cost = (cost of electricity consumption)—(reward ob-
tained from regulation service) + (capital expense cost). Capital expense only applies to the Fly-
wheel scenario.

Comparison to traditional data center-level energy-saving approaches: To reduce the data center
energy costs, numerous approaches have been proposed to minimize the energy consumption of
servers [11, 39, 54, 56, 80, 87], decrease the server’s peak power without violating SLA [3, 31,
71, 89], or consolidate servers to turn off idle servers [13, 23, 52, 69, 77-79, 86]. Data center-level
scheduling policies typically fall into two broad categories: Uniformload balanced and Right-sizing,
which consolidates workloads in order to save power. In Figure 8, the electricity cost savings due
to right-sizing is shown with the black horizontal lines and are normalized to each workload’s
electricity cost using Uniform scheduling. The mixed scenario is omitted for figure clarity. As
workload utilization decreases, this results in more power-saving opportunities for right-sizing,
with email resulting in ~80% electricity cost savings.

We evaluate POWERMORPH on top of both Uniform and Right-sizing scheduling. In the case of
PoweErRMoORPH + right-sizing, the idle servers are not shut off to save power, but instead used
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entirely by the complementary workload to provide regulation service. For scenarios where
reward-cost ratio is above 3 (a common scenario), POWERMORPH consistently saves more in elec-
tricity cost compared to right-sizing. Despite POWERMORPH consuming more power by not shut-
ting down idle servers, the amount of reward far outweighs the cost of increased power consump-
tion. In certain cases, POWERMORPH even provides net electrical cost profit where the amount of
reward exceeds the electricity consumption cost! Counter-intuitively, we show that regulation ser-
vice mechanisms can enable data centers to reap monetary benefits without the goal of minimizing
server power consumption.

Comparison with Flywheel energy storage system: We compare against Flywheel [60], a data
center-level energy storage system that has been shown to be one of the best suited for frequency
regulation applications [7]. Energy storage devices facilitate frequency regulation service by either
charging or discharging to change the data center’s power consumption profile without impact-
ing the underlying workload. However, energy storage devices incur high upfront capital cost ex-
penses. In our small-scale experiment, we provision the Flywheel to be similar to the peak power
consumption of our cluster with capital expense cost of $2,400/KW spread over 20 years and power-
energy ratio of 0.25 which is typical of commercial products today [60]. Overall, we found that Fly-
wheel is effective and can save up to ~90% of the total electricity cost with reward-to-cost ratio of
10. However, we found that the capital expense of the Flywheel can significantly reduce the over-
all monetary benefit. POWERMORPH , by comparison, can provide significant regulation provision
without any upfront capital cost, leveraging the available power flexibility in servers.

Comparison with alternative data center-level frequency regulation technique: We compare
against EnergyQARE [8] which runs on top of right-sizing scheduling policies and coordinates
server-level CPU resource limiting with turning idle servers on/off for additional regulation pro-
vision capacity. Even though EnergyQARE can enforce QoS targets of up to 200% slowdown, the
amount of monetary benefits is limited (averages ~80% savings) due to the relatively smaller ca-
pacity of regulation provision that CPU resource limiting and idle servers can provide.

5.2 PowerMorprH Evaluation Results

As shown in Figure 8, POWERMORPH consistently outperforms alternative techniques for data cen-
ter frequency regulation. When running on top of Right-sizing, POWERMORPH is more sensitive
to utilization load as the number of idle servers fluctuate, and hence, the amount of regulation
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Fig. 9. Total Electricity Cost and Cost per Throughput for LC+BE+RS (PowERMORPH) normalized to LC+BE.
Bars of 1.00 represents scenarios that decides to not participate in RS. In all scenarios, POWERMORPH im-
proves total electricity cost.

provision. Running on top of Uniform scheduling is more challenging for POWERMORPH as ev-
ery server has our complementary workload co-located with a latency-critical workload which
introduces more workload variance. Towards this end, the remainder of this evaluation focuses on
PowERMoORPH on top of Uniform scheduling which is more challenging.

Figure 9 shows our experimental results for total electricity cost and total cost of ownership.
The figure shows the result of the co-location case with regulation service (LC + BE + RS) nor-
malized to the baseline co-location case (LC + BE). These scenarios are evaluated against various
(reward, cost) conditions, regulation signal patterns, and workload utilization patterns as discussed
previously. For certain scenarios, POWERMORPH determines that it is not worth it to participate in
regulation service; these are indicated when both total electricity cost and $/Throughput are both
1.0. We note that due to PowERMoRPH's hierarchical approach to cluster-wide coordination, we
observed similar results as we scale across different server counts and hence our result is repre-
sentative of larger clusters.

5.2.1 Total Electricity Cost. In the common case of (70, 20), POWERMORPH can save 59%—74% of
the total electricity cost. Even when the reward-cost ratio is not favorable, (102, 100), LC + BE +
RS can still save 28%-38% of total electricity cost when participating in frequency regulation. For
favorable cases (101, 12), we observed that the amount of monetary reward can outweigh the total
electricity cost. In these scenarios, we observed that we can earn a net profit equivalent to up
to 65% of the original total electricity cost!

In general, we observe that total electricity cost savings remain relatively stable across different
regulation signals, thus demonstrating that POWERMORPH is able to efficiently handle arbitrary
regulation signals.

5.2.2  Total Cost of Ownership. In order to estimate the impact of POoWERMORPH on total cost
of ownership, we evaluate the Dollar amount spent on electricity per throughput ($/throughput).
This gives us a more holistic evaluation metric that incorporates both throughput impact and
electricity cost to evaluate if the throughput reduction of best-effort workloads justifies the gains
in frequency regulation service participation.

Measuring TCO: To capture impact to the total cost of ownership, we evaluate $ per throughput.
Note that typically the metric throughput per $ is used; however, due to having negative electricity
cost this metric becomes difficult to understand. We simply take the inverse to represent TCO. This
metric can simply be understood as the cost (or reward) for every unit of throughput the data center
provides.
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Table 3. QoS (Tail Latency) of LC Workload Normalized to the Target Tail Latency
as Well as BE Workload QoS (Throughput) Normalized to Baseline Co-location Case
for Different Utilization Traces in PowerMorph

Normalized LC tail latency Normalized BE throughput

Trace name =677 [ (70, 20) [ (102, 100) | (101, 12) | (70, 20) | (102, 100)

email 0.52 0.64 0.68 0.55 0.19 1.0!
msg-store 0.52 0.63 0.52 0.43 0.14 0.22
high-util 0.49 0.52 0.52 0.45 0.29 0.43

!n this case, PowERMoRPH decides not to participate in RS.

Measuring throughput: For best-effort workloads, we use the number of training epochs per
minute as the throughput metric. For latency-critical workloads, we use queries per second as the
throughput metric. In order to quantify these two throughput metrics into a single metric, we use
the System Throughput (STP) metric [19] which is commonly used to capture throughput in
multiprogram environments. STP quantifies the total system throughput as follows:

Throughputrciw/rs  Throughputgg.rs
STPser‘uer =

Throughputyc Throughputpg

For a single server, ideal STP is equivalent to 2 since we’re running two workloads (LC + BE).
Values less than 2 indicate overall throughput decrease. The throughput in the denominator is the
throughput when running the baseline co-location, while the numerator is the throughput when
participating in regulation service. To quantify STP for a data center cluster, we simply take the
summation of each server’s STP where ideal STP is two times the number of servers.

TCO results: For the typical case (70,20), we observe TCO improvements of 28-58%. For favor-
able reward-cost ratio (101,12), we are now basically earning money for every unit of computa-
tional throughput. In this scenario, we are earning up to 87%, per unit of throughput, of what we
would have paid for electricity cost per throughput unit.

For scenarios where reward-cost ratio is not favorable, (102,100), the $/throughput is around
parity ranging from 1.03 to 1.15. The throughput decrease is mainly from the complementary
workload and is due to PowerMoRrPH deciding that the additional electricity cost of offset power
does not out-weight the reward benefit of providing a larger regulation provision. Therefore, Pow-
ERMoORPH decides to participate with less offset power (and thus, less complementary workload).
Even with a worse case $/throughput decrease of 15%, we still save 31% of total electricity cost.
Therefore, system designers will need to carefully identify whether total electricity cost is more
important or throughput is more important when running in these reward-cost range.

5.2.3 Quality-of-Service. QoS has been defined as the sojourn time of BE workload in previ-
ous works [8, 63, 96]. In this work, however, the QoS is defined as the latency of LC workload.
Table 3 shows the average normalized tail latency of POWERMORPH across different (reward, cost)
conditions and individual utilization traces. Across all scenarios, not only is PowERMORPH able to
maintain QoS levels but also the QoS tail latency has been improved. Since POWERMORPH regu-
lates the utilization of the complementary workload to follow a regulation signal, we will always
introduce less interference compared to the baseline co-location case. The co-location techniques
utilized by PowERMORPH are not the strictest which shows by utilizing more advanced co-location
techniques, POWERMORPH is capable of performing even better. Therefore, there is a large room to
isolate workloads even more and obtain more profit in regulation service. Table 3 also shows the
BE throughput (QoS) normalized to that of baseline co-location case.
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Table 4. Average Performance Score of Providing Regulation
Service by PowerMorph for Different Scenarios

Regulation Signal Trace Overall
E [ HT [ N | email [ msg-store [ high-util | Average
[85.02 836280528153 | 8362 | 8401 [ 83.05 |

Although the QoS of BE workload is not considered in the POWERMORPH optimizer, the result
shows that the QoS degradation is about 60% on average and within the range of 45-86% when
PowERMORPH participates in RS which still meets the QoS limit defined in previous works which
allow up to 200% QoS degradation [8, 63, 96]. According to [8], 200% QoS degradation is translated
to 0.33 throughput degradation. As shown in Table 3, for some scenarios, POWERMORPH is not able
to keep BE QoS within the range reported by prior works.

5.2.4  Performance Score. Table 4 shows the average performance score of providing regulation
service for different scenarios. Across all scenarios, POWERMORPH is able to provide performance
scores of >80 with an overall average of 83.05. Of all the regulation signals, Noisy signal is the
hardest to track due to the need to track small changes in regulation signal. Even in this scenario,
PowERMORPH is able to obtain a performance score of 80.52. We observe that as the number of
servers in the cluster increases, the overall data center performance score improves due to variation
across servers having a masking effect of under-performing individual servers.

5.25 Impact of Average Power/Variation Misprediction. One of the goals of this paper is to in-
vestigate how co-located workload variance impacts regulation service quality. To investigate this,
we artificially inject variation errors (misprediction) of —10, —5, +5, and +10W for one scenario.
Figure 10 shows the impact of artificially injecting misprediction errors when predicting work-
load variation for msg-store and Noisy regulation signal. We find that performance score is not
greatly impacted by variation misprediction, but normalized TCO is impacted slightly; no more
than 5% difference in the worst case.

5.3 Mixed Workload Cluster

Figure 11 shows total electricity cost and total cost of ownership of a six-server cluster with com-
binations of workloads described in Table 2. Overall, we observe similar trends at the data center-
scale similar to that of the single server scenario, thus, highlighting the feasibility of scaling out
PowERMORPH across the data center. In favorable cases, we observe profit of up to 46% of the
total electricity cost. In the common case (70, 20) we save up to 71% of total electricity cost with
56% improvement to TCO. In the non-favorable cases, we achieve up to 37% improvement to total
electricity cost with near parity TCO.

6 DISCUSSION

Frequency regulation, public vs private data centers: PowerMorph utilizes the server’s per-
formance metrics to maintain the QoS for the latency-critical application. Since workload per-
formance metrics are required, this work assumes private data centers where the applications’
requirement is known. Many previous works on data center frequency regulation (8, 63, 95, 96]
use sojourn time as performance metric to measure the QoS of the batch workload which also is
not practical in a public data center and is limited to private data centers.

Aggressively provisioned data centers: Without frequency regulation participation, the data
center would aggressively provision and safely co-locate latency-critical and best-effort work-
loads. In this baseline case, the best-effort workload would run unconstrained. If we participate in
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frequency regulation, PowerMorpPH will utilize the co-located workload to modulate power. This
means that under frequency regulation the co-located workload will always be consuming less
power (to track the regulation signal) compared to the baseline case. If there is a workload burst,
we would handle this scenario similar to the baseline case by throttling the best-effort workload
and prioritizing the latency-critical workload. However, aggressively provisioned data centers op-
erate at higher utilization and have less power headroom, which can potentially limit the amount
of frequency regulation provision that PowerMorph can provide in order to maintain availability.

Security concerns: Power attacks can create power emergencies that threaten the availability of
aggressively-provisioned data centers [46]. In general, data center frequency regulation techniques
are susceptible to such power attacks which can impact workload performance and overall cost
returns. Power attacks can be detected based on attack features, feature extraction, or abnormal
user behavior [10]. However, the attacker can evade this by changing the attack patterns and
even attack the data centers with power attack detectors. POWERMORPH can potentially provide a
ground truth for power attack detection. For any given average power of the server (P’) and r(¢),
at any given time, the target power can be calculated and monitored by an automated system. The
moment the power of a server does not follow the expected target power, it can be a sign of power
attack which can be further investigated by more complex power attack detection methods.

Currently, POWERMORPH relies on the workload average load and its variance which can be
manipulated by attackers. We assume the data center is not compromised and it is secured from
power or DDoS attacks which interfere with the predicted workload behavior of the data center
leading to power consumption misbehavior. POWERMORPH is most suitable for private data centers
which have more control over the security. Also, POoWERMoRPH framework runs on each server
independent from the other servers in the data center, resulting in more security isolation in case
attackers manage to compromise a small portion of servers.

7 RELATED WORK

The most relevant work in providing frequency regulation service in data centers was discussed
previously in Section 3.

Renewable energy-powered data center: This intermittent nature of renewable energy poses
many workload scheduling problems [25, 26, 75] and scheduling/design of power sources [26, 44,
45]. A major problem is load matching, where there is a need to balance the load power demand and
local/global power generation. Load matching has been proposed at the processor-level [43, 47] by
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using DVFS to tune load, by using stored energy devices [27, 28], and by coordinating local power
generators to track power and power shaving to trim load demand [48]. These prior techniques
mainly target batch workloads without tight millisecond-level QoS requirements, and also load
matching at 15-minute granularities. In contrast, frequency regulation requires power readjust-
ment every 2s and PowerMorph maintains ms-level QoS requirements. Due to this, PowerMorph
can also be applied to load matching of renewable energy data centers, but not vice versa.

Batteries for RS: Leveraging UPS has also been considered to enable data centers participating in
RS [30, 76] reduce the electricity costs of data center. While UPS can be leveraged to participate in
regulation service, they incur significant capital expense and they are mainly designed for backup
power, and not for the charge and discharge cycles required for regulation service which leads to
lifetime issues.

8 CONCLUSION

In this work, we have proposed POWERMORPH, a QoS-aware server-level power-reshaping frame-
work which enables data centers to participate in regulation service by dynamically adjusting the
servers’ power consumption, providing us with up to 71% savings in electricity costs and up to
58% TCO improvement in common conditions. To the best of our knowledge, POWERMORPH is the
first practical demonstration of frequency regulation service under realistic latency-critical data
center environments.
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