2021 IEEE International Conference on Networking, Architecture and Storage (NAS) | 978-1-7281-7744-1/21/$31.00 ©2021 IEEE | DOI: 10.1109/NAS51552.2021.9605375

Balancing Latency and Quality in Web Search

Liang Zhou, K. K. Ramakrishnan
Computer Science and Engineering Department
University of California Riverside, USA
1zhou008 @ucr.edu, kk@cs.ucr.edu

Abstract—Selecting the right time budget for a search query
is challenging because a proper balance between the search
latency, quality and efficiency has to be maintained. State-of-
the-art approaches leverage a centralized sample index at the
aggregator to select the Index Serving Nodes (ISNs) to maintain
quality and responsiveness. In this paper, we propose Cottage,
a coordinated framework between the aggregator and ISNs for
latency and quality optimization in web search. Cottage has two
separate neural network models at each ISN to predict the quality
contribution and latency, respectively. Then, these prediction
results are sent back to the aggregator for latency and quality
optimizations. The key task is integration of the predictions at
the aggregator in determining an optimal dynamic time budget
for identifying slow and low quality ISNs to improve latency
and search efficiency. Our experiments on the Solr search engine
prove that Cottage can reduce the average query latency by 54 %
and achieve a good P@10 search quality of 0.947.

Index Terms—distributed search, time budget, search quality,
search latency, search efficiency

I. INTRODUCTION

In distributed search, the index is partitioned into a few
shards and each index shard is hosted by an Index Serving
Node (ISN) [1]. A search request arrives at the aggregator,
which then broadcasts the query to all the ISNs in order to
gather every shard’s top relevant documents. With exhaustive
search, the aggregator has to wait for all ISN responses and
return the top-K ranked results to the client. This wastes
system resources [2], [3] and significantly degrades a search
engine’s response time because the aggregator has to wait for
the response from the slowest ISN [4], [5].

To reduce the tail latency, aggregation polices [4] rank the
ISNs based on the query’s response times and optimize the
ISN cutoff parameters for a set of queries. They generally
assume a stable request pattern during a short time period and
consider all the ISN responses during the period irrespective
of their quality contributions. Selective search [3], [6], on the
other hand, improves the epoch-based aggregation polices with
a query-specific ISN cutoff based on its quality contribution.
It leverages the individual query’s information and a Central
Sample Index (CSI) [2] at the aggregator to rank ISNs.
However, it is difficult to make an accurate prediction of the
quality contribution based on a sample index, hence it often
results in a second cutoff prediction [6].

In this paper, we propose Cottage (i.e., coordinated time
budget assignment), a coordinated framework integrating the
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prediction and decision making at both the aggregator and
the ISNs on a per-query basis. An ISN’s quality and latency
estimations are conducted independently at each ISN server,
where there is more complete information of the sharded
index. Two separate neural network models with distinct query
features are developed at the ISN for quality and latency
prediction. An ISN’s quality means the number of documents
it contributes to the top-K client-side search results, whereas
its latency means the time taken to process the query at the
particular ISN including local queuing. Having each ISN to
predict its quality and latency concurrently leads to a much
more scalable design. But we recognize that the overall query
latency and quality determination needs a global view of
the responses from all the ISNs. Thus, we gather the ISN
prediction results at the aggregator and design a centralized
optimization algorithm to determine the time budget for the
query. In addition, we incorporate a frequency boosting tech-
nique to accommodate slow ISNs that contribute highly to the
overall quality.

Cottage is implemented on the Solr search engine. Exper-
imental results on two representative query traces prove that
Cottage yields a 2.41 times shorter average query latency when
searching 2.67 times fewer documents than exhaustive search.
At the same time, we achieve a good P@10 search quality
[7] of 0.947 (out of 1). Both these results are much superior
compared to CSI based Rank-S [3] or Taily [5]. Our major
contributions in this paper are the following:

o We propose a coordinated framework between the aggre-
gator and ISNs to improve search engine’s query-specific
latency and quality while improving the search efficiency.

o Two neural network models with distinct query features
are developed to predict each ISN’s quality and latency.

o We design an algorithm to assign a dynamic time bud-
get for each search query, considering both quality and
latency predictions by the individual ISNs.

II. MOTIVATION

An intuitive approach to improve the web search’s response
time is to set up a time budget and only wait for the responses
that come back before that time [4]. In Fig. 1 (a), we plot
the quality and latency result for the query “Canada” on a
Solr search engine with 16 ISNs. In exhaustive search, with
100% P@10 precision the time budget for the search request
has to be at least 28ms such that the slowest ISN-1 can
return its results before the deadline. Epoch-based aggregation
policies [4] find a cutoff parameter that produces an optimal
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in which the stragglers (the grey ISN-1, 7, 13) on Fig. 1 (a) are
removed. In Fig. 1 (b), we assume that a time budget of 12ms
yields the best latency improvement for most of the queries in
an epoch. If we remove ISNs-1, 13, they provide the two top-
10 search results. Excluding them will deteriorate the search
quality by 20%.

Let us now look at selective search frameworks [3]. A
query’s response time from an ISN is generally not considered,
when selecting ISNs to use in the search. For the same
example, ISN-4, 5, 7, 9, 10, 11, 12, 14, 15 in Fig. 1 (c)
will be excluded when selective search is used. However, the
overall latency of query “Canada” is not optimized even if we
cutoff some low quality ISNs. Thus, it is essential to consider
both the latency and quality when assigning a query’s time
budget at the aggregator. This motivate us to have the design
of Cottage as shown in Fig. 1 (d). When determining the
time budget, the ISN with a long latency and a high quality
contribution should be retained, instead of directly dropping
them off in the aggregation policy. There are many approaches
such as pruning [8] or parallelization [9], [10] on an ISN to
accelerate the request processing. In this paper, we propose the
CPU frequency scaling to speed up the search request [11], as
it doesn’t hurt the search quality.

III. COTTAGE DESIGN

Fig. 2 provides the design overview of our framework. It
will first broadcast the request to all the ISNs. At step 2,
Cottage predicts an ISN’s quality contribution to the P@10
result for a given query. Apart from the quality prediction,
Cottage also needs to predict each query’s service time at
step 2 as both quality and latency have to be considered
when determining a query-specific time budget. In order to
precisely estimate each query’s service time at the current
CPU frequency, we develop a separate neural network model
with a number of different query features. These query-specific
quality and latency predictions at the ISN are sent back to the
aggregator in step 3 of Fig. 2. Then, Cottage uses a centralized
optimizer for latency and quality optimization (in step 4).
The key point of our optimization is to assign a dynamic
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Fig. 3. The prediction accuracy and inference time for quality prediction.

time budget for each query. In step 5 of Fig. 2, the dynamic
time budget for a query is sent back to all the ISNs. With
the assigned time budget, the ISN will process the query
accordingly in step 6. Finally, the ISN sends its responses
to the aggregator in step 7. The responses from ISNs after the
deadline are ignored by the aggregator.

Cottage proposes a neural network model to predict each
query’s quality contribution. The output of our neural network
model is the number of documents at an ISN that will be
included in the corresponding top-K results. In Fig. 3, we
present the prediction accuracy and inference time of our
predictor. We show that the accuracy of quality prediction
improves when we train the model over more iterations to
reduce the value of loss function. The prediction accuracy of
our model can be up to 95.7%. Next, we compare the quality
predictor’s accuracy and inference time on various ISNs. In
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Fig. 3 (b), our quality predictor achieves an average of 94.71%
accuracy across ISNs. The inference time overhead is shown
by the right hand side Y-axis of the same figure. Our quality
predictors only incur at most 41 microseconds of inference
time, compared with tens of milliseconds query’s service time
[9]. In order to predict a request’s precise service time, we
develop a separate neural network model in Cottage. The
accuracy of our latency predictor improves as we train it for
60 iterations. After the 60th iteration, its prediction accuracy
flattens out at 87% with a loss of 0.35. For the prediction
accuracy and inference time, an average of 87.23% queries
can have an accurate latency prediction, and a search request’s
inference time on average is as little as 70.25 microseconds.

An example of our algorithm is given in Fig. 5. Both the
Quality-K and Quality-K/2 are used by our algorithm. The
Quality-K/2 prediction means the number of documents that
an ISN will contribute to the top-K/2 client-side results. Sim-
ilarly, Cottage obtains each ISN’s predicted latency under the
current CPU frequency and the highest CPU frequency. The
initial time budget is determined by ISN-7’s boosted latency of
18 milliseconds. However, most of the remaining ISN’s current
latency and boosted latency are far below the 18 milliseconds
time budget. We notice that the ISN-7 doesn’t contribute
any documents to the most important top-/K/2 results. It is
reasonable to trade off a little bit of the bottom K/2 result’s
quality for reduced response time. Thus, Cottage will choose
a shorter time budget and drop ISN-7. Next, we try ISN-1’s
boosted latency of 16 milliseconds. As ISN-1 contributes one
document to the most important top-K /2 results, we have to
retain the response of this ISN and select a time budget of
16 milliseconds. Finally, the time budget line in Fig. 5 will
stop moving towards the X-axis due to the quality constraint
of ISN-1.

IV. EVALUATIONS

Cottage is implemented on the well known Solr search
engine. Our experimental setup has two machines: one as the
client and the other as the search engine server. The server
machine is a 24 core Intel Xeon E5-2697 CPU, 128G memory
running CentOS 7 operating system. Two representative query
traces are used in our experiments: the Wikipedia and the
Lucene nightly benchmark. On the server side, we deploy a
16 ISNs Solr search engine. In the search engine, we index
the complete dump of entire English Wikipedia web pages
on December 1st, 2018. This 65GB index has a total of 34
millions documents. We compare Cottage with the baseline
policy of exhaustive search as well as state-of-the-art schemes
such as Rank-S [3] and Taily [5].

A. Overall Latency

Fig. 4 shows the overall latency for requests from the
Wikipedia and Lucene query traces. In Fig. 4 (a) for the
Wikipedia trace, Taily’s overall latency is similar to exhaustive
search most of the time. This is because it only excludes
the ISNs that have zero contribution to the P@10 results,
without considering the dimension of latency. As shown in
Fig. 4 (b), Taily improves the average request latency of
exhaustive search only by 1.16% and reduces the 95th tail
latency by 1.2%. Rank-S performs better than Taily in Fig.
4 (a) and (b). On average, it reduces the request’s overall
latency by 11.12%. Finally, our design Cottage results in the
shortest request latency in Fig. 4 (a) and (b). In Fig. 4 (a),
Cottage outperforms the baseline exhaustive search and the
other frameworks compared all the time. As presented in Fig. 4
(b), the average latency of requests on the Wikipedia trace is
reduced by 54% compared with the exhaustive search. What is
more, we improve the request’s 95th tail latency by 2.6 times,
from 39ms in exhaustive search to 15ms. In Fig. 4 (¢) and (d),
we plot the latency results on the Lucene query trace.

B. P@10 Quality

In exhaustive search, the precision of the search results is
always 1, as every document in the entire data collection will
be retrieved. With an accurate per query quality prediction,
Cottage achieves an average of 0.947 P@10 search quality on
the Wikipedia trace. Similarly, the P@ 10 quality on the Lucene
trace is 0.955. We sacrifice the P@10 search quality a little bit
because Cottage drops the ISNs with low quality contributions
but having an extremely long latency for improved search
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Fig. 6. The number of searched documents for exhaustive search, Taily, Rank-S and our Cottage.

response times. It is reasonable to trade-off around 5% of the
search quality for at least 2.17 times improvement in search
latency. Taily has a search quality of 0.887 on the Wikipedia
trace and 0.878 P@ 10 quality on the Lucene trace. The P@10
quality results of Cottage are at least 6% better than that
on Taily. Across all the frameworks compared, Rank-S has
the worst search quality due to its sampling design at the
aggregator. The average P@10 quality of Rank-S is at most
0.709, which is 25.13% worse than Cottage on the same trace.

C. Document Efficiency

Similar to previous research [3], [5], [6], we utilize the
performance metric of Crprs [5] to quantify the efficiency
of a search engine. Crpg is the number of documents across
all the used ISNs to search for the top-10 results for a given
query. Rank-S also considers the number of scored documents
in the CSI. In Fig. 6 (a), the number of searched documents
with exhaustive search varies between 2K to 5.4M across
different Wikipedia search queries. The corresponding average
value of Crpg is given in Fig. 6 (c). By cutting off the
low quality ISNs, Taily in Fig. 6 (a) reduces the number of
searched documents only on a limited number of data points.
Accordingly, its average value of Crpgs in Fig. 6 (c) doesn’t
improve too much compared with the exhaustive search. The
performance of Rank-S is similar to Taily in Fig. 6 (a). On
average, the number of searched documents in Rank-S is 0.2M
for the Wikipedia trace. Finally, Cottage has the smallest
value of Crpgs most of time, as in Fig. 6 (a). In Fig. 6
(c), Cottage retrieves an average of 0.11M documents for the
queries using the Wikipedia trace, which is 2.67 times less
than the baseline exhaustive search, and 1.8 times better than
Rank-S. As shown in Fig. 6 (b), the comparison results of
CRrEs are similar with the Lucene trace. We improve a search
engine’s efficiency by 265% on the Lucene trace, compared
with exhaustive search. Additionally, the average Crpgs of
Cottage is just 54.5% of Rank-S on the same Lucene trace.

V. CONCLUSION

In this paper, we present Cottage, a coordinated framework
between the aggregator and ISNs for latency and quality
optimization in distributed search. The major feature of our
design is the proper partitioning of the optimization between
the individual ISNs with full index information and the aggre-
gator which has global visibility. Cottage employs two separate

neural network models with high prediction accuracy to further
enhance the benefits of the aggregator and ISN coordina-
tion. With these prediction results, our optimization algorithm
considers each ISN’s quality contribution and latency, while
achieving a good balance between the search latency, quality
and efficiency.
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