
pMACH : Power and Migration Aware Container
scHeduling

Sourav Panda, K. K. Ramakrishnan, Laxmi N. Bhuyan

University of California, Riverside, CA

Abstract—Data center workload fluctuations need periodic,
but careful scheduling to minimize power consumption while
meeting the task completion time requirements. Existing data
center scheduling systems tightly pack containers to save power.
However, with the growth of multi-tiered applications, there is a
significant need to account for the affinity between application
components, to minimize communication overheads and latency.
Centralized container scheduling systems using graph partition-
ing algorithms cause a significant number of task migrations,
with associated downtime.

We design pMACH, a novel distributed container scheduling
scheme for optimizing both power and task completion time in
data centers. It minimizes task migrations and packs frequently
communicating containers together without overloading servers.
pMACH operates at peak energy efficiency, thus reducing energy
consumption while also providing greater headroom for unpre-
dictable workload spikes. We also propose in-network monitoring
using smartNICs (sNIC) to measure the communications and then
perform scheduling in a hierarchical, parallelized framework to
achieve high performance and scalability. pMACH is based on
incremental partitioning and it leverages the previous scheduling
decision to significantly reduce the number of containers moved
between servers, avoiding application downtime.

Both testbed measurements and large-scale trace-driven simu-
lations show that pMACH saves at least 13.44% more power com-
pared to previous scheduling systems. It speeds task completion,
reducing the 95th percentile by a factor of 1.76-2.11 compared to
existing container scheduling schemes. Compared to other static
graph-based approaches, our incremental partitioning technique
reduces migrations per epoch by 82%.

Index Terms—Data center scheduling, power saving, cost
saving, meeting SLA

I. INTRODUCTION

Striking the right balance between conflicting scheduling

requirements such as overprovisioning to satisfy an appli-

cation’s service level agreements (SLA) vs. tightly packing

servers to save power in a data center (DC) can be challenging.

Tightly packing containers is necessary to achieve high server

utilization and power saving [1]–[4] by turning off idle servers.

In general, DCs operate at ∼ 20% server utilization [5]–

[7] and 10% network utilization [2], [8] in order to meet

application SLAs. However, this results in high overall DC

power consumption as more servers remain powered on.
While there exists some prior work to minimize both power

and task completion time [9], they are not incremental, leading

to a significant number of container migrations. They ignore

the cost of container migrations when adapting to workload

changes or when the workload is consolidated to a smaller

number of servers to reduce power consumption. Container

migration (e.g., CRIU [10]) also results in downtime [11],

and frequent migrations can adversely impact task completion

times and are likely to result in SLA violations [12]. Thus, it is

desirable to have a DC scheduler that simultaneously reduces

power, task completion time, and container migrations and

is also scalable to DC scales. The challenges are several -

the need to operate servers efficiently [13], support fluctuating

workloads [8], account for application container affinity [14],

and account for migration overheads [11].

Today’s DCs typically employ some form of heuristic-driven

bin packing such as RC-Informed [15], Borg [16], pMapper

[17] and others [18]–[20]. These solutions do not consider

container affinity, potentially resulting in hosted cloud appli-

cations having higher latency [9] due to large inter-container

communications. State-of-the-art task placement frameworks

such as Borg [16] and RC-Informed [15] pack containers in

highly utilized servers. Borg aims to reduce stranded resources

while RC-Informed over-subscribes CPU resources at 125%

[15], as a way of minimizing the number of servers deployed.

To minimize power consumption, pMapper [17] determines the

target utilization for each server based on the power model for

the server. It then places VMs on servers using a bin-packing

algorithm, trying to meet the target utilization on each server.

E-PVM [21] places containers on the server with the lowest

utilization, so as to leave large headroom for load spikes and

achieve low task completion time.

Goldilocks [9] is another approach for scheduling latency

sensitive tasks in a DC. It balances task completion time

and energy, benefiting from placing frequently communicating

containers together. However, it uses a centralized, periodic

graph partitioning and scheduling policy using Metis [22],

which does not scale to large DCs consisting of tens of

thousands of servers. The change in container graph going

from one epoch to the next may be incremental, but re-

partitioning the entire graph, as in [9], results in a lot

of container migrations. Vertices can be moved from one

partition to another due to repartitioning. As vertex migrations

correspond to container migrations, they are expensive and

must be minimized. Furthermore, their work does not consider

the overhead associated with transmitting the traffic matrix.

A DC cluster of several thousand servers, switches and links

is typically broken up into smaller identical units. These units

are called pods, comprising of several hundred servers along

with the top-of-the-rack and aggregation switches. The DC

network provides high-performance connectivity between all

pods in the DC. We propose pMACH a Two-Tier distributed

scheduling framework to adaptively ‘right size’ the DC by

first considering a pod-level partitioning of containers, and978-1-6654-4131-5/21/$31.00 ©2021 IEEE

2
0
2
1
 I

E
E

E
 2

9
th

 I
n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 N

et
w

o
rk

 P
ro

to
co

ls
 (

IC
N

P
)

| 9
7
8
-1

-6
6
5
4
-4

1
3
1
-5

/2
1
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

C
N

P
5
2
4
4
4
.2

0
2
1
.9

6
5
1
9
1
1

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:41:44 UTC from IEEE Xplore. Restrictions apply.

then repartitioning the container sub-graph within a pod.

pMACH schedules groups of containers (pMACH is generic,

and may be used for scheduling VMs as well) of a partition

on a server. It minimizes container migrations by adopting an

incremental partitioning technique. pMACH’s main focus is on

achieving scalability using a Two-Tier partitioning algorithm,

and executing the algorithm in an entirely distributed manner,

unlike the centralized approach that has been the state-of-the-

art. pMACH’s strengths are:

• Scalability: pMACH can schedule a large number of

containers over a cluster of ten thousands of servers in a

relatively short time.

• Multi-objective optimization: pMACH balances be-

tween power consumption, task completion time, and task

migrations.

• Efficient: pMACH only requires a small amount of

processing resources (few cores on a select server in each

pod of the DC), and uses network offload to relieve CPU

cores of scheduler related activity.

• Practical: rather than assuming the container communi-

cation graph, pMACH collects the needed information in

real-time on a Smart network interface card (sNIC).

pMACH significantly reduces task completion time as

containers that frequently communicate with each other are

placed together in the DC topology. Power saving is achieved

by having a minimal number of servers, so that unused

servers can be turned off. Container migrations are reduced

by accounting for dirty vertices (vertices that are moved

from their original group to another group in the graph),

thereby minimizing downtime. We consider three mechanisms

to perform hierarchical partitioning of the container graph,

namely, ParMetis Base partitioning, ParMetis Adaptive par-

titioning [23], and Tabu Search. Both ParMetis offerings (e.g.

Base and Adaptive) are highly parallelized. The difference

between them is that Adaptive partitioning reduces container

migrations and is faster to deal with workload variation. Tabu

Search is a widely used meta-heuristic for graph partitioning as

shown in [24]–[26] and allows us to provide a multi-objective

cost formulation, accounting for container migration costs.

Tabu Search however has poor scaling properties for larger

graphs. Hence, we propose a hierarchical Two-Tier partitioning

architecture that combines the advantages of both ParMetis

Adaptive partitioning and Tabu search.

To obtain the container graph, we use a sNIC to collect

the communication graph and provide it to the appropriate

ParMetis graph partitioning worker nodes. This helps us save

crucial CPU cycles. We use an efficient data stream sum-

marization [27] to derive the edge weights with reasonable

accuracy to allow frequently communicating container pairs

to be placed together, to minimize task completion time.

Both testbed measurements and large-scale trace-driven

simulations show that pMACH saves 13.44% more power

compared to other scheduling systems. It speeds task com-

pletion, reducing the 95th percentile by a factor of 1.76-2.11

compared to existing container scheduling schemes. Compared

to the static graph-based approach [9], our incremental parti-

tioning technique reduces the migrations per epoch by 82%.

Our major contributions include:

• A distributed scheduling system to scalably schedule

containers across tens of thousands of servers.

• A Two-Tier scheduler composed of ParMetis Adaptive

partitioning and Tabu Search to help reduce the parti-

tioning time and container migrations.

• An efficient telemetry data structure on the sNIC to obtain

the container graph in real-time.

• We implemented pMACH in a DC testbed (Cloudlab

[28]) using 16 servers. We also implemented a large-

scale flow-level simulation to demonstrate the scalability

of pMACH.

II. BACKGROUND AND RELATED WORK

Problem Statement: A DC scheduler runs hundreds of

thousands of jobs, from many thousands of different appli-

cations, across a number of clusters each with up to tens of

thousands of machines [16]. This work focuses on scheduling

for light-weight container instances. The broad goals for a

power and migration aware DC scheduling approach are:

• Task Completion Time: There is a need to honor

container resource requirements and place frequently

communicating container pairs together so that the task

completion time (latency) is reduced.

• Power Consumption: It is desirable to consolidate con-

tainers to fewer servers and operate them at peak energy

efficiency.

• Downtime: It is important to minimize the downtime

impact of container migrations.

Related Work: E-PVM and RC-Informed are instances of

the vector bin packing that model static resource allocation

problems, where there is a set of servers with known capacities

and a set of services with known demands [19]. Firstly,

E-PVM distributes containers to the least occupied servers,

leaving sufficient head room for spikes, but resulting in un-

desirably higher power consumption [21]. Alternatively, RC-

Informed [15] predicts the workload for the scheduler to safely

oversubscribe resources and tightly pack containers, thereby

consuming less energy compared to E-PVM [9]. The problem

with E-PVM and RC-Informed is that they do not consider

container pair affinities and nor do they take advantage of

peak energy efficiency. Compared to E-PVM, 6.6% to 18.8%

power can be saved by alternatives that pack containers more

tightly [9]. Furthermore, workload prediction can be imperfect

and RC-Informed is shown to predict a new VM’s CPU

utilization with only 81% accuracy [15]. Under-prediction will

cause the target peak utilization to be exceeded, and with

oversubscribing of resources at 125%, it can result in violating

latency requirements. Thus, it is desirable to have a lower

utilization level for each processor and still save energy.

Another approach is to represent containers and the com-

munication between them as a graph and use partitioning

to allocate containers to different nodes [9]. The approach

considers a container graph with resource demands as vertex

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:41:44 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] N. Vasić, P. Bhurat, D. Novaković, M. Canini, S. Shekhar, and
D. Kostić, “Identifying and using energy-critical paths,” in Proceedings

of the Seventh COnference on Emerging Networking EXperiments

and Technologies, ser. CoNEXT ’11. New York, NY, USA:
Association for Computing Machinery, 2011. [Online]. Available:
https://doi.org/10.1145/2079296.2079314

[2] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “Elastictree: Saving energy in data center
networks,” in Proceedings of the 7th USENIX Conference on Networked

Systems Design and Implementation, ser. NSDI’10. USA: USENIX
Association, 2010, p. 17.

[3] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic
right-sizing for power-proportional data centers,” in 2011 Proceedings

IEEE INFOCOM, 2011, pp. 1098–1106.
[4] G. Prekas, M. Primorac, A. Belay, C. Kozyrakis, and E. Bugnion,

“Energy proportionality and workload consolidation for latency-critical
applications,” in Proceedings of the Sixth ACM Symposium on Cloud

Computing, ser. SoCC ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 342–355. [Online]. Available:
https://doi.org/10.1145/2806777.2806848

[5] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: Eliminating
server idle power,” SIGARCH Comput. Archit. News, vol. 37, no. 1,
p. 205–216, Mar. 2009. [Online]. Available: https://doi.org/10.1145/
2528521.1508269

[6] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik:
Fast analytical power management for latency-critical systems,” in 2015

48th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2015, pp. 598–610.
[7] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, “To-

wards energy proportionality for large-scale latency-critical workloads,”
in Proceeding of the 41st Annual International Symposium on Computer

Architecuture, ser. ISCA ’14. IEEE Press, 2014, p. 301–312.
[8] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the

social network’s (datacenter) network,” SIGCOMM Comput. Commun.

Rev., vol. 45, no. 4, p. 123–137, Aug. 2015. [Online]. Available:
https://doi.org/10.1145/2829988.2787472

[9] L. Zhou, L. N. Bhuyan, and K. K. Ramakrishnan, “Goldilocks: Adaptive
resource provisioning in containerized data centers,” in 2019 IEEE 39th

International Conference on Distributed Computing Systems (ICDCS),
2019, pp. 666–677.

[10] “Live migration using criu,” https://criu.org/Docker.
[11] “Gcp live miogration,” https://cloud.google.com/compute/docs/

instances/live-migration.
[12] B. Vamanan, H. B. Sohail, J. Hasan, and T. N. Vijaykumar, “Timetrader:

Exploiting latency tail to save datacenter energy for online search,” in
2015 48th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO), 2015, pp. 585–597.
[13] D. Wong, “Peak efficiency aware scheduling for highly energy

proportional servers,” in Proceedings of the 43rd International

Symposium on Computer Architecture, ser. ISCA ’16. IEEE Press, 2016,
p. 481–492. [Online]. Available: https://doi.org/10.1109/ISCA.2016.49

[14] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in OSDI’04: Sixth Symposium on Operating System

Design and Implementation, San Francisco, CA, 2004, pp. 137–150.
[15] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and

R. Bianchini, “Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms,”
in Proceedings of the International Symposium on Operating Systems

Principles (SOSP), October 2017.
[16] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune,

and J. Wilkes, “Large-scale cluster management at Google with Borg,”
in Proceedings of the European Conference on Computer Systems

(EuroSys), Bordeaux, France, 2015.
[17] A. Verma, P. Ahuja, and A. Neogi, “pmapper: Power and migration

cost aware application placement in virtualized systems,” in Middleware

2008, V. Issarny and R. Schantz, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 243–264.

[18] “Kubernetes resource bin packing.” [Online]. Available: https://
kubernetes.io/docs/concepts/scheduling-eviction/resource-bin-packing/

[19] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for vector
bin packing,” January 2011. [Online]. Available: https://www.microsoft.
com/en-us/research/publication/heuristics-for-vector-bin-packing/

[20] “Aws ecs bin packing.” [Online]. Available: https://aws.amazon.com/
blogs/compute/amazon-ecs-task-placement/

[21] Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and A. Keren, “An
opportunity cost approach for job assignment in a scalable computing
cluster,” IEEE Transactions on Parallel and Distributed Systems, vol. 11,
no. 7, pp. 760–768, 2000.

[22] G. Karypis and V. Kumar, “MeTis: Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 4.0,” http://www.cs.umn.edu/
∼metis, University of Minnesota, Minneapolis, MN, 2009.

[23] K. Schloegel, G. Karypis, and V. Kumar, “Multilevel diffusion schemes
for repartitioning of adaptive meshes,” JOURNAL OF PARALLEL AND

DISTRIBUTED COMPUTING, vol. 47, pp. 109–124, 1997.

[24] A. Lim and Y.-M. Chee, “Graph partitioning using tabu search,” in 1991.,

IEEE International Sympoisum on Circuits and Systems, 1991, pp. 1164–
1167 vol.2.

[25] E. Rolland, H. Pirkul, and F. Glover, “Tabu search for graph partition-
ing,” Annals of Operations Research, vol. 63, pp. 209–232, 04 1996.

[26] M. Jahanian, J. Chen, and K. K. Ramakrishnan, “Graph-based names-
paces and load sharing for efficient information dissemination in disas-
ters,” in 2019 IEEE 27th International Conference on Network Protocols

(ICNP), 2019, pp. 1–12.

[27] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM

Special Interest Group on Data Communication, ser. SIGCOMM ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
561–575. [Online]. Available: https://doi.org/10.1145/3230543.3230544

[28] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The design and operation of CloudLab,” in Proceedings of

the USENIX Annual Technical Conference (ATC), Jul. 2019, pp. 1–14.
[Online]. Available: https://www.flux.utah.edu/paper/duplyakin-atc19

[29] K. Zhou, W. Wan, X. Chen, Z. Shao, and L. T. Biegler, “A
parallel method with hybrid algorithms for mixed integer nonlinear
programming,” in 23rd European Symposium on Computer Aided

Process Engineering, ser. Computer Aided Chemical Engineering,
A. Kraslawski and I. Turunen, Eds. Elsevier, 2013, vol. 32, pp.
271–276. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780444632340500464

[30] M. P. Forum, “Mpi: A message-passing interface standard,” USA, Tech.
Rep., 1994.

[31] “Google cloud platform: Micro services demo.” [Online]. Available:
https://github.com/GoogleCloudPlatform/microservices-demo

[32] “Kubernetes nodename.” [Online]. Available: https://kubernetes.io/docs/
concepts/scheduling-eviction/assign-pod-node/

[33] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl
in action: Experiences in using rapl for power measurements,” ACM

Trans. Model. Perform. Eval. Comput. Syst., vol. 3, no. 2, Mar. 2018.
[Online]. Available: https://doi.org/10.1145/3177754

[34] “Linux manual page: dd.” [Online]. Available: https://man7.org/linux/
man-pages/man1/dd.1.html

[35] D. Wong, “Peak efficiency aware scheduling for highly energy
proportional servers,” in Proceedings of the 43rd International

Symposium on Computer Architecture, ser. ISCA ’16. IEEE Press, 2016,
p. 481–492. [Online]. Available: https://doi.org/10.1109/ISCA.2016.49

[36] “Intel turbo boost.” [Online]. Available: https:
//www.intel.com/content/www/us/en/architecture-and-technology/turbo-
boost/turbo-boost-technology.html

[37] C.-H. Hsu and S. W. Poole, “Revisiting server energy proportionality,”
in 2013 42nd International Conference on Parallel Processing, 2013,
pp. 834–840.

[38] D. Wong, J. Chen, and M. Annavaram, “A retrospective look back on
the road towards energy proportionality,” in 2015 IEEE International

Symposium on Workload Characterization, 2015, pp. 110–111.

[39] “Cloudsuite.” [Online]. Available: https://github.com/parsa-epfl/
cloudsuite

[40] “Task migration at scale using criu.” [Online]. Available: https:
//linuxplumbersconf.org/event/2/contributions/69/

[41] “Parmetis manual.” [Online]. Available: http://glaros.dtc.umn.edu/
gkhome/fetch/sw/parmetis/manual.pdf

[42] N. Desai, R. Bradshaw, A. Lusk, and E. Lusk, “Mpi cluster system
software,” in Recent Advances in Parallel Virtual Machine and Message

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:41:44 UTC from IEEE Xplore. Restrictions apply.

Passing Interface, D. Kranzlmüller, P. Kacsuk, and J. Dongarra, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 277–286.

[43] “D-salt.” [Online]. Available: https://aistein.github.io/d-salt/
[44] “Docker stats.” [Online]. Available: https://docs.docker.com/engine/

reference/commandline/stats/
[45] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,

S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: A
scalable fault-tolerant layer 2 data center network fabric,” in
Proceedings of the ACM SIGCOMM 2009 Conference on Data

Communication, ser. SIGCOMM ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 39–50. [Online].
Available: https://doi.org/10.1145/1592568.1592575

[46] F. Engineering, “Introducing data center fabric, the next-generation
Facebook data center network,” https://engineering.fb.com/2014/11/
14/production-engineering/introducing-data-center-fabric-the-next-
generation-facebook-data-center-network/.

[47] “Bin packing.” [Online]. Available: https://www.ics.uci.edu/∼goodrich/
teach/cs165/notes/BinPacking.pdf

[48] G. Karypis and V. Kumar, “Kumar, v.: A fast and high quality multilevel
scheme for partitioning irregular graphs. siam journal on scientific
computing 20(1), 359-392,” Siam Journal on Scientific Computing,
vol. 20, 01 1999.

[49] H. Pirim, E. Bayraktar, and B. Eksioglu, Tabu Search: A Comparative

Study, 09 2008.
[50] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman,

R. Friedman, and V. Sekar, “Nitrosketch: Robust and general sketch-
based monitoring in software switches,” in Proceedings of the ACM

Special Interest Group on Data Communication, ser. SIGCOMM ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
334–350. [Online]. Available: https://doi.org/10.1145/3341302.3342076

[51] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,
M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K.
Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,
G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal,
D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg, “Azure accelerated
networking: Smartnics in the public cloud,” in 15th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 18). Renton,
WA: USENIX Association, Apr. 2018, pp. 51–66. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/firestone

[52] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and
K. Gupta, “Offloading distributed applications onto smartnics using
ipipe,” in Proceedings of the ACM Special Interest Group on

Data Communication, ser. SIGCOMM ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 318–333. [Online].
Available: https://doi.org/10.1145/3341302.3342079

[53] A. Khandelwal, R. Agarwal, and I. Stoica, “Confluo: Distributed
monitoring and diagnosis stack for high-speed networks,” in 16th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 19). Boston, MA: USENIX Association, Feb. 2019, pp. 421–
436. [Online]. Available: https://www.usenix.org/system/files/nsdi19-
khandelwal.pdf

[54] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: The count-min sketch and its applications,” J. Algorithms,
vol. 55, no. 1, p. 58–75, Apr. 2005. [Online]. Available: https:
//doi.org/10.1016/j.jalgor.2003.12.001

[55] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in Proceedings of the 29th International Colloquium

on Automata, Languages and Programming, ser. ICALP ’02. Berlin,
Heidelberg: Springer-Verlag, 2002, p. 693–703.

[56] “Iptraf.” [Online]. Available: http://iptraf.seul.org/
[57] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe,

“Cloudnet: Dynamic pooling of cloud resources by live wan
migration of virtual machines,” in Proceedings of the 7th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments, ser. VEE ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 121–132. [Online]. Available:
https://doi.org/10.1145/1952682.1952699

[58] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM

SIGCOMM Conference on Internet Measurement, ser. IMC ’10. New
York, NY, USA: Association for Computing Machinery, 2010, p.
267–280. [Online]. Available: https://doi.org/10.1145/1879141.1879175

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:41:44 UTC from IEEE Xplore. Restrictions apply.

